cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

readahead.c (25890B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * mm/readahead.c - address_space-level file readahead.
      4 *
      5 * Copyright (C) 2002, Linus Torvalds
      6 *
      7 * 09Apr2002	Andrew Morton
      8 *		Initial version.
      9 */
     10
     11/**
     12 * DOC: Readahead Overview
     13 *
     14 * Readahead is used to read content into the page cache before it is
     15 * explicitly requested by the application.  Readahead only ever
     16 * attempts to read folios that are not yet in the page cache.  If a
     17 * folio is present but not up-to-date, readahead will not try to read
     18 * it. In that case a simple ->read_folio() will be requested.
     19 *
     20 * Readahead is triggered when an application read request (whether a
     21 * system call or a page fault) finds that the requested folio is not in
     22 * the page cache, or that it is in the page cache and has the
     23 * readahead flag set.  This flag indicates that the folio was read
     24 * as part of a previous readahead request and now that it has been
     25 * accessed, it is time for the next readahead.
     26 *
     27 * Each readahead request is partly synchronous read, and partly async
     28 * readahead.  This is reflected in the struct file_ra_state which
     29 * contains ->size being the total number of pages, and ->async_size
     30 * which is the number of pages in the async section.  The readahead
     31 * flag will be set on the first folio in this async section to trigger
     32 * a subsequent readahead.  Once a series of sequential reads has been
     33 * established, there should be no need for a synchronous component and
     34 * all readahead request will be fully asynchronous.
     35 *
     36 * When either of the triggers causes a readahead, three numbers need
     37 * to be determined: the start of the region to read, the size of the
     38 * region, and the size of the async tail.
     39 *
     40 * The start of the region is simply the first page address at or after
     41 * the accessed address, which is not currently populated in the page
     42 * cache.  This is found with a simple search in the page cache.
     43 *
     44 * The size of the async tail is determined by subtracting the size that
     45 * was explicitly requested from the determined request size, unless
     46 * this would be less than zero - then zero is used.  NOTE THIS
     47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED
     48 * PAGE.  ALSO THIS CALCULATION IS NOT USED CONSISTENTLY.
     49 *
     50 * The size of the region is normally determined from the size of the
     51 * previous readahead which loaded the preceding pages.  This may be
     52 * discovered from the struct file_ra_state for simple sequential reads,
     53 * or from examining the state of the page cache when multiple
     54 * sequential reads are interleaved.  Specifically: where the readahead
     55 * was triggered by the readahead flag, the size of the previous
     56 * readahead is assumed to be the number of pages from the triggering
     57 * page to the start of the new readahead.  In these cases, the size of
     58 * the previous readahead is scaled, often doubled, for the new
     59 * readahead, though see get_next_ra_size() for details.
     60 *
     61 * If the size of the previous read cannot be determined, the number of
     62 * preceding pages in the page cache is used to estimate the size of
     63 * a previous read.  This estimate could easily be misled by random
     64 * reads being coincidentally adjacent, so it is ignored unless it is
     65 * larger than the current request, and it is not scaled up, unless it
     66 * is at the start of file.
     67 *
     68 * In general readahead is accelerated at the start of the file, as
     69 * reads from there are often sequential.  There are other minor
     70 * adjustments to the readahead size in various special cases and these
     71 * are best discovered by reading the code.
     72 *
     73 * The above calculation, based on the previous readahead size,
     74 * determines the size of the readahead, to which any requested read
     75 * size may be added.
     76 *
     77 * Readahead requests are sent to the filesystem using the ->readahead()
     78 * address space operation, for which mpage_readahead() is a canonical
     79 * implementation.  ->readahead() should normally initiate reads on all
     80 * folios, but may fail to read any or all folios without causing an I/O
     81 * error.  The page cache reading code will issue a ->read_folio() request
     82 * for any folio which ->readahead() did not read, and only an error
     83 * from this will be final.
     84 *
     85 * ->readahead() will generally call readahead_folio() repeatedly to get
     86 * each folio from those prepared for readahead.  It may fail to read a
     87 * folio by:
     88 *
     89 * * not calling readahead_folio() sufficiently many times, effectively
     90 *   ignoring some folios, as might be appropriate if the path to
     91 *   storage is congested.
     92 *
     93 * * failing to actually submit a read request for a given folio,
     94 *   possibly due to insufficient resources, or
     95 *
     96 * * getting an error during subsequent processing of a request.
     97 *
     98 * In the last two cases, the folio should be unlocked by the filesystem
     99 * to indicate that the read attempt has failed.  In the first case the
    100 * folio will be unlocked by the VFS.
    101 *
    102 * Those folios not in the final ``async_size`` of the request should be
    103 * considered to be important and ->readahead() should not fail them due
    104 * to congestion or temporary resource unavailability, but should wait
    105 * for necessary resources (e.g.  memory or indexing information) to
    106 * become available.  Folios in the final ``async_size`` may be
    107 * considered less urgent and failure to read them is more acceptable.
    108 * In this case it is best to use filemap_remove_folio() to remove the
    109 * folios from the page cache as is automatically done for folios that
    110 * were not fetched with readahead_folio().  This will allow a
    111 * subsequent synchronous readahead request to try them again.  If they
    112 * are left in the page cache, then they will be read individually using
    113 * ->read_folio() which may be less efficient.
    114 */
    115
    116#include <linux/blkdev.h>
    117#include <linux/kernel.h>
    118#include <linux/dax.h>
    119#include <linux/gfp.h>
    120#include <linux/export.h>
    121#include <linux/backing-dev.h>
    122#include <linux/task_io_accounting_ops.h>
    123#include <linux/pagevec.h>
    124#include <linux/pagemap.h>
    125#include <linux/syscalls.h>
    126#include <linux/file.h>
    127#include <linux/mm_inline.h>
    128#include <linux/blk-cgroup.h>
    129#include <linux/fadvise.h>
    130#include <linux/sched/mm.h>
    131
    132#include "internal.h"
    133
    134/*
    135 * Initialise a struct file's readahead state.  Assumes that the caller has
    136 * memset *ra to zero.
    137 */
    138void
    139file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
    140{
    141	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
    142	ra->prev_pos = -1;
    143}
    144EXPORT_SYMBOL_GPL(file_ra_state_init);
    145
    146static void read_pages(struct readahead_control *rac)
    147{
    148	const struct address_space_operations *aops = rac->mapping->a_ops;
    149	struct folio *folio;
    150	struct blk_plug plug;
    151
    152	if (!readahead_count(rac))
    153		return;
    154
    155	blk_start_plug(&plug);
    156
    157	if (aops->readahead) {
    158		aops->readahead(rac);
    159		/*
    160		 * Clean up the remaining folios.  The sizes in ->ra
    161		 * may be used to size the next readahead, so make sure
    162		 * they accurately reflect what happened.
    163		 */
    164		while ((folio = readahead_folio(rac)) != NULL) {
    165			unsigned long nr = folio_nr_pages(folio);
    166
    167			folio_get(folio);
    168			rac->ra->size -= nr;
    169			if (rac->ra->async_size >= nr) {
    170				rac->ra->async_size -= nr;
    171				filemap_remove_folio(folio);
    172			}
    173			folio_unlock(folio);
    174			folio_put(folio);
    175		}
    176	} else {
    177		while ((folio = readahead_folio(rac)) != NULL)
    178			aops->read_folio(rac->file, folio);
    179	}
    180
    181	blk_finish_plug(&plug);
    182
    183	BUG_ON(readahead_count(rac));
    184}
    185
    186/**
    187 * page_cache_ra_unbounded - Start unchecked readahead.
    188 * @ractl: Readahead control.
    189 * @nr_to_read: The number of pages to read.
    190 * @lookahead_size: Where to start the next readahead.
    191 *
    192 * This function is for filesystems to call when they want to start
    193 * readahead beyond a file's stated i_size.  This is almost certainly
    194 * not the function you want to call.  Use page_cache_async_readahead()
    195 * or page_cache_sync_readahead() instead.
    196 *
    197 * Context: File is referenced by caller.  Mutexes may be held by caller.
    198 * May sleep, but will not reenter filesystem to reclaim memory.
    199 */
    200void page_cache_ra_unbounded(struct readahead_control *ractl,
    201		unsigned long nr_to_read, unsigned long lookahead_size)
    202{
    203	struct address_space *mapping = ractl->mapping;
    204	unsigned long index = readahead_index(ractl);
    205	gfp_t gfp_mask = readahead_gfp_mask(mapping);
    206	unsigned long i;
    207
    208	/*
    209	 * Partway through the readahead operation, we will have added
    210	 * locked pages to the page cache, but will not yet have submitted
    211	 * them for I/O.  Adding another page may need to allocate memory,
    212	 * which can trigger memory reclaim.  Telling the VM we're in
    213	 * the middle of a filesystem operation will cause it to not
    214	 * touch file-backed pages, preventing a deadlock.  Most (all?)
    215	 * filesystems already specify __GFP_NOFS in their mapping's
    216	 * gfp_mask, but let's be explicit here.
    217	 */
    218	unsigned int nofs = memalloc_nofs_save();
    219
    220	filemap_invalidate_lock_shared(mapping);
    221	/*
    222	 * Preallocate as many pages as we will need.
    223	 */
    224	for (i = 0; i < nr_to_read; i++) {
    225		struct folio *folio = xa_load(&mapping->i_pages, index + i);
    226
    227		if (folio && !xa_is_value(folio)) {
    228			/*
    229			 * Page already present?  Kick off the current batch
    230			 * of contiguous pages before continuing with the
    231			 * next batch.  This page may be the one we would
    232			 * have intended to mark as Readahead, but we don't
    233			 * have a stable reference to this page, and it's
    234			 * not worth getting one just for that.
    235			 */
    236			read_pages(ractl);
    237			ractl->_index++;
    238			i = ractl->_index + ractl->_nr_pages - index - 1;
    239			continue;
    240		}
    241
    242		folio = filemap_alloc_folio(gfp_mask, 0);
    243		if (!folio)
    244			break;
    245		if (filemap_add_folio(mapping, folio, index + i,
    246					gfp_mask) < 0) {
    247			folio_put(folio);
    248			read_pages(ractl);
    249			ractl->_index++;
    250			i = ractl->_index + ractl->_nr_pages - index - 1;
    251			continue;
    252		}
    253		if (i == nr_to_read - lookahead_size)
    254			folio_set_readahead(folio);
    255		ractl->_nr_pages++;
    256	}
    257
    258	/*
    259	 * Now start the IO.  We ignore I/O errors - if the folio is not
    260	 * uptodate then the caller will launch read_folio again, and
    261	 * will then handle the error.
    262	 */
    263	read_pages(ractl);
    264	filemap_invalidate_unlock_shared(mapping);
    265	memalloc_nofs_restore(nofs);
    266}
    267EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
    268
    269/*
    270 * do_page_cache_ra() actually reads a chunk of disk.  It allocates
    271 * the pages first, then submits them for I/O. This avoids the very bad
    272 * behaviour which would occur if page allocations are causing VM writeback.
    273 * We really don't want to intermingle reads and writes like that.
    274 */
    275static void do_page_cache_ra(struct readahead_control *ractl,
    276		unsigned long nr_to_read, unsigned long lookahead_size)
    277{
    278	struct inode *inode = ractl->mapping->host;
    279	unsigned long index = readahead_index(ractl);
    280	loff_t isize = i_size_read(inode);
    281	pgoff_t end_index;	/* The last page we want to read */
    282
    283	if (isize == 0)
    284		return;
    285
    286	end_index = (isize - 1) >> PAGE_SHIFT;
    287	if (index > end_index)
    288		return;
    289	/* Don't read past the page containing the last byte of the file */
    290	if (nr_to_read > end_index - index)
    291		nr_to_read = end_index - index + 1;
    292
    293	page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
    294}
    295
    296/*
    297 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
    298 * memory at once.
    299 */
    300void force_page_cache_ra(struct readahead_control *ractl,
    301		unsigned long nr_to_read)
    302{
    303	struct address_space *mapping = ractl->mapping;
    304	struct file_ra_state *ra = ractl->ra;
    305	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
    306	unsigned long max_pages, index;
    307
    308	if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead))
    309		return;
    310
    311	/*
    312	 * If the request exceeds the readahead window, allow the read to
    313	 * be up to the optimal hardware IO size
    314	 */
    315	index = readahead_index(ractl);
    316	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
    317	nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
    318	while (nr_to_read) {
    319		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
    320
    321		if (this_chunk > nr_to_read)
    322			this_chunk = nr_to_read;
    323		ractl->_index = index;
    324		do_page_cache_ra(ractl, this_chunk, 0);
    325
    326		index += this_chunk;
    327		nr_to_read -= this_chunk;
    328	}
    329}
    330
    331/*
    332 * Set the initial window size, round to next power of 2 and square
    333 * for small size, x 4 for medium, and x 2 for large
    334 * for 128k (32 page) max ra
    335 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
    336 */
    337static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
    338{
    339	unsigned long newsize = roundup_pow_of_two(size);
    340
    341	if (newsize <= max / 32)
    342		newsize = newsize * 4;
    343	else if (newsize <= max / 4)
    344		newsize = newsize * 2;
    345	else
    346		newsize = max;
    347
    348	return newsize;
    349}
    350
    351/*
    352 *  Get the previous window size, ramp it up, and
    353 *  return it as the new window size.
    354 */
    355static unsigned long get_next_ra_size(struct file_ra_state *ra,
    356				      unsigned long max)
    357{
    358	unsigned long cur = ra->size;
    359
    360	if (cur < max / 16)
    361		return 4 * cur;
    362	if (cur <= max / 2)
    363		return 2 * cur;
    364	return max;
    365}
    366
    367/*
    368 * On-demand readahead design.
    369 *
    370 * The fields in struct file_ra_state represent the most-recently-executed
    371 * readahead attempt:
    372 *
    373 *                        |<----- async_size ---------|
    374 *     |------------------- size -------------------->|
    375 *     |==================#===========================|
    376 *     ^start             ^page marked with PG_readahead
    377 *
    378 * To overlap application thinking time and disk I/O time, we do
    379 * `readahead pipelining': Do not wait until the application consumed all
    380 * readahead pages and stalled on the missing page at readahead_index;
    381 * Instead, submit an asynchronous readahead I/O as soon as there are
    382 * only async_size pages left in the readahead window. Normally async_size
    383 * will be equal to size, for maximum pipelining.
    384 *
    385 * In interleaved sequential reads, concurrent streams on the same fd can
    386 * be invalidating each other's readahead state. So we flag the new readahead
    387 * page at (start+size-async_size) with PG_readahead, and use it as readahead
    388 * indicator. The flag won't be set on already cached pages, to avoid the
    389 * readahead-for-nothing fuss, saving pointless page cache lookups.
    390 *
    391 * prev_pos tracks the last visited byte in the _previous_ read request.
    392 * It should be maintained by the caller, and will be used for detecting
    393 * small random reads. Note that the readahead algorithm checks loosely
    394 * for sequential patterns. Hence interleaved reads might be served as
    395 * sequential ones.
    396 *
    397 * There is a special-case: if the first page which the application tries to
    398 * read happens to be the first page of the file, it is assumed that a linear
    399 * read is about to happen and the window is immediately set to the initial size
    400 * based on I/O request size and the max_readahead.
    401 *
    402 * The code ramps up the readahead size aggressively at first, but slow down as
    403 * it approaches max_readhead.
    404 */
    405
    406/*
    407 * Count contiguously cached pages from @index-1 to @index-@max,
    408 * this count is a conservative estimation of
    409 * 	- length of the sequential read sequence, or
    410 * 	- thrashing threshold in memory tight systems
    411 */
    412static pgoff_t count_history_pages(struct address_space *mapping,
    413				   pgoff_t index, unsigned long max)
    414{
    415	pgoff_t head;
    416
    417	rcu_read_lock();
    418	head = page_cache_prev_miss(mapping, index - 1, max);
    419	rcu_read_unlock();
    420
    421	return index - 1 - head;
    422}
    423
    424/*
    425 * page cache context based readahead
    426 */
    427static int try_context_readahead(struct address_space *mapping,
    428				 struct file_ra_state *ra,
    429				 pgoff_t index,
    430				 unsigned long req_size,
    431				 unsigned long max)
    432{
    433	pgoff_t size;
    434
    435	size = count_history_pages(mapping, index, max);
    436
    437	/*
    438	 * not enough history pages:
    439	 * it could be a random read
    440	 */
    441	if (size <= req_size)
    442		return 0;
    443
    444	/*
    445	 * starts from beginning of file:
    446	 * it is a strong indication of long-run stream (or whole-file-read)
    447	 */
    448	if (size >= index)
    449		size *= 2;
    450
    451	ra->start = index;
    452	ra->size = min(size + req_size, max);
    453	ra->async_size = 1;
    454
    455	return 1;
    456}
    457
    458/*
    459 * There are some parts of the kernel which assume that PMD entries
    460 * are exactly HPAGE_PMD_ORDER.  Those should be fixed, but until then,
    461 * limit the maximum allocation order to PMD size.  I'm not aware of any
    462 * assumptions about maximum order if THP are disabled, but 8 seems like
    463 * a good order (that's 1MB if you're using 4kB pages)
    464 */
    465#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    466#define MAX_PAGECACHE_ORDER	HPAGE_PMD_ORDER
    467#else
    468#define MAX_PAGECACHE_ORDER	8
    469#endif
    470
    471static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index,
    472		pgoff_t mark, unsigned int order, gfp_t gfp)
    473{
    474	int err;
    475	struct folio *folio = filemap_alloc_folio(gfp, order);
    476
    477	if (!folio)
    478		return -ENOMEM;
    479	mark = round_up(mark, 1UL << order);
    480	if (index == mark)
    481		folio_set_readahead(folio);
    482	err = filemap_add_folio(ractl->mapping, folio, index, gfp);
    483	if (err)
    484		folio_put(folio);
    485	else
    486		ractl->_nr_pages += 1UL << order;
    487	return err;
    488}
    489
    490void page_cache_ra_order(struct readahead_control *ractl,
    491		struct file_ra_state *ra, unsigned int new_order)
    492{
    493	struct address_space *mapping = ractl->mapping;
    494	pgoff_t index = readahead_index(ractl);
    495	pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT;
    496	pgoff_t mark = index + ra->size - ra->async_size;
    497	int err = 0;
    498	gfp_t gfp = readahead_gfp_mask(mapping);
    499
    500	if (!mapping_large_folio_support(mapping) || ra->size < 4)
    501		goto fallback;
    502
    503	limit = min(limit, index + ra->size - 1);
    504
    505	if (new_order < MAX_PAGECACHE_ORDER) {
    506		new_order += 2;
    507		if (new_order > MAX_PAGECACHE_ORDER)
    508			new_order = MAX_PAGECACHE_ORDER;
    509		while ((1 << new_order) > ra->size)
    510			new_order--;
    511	}
    512
    513	filemap_invalidate_lock_shared(mapping);
    514	while (index <= limit) {
    515		unsigned int order = new_order;
    516
    517		/* Align with smaller pages if needed */
    518		if (index & ((1UL << order) - 1)) {
    519			order = __ffs(index);
    520			if (order == 1)
    521				order = 0;
    522		}
    523		/* Don't allocate pages past EOF */
    524		while (index + (1UL << order) - 1 > limit) {
    525			if (--order == 1)
    526				order = 0;
    527		}
    528		err = ra_alloc_folio(ractl, index, mark, order, gfp);
    529		if (err)
    530			break;
    531		index += 1UL << order;
    532	}
    533
    534	if (index > limit) {
    535		ra->size += index - limit - 1;
    536		ra->async_size += index - limit - 1;
    537	}
    538
    539	read_pages(ractl);
    540	filemap_invalidate_unlock_shared(mapping);
    541
    542	/*
    543	 * If there were already pages in the page cache, then we may have
    544	 * left some gaps.  Let the regular readahead code take care of this
    545	 * situation.
    546	 */
    547	if (!err)
    548		return;
    549fallback:
    550	do_page_cache_ra(ractl, ra->size, ra->async_size);
    551}
    552
    553/*
    554 * A minimal readahead algorithm for trivial sequential/random reads.
    555 */
    556static void ondemand_readahead(struct readahead_control *ractl,
    557		struct folio *folio, unsigned long req_size)
    558{
    559	struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
    560	struct file_ra_state *ra = ractl->ra;
    561	unsigned long max_pages = ra->ra_pages;
    562	unsigned long add_pages;
    563	pgoff_t index = readahead_index(ractl);
    564	pgoff_t expected, prev_index;
    565	unsigned int order = folio ? folio_order(folio) : 0;
    566
    567	/*
    568	 * If the request exceeds the readahead window, allow the read to
    569	 * be up to the optimal hardware IO size
    570	 */
    571	if (req_size > max_pages && bdi->io_pages > max_pages)
    572		max_pages = min(req_size, bdi->io_pages);
    573
    574	/*
    575	 * start of file
    576	 */
    577	if (!index)
    578		goto initial_readahead;
    579
    580	/*
    581	 * It's the expected callback index, assume sequential access.
    582	 * Ramp up sizes, and push forward the readahead window.
    583	 */
    584	expected = round_up(ra->start + ra->size - ra->async_size,
    585			1UL << order);
    586	if (index == expected || index == (ra->start + ra->size)) {
    587		ra->start += ra->size;
    588		ra->size = get_next_ra_size(ra, max_pages);
    589		ra->async_size = ra->size;
    590		goto readit;
    591	}
    592
    593	/*
    594	 * Hit a marked folio without valid readahead state.
    595	 * E.g. interleaved reads.
    596	 * Query the pagecache for async_size, which normally equals to
    597	 * readahead size. Ramp it up and use it as the new readahead size.
    598	 */
    599	if (folio) {
    600		pgoff_t start;
    601
    602		rcu_read_lock();
    603		start = page_cache_next_miss(ractl->mapping, index + 1,
    604				max_pages);
    605		rcu_read_unlock();
    606
    607		if (!start || start - index > max_pages)
    608			return;
    609
    610		ra->start = start;
    611		ra->size = start - index;	/* old async_size */
    612		ra->size += req_size;
    613		ra->size = get_next_ra_size(ra, max_pages);
    614		ra->async_size = ra->size;
    615		goto readit;
    616	}
    617
    618	/*
    619	 * oversize read
    620	 */
    621	if (req_size > max_pages)
    622		goto initial_readahead;
    623
    624	/*
    625	 * sequential cache miss
    626	 * trivial case: (index - prev_index) == 1
    627	 * unaligned reads: (index - prev_index) == 0
    628	 */
    629	prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
    630	if (index - prev_index <= 1UL)
    631		goto initial_readahead;
    632
    633	/*
    634	 * Query the page cache and look for the traces(cached history pages)
    635	 * that a sequential stream would leave behind.
    636	 */
    637	if (try_context_readahead(ractl->mapping, ra, index, req_size,
    638			max_pages))
    639		goto readit;
    640
    641	/*
    642	 * standalone, small random read
    643	 * Read as is, and do not pollute the readahead state.
    644	 */
    645	do_page_cache_ra(ractl, req_size, 0);
    646	return;
    647
    648initial_readahead:
    649	ra->start = index;
    650	ra->size = get_init_ra_size(req_size, max_pages);
    651	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
    652
    653readit:
    654	/*
    655	 * Will this read hit the readahead marker made by itself?
    656	 * If so, trigger the readahead marker hit now, and merge
    657	 * the resulted next readahead window into the current one.
    658	 * Take care of maximum IO pages as above.
    659	 */
    660	if (index == ra->start && ra->size == ra->async_size) {
    661		add_pages = get_next_ra_size(ra, max_pages);
    662		if (ra->size + add_pages <= max_pages) {
    663			ra->async_size = add_pages;
    664			ra->size += add_pages;
    665		} else {
    666			ra->size = max_pages;
    667			ra->async_size = max_pages >> 1;
    668		}
    669	}
    670
    671	ractl->_index = ra->start;
    672	page_cache_ra_order(ractl, ra, order);
    673}
    674
    675void page_cache_sync_ra(struct readahead_control *ractl,
    676		unsigned long req_count)
    677{
    678	bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
    679
    680	/*
    681	 * Even if readahead is disabled, issue this request as readahead
    682	 * as we'll need it to satisfy the requested range. The forced
    683	 * readahead will do the right thing and limit the read to just the
    684	 * requested range, which we'll set to 1 page for this case.
    685	 */
    686	if (!ractl->ra->ra_pages || blk_cgroup_congested()) {
    687		if (!ractl->file)
    688			return;
    689		req_count = 1;
    690		do_forced_ra = true;
    691	}
    692
    693	/* be dumb */
    694	if (do_forced_ra) {
    695		force_page_cache_ra(ractl, req_count);
    696		return;
    697	}
    698
    699	ondemand_readahead(ractl, NULL, req_count);
    700}
    701EXPORT_SYMBOL_GPL(page_cache_sync_ra);
    702
    703void page_cache_async_ra(struct readahead_control *ractl,
    704		struct folio *folio, unsigned long req_count)
    705{
    706	/* no readahead */
    707	if (!ractl->ra->ra_pages)
    708		return;
    709
    710	/*
    711	 * Same bit is used for PG_readahead and PG_reclaim.
    712	 */
    713	if (folio_test_writeback(folio))
    714		return;
    715
    716	folio_clear_readahead(folio);
    717
    718	if (blk_cgroup_congested())
    719		return;
    720
    721	ondemand_readahead(ractl, folio, req_count);
    722}
    723EXPORT_SYMBOL_GPL(page_cache_async_ra);
    724
    725ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
    726{
    727	ssize_t ret;
    728	struct fd f;
    729
    730	ret = -EBADF;
    731	f = fdget(fd);
    732	if (!f.file || !(f.file->f_mode & FMODE_READ))
    733		goto out;
    734
    735	/*
    736	 * The readahead() syscall is intended to run only on files
    737	 * that can execute readahead. If readahead is not possible
    738	 * on this file, then we must return -EINVAL.
    739	 */
    740	ret = -EINVAL;
    741	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
    742	    !S_ISREG(file_inode(f.file)->i_mode))
    743		goto out;
    744
    745	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
    746out:
    747	fdput(f);
    748	return ret;
    749}
    750
    751SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
    752{
    753	return ksys_readahead(fd, offset, count);
    754}
    755
    756#if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD)
    757COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count)
    758{
    759	return ksys_readahead(fd, compat_arg_u64_glue(offset), count);
    760}
    761#endif
    762
    763/**
    764 * readahead_expand - Expand a readahead request
    765 * @ractl: The request to be expanded
    766 * @new_start: The revised start
    767 * @new_len: The revised size of the request
    768 *
    769 * Attempt to expand a readahead request outwards from the current size to the
    770 * specified size by inserting locked pages before and after the current window
    771 * to increase the size to the new window.  This may involve the insertion of
    772 * THPs, in which case the window may get expanded even beyond what was
    773 * requested.
    774 *
    775 * The algorithm will stop if it encounters a conflicting page already in the
    776 * pagecache and leave a smaller expansion than requested.
    777 *
    778 * The caller must check for this by examining the revised @ractl object for a
    779 * different expansion than was requested.
    780 */
    781void readahead_expand(struct readahead_control *ractl,
    782		      loff_t new_start, size_t new_len)
    783{
    784	struct address_space *mapping = ractl->mapping;
    785	struct file_ra_state *ra = ractl->ra;
    786	pgoff_t new_index, new_nr_pages;
    787	gfp_t gfp_mask = readahead_gfp_mask(mapping);
    788
    789	new_index = new_start / PAGE_SIZE;
    790
    791	/* Expand the leading edge downwards */
    792	while (ractl->_index > new_index) {
    793		unsigned long index = ractl->_index - 1;
    794		struct page *page = xa_load(&mapping->i_pages, index);
    795
    796		if (page && !xa_is_value(page))
    797			return; /* Page apparently present */
    798
    799		page = __page_cache_alloc(gfp_mask);
    800		if (!page)
    801			return;
    802		if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
    803			put_page(page);
    804			return;
    805		}
    806
    807		ractl->_nr_pages++;
    808		ractl->_index = page->index;
    809	}
    810
    811	new_len += new_start - readahead_pos(ractl);
    812	new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
    813
    814	/* Expand the trailing edge upwards */
    815	while (ractl->_nr_pages < new_nr_pages) {
    816		unsigned long index = ractl->_index + ractl->_nr_pages;
    817		struct page *page = xa_load(&mapping->i_pages, index);
    818
    819		if (page && !xa_is_value(page))
    820			return; /* Page apparently present */
    821
    822		page = __page_cache_alloc(gfp_mask);
    823		if (!page)
    824			return;
    825		if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
    826			put_page(page);
    827			return;
    828		}
    829		ractl->_nr_pages++;
    830		if (ra) {
    831			ra->size++;
    832			ra->async_size++;
    833		}
    834	}
    835}
    836EXPORT_SYMBOL(readahead_expand);