readahead.c (25890B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * mm/readahead.c - address_space-level file readahead. 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 09Apr2002 Andrew Morton 8 * Initial version. 9 */ 10 11/** 12 * DOC: Readahead Overview 13 * 14 * Readahead is used to read content into the page cache before it is 15 * explicitly requested by the application. Readahead only ever 16 * attempts to read folios that are not yet in the page cache. If a 17 * folio is present but not up-to-date, readahead will not try to read 18 * it. In that case a simple ->read_folio() will be requested. 19 * 20 * Readahead is triggered when an application read request (whether a 21 * system call or a page fault) finds that the requested folio is not in 22 * the page cache, or that it is in the page cache and has the 23 * readahead flag set. This flag indicates that the folio was read 24 * as part of a previous readahead request and now that it has been 25 * accessed, it is time for the next readahead. 26 * 27 * Each readahead request is partly synchronous read, and partly async 28 * readahead. This is reflected in the struct file_ra_state which 29 * contains ->size being the total number of pages, and ->async_size 30 * which is the number of pages in the async section. The readahead 31 * flag will be set on the first folio in this async section to trigger 32 * a subsequent readahead. Once a series of sequential reads has been 33 * established, there should be no need for a synchronous component and 34 * all readahead request will be fully asynchronous. 35 * 36 * When either of the triggers causes a readahead, three numbers need 37 * to be determined: the start of the region to read, the size of the 38 * region, and the size of the async tail. 39 * 40 * The start of the region is simply the first page address at or after 41 * the accessed address, which is not currently populated in the page 42 * cache. This is found with a simple search in the page cache. 43 * 44 * The size of the async tail is determined by subtracting the size that 45 * was explicitly requested from the determined request size, unless 46 * this would be less than zero - then zero is used. NOTE THIS 47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED 48 * PAGE. ALSO THIS CALCULATION IS NOT USED CONSISTENTLY. 49 * 50 * The size of the region is normally determined from the size of the 51 * previous readahead which loaded the preceding pages. This may be 52 * discovered from the struct file_ra_state for simple sequential reads, 53 * or from examining the state of the page cache when multiple 54 * sequential reads are interleaved. Specifically: where the readahead 55 * was triggered by the readahead flag, the size of the previous 56 * readahead is assumed to be the number of pages from the triggering 57 * page to the start of the new readahead. In these cases, the size of 58 * the previous readahead is scaled, often doubled, for the new 59 * readahead, though see get_next_ra_size() for details. 60 * 61 * If the size of the previous read cannot be determined, the number of 62 * preceding pages in the page cache is used to estimate the size of 63 * a previous read. This estimate could easily be misled by random 64 * reads being coincidentally adjacent, so it is ignored unless it is 65 * larger than the current request, and it is not scaled up, unless it 66 * is at the start of file. 67 * 68 * In general readahead is accelerated at the start of the file, as 69 * reads from there are often sequential. There are other minor 70 * adjustments to the readahead size in various special cases and these 71 * are best discovered by reading the code. 72 * 73 * The above calculation, based on the previous readahead size, 74 * determines the size of the readahead, to which any requested read 75 * size may be added. 76 * 77 * Readahead requests are sent to the filesystem using the ->readahead() 78 * address space operation, for which mpage_readahead() is a canonical 79 * implementation. ->readahead() should normally initiate reads on all 80 * folios, but may fail to read any or all folios without causing an I/O 81 * error. The page cache reading code will issue a ->read_folio() request 82 * for any folio which ->readahead() did not read, and only an error 83 * from this will be final. 84 * 85 * ->readahead() will generally call readahead_folio() repeatedly to get 86 * each folio from those prepared for readahead. It may fail to read a 87 * folio by: 88 * 89 * * not calling readahead_folio() sufficiently many times, effectively 90 * ignoring some folios, as might be appropriate if the path to 91 * storage is congested. 92 * 93 * * failing to actually submit a read request for a given folio, 94 * possibly due to insufficient resources, or 95 * 96 * * getting an error during subsequent processing of a request. 97 * 98 * In the last two cases, the folio should be unlocked by the filesystem 99 * to indicate that the read attempt has failed. In the first case the 100 * folio will be unlocked by the VFS. 101 * 102 * Those folios not in the final ``async_size`` of the request should be 103 * considered to be important and ->readahead() should not fail them due 104 * to congestion or temporary resource unavailability, but should wait 105 * for necessary resources (e.g. memory or indexing information) to 106 * become available. Folios in the final ``async_size`` may be 107 * considered less urgent and failure to read them is more acceptable. 108 * In this case it is best to use filemap_remove_folio() to remove the 109 * folios from the page cache as is automatically done for folios that 110 * were not fetched with readahead_folio(). This will allow a 111 * subsequent synchronous readahead request to try them again. If they 112 * are left in the page cache, then they will be read individually using 113 * ->read_folio() which may be less efficient. 114 */ 115 116#include <linux/blkdev.h> 117#include <linux/kernel.h> 118#include <linux/dax.h> 119#include <linux/gfp.h> 120#include <linux/export.h> 121#include <linux/backing-dev.h> 122#include <linux/task_io_accounting_ops.h> 123#include <linux/pagevec.h> 124#include <linux/pagemap.h> 125#include <linux/syscalls.h> 126#include <linux/file.h> 127#include <linux/mm_inline.h> 128#include <linux/blk-cgroup.h> 129#include <linux/fadvise.h> 130#include <linux/sched/mm.h> 131 132#include "internal.h" 133 134/* 135 * Initialise a struct file's readahead state. Assumes that the caller has 136 * memset *ra to zero. 137 */ 138void 139file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 140{ 141 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; 142 ra->prev_pos = -1; 143} 144EXPORT_SYMBOL_GPL(file_ra_state_init); 145 146static void read_pages(struct readahead_control *rac) 147{ 148 const struct address_space_operations *aops = rac->mapping->a_ops; 149 struct folio *folio; 150 struct blk_plug plug; 151 152 if (!readahead_count(rac)) 153 return; 154 155 blk_start_plug(&plug); 156 157 if (aops->readahead) { 158 aops->readahead(rac); 159 /* 160 * Clean up the remaining folios. The sizes in ->ra 161 * may be used to size the next readahead, so make sure 162 * they accurately reflect what happened. 163 */ 164 while ((folio = readahead_folio(rac)) != NULL) { 165 unsigned long nr = folio_nr_pages(folio); 166 167 folio_get(folio); 168 rac->ra->size -= nr; 169 if (rac->ra->async_size >= nr) { 170 rac->ra->async_size -= nr; 171 filemap_remove_folio(folio); 172 } 173 folio_unlock(folio); 174 folio_put(folio); 175 } 176 } else { 177 while ((folio = readahead_folio(rac)) != NULL) 178 aops->read_folio(rac->file, folio); 179 } 180 181 blk_finish_plug(&plug); 182 183 BUG_ON(readahead_count(rac)); 184} 185 186/** 187 * page_cache_ra_unbounded - Start unchecked readahead. 188 * @ractl: Readahead control. 189 * @nr_to_read: The number of pages to read. 190 * @lookahead_size: Where to start the next readahead. 191 * 192 * This function is for filesystems to call when they want to start 193 * readahead beyond a file's stated i_size. This is almost certainly 194 * not the function you want to call. Use page_cache_async_readahead() 195 * or page_cache_sync_readahead() instead. 196 * 197 * Context: File is referenced by caller. Mutexes may be held by caller. 198 * May sleep, but will not reenter filesystem to reclaim memory. 199 */ 200void page_cache_ra_unbounded(struct readahead_control *ractl, 201 unsigned long nr_to_read, unsigned long lookahead_size) 202{ 203 struct address_space *mapping = ractl->mapping; 204 unsigned long index = readahead_index(ractl); 205 gfp_t gfp_mask = readahead_gfp_mask(mapping); 206 unsigned long i; 207 208 /* 209 * Partway through the readahead operation, we will have added 210 * locked pages to the page cache, but will not yet have submitted 211 * them for I/O. Adding another page may need to allocate memory, 212 * which can trigger memory reclaim. Telling the VM we're in 213 * the middle of a filesystem operation will cause it to not 214 * touch file-backed pages, preventing a deadlock. Most (all?) 215 * filesystems already specify __GFP_NOFS in their mapping's 216 * gfp_mask, but let's be explicit here. 217 */ 218 unsigned int nofs = memalloc_nofs_save(); 219 220 filemap_invalidate_lock_shared(mapping); 221 /* 222 * Preallocate as many pages as we will need. 223 */ 224 for (i = 0; i < nr_to_read; i++) { 225 struct folio *folio = xa_load(&mapping->i_pages, index + i); 226 227 if (folio && !xa_is_value(folio)) { 228 /* 229 * Page already present? Kick off the current batch 230 * of contiguous pages before continuing with the 231 * next batch. This page may be the one we would 232 * have intended to mark as Readahead, but we don't 233 * have a stable reference to this page, and it's 234 * not worth getting one just for that. 235 */ 236 read_pages(ractl); 237 ractl->_index++; 238 i = ractl->_index + ractl->_nr_pages - index - 1; 239 continue; 240 } 241 242 folio = filemap_alloc_folio(gfp_mask, 0); 243 if (!folio) 244 break; 245 if (filemap_add_folio(mapping, folio, index + i, 246 gfp_mask) < 0) { 247 folio_put(folio); 248 read_pages(ractl); 249 ractl->_index++; 250 i = ractl->_index + ractl->_nr_pages - index - 1; 251 continue; 252 } 253 if (i == nr_to_read - lookahead_size) 254 folio_set_readahead(folio); 255 ractl->_nr_pages++; 256 } 257 258 /* 259 * Now start the IO. We ignore I/O errors - if the folio is not 260 * uptodate then the caller will launch read_folio again, and 261 * will then handle the error. 262 */ 263 read_pages(ractl); 264 filemap_invalidate_unlock_shared(mapping); 265 memalloc_nofs_restore(nofs); 266} 267EXPORT_SYMBOL_GPL(page_cache_ra_unbounded); 268 269/* 270 * do_page_cache_ra() actually reads a chunk of disk. It allocates 271 * the pages first, then submits them for I/O. This avoids the very bad 272 * behaviour which would occur if page allocations are causing VM writeback. 273 * We really don't want to intermingle reads and writes like that. 274 */ 275static void do_page_cache_ra(struct readahead_control *ractl, 276 unsigned long nr_to_read, unsigned long lookahead_size) 277{ 278 struct inode *inode = ractl->mapping->host; 279 unsigned long index = readahead_index(ractl); 280 loff_t isize = i_size_read(inode); 281 pgoff_t end_index; /* The last page we want to read */ 282 283 if (isize == 0) 284 return; 285 286 end_index = (isize - 1) >> PAGE_SHIFT; 287 if (index > end_index) 288 return; 289 /* Don't read past the page containing the last byte of the file */ 290 if (nr_to_read > end_index - index) 291 nr_to_read = end_index - index + 1; 292 293 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size); 294} 295 296/* 297 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 298 * memory at once. 299 */ 300void force_page_cache_ra(struct readahead_control *ractl, 301 unsigned long nr_to_read) 302{ 303 struct address_space *mapping = ractl->mapping; 304 struct file_ra_state *ra = ractl->ra; 305 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 306 unsigned long max_pages, index; 307 308 if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead)) 309 return; 310 311 /* 312 * If the request exceeds the readahead window, allow the read to 313 * be up to the optimal hardware IO size 314 */ 315 index = readahead_index(ractl); 316 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); 317 nr_to_read = min_t(unsigned long, nr_to_read, max_pages); 318 while (nr_to_read) { 319 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; 320 321 if (this_chunk > nr_to_read) 322 this_chunk = nr_to_read; 323 ractl->_index = index; 324 do_page_cache_ra(ractl, this_chunk, 0); 325 326 index += this_chunk; 327 nr_to_read -= this_chunk; 328 } 329} 330 331/* 332 * Set the initial window size, round to next power of 2 and square 333 * for small size, x 4 for medium, and x 2 for large 334 * for 128k (32 page) max ra 335 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial 336 */ 337static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 338{ 339 unsigned long newsize = roundup_pow_of_two(size); 340 341 if (newsize <= max / 32) 342 newsize = newsize * 4; 343 else if (newsize <= max / 4) 344 newsize = newsize * 2; 345 else 346 newsize = max; 347 348 return newsize; 349} 350 351/* 352 * Get the previous window size, ramp it up, and 353 * return it as the new window size. 354 */ 355static unsigned long get_next_ra_size(struct file_ra_state *ra, 356 unsigned long max) 357{ 358 unsigned long cur = ra->size; 359 360 if (cur < max / 16) 361 return 4 * cur; 362 if (cur <= max / 2) 363 return 2 * cur; 364 return max; 365} 366 367/* 368 * On-demand readahead design. 369 * 370 * The fields in struct file_ra_state represent the most-recently-executed 371 * readahead attempt: 372 * 373 * |<----- async_size ---------| 374 * |------------------- size -------------------->| 375 * |==================#===========================| 376 * ^start ^page marked with PG_readahead 377 * 378 * To overlap application thinking time and disk I/O time, we do 379 * `readahead pipelining': Do not wait until the application consumed all 380 * readahead pages and stalled on the missing page at readahead_index; 381 * Instead, submit an asynchronous readahead I/O as soon as there are 382 * only async_size pages left in the readahead window. Normally async_size 383 * will be equal to size, for maximum pipelining. 384 * 385 * In interleaved sequential reads, concurrent streams on the same fd can 386 * be invalidating each other's readahead state. So we flag the new readahead 387 * page at (start+size-async_size) with PG_readahead, and use it as readahead 388 * indicator. The flag won't be set on already cached pages, to avoid the 389 * readahead-for-nothing fuss, saving pointless page cache lookups. 390 * 391 * prev_pos tracks the last visited byte in the _previous_ read request. 392 * It should be maintained by the caller, and will be used for detecting 393 * small random reads. Note that the readahead algorithm checks loosely 394 * for sequential patterns. Hence interleaved reads might be served as 395 * sequential ones. 396 * 397 * There is a special-case: if the first page which the application tries to 398 * read happens to be the first page of the file, it is assumed that a linear 399 * read is about to happen and the window is immediately set to the initial size 400 * based on I/O request size and the max_readahead. 401 * 402 * The code ramps up the readahead size aggressively at first, but slow down as 403 * it approaches max_readhead. 404 */ 405 406/* 407 * Count contiguously cached pages from @index-1 to @index-@max, 408 * this count is a conservative estimation of 409 * - length of the sequential read sequence, or 410 * - thrashing threshold in memory tight systems 411 */ 412static pgoff_t count_history_pages(struct address_space *mapping, 413 pgoff_t index, unsigned long max) 414{ 415 pgoff_t head; 416 417 rcu_read_lock(); 418 head = page_cache_prev_miss(mapping, index - 1, max); 419 rcu_read_unlock(); 420 421 return index - 1 - head; 422} 423 424/* 425 * page cache context based readahead 426 */ 427static int try_context_readahead(struct address_space *mapping, 428 struct file_ra_state *ra, 429 pgoff_t index, 430 unsigned long req_size, 431 unsigned long max) 432{ 433 pgoff_t size; 434 435 size = count_history_pages(mapping, index, max); 436 437 /* 438 * not enough history pages: 439 * it could be a random read 440 */ 441 if (size <= req_size) 442 return 0; 443 444 /* 445 * starts from beginning of file: 446 * it is a strong indication of long-run stream (or whole-file-read) 447 */ 448 if (size >= index) 449 size *= 2; 450 451 ra->start = index; 452 ra->size = min(size + req_size, max); 453 ra->async_size = 1; 454 455 return 1; 456} 457 458/* 459 * There are some parts of the kernel which assume that PMD entries 460 * are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then, 461 * limit the maximum allocation order to PMD size. I'm not aware of any 462 * assumptions about maximum order if THP are disabled, but 8 seems like 463 * a good order (that's 1MB if you're using 4kB pages) 464 */ 465#ifdef CONFIG_TRANSPARENT_HUGEPAGE 466#define MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER 467#else 468#define MAX_PAGECACHE_ORDER 8 469#endif 470 471static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index, 472 pgoff_t mark, unsigned int order, gfp_t gfp) 473{ 474 int err; 475 struct folio *folio = filemap_alloc_folio(gfp, order); 476 477 if (!folio) 478 return -ENOMEM; 479 mark = round_up(mark, 1UL << order); 480 if (index == mark) 481 folio_set_readahead(folio); 482 err = filemap_add_folio(ractl->mapping, folio, index, gfp); 483 if (err) 484 folio_put(folio); 485 else 486 ractl->_nr_pages += 1UL << order; 487 return err; 488} 489 490void page_cache_ra_order(struct readahead_control *ractl, 491 struct file_ra_state *ra, unsigned int new_order) 492{ 493 struct address_space *mapping = ractl->mapping; 494 pgoff_t index = readahead_index(ractl); 495 pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT; 496 pgoff_t mark = index + ra->size - ra->async_size; 497 int err = 0; 498 gfp_t gfp = readahead_gfp_mask(mapping); 499 500 if (!mapping_large_folio_support(mapping) || ra->size < 4) 501 goto fallback; 502 503 limit = min(limit, index + ra->size - 1); 504 505 if (new_order < MAX_PAGECACHE_ORDER) { 506 new_order += 2; 507 if (new_order > MAX_PAGECACHE_ORDER) 508 new_order = MAX_PAGECACHE_ORDER; 509 while ((1 << new_order) > ra->size) 510 new_order--; 511 } 512 513 filemap_invalidate_lock_shared(mapping); 514 while (index <= limit) { 515 unsigned int order = new_order; 516 517 /* Align with smaller pages if needed */ 518 if (index & ((1UL << order) - 1)) { 519 order = __ffs(index); 520 if (order == 1) 521 order = 0; 522 } 523 /* Don't allocate pages past EOF */ 524 while (index + (1UL << order) - 1 > limit) { 525 if (--order == 1) 526 order = 0; 527 } 528 err = ra_alloc_folio(ractl, index, mark, order, gfp); 529 if (err) 530 break; 531 index += 1UL << order; 532 } 533 534 if (index > limit) { 535 ra->size += index - limit - 1; 536 ra->async_size += index - limit - 1; 537 } 538 539 read_pages(ractl); 540 filemap_invalidate_unlock_shared(mapping); 541 542 /* 543 * If there were already pages in the page cache, then we may have 544 * left some gaps. Let the regular readahead code take care of this 545 * situation. 546 */ 547 if (!err) 548 return; 549fallback: 550 do_page_cache_ra(ractl, ra->size, ra->async_size); 551} 552 553/* 554 * A minimal readahead algorithm for trivial sequential/random reads. 555 */ 556static void ondemand_readahead(struct readahead_control *ractl, 557 struct folio *folio, unsigned long req_size) 558{ 559 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host); 560 struct file_ra_state *ra = ractl->ra; 561 unsigned long max_pages = ra->ra_pages; 562 unsigned long add_pages; 563 pgoff_t index = readahead_index(ractl); 564 pgoff_t expected, prev_index; 565 unsigned int order = folio ? folio_order(folio) : 0; 566 567 /* 568 * If the request exceeds the readahead window, allow the read to 569 * be up to the optimal hardware IO size 570 */ 571 if (req_size > max_pages && bdi->io_pages > max_pages) 572 max_pages = min(req_size, bdi->io_pages); 573 574 /* 575 * start of file 576 */ 577 if (!index) 578 goto initial_readahead; 579 580 /* 581 * It's the expected callback index, assume sequential access. 582 * Ramp up sizes, and push forward the readahead window. 583 */ 584 expected = round_up(ra->start + ra->size - ra->async_size, 585 1UL << order); 586 if (index == expected || index == (ra->start + ra->size)) { 587 ra->start += ra->size; 588 ra->size = get_next_ra_size(ra, max_pages); 589 ra->async_size = ra->size; 590 goto readit; 591 } 592 593 /* 594 * Hit a marked folio without valid readahead state. 595 * E.g. interleaved reads. 596 * Query the pagecache for async_size, which normally equals to 597 * readahead size. Ramp it up and use it as the new readahead size. 598 */ 599 if (folio) { 600 pgoff_t start; 601 602 rcu_read_lock(); 603 start = page_cache_next_miss(ractl->mapping, index + 1, 604 max_pages); 605 rcu_read_unlock(); 606 607 if (!start || start - index > max_pages) 608 return; 609 610 ra->start = start; 611 ra->size = start - index; /* old async_size */ 612 ra->size += req_size; 613 ra->size = get_next_ra_size(ra, max_pages); 614 ra->async_size = ra->size; 615 goto readit; 616 } 617 618 /* 619 * oversize read 620 */ 621 if (req_size > max_pages) 622 goto initial_readahead; 623 624 /* 625 * sequential cache miss 626 * trivial case: (index - prev_index) == 1 627 * unaligned reads: (index - prev_index) == 0 628 */ 629 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; 630 if (index - prev_index <= 1UL) 631 goto initial_readahead; 632 633 /* 634 * Query the page cache and look for the traces(cached history pages) 635 * that a sequential stream would leave behind. 636 */ 637 if (try_context_readahead(ractl->mapping, ra, index, req_size, 638 max_pages)) 639 goto readit; 640 641 /* 642 * standalone, small random read 643 * Read as is, and do not pollute the readahead state. 644 */ 645 do_page_cache_ra(ractl, req_size, 0); 646 return; 647 648initial_readahead: 649 ra->start = index; 650 ra->size = get_init_ra_size(req_size, max_pages); 651 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; 652 653readit: 654 /* 655 * Will this read hit the readahead marker made by itself? 656 * If so, trigger the readahead marker hit now, and merge 657 * the resulted next readahead window into the current one. 658 * Take care of maximum IO pages as above. 659 */ 660 if (index == ra->start && ra->size == ra->async_size) { 661 add_pages = get_next_ra_size(ra, max_pages); 662 if (ra->size + add_pages <= max_pages) { 663 ra->async_size = add_pages; 664 ra->size += add_pages; 665 } else { 666 ra->size = max_pages; 667 ra->async_size = max_pages >> 1; 668 } 669 } 670 671 ractl->_index = ra->start; 672 page_cache_ra_order(ractl, ra, order); 673} 674 675void page_cache_sync_ra(struct readahead_control *ractl, 676 unsigned long req_count) 677{ 678 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM); 679 680 /* 681 * Even if readahead is disabled, issue this request as readahead 682 * as we'll need it to satisfy the requested range. The forced 683 * readahead will do the right thing and limit the read to just the 684 * requested range, which we'll set to 1 page for this case. 685 */ 686 if (!ractl->ra->ra_pages || blk_cgroup_congested()) { 687 if (!ractl->file) 688 return; 689 req_count = 1; 690 do_forced_ra = true; 691 } 692 693 /* be dumb */ 694 if (do_forced_ra) { 695 force_page_cache_ra(ractl, req_count); 696 return; 697 } 698 699 ondemand_readahead(ractl, NULL, req_count); 700} 701EXPORT_SYMBOL_GPL(page_cache_sync_ra); 702 703void page_cache_async_ra(struct readahead_control *ractl, 704 struct folio *folio, unsigned long req_count) 705{ 706 /* no readahead */ 707 if (!ractl->ra->ra_pages) 708 return; 709 710 /* 711 * Same bit is used for PG_readahead and PG_reclaim. 712 */ 713 if (folio_test_writeback(folio)) 714 return; 715 716 folio_clear_readahead(folio); 717 718 if (blk_cgroup_congested()) 719 return; 720 721 ondemand_readahead(ractl, folio, req_count); 722} 723EXPORT_SYMBOL_GPL(page_cache_async_ra); 724 725ssize_t ksys_readahead(int fd, loff_t offset, size_t count) 726{ 727 ssize_t ret; 728 struct fd f; 729 730 ret = -EBADF; 731 f = fdget(fd); 732 if (!f.file || !(f.file->f_mode & FMODE_READ)) 733 goto out; 734 735 /* 736 * The readahead() syscall is intended to run only on files 737 * that can execute readahead. If readahead is not possible 738 * on this file, then we must return -EINVAL. 739 */ 740 ret = -EINVAL; 741 if (!f.file->f_mapping || !f.file->f_mapping->a_ops || 742 !S_ISREG(file_inode(f.file)->i_mode)) 743 goto out; 744 745 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED); 746out: 747 fdput(f); 748 return ret; 749} 750 751SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 752{ 753 return ksys_readahead(fd, offset, count); 754} 755 756#if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD) 757COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count) 758{ 759 return ksys_readahead(fd, compat_arg_u64_glue(offset), count); 760} 761#endif 762 763/** 764 * readahead_expand - Expand a readahead request 765 * @ractl: The request to be expanded 766 * @new_start: The revised start 767 * @new_len: The revised size of the request 768 * 769 * Attempt to expand a readahead request outwards from the current size to the 770 * specified size by inserting locked pages before and after the current window 771 * to increase the size to the new window. This may involve the insertion of 772 * THPs, in which case the window may get expanded even beyond what was 773 * requested. 774 * 775 * The algorithm will stop if it encounters a conflicting page already in the 776 * pagecache and leave a smaller expansion than requested. 777 * 778 * The caller must check for this by examining the revised @ractl object for a 779 * different expansion than was requested. 780 */ 781void readahead_expand(struct readahead_control *ractl, 782 loff_t new_start, size_t new_len) 783{ 784 struct address_space *mapping = ractl->mapping; 785 struct file_ra_state *ra = ractl->ra; 786 pgoff_t new_index, new_nr_pages; 787 gfp_t gfp_mask = readahead_gfp_mask(mapping); 788 789 new_index = new_start / PAGE_SIZE; 790 791 /* Expand the leading edge downwards */ 792 while (ractl->_index > new_index) { 793 unsigned long index = ractl->_index - 1; 794 struct page *page = xa_load(&mapping->i_pages, index); 795 796 if (page && !xa_is_value(page)) 797 return; /* Page apparently present */ 798 799 page = __page_cache_alloc(gfp_mask); 800 if (!page) 801 return; 802 if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) { 803 put_page(page); 804 return; 805 } 806 807 ractl->_nr_pages++; 808 ractl->_index = page->index; 809 } 810 811 new_len += new_start - readahead_pos(ractl); 812 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE); 813 814 /* Expand the trailing edge upwards */ 815 while (ractl->_nr_pages < new_nr_pages) { 816 unsigned long index = ractl->_index + ractl->_nr_pages; 817 struct page *page = xa_load(&mapping->i_pages, index); 818 819 if (page && !xa_is_value(page)) 820 return; /* Page apparently present */ 821 822 page = __page_cache_alloc(gfp_mask); 823 if (!page) 824 return; 825 if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) { 826 put_page(page); 827 return; 828 } 829 ractl->_nr_pages++; 830 if (ra) { 831 ra->size++; 832 ra->async_size++; 833 } 834 } 835} 836EXPORT_SYMBOL(readahead_expand);