cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rmap.c (74367B)


      1/*
      2 * mm/rmap.c - physical to virtual reverse mappings
      3 *
      4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
      5 * Released under the General Public License (GPL).
      6 *
      7 * Simple, low overhead reverse mapping scheme.
      8 * Please try to keep this thing as modular as possible.
      9 *
     10 * Provides methods for unmapping each kind of mapped page:
     11 * the anon methods track anonymous pages, and
     12 * the file methods track pages belonging to an inode.
     13 *
     14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
     15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
     16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
     17 * Contributions by Hugh Dickins 2003, 2004
     18 */
     19
     20/*
     21 * Lock ordering in mm:
     22 *
     23 * inode->i_rwsem	(while writing or truncating, not reading or faulting)
     24 *   mm->mmap_lock
     25 *     mapping->invalidate_lock (in filemap_fault)
     26 *       page->flags PG_locked (lock_page)   * (see hugetlbfs below)
     27 *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
     28 *           mapping->i_mmap_rwsem
     29 *             hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
     30 *             anon_vma->rwsem
     31 *               mm->page_table_lock or pte_lock
     32 *                 swap_lock (in swap_duplicate, swap_info_get)
     33 *                   mmlist_lock (in mmput, drain_mmlist and others)
     34 *                   mapping->private_lock (in block_dirty_folio)
     35 *                     folio_lock_memcg move_lock (in block_dirty_folio)
     36 *                       i_pages lock (widely used)
     37 *                         lruvec->lru_lock (in folio_lruvec_lock_irq)
     38 *                   inode->i_lock (in set_page_dirty's __mark_inode_dirty)
     39 *                   bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
     40 *                     sb_lock (within inode_lock in fs/fs-writeback.c)
     41 *                     i_pages lock (widely used, in set_page_dirty,
     42 *                               in arch-dependent flush_dcache_mmap_lock,
     43 *                               within bdi.wb->list_lock in __sync_single_inode)
     44 *
     45 * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
     46 *   ->tasklist_lock
     47 *     pte map lock
     48 *
     49 * * hugetlbfs PageHuge() pages take locks in this order:
     50 *         mapping->i_mmap_rwsem
     51 *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
     52 *             page->flags PG_locked (lock_page)
     53 */
     54
     55#include <linux/mm.h>
     56#include <linux/sched/mm.h>
     57#include <linux/sched/task.h>
     58#include <linux/pagemap.h>
     59#include <linux/swap.h>
     60#include <linux/swapops.h>
     61#include <linux/slab.h>
     62#include <linux/init.h>
     63#include <linux/ksm.h>
     64#include <linux/rmap.h>
     65#include <linux/rcupdate.h>
     66#include <linux/export.h>
     67#include <linux/memcontrol.h>
     68#include <linux/mmu_notifier.h>
     69#include <linux/migrate.h>
     70#include <linux/hugetlb.h>
     71#include <linux/huge_mm.h>
     72#include <linux/backing-dev.h>
     73#include <linux/page_idle.h>
     74#include <linux/memremap.h>
     75#include <linux/userfaultfd_k.h>
     76#include <linux/mm_inline.h>
     77
     78#include <asm/tlbflush.h>
     79
     80#define CREATE_TRACE_POINTS
     81#include <trace/events/tlb.h>
     82#include <trace/events/migrate.h>
     83
     84#include "internal.h"
     85
     86static struct kmem_cache *anon_vma_cachep;
     87static struct kmem_cache *anon_vma_chain_cachep;
     88
     89static inline struct anon_vma *anon_vma_alloc(void)
     90{
     91	struct anon_vma *anon_vma;
     92
     93	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
     94	if (anon_vma) {
     95		atomic_set(&anon_vma->refcount, 1);
     96		anon_vma->degree = 1;	/* Reference for first vma */
     97		anon_vma->parent = anon_vma;
     98		/*
     99		 * Initialise the anon_vma root to point to itself. If called
    100		 * from fork, the root will be reset to the parents anon_vma.
    101		 */
    102		anon_vma->root = anon_vma;
    103	}
    104
    105	return anon_vma;
    106}
    107
    108static inline void anon_vma_free(struct anon_vma *anon_vma)
    109{
    110	VM_BUG_ON(atomic_read(&anon_vma->refcount));
    111
    112	/*
    113	 * Synchronize against folio_lock_anon_vma_read() such that
    114	 * we can safely hold the lock without the anon_vma getting
    115	 * freed.
    116	 *
    117	 * Relies on the full mb implied by the atomic_dec_and_test() from
    118	 * put_anon_vma() against the acquire barrier implied by
    119	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
    120	 *
    121	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
    122	 *   down_read_trylock()		  atomic_dec_and_test()
    123	 *   LOCK				  MB
    124	 *   atomic_read()			  rwsem_is_locked()
    125	 *
    126	 * LOCK should suffice since the actual taking of the lock must
    127	 * happen _before_ what follows.
    128	 */
    129	might_sleep();
    130	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
    131		anon_vma_lock_write(anon_vma);
    132		anon_vma_unlock_write(anon_vma);
    133	}
    134
    135	kmem_cache_free(anon_vma_cachep, anon_vma);
    136}
    137
    138static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
    139{
    140	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
    141}
    142
    143static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
    144{
    145	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
    146}
    147
    148static void anon_vma_chain_link(struct vm_area_struct *vma,
    149				struct anon_vma_chain *avc,
    150				struct anon_vma *anon_vma)
    151{
    152	avc->vma = vma;
    153	avc->anon_vma = anon_vma;
    154	list_add(&avc->same_vma, &vma->anon_vma_chain);
    155	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
    156}
    157
    158/**
    159 * __anon_vma_prepare - attach an anon_vma to a memory region
    160 * @vma: the memory region in question
    161 *
    162 * This makes sure the memory mapping described by 'vma' has
    163 * an 'anon_vma' attached to it, so that we can associate the
    164 * anonymous pages mapped into it with that anon_vma.
    165 *
    166 * The common case will be that we already have one, which
    167 * is handled inline by anon_vma_prepare(). But if
    168 * not we either need to find an adjacent mapping that we
    169 * can re-use the anon_vma from (very common when the only
    170 * reason for splitting a vma has been mprotect()), or we
    171 * allocate a new one.
    172 *
    173 * Anon-vma allocations are very subtle, because we may have
    174 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
    175 * and that may actually touch the rwsem even in the newly
    176 * allocated vma (it depends on RCU to make sure that the
    177 * anon_vma isn't actually destroyed).
    178 *
    179 * As a result, we need to do proper anon_vma locking even
    180 * for the new allocation. At the same time, we do not want
    181 * to do any locking for the common case of already having
    182 * an anon_vma.
    183 *
    184 * This must be called with the mmap_lock held for reading.
    185 */
    186int __anon_vma_prepare(struct vm_area_struct *vma)
    187{
    188	struct mm_struct *mm = vma->vm_mm;
    189	struct anon_vma *anon_vma, *allocated;
    190	struct anon_vma_chain *avc;
    191
    192	might_sleep();
    193
    194	avc = anon_vma_chain_alloc(GFP_KERNEL);
    195	if (!avc)
    196		goto out_enomem;
    197
    198	anon_vma = find_mergeable_anon_vma(vma);
    199	allocated = NULL;
    200	if (!anon_vma) {
    201		anon_vma = anon_vma_alloc();
    202		if (unlikely(!anon_vma))
    203			goto out_enomem_free_avc;
    204		allocated = anon_vma;
    205	}
    206
    207	anon_vma_lock_write(anon_vma);
    208	/* page_table_lock to protect against threads */
    209	spin_lock(&mm->page_table_lock);
    210	if (likely(!vma->anon_vma)) {
    211		vma->anon_vma = anon_vma;
    212		anon_vma_chain_link(vma, avc, anon_vma);
    213		/* vma reference or self-parent link for new root */
    214		anon_vma->degree++;
    215		allocated = NULL;
    216		avc = NULL;
    217	}
    218	spin_unlock(&mm->page_table_lock);
    219	anon_vma_unlock_write(anon_vma);
    220
    221	if (unlikely(allocated))
    222		put_anon_vma(allocated);
    223	if (unlikely(avc))
    224		anon_vma_chain_free(avc);
    225
    226	return 0;
    227
    228 out_enomem_free_avc:
    229	anon_vma_chain_free(avc);
    230 out_enomem:
    231	return -ENOMEM;
    232}
    233
    234/*
    235 * This is a useful helper function for locking the anon_vma root as
    236 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
    237 * have the same vma.
    238 *
    239 * Such anon_vma's should have the same root, so you'd expect to see
    240 * just a single mutex_lock for the whole traversal.
    241 */
    242static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
    243{
    244	struct anon_vma *new_root = anon_vma->root;
    245	if (new_root != root) {
    246		if (WARN_ON_ONCE(root))
    247			up_write(&root->rwsem);
    248		root = new_root;
    249		down_write(&root->rwsem);
    250	}
    251	return root;
    252}
    253
    254static inline void unlock_anon_vma_root(struct anon_vma *root)
    255{
    256	if (root)
    257		up_write(&root->rwsem);
    258}
    259
    260/*
    261 * Attach the anon_vmas from src to dst.
    262 * Returns 0 on success, -ENOMEM on failure.
    263 *
    264 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
    265 * anon_vma_fork(). The first three want an exact copy of src, while the last
    266 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
    267 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
    268 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
    269 *
    270 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
    271 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
    272 * This prevents degradation of anon_vma hierarchy to endless linear chain in
    273 * case of constantly forking task. On the other hand, an anon_vma with more
    274 * than one child isn't reused even if there was no alive vma, thus rmap
    275 * walker has a good chance of avoiding scanning the whole hierarchy when it
    276 * searches where page is mapped.
    277 */
    278int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
    279{
    280	struct anon_vma_chain *avc, *pavc;
    281	struct anon_vma *root = NULL;
    282
    283	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
    284		struct anon_vma *anon_vma;
    285
    286		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
    287		if (unlikely(!avc)) {
    288			unlock_anon_vma_root(root);
    289			root = NULL;
    290			avc = anon_vma_chain_alloc(GFP_KERNEL);
    291			if (!avc)
    292				goto enomem_failure;
    293		}
    294		anon_vma = pavc->anon_vma;
    295		root = lock_anon_vma_root(root, anon_vma);
    296		anon_vma_chain_link(dst, avc, anon_vma);
    297
    298		/*
    299		 * Reuse existing anon_vma if its degree lower than two,
    300		 * that means it has no vma and only one anon_vma child.
    301		 *
    302		 * Do not choose parent anon_vma, otherwise first child
    303		 * will always reuse it. Root anon_vma is never reused:
    304		 * it has self-parent reference and at least one child.
    305		 */
    306		if (!dst->anon_vma && src->anon_vma &&
    307		    anon_vma != src->anon_vma && anon_vma->degree < 2)
    308			dst->anon_vma = anon_vma;
    309	}
    310	if (dst->anon_vma)
    311		dst->anon_vma->degree++;
    312	unlock_anon_vma_root(root);
    313	return 0;
    314
    315 enomem_failure:
    316	/*
    317	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
    318	 * decremented in unlink_anon_vmas().
    319	 * We can safely do this because callers of anon_vma_clone() don't care
    320	 * about dst->anon_vma if anon_vma_clone() failed.
    321	 */
    322	dst->anon_vma = NULL;
    323	unlink_anon_vmas(dst);
    324	return -ENOMEM;
    325}
    326
    327/*
    328 * Attach vma to its own anon_vma, as well as to the anon_vmas that
    329 * the corresponding VMA in the parent process is attached to.
    330 * Returns 0 on success, non-zero on failure.
    331 */
    332int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
    333{
    334	struct anon_vma_chain *avc;
    335	struct anon_vma *anon_vma;
    336	int error;
    337
    338	/* Don't bother if the parent process has no anon_vma here. */
    339	if (!pvma->anon_vma)
    340		return 0;
    341
    342	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
    343	vma->anon_vma = NULL;
    344
    345	/*
    346	 * First, attach the new VMA to the parent VMA's anon_vmas,
    347	 * so rmap can find non-COWed pages in child processes.
    348	 */
    349	error = anon_vma_clone(vma, pvma);
    350	if (error)
    351		return error;
    352
    353	/* An existing anon_vma has been reused, all done then. */
    354	if (vma->anon_vma)
    355		return 0;
    356
    357	/* Then add our own anon_vma. */
    358	anon_vma = anon_vma_alloc();
    359	if (!anon_vma)
    360		goto out_error;
    361	avc = anon_vma_chain_alloc(GFP_KERNEL);
    362	if (!avc)
    363		goto out_error_free_anon_vma;
    364
    365	/*
    366	 * The root anon_vma's rwsem is the lock actually used when we
    367	 * lock any of the anon_vmas in this anon_vma tree.
    368	 */
    369	anon_vma->root = pvma->anon_vma->root;
    370	anon_vma->parent = pvma->anon_vma;
    371	/*
    372	 * With refcounts, an anon_vma can stay around longer than the
    373	 * process it belongs to. The root anon_vma needs to be pinned until
    374	 * this anon_vma is freed, because the lock lives in the root.
    375	 */
    376	get_anon_vma(anon_vma->root);
    377	/* Mark this anon_vma as the one where our new (COWed) pages go. */
    378	vma->anon_vma = anon_vma;
    379	anon_vma_lock_write(anon_vma);
    380	anon_vma_chain_link(vma, avc, anon_vma);
    381	anon_vma->parent->degree++;
    382	anon_vma_unlock_write(anon_vma);
    383
    384	return 0;
    385
    386 out_error_free_anon_vma:
    387	put_anon_vma(anon_vma);
    388 out_error:
    389	unlink_anon_vmas(vma);
    390	return -ENOMEM;
    391}
    392
    393void unlink_anon_vmas(struct vm_area_struct *vma)
    394{
    395	struct anon_vma_chain *avc, *next;
    396	struct anon_vma *root = NULL;
    397
    398	/*
    399	 * Unlink each anon_vma chained to the VMA.  This list is ordered
    400	 * from newest to oldest, ensuring the root anon_vma gets freed last.
    401	 */
    402	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
    403		struct anon_vma *anon_vma = avc->anon_vma;
    404
    405		root = lock_anon_vma_root(root, anon_vma);
    406		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
    407
    408		/*
    409		 * Leave empty anon_vmas on the list - we'll need
    410		 * to free them outside the lock.
    411		 */
    412		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
    413			anon_vma->parent->degree--;
    414			continue;
    415		}
    416
    417		list_del(&avc->same_vma);
    418		anon_vma_chain_free(avc);
    419	}
    420	if (vma->anon_vma) {
    421		vma->anon_vma->degree--;
    422
    423		/*
    424		 * vma would still be needed after unlink, and anon_vma will be prepared
    425		 * when handle fault.
    426		 */
    427		vma->anon_vma = NULL;
    428	}
    429	unlock_anon_vma_root(root);
    430
    431	/*
    432	 * Iterate the list once more, it now only contains empty and unlinked
    433	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
    434	 * needing to write-acquire the anon_vma->root->rwsem.
    435	 */
    436	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
    437		struct anon_vma *anon_vma = avc->anon_vma;
    438
    439		VM_WARN_ON(anon_vma->degree);
    440		put_anon_vma(anon_vma);
    441
    442		list_del(&avc->same_vma);
    443		anon_vma_chain_free(avc);
    444	}
    445}
    446
    447static void anon_vma_ctor(void *data)
    448{
    449	struct anon_vma *anon_vma = data;
    450
    451	init_rwsem(&anon_vma->rwsem);
    452	atomic_set(&anon_vma->refcount, 0);
    453	anon_vma->rb_root = RB_ROOT_CACHED;
    454}
    455
    456void __init anon_vma_init(void)
    457{
    458	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
    459			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
    460			anon_vma_ctor);
    461	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
    462			SLAB_PANIC|SLAB_ACCOUNT);
    463}
    464
    465/*
    466 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
    467 *
    468 * Since there is no serialization what so ever against page_remove_rmap()
    469 * the best this function can do is return a refcount increased anon_vma
    470 * that might have been relevant to this page.
    471 *
    472 * The page might have been remapped to a different anon_vma or the anon_vma
    473 * returned may already be freed (and even reused).
    474 *
    475 * In case it was remapped to a different anon_vma, the new anon_vma will be a
    476 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
    477 * ensure that any anon_vma obtained from the page will still be valid for as
    478 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
    479 *
    480 * All users of this function must be very careful when walking the anon_vma
    481 * chain and verify that the page in question is indeed mapped in it
    482 * [ something equivalent to page_mapped_in_vma() ].
    483 *
    484 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
    485 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
    486 * if there is a mapcount, we can dereference the anon_vma after observing
    487 * those.
    488 */
    489struct anon_vma *page_get_anon_vma(struct page *page)
    490{
    491	struct anon_vma *anon_vma = NULL;
    492	unsigned long anon_mapping;
    493
    494	rcu_read_lock();
    495	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
    496	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
    497		goto out;
    498	if (!page_mapped(page))
    499		goto out;
    500
    501	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
    502	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
    503		anon_vma = NULL;
    504		goto out;
    505	}
    506
    507	/*
    508	 * If this page is still mapped, then its anon_vma cannot have been
    509	 * freed.  But if it has been unmapped, we have no security against the
    510	 * anon_vma structure being freed and reused (for another anon_vma:
    511	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
    512	 * above cannot corrupt).
    513	 */
    514	if (!page_mapped(page)) {
    515		rcu_read_unlock();
    516		put_anon_vma(anon_vma);
    517		return NULL;
    518	}
    519out:
    520	rcu_read_unlock();
    521
    522	return anon_vma;
    523}
    524
    525/*
    526 * Similar to page_get_anon_vma() except it locks the anon_vma.
    527 *
    528 * Its a little more complex as it tries to keep the fast path to a single
    529 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
    530 * reference like with page_get_anon_vma() and then block on the mutex
    531 * on !rwc->try_lock case.
    532 */
    533struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
    534					  struct rmap_walk_control *rwc)
    535{
    536	struct anon_vma *anon_vma = NULL;
    537	struct anon_vma *root_anon_vma;
    538	unsigned long anon_mapping;
    539
    540	rcu_read_lock();
    541	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
    542	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
    543		goto out;
    544	if (!folio_mapped(folio))
    545		goto out;
    546
    547	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
    548	root_anon_vma = READ_ONCE(anon_vma->root);
    549	if (down_read_trylock(&root_anon_vma->rwsem)) {
    550		/*
    551		 * If the folio is still mapped, then this anon_vma is still
    552		 * its anon_vma, and holding the mutex ensures that it will
    553		 * not go away, see anon_vma_free().
    554		 */
    555		if (!folio_mapped(folio)) {
    556			up_read(&root_anon_vma->rwsem);
    557			anon_vma = NULL;
    558		}
    559		goto out;
    560	}
    561
    562	if (rwc && rwc->try_lock) {
    563		anon_vma = NULL;
    564		rwc->contended = true;
    565		goto out;
    566	}
    567
    568	/* trylock failed, we got to sleep */
    569	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
    570		anon_vma = NULL;
    571		goto out;
    572	}
    573
    574	if (!folio_mapped(folio)) {
    575		rcu_read_unlock();
    576		put_anon_vma(anon_vma);
    577		return NULL;
    578	}
    579
    580	/* we pinned the anon_vma, its safe to sleep */
    581	rcu_read_unlock();
    582	anon_vma_lock_read(anon_vma);
    583
    584	if (atomic_dec_and_test(&anon_vma->refcount)) {
    585		/*
    586		 * Oops, we held the last refcount, release the lock
    587		 * and bail -- can't simply use put_anon_vma() because
    588		 * we'll deadlock on the anon_vma_lock_write() recursion.
    589		 */
    590		anon_vma_unlock_read(anon_vma);
    591		__put_anon_vma(anon_vma);
    592		anon_vma = NULL;
    593	}
    594
    595	return anon_vma;
    596
    597out:
    598	rcu_read_unlock();
    599	return anon_vma;
    600}
    601
    602void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
    603{
    604	anon_vma_unlock_read(anon_vma);
    605}
    606
    607#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
    608/*
    609 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
    610 * important if a PTE was dirty when it was unmapped that it's flushed
    611 * before any IO is initiated on the page to prevent lost writes. Similarly,
    612 * it must be flushed before freeing to prevent data leakage.
    613 */
    614void try_to_unmap_flush(void)
    615{
    616	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
    617
    618	if (!tlb_ubc->flush_required)
    619		return;
    620
    621	arch_tlbbatch_flush(&tlb_ubc->arch);
    622	tlb_ubc->flush_required = false;
    623	tlb_ubc->writable = false;
    624}
    625
    626/* Flush iff there are potentially writable TLB entries that can race with IO */
    627void try_to_unmap_flush_dirty(void)
    628{
    629	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
    630
    631	if (tlb_ubc->writable)
    632		try_to_unmap_flush();
    633}
    634
    635/*
    636 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
    637 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
    638 */
    639#define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
    640#define TLB_FLUSH_BATCH_PENDING_MASK			\
    641	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
    642#define TLB_FLUSH_BATCH_PENDING_LARGE			\
    643	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
    644
    645static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
    646{
    647	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
    648	int batch, nbatch;
    649
    650	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
    651	tlb_ubc->flush_required = true;
    652
    653	/*
    654	 * Ensure compiler does not re-order the setting of tlb_flush_batched
    655	 * before the PTE is cleared.
    656	 */
    657	barrier();
    658	batch = atomic_read(&mm->tlb_flush_batched);
    659retry:
    660	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
    661		/*
    662		 * Prevent `pending' from catching up with `flushed' because of
    663		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
    664		 * `pending' becomes large.
    665		 */
    666		nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
    667		if (nbatch != batch) {
    668			batch = nbatch;
    669			goto retry;
    670		}
    671	} else {
    672		atomic_inc(&mm->tlb_flush_batched);
    673	}
    674
    675	/*
    676	 * If the PTE was dirty then it's best to assume it's writable. The
    677	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
    678	 * before the page is queued for IO.
    679	 */
    680	if (writable)
    681		tlb_ubc->writable = true;
    682}
    683
    684/*
    685 * Returns true if the TLB flush should be deferred to the end of a batch of
    686 * unmap operations to reduce IPIs.
    687 */
    688static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
    689{
    690	bool should_defer = false;
    691
    692	if (!(flags & TTU_BATCH_FLUSH))
    693		return false;
    694
    695	/* If remote CPUs need to be flushed then defer batch the flush */
    696	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
    697		should_defer = true;
    698	put_cpu();
    699
    700	return should_defer;
    701}
    702
    703/*
    704 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
    705 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
    706 * operation such as mprotect or munmap to race between reclaim unmapping
    707 * the page and flushing the page. If this race occurs, it potentially allows
    708 * access to data via a stale TLB entry. Tracking all mm's that have TLB
    709 * batching in flight would be expensive during reclaim so instead track
    710 * whether TLB batching occurred in the past and if so then do a flush here
    711 * if required. This will cost one additional flush per reclaim cycle paid
    712 * by the first operation at risk such as mprotect and mumap.
    713 *
    714 * This must be called under the PTL so that an access to tlb_flush_batched
    715 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
    716 * via the PTL.
    717 */
    718void flush_tlb_batched_pending(struct mm_struct *mm)
    719{
    720	int batch = atomic_read(&mm->tlb_flush_batched);
    721	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
    722	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
    723
    724	if (pending != flushed) {
    725		flush_tlb_mm(mm);
    726		/*
    727		 * If the new TLB flushing is pending during flushing, leave
    728		 * mm->tlb_flush_batched as is, to avoid losing flushing.
    729		 */
    730		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
    731			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
    732	}
    733}
    734#else
    735static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
    736{
    737}
    738
    739static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
    740{
    741	return false;
    742}
    743#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
    744
    745/*
    746 * At what user virtual address is page expected in vma?
    747 * Caller should check the page is actually part of the vma.
    748 */
    749unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
    750{
    751	struct folio *folio = page_folio(page);
    752	if (folio_test_anon(folio)) {
    753		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
    754		/*
    755		 * Note: swapoff's unuse_vma() is more efficient with this
    756		 * check, and needs it to match anon_vma when KSM is active.
    757		 */
    758		if (!vma->anon_vma || !page__anon_vma ||
    759		    vma->anon_vma->root != page__anon_vma->root)
    760			return -EFAULT;
    761	} else if (!vma->vm_file) {
    762		return -EFAULT;
    763	} else if (vma->vm_file->f_mapping != folio->mapping) {
    764		return -EFAULT;
    765	}
    766
    767	return vma_address(page, vma);
    768}
    769
    770pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
    771{
    772	pgd_t *pgd;
    773	p4d_t *p4d;
    774	pud_t *pud;
    775	pmd_t *pmd = NULL;
    776	pmd_t pmde;
    777
    778	pgd = pgd_offset(mm, address);
    779	if (!pgd_present(*pgd))
    780		goto out;
    781
    782	p4d = p4d_offset(pgd, address);
    783	if (!p4d_present(*p4d))
    784		goto out;
    785
    786	pud = pud_offset(p4d, address);
    787	if (!pud_present(*pud))
    788		goto out;
    789
    790	pmd = pmd_offset(pud, address);
    791	/*
    792	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
    793	 * without holding anon_vma lock for write.  So when looking for a
    794	 * genuine pmde (in which to find pte), test present and !THP together.
    795	 */
    796	pmde = *pmd;
    797	barrier();
    798	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
    799		pmd = NULL;
    800out:
    801	return pmd;
    802}
    803
    804struct folio_referenced_arg {
    805	int mapcount;
    806	int referenced;
    807	unsigned long vm_flags;
    808	struct mem_cgroup *memcg;
    809};
    810/*
    811 * arg: folio_referenced_arg will be passed
    812 */
    813static bool folio_referenced_one(struct folio *folio,
    814		struct vm_area_struct *vma, unsigned long address, void *arg)
    815{
    816	struct folio_referenced_arg *pra = arg;
    817	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
    818	int referenced = 0;
    819
    820	while (page_vma_mapped_walk(&pvmw)) {
    821		address = pvmw.address;
    822
    823		if ((vma->vm_flags & VM_LOCKED) &&
    824		    (!folio_test_large(folio) || !pvmw.pte)) {
    825			/* Restore the mlock which got missed */
    826			mlock_vma_folio(folio, vma, !pvmw.pte);
    827			page_vma_mapped_walk_done(&pvmw);
    828			pra->vm_flags |= VM_LOCKED;
    829			return false; /* To break the loop */
    830		}
    831
    832		if (pvmw.pte) {
    833			if (ptep_clear_flush_young_notify(vma, address,
    834						pvmw.pte)) {
    835				/*
    836				 * Don't treat a reference through
    837				 * a sequentially read mapping as such.
    838				 * If the folio has been used in another mapping,
    839				 * we will catch it; if this other mapping is
    840				 * already gone, the unmap path will have set
    841				 * the referenced flag or activated the folio.
    842				 */
    843				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
    844					referenced++;
    845			}
    846		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
    847			if (pmdp_clear_flush_young_notify(vma, address,
    848						pvmw.pmd))
    849				referenced++;
    850		} else {
    851			/* unexpected pmd-mapped folio? */
    852			WARN_ON_ONCE(1);
    853		}
    854
    855		pra->mapcount--;
    856	}
    857
    858	if (referenced)
    859		folio_clear_idle(folio);
    860	if (folio_test_clear_young(folio))
    861		referenced++;
    862
    863	if (referenced) {
    864		pra->referenced++;
    865		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
    866	}
    867
    868	if (!pra->mapcount)
    869		return false; /* To break the loop */
    870
    871	return true;
    872}
    873
    874static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
    875{
    876	struct folio_referenced_arg *pra = arg;
    877	struct mem_cgroup *memcg = pra->memcg;
    878
    879	if (!mm_match_cgroup(vma->vm_mm, memcg))
    880		return true;
    881
    882	return false;
    883}
    884
    885/**
    886 * folio_referenced() - Test if the folio was referenced.
    887 * @folio: The folio to test.
    888 * @is_locked: Caller holds lock on the folio.
    889 * @memcg: target memory cgroup
    890 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
    891 *
    892 * Quick test_and_clear_referenced for all mappings of a folio,
    893 *
    894 * Return: The number of mappings which referenced the folio. Return -1 if
    895 * the function bailed out due to rmap lock contention.
    896 */
    897int folio_referenced(struct folio *folio, int is_locked,
    898		     struct mem_cgroup *memcg, unsigned long *vm_flags)
    899{
    900	int we_locked = 0;
    901	struct folio_referenced_arg pra = {
    902		.mapcount = folio_mapcount(folio),
    903		.memcg = memcg,
    904	};
    905	struct rmap_walk_control rwc = {
    906		.rmap_one = folio_referenced_one,
    907		.arg = (void *)&pra,
    908		.anon_lock = folio_lock_anon_vma_read,
    909		.try_lock = true,
    910	};
    911
    912	*vm_flags = 0;
    913	if (!pra.mapcount)
    914		return 0;
    915
    916	if (!folio_raw_mapping(folio))
    917		return 0;
    918
    919	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
    920		we_locked = folio_trylock(folio);
    921		if (!we_locked)
    922			return 1;
    923	}
    924
    925	/*
    926	 * If we are reclaiming on behalf of a cgroup, skip
    927	 * counting on behalf of references from different
    928	 * cgroups
    929	 */
    930	if (memcg) {
    931		rwc.invalid_vma = invalid_folio_referenced_vma;
    932	}
    933
    934	rmap_walk(folio, &rwc);
    935	*vm_flags = pra.vm_flags;
    936
    937	if (we_locked)
    938		folio_unlock(folio);
    939
    940	return rwc.contended ? -1 : pra.referenced;
    941}
    942
    943static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
    944{
    945	int cleaned = 0;
    946	struct vm_area_struct *vma = pvmw->vma;
    947	struct mmu_notifier_range range;
    948	unsigned long address = pvmw->address;
    949
    950	/*
    951	 * We have to assume the worse case ie pmd for invalidation. Note that
    952	 * the folio can not be freed from this function.
    953	 */
    954	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
    955				0, vma, vma->vm_mm, address,
    956				vma_address_end(pvmw));
    957	mmu_notifier_invalidate_range_start(&range);
    958
    959	while (page_vma_mapped_walk(pvmw)) {
    960		int ret = 0;
    961
    962		address = pvmw->address;
    963		if (pvmw->pte) {
    964			pte_t entry;
    965			pte_t *pte = pvmw->pte;
    966
    967			if (!pte_dirty(*pte) && !pte_write(*pte))
    968				continue;
    969
    970			flush_cache_page(vma, address, pte_pfn(*pte));
    971			entry = ptep_clear_flush(vma, address, pte);
    972			entry = pte_wrprotect(entry);
    973			entry = pte_mkclean(entry);
    974			set_pte_at(vma->vm_mm, address, pte, entry);
    975			ret = 1;
    976		} else {
    977#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    978			pmd_t *pmd = pvmw->pmd;
    979			pmd_t entry;
    980
    981			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
    982				continue;
    983
    984			flush_cache_range(vma, address,
    985					  address + HPAGE_PMD_SIZE);
    986			entry = pmdp_invalidate(vma, address, pmd);
    987			entry = pmd_wrprotect(entry);
    988			entry = pmd_mkclean(entry);
    989			set_pmd_at(vma->vm_mm, address, pmd, entry);
    990			ret = 1;
    991#else
    992			/* unexpected pmd-mapped folio? */
    993			WARN_ON_ONCE(1);
    994#endif
    995		}
    996
    997		/*
    998		 * No need to call mmu_notifier_invalidate_range() as we are
    999		 * downgrading page table protection not changing it to point
   1000		 * to a new page.
   1001		 *
   1002		 * See Documentation/vm/mmu_notifier.rst
   1003		 */
   1004		if (ret)
   1005			cleaned++;
   1006	}
   1007
   1008	mmu_notifier_invalidate_range_end(&range);
   1009
   1010	return cleaned;
   1011}
   1012
   1013static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
   1014			     unsigned long address, void *arg)
   1015{
   1016	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
   1017	int *cleaned = arg;
   1018
   1019	*cleaned += page_vma_mkclean_one(&pvmw);
   1020
   1021	return true;
   1022}
   1023
   1024static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
   1025{
   1026	if (vma->vm_flags & VM_SHARED)
   1027		return false;
   1028
   1029	return true;
   1030}
   1031
   1032int folio_mkclean(struct folio *folio)
   1033{
   1034	int cleaned = 0;
   1035	struct address_space *mapping;
   1036	struct rmap_walk_control rwc = {
   1037		.arg = (void *)&cleaned,
   1038		.rmap_one = page_mkclean_one,
   1039		.invalid_vma = invalid_mkclean_vma,
   1040	};
   1041
   1042	BUG_ON(!folio_test_locked(folio));
   1043
   1044	if (!folio_mapped(folio))
   1045		return 0;
   1046
   1047	mapping = folio_mapping(folio);
   1048	if (!mapping)
   1049		return 0;
   1050
   1051	rmap_walk(folio, &rwc);
   1052
   1053	return cleaned;
   1054}
   1055EXPORT_SYMBOL_GPL(folio_mkclean);
   1056
   1057/**
   1058 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
   1059 *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
   1060 *                     within the @vma of shared mappings. And since clean PTEs
   1061 *                     should also be readonly, write protects them too.
   1062 * @pfn: start pfn.
   1063 * @nr_pages: number of physically contiguous pages srarting with @pfn.
   1064 * @pgoff: page offset that the @pfn mapped with.
   1065 * @vma: vma that @pfn mapped within.
   1066 *
   1067 * Returns the number of cleaned PTEs (including PMDs).
   1068 */
   1069int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
   1070		      struct vm_area_struct *vma)
   1071{
   1072	struct page_vma_mapped_walk pvmw = {
   1073		.pfn		= pfn,
   1074		.nr_pages	= nr_pages,
   1075		.pgoff		= pgoff,
   1076		.vma		= vma,
   1077		.flags		= PVMW_SYNC,
   1078	};
   1079
   1080	if (invalid_mkclean_vma(vma, NULL))
   1081		return 0;
   1082
   1083	pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
   1084	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
   1085
   1086	return page_vma_mkclean_one(&pvmw);
   1087}
   1088
   1089/**
   1090 * page_move_anon_rmap - move a page to our anon_vma
   1091 * @page:	the page to move to our anon_vma
   1092 * @vma:	the vma the page belongs to
   1093 *
   1094 * When a page belongs exclusively to one process after a COW event,
   1095 * that page can be moved into the anon_vma that belongs to just that
   1096 * process, so the rmap code will not search the parent or sibling
   1097 * processes.
   1098 */
   1099void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
   1100{
   1101	struct anon_vma *anon_vma = vma->anon_vma;
   1102	struct page *subpage = page;
   1103
   1104	page = compound_head(page);
   1105
   1106	VM_BUG_ON_PAGE(!PageLocked(page), page);
   1107	VM_BUG_ON_VMA(!anon_vma, vma);
   1108
   1109	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
   1110	/*
   1111	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
   1112	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
   1113	 * folio_test_anon()) will not see one without the other.
   1114	 */
   1115	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
   1116	SetPageAnonExclusive(subpage);
   1117}
   1118
   1119/**
   1120 * __page_set_anon_rmap - set up new anonymous rmap
   1121 * @page:	Page or Hugepage to add to rmap
   1122 * @vma:	VM area to add page to.
   1123 * @address:	User virtual address of the mapping	
   1124 * @exclusive:	the page is exclusively owned by the current process
   1125 */
   1126static void __page_set_anon_rmap(struct page *page,
   1127	struct vm_area_struct *vma, unsigned long address, int exclusive)
   1128{
   1129	struct anon_vma *anon_vma = vma->anon_vma;
   1130
   1131	BUG_ON(!anon_vma);
   1132
   1133	if (PageAnon(page))
   1134		goto out;
   1135
   1136	/*
   1137	 * If the page isn't exclusively mapped into this vma,
   1138	 * we must use the _oldest_ possible anon_vma for the
   1139	 * page mapping!
   1140	 */
   1141	if (!exclusive)
   1142		anon_vma = anon_vma->root;
   1143
   1144	/*
   1145	 * page_idle does a lockless/optimistic rmap scan on page->mapping.
   1146	 * Make sure the compiler doesn't split the stores of anon_vma and
   1147	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
   1148	 * could mistake the mapping for a struct address_space and crash.
   1149	 */
   1150	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
   1151	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
   1152	page->index = linear_page_index(vma, address);
   1153out:
   1154	if (exclusive)
   1155		SetPageAnonExclusive(page);
   1156}
   1157
   1158/**
   1159 * __page_check_anon_rmap - sanity check anonymous rmap addition
   1160 * @page:	the page to add the mapping to
   1161 * @vma:	the vm area in which the mapping is added
   1162 * @address:	the user virtual address mapped
   1163 */
   1164static void __page_check_anon_rmap(struct page *page,
   1165	struct vm_area_struct *vma, unsigned long address)
   1166{
   1167	struct folio *folio = page_folio(page);
   1168	/*
   1169	 * The page's anon-rmap details (mapping and index) are guaranteed to
   1170	 * be set up correctly at this point.
   1171	 *
   1172	 * We have exclusion against page_add_anon_rmap because the caller
   1173	 * always holds the page locked.
   1174	 *
   1175	 * We have exclusion against page_add_new_anon_rmap because those pages
   1176	 * are initially only visible via the pagetables, and the pte is locked
   1177	 * over the call to page_add_new_anon_rmap.
   1178	 */
   1179	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
   1180			folio);
   1181	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
   1182		       page);
   1183}
   1184
   1185/**
   1186 * page_add_anon_rmap - add pte mapping to an anonymous page
   1187 * @page:	the page to add the mapping to
   1188 * @vma:	the vm area in which the mapping is added
   1189 * @address:	the user virtual address mapped
   1190 * @flags:	the rmap flags
   1191 *
   1192 * The caller needs to hold the pte lock, and the page must be locked in
   1193 * the anon_vma case: to serialize mapping,index checking after setting,
   1194 * and to ensure that PageAnon is not being upgraded racily to PageKsm
   1195 * (but PageKsm is never downgraded to PageAnon).
   1196 */
   1197void page_add_anon_rmap(struct page *page,
   1198	struct vm_area_struct *vma, unsigned long address, rmap_t flags)
   1199{
   1200	bool compound = flags & RMAP_COMPOUND;
   1201	bool first;
   1202
   1203	if (unlikely(PageKsm(page)))
   1204		lock_page_memcg(page);
   1205	else
   1206		VM_BUG_ON_PAGE(!PageLocked(page), page);
   1207
   1208	if (compound) {
   1209		atomic_t *mapcount;
   1210		VM_BUG_ON_PAGE(!PageLocked(page), page);
   1211		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
   1212		mapcount = compound_mapcount_ptr(page);
   1213		first = atomic_inc_and_test(mapcount);
   1214	} else {
   1215		first = atomic_inc_and_test(&page->_mapcount);
   1216	}
   1217	VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
   1218	VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
   1219
   1220	if (first) {
   1221		int nr = compound ? thp_nr_pages(page) : 1;
   1222		/*
   1223		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
   1224		 * these counters are not modified in interrupt context, and
   1225		 * pte lock(a spinlock) is held, which implies preemption
   1226		 * disabled.
   1227		 */
   1228		if (compound)
   1229			__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
   1230		__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
   1231	}
   1232
   1233	if (unlikely(PageKsm(page)))
   1234		unlock_page_memcg(page);
   1235
   1236	/* address might be in next vma when migration races vma_adjust */
   1237	else if (first)
   1238		__page_set_anon_rmap(page, vma, address,
   1239				     !!(flags & RMAP_EXCLUSIVE));
   1240	else
   1241		__page_check_anon_rmap(page, vma, address);
   1242
   1243	mlock_vma_page(page, vma, compound);
   1244}
   1245
   1246/**
   1247 * page_add_new_anon_rmap - add mapping to a new anonymous page
   1248 * @page:	the page to add the mapping to
   1249 * @vma:	the vm area in which the mapping is added
   1250 * @address:	the user virtual address mapped
   1251 *
   1252 * If it's a compound page, it is accounted as a compound page. As the page
   1253 * is new, it's assume to get mapped exclusively by a single process.
   1254 *
   1255 * Same as page_add_anon_rmap but must only be called on *new* pages.
   1256 * This means the inc-and-test can be bypassed.
   1257 * Page does not have to be locked.
   1258 */
   1259void page_add_new_anon_rmap(struct page *page,
   1260	struct vm_area_struct *vma, unsigned long address)
   1261{
   1262	const bool compound = PageCompound(page);
   1263	int nr = compound ? thp_nr_pages(page) : 1;
   1264
   1265	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
   1266	__SetPageSwapBacked(page);
   1267	if (compound) {
   1268		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
   1269		/* increment count (starts at -1) */
   1270		atomic_set(compound_mapcount_ptr(page), 0);
   1271		atomic_set(compound_pincount_ptr(page), 0);
   1272
   1273		__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
   1274	} else {
   1275		/* increment count (starts at -1) */
   1276		atomic_set(&page->_mapcount, 0);
   1277	}
   1278	__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
   1279	__page_set_anon_rmap(page, vma, address, 1);
   1280}
   1281
   1282/**
   1283 * page_add_file_rmap - add pte mapping to a file page
   1284 * @page:	the page to add the mapping to
   1285 * @vma:	the vm area in which the mapping is added
   1286 * @compound:	charge the page as compound or small page
   1287 *
   1288 * The caller needs to hold the pte lock.
   1289 */
   1290void page_add_file_rmap(struct page *page,
   1291	struct vm_area_struct *vma, bool compound)
   1292{
   1293	int i, nr = 0;
   1294
   1295	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
   1296	lock_page_memcg(page);
   1297	if (compound && PageTransHuge(page)) {
   1298		int nr_pages = thp_nr_pages(page);
   1299
   1300		for (i = 0; i < nr_pages; i++) {
   1301			if (atomic_inc_and_test(&page[i]._mapcount))
   1302				nr++;
   1303		}
   1304		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
   1305			goto out;
   1306
   1307		/*
   1308		 * It is racy to ClearPageDoubleMap in page_remove_file_rmap();
   1309		 * but page lock is held by all page_add_file_rmap() compound
   1310		 * callers, and SetPageDoubleMap below warns if !PageLocked:
   1311		 * so here is a place that DoubleMap can be safely cleared.
   1312		 */
   1313		VM_WARN_ON_ONCE(!PageLocked(page));
   1314		if (nr == nr_pages && PageDoubleMap(page))
   1315			ClearPageDoubleMap(page);
   1316
   1317		if (PageSwapBacked(page))
   1318			__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
   1319						nr_pages);
   1320		else
   1321			__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
   1322						nr_pages);
   1323	} else {
   1324		if (PageTransCompound(page) && page_mapping(page)) {
   1325			VM_WARN_ON_ONCE(!PageLocked(page));
   1326			SetPageDoubleMap(compound_head(page));
   1327		}
   1328		if (atomic_inc_and_test(&page->_mapcount))
   1329			nr++;
   1330	}
   1331out:
   1332	if (nr)
   1333		__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
   1334	unlock_page_memcg(page);
   1335
   1336	mlock_vma_page(page, vma, compound);
   1337}
   1338
   1339static void page_remove_file_rmap(struct page *page, bool compound)
   1340{
   1341	int i, nr = 0;
   1342
   1343	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
   1344
   1345	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
   1346	if (unlikely(PageHuge(page))) {
   1347		/* hugetlb pages are always mapped with pmds */
   1348		atomic_dec(compound_mapcount_ptr(page));
   1349		return;
   1350	}
   1351
   1352	/* page still mapped by someone else? */
   1353	if (compound && PageTransHuge(page)) {
   1354		int nr_pages = thp_nr_pages(page);
   1355
   1356		for (i = 0; i < nr_pages; i++) {
   1357			if (atomic_add_negative(-1, &page[i]._mapcount))
   1358				nr++;
   1359		}
   1360		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
   1361			goto out;
   1362		if (PageSwapBacked(page))
   1363			__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
   1364						-nr_pages);
   1365		else
   1366			__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
   1367						-nr_pages);
   1368	} else {
   1369		if (atomic_add_negative(-1, &page->_mapcount))
   1370			nr++;
   1371	}
   1372out:
   1373	if (nr)
   1374		__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
   1375}
   1376
   1377static void page_remove_anon_compound_rmap(struct page *page)
   1378{
   1379	int i, nr;
   1380
   1381	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
   1382		return;
   1383
   1384	/* Hugepages are not counted in NR_ANON_PAGES for now. */
   1385	if (unlikely(PageHuge(page)))
   1386		return;
   1387
   1388	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
   1389		return;
   1390
   1391	__mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
   1392
   1393	if (TestClearPageDoubleMap(page)) {
   1394		/*
   1395		 * Subpages can be mapped with PTEs too. Check how many of
   1396		 * them are still mapped.
   1397		 */
   1398		for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
   1399			if (atomic_add_negative(-1, &page[i]._mapcount))
   1400				nr++;
   1401		}
   1402
   1403		/*
   1404		 * Queue the page for deferred split if at least one small
   1405		 * page of the compound page is unmapped, but at least one
   1406		 * small page is still mapped.
   1407		 */
   1408		if (nr && nr < thp_nr_pages(page))
   1409			deferred_split_huge_page(page);
   1410	} else {
   1411		nr = thp_nr_pages(page);
   1412	}
   1413
   1414	if (nr)
   1415		__mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
   1416}
   1417
   1418/**
   1419 * page_remove_rmap - take down pte mapping from a page
   1420 * @page:	page to remove mapping from
   1421 * @vma:	the vm area from which the mapping is removed
   1422 * @compound:	uncharge the page as compound or small page
   1423 *
   1424 * The caller needs to hold the pte lock.
   1425 */
   1426void page_remove_rmap(struct page *page,
   1427	struct vm_area_struct *vma, bool compound)
   1428{
   1429	lock_page_memcg(page);
   1430
   1431	if (!PageAnon(page)) {
   1432		page_remove_file_rmap(page, compound);
   1433		goto out;
   1434	}
   1435
   1436	if (compound) {
   1437		page_remove_anon_compound_rmap(page);
   1438		goto out;
   1439	}
   1440
   1441	/* page still mapped by someone else? */
   1442	if (!atomic_add_negative(-1, &page->_mapcount))
   1443		goto out;
   1444
   1445	/*
   1446	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
   1447	 * these counters are not modified in interrupt context, and
   1448	 * pte lock(a spinlock) is held, which implies preemption disabled.
   1449	 */
   1450	__dec_lruvec_page_state(page, NR_ANON_MAPPED);
   1451
   1452	if (PageTransCompound(page))
   1453		deferred_split_huge_page(compound_head(page));
   1454
   1455	/*
   1456	 * It would be tidy to reset the PageAnon mapping here,
   1457	 * but that might overwrite a racing page_add_anon_rmap
   1458	 * which increments mapcount after us but sets mapping
   1459	 * before us: so leave the reset to free_unref_page,
   1460	 * and remember that it's only reliable while mapped.
   1461	 * Leaving it set also helps swapoff to reinstate ptes
   1462	 * faster for those pages still in swapcache.
   1463	 */
   1464out:
   1465	unlock_page_memcg(page);
   1466
   1467	munlock_vma_page(page, vma, compound);
   1468}
   1469
   1470/*
   1471 * @arg: enum ttu_flags will be passed to this argument
   1472 */
   1473static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
   1474		     unsigned long address, void *arg)
   1475{
   1476	struct mm_struct *mm = vma->vm_mm;
   1477	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
   1478	pte_t pteval;
   1479	struct page *subpage;
   1480	bool anon_exclusive, ret = true;
   1481	struct mmu_notifier_range range;
   1482	enum ttu_flags flags = (enum ttu_flags)(long)arg;
   1483
   1484	/*
   1485	 * When racing against e.g. zap_pte_range() on another cpu,
   1486	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
   1487	 * try_to_unmap() may return before page_mapped() has become false,
   1488	 * if page table locking is skipped: use TTU_SYNC to wait for that.
   1489	 */
   1490	if (flags & TTU_SYNC)
   1491		pvmw.flags = PVMW_SYNC;
   1492
   1493	if (flags & TTU_SPLIT_HUGE_PMD)
   1494		split_huge_pmd_address(vma, address, false, folio);
   1495
   1496	/*
   1497	 * For THP, we have to assume the worse case ie pmd for invalidation.
   1498	 * For hugetlb, it could be much worse if we need to do pud
   1499	 * invalidation in the case of pmd sharing.
   1500	 *
   1501	 * Note that the folio can not be freed in this function as call of
   1502	 * try_to_unmap() must hold a reference on the folio.
   1503	 */
   1504	range.end = vma_address_end(&pvmw);
   1505	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
   1506				address, range.end);
   1507	if (folio_test_hugetlb(folio)) {
   1508		/*
   1509		 * If sharing is possible, start and end will be adjusted
   1510		 * accordingly.
   1511		 */
   1512		adjust_range_if_pmd_sharing_possible(vma, &range.start,
   1513						     &range.end);
   1514	}
   1515	mmu_notifier_invalidate_range_start(&range);
   1516
   1517	while (page_vma_mapped_walk(&pvmw)) {
   1518		/* Unexpected PMD-mapped THP? */
   1519		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
   1520
   1521		/*
   1522		 * If the folio is in an mlock()d vma, we must not swap it out.
   1523		 */
   1524		if (!(flags & TTU_IGNORE_MLOCK) &&
   1525		    (vma->vm_flags & VM_LOCKED)) {
   1526			/* Restore the mlock which got missed */
   1527			mlock_vma_folio(folio, vma, false);
   1528			page_vma_mapped_walk_done(&pvmw);
   1529			ret = false;
   1530			break;
   1531		}
   1532
   1533		subpage = folio_page(folio,
   1534					pte_pfn(*pvmw.pte) - folio_pfn(folio));
   1535		address = pvmw.address;
   1536		anon_exclusive = folio_test_anon(folio) &&
   1537				 PageAnonExclusive(subpage);
   1538
   1539		if (folio_test_hugetlb(folio)) {
   1540			/*
   1541			 * The try_to_unmap() is only passed a hugetlb page
   1542			 * in the case where the hugetlb page is poisoned.
   1543			 */
   1544			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
   1545			/*
   1546			 * huge_pmd_unshare may unmap an entire PMD page.
   1547			 * There is no way of knowing exactly which PMDs may
   1548			 * be cached for this mm, so we must flush them all.
   1549			 * start/end were already adjusted above to cover this
   1550			 * range.
   1551			 */
   1552			flush_cache_range(vma, range.start, range.end);
   1553
   1554			if (!folio_test_anon(folio)) {
   1555				/*
   1556				 * To call huge_pmd_unshare, i_mmap_rwsem must be
   1557				 * held in write mode.  Caller needs to explicitly
   1558				 * do this outside rmap routines.
   1559				 */
   1560				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
   1561
   1562				if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
   1563					flush_tlb_range(vma, range.start, range.end);
   1564					mmu_notifier_invalidate_range(mm, range.start,
   1565								      range.end);
   1566
   1567					/*
   1568					 * The ref count of the PMD page was dropped
   1569					 * which is part of the way map counting
   1570					 * is done for shared PMDs.  Return 'true'
   1571					 * here.  When there is no other sharing,
   1572					 * huge_pmd_unshare returns false and we will
   1573					 * unmap the actual page and drop map count
   1574					 * to zero.
   1575					 */
   1576					page_vma_mapped_walk_done(&pvmw);
   1577					break;
   1578				}
   1579			}
   1580			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
   1581		} else {
   1582			flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
   1583			/*
   1584			 * Nuke the page table entry. When having to clear
   1585			 * PageAnonExclusive(), we always have to flush.
   1586			 */
   1587			if (should_defer_flush(mm, flags) && !anon_exclusive) {
   1588				/*
   1589				 * We clear the PTE but do not flush so potentially
   1590				 * a remote CPU could still be writing to the folio.
   1591				 * If the entry was previously clean then the
   1592				 * architecture must guarantee that a clear->dirty
   1593				 * transition on a cached TLB entry is written through
   1594				 * and traps if the PTE is unmapped.
   1595				 */
   1596				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
   1597
   1598				set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
   1599			} else {
   1600				pteval = ptep_clear_flush(vma, address, pvmw.pte);
   1601			}
   1602		}
   1603
   1604		/*
   1605		 * Now the pte is cleared. If this pte was uffd-wp armed,
   1606		 * we may want to replace a none pte with a marker pte if
   1607		 * it's file-backed, so we don't lose the tracking info.
   1608		 */
   1609		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
   1610
   1611		/* Set the dirty flag on the folio now the pte is gone. */
   1612		if (pte_dirty(pteval))
   1613			folio_mark_dirty(folio);
   1614
   1615		/* Update high watermark before we lower rss */
   1616		update_hiwater_rss(mm);
   1617
   1618		if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) {
   1619			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
   1620			if (folio_test_hugetlb(folio)) {
   1621				hugetlb_count_sub(folio_nr_pages(folio), mm);
   1622				set_huge_swap_pte_at(mm, address,
   1623						     pvmw.pte, pteval,
   1624						     vma_mmu_pagesize(vma));
   1625			} else {
   1626				dec_mm_counter(mm, mm_counter(&folio->page));
   1627				set_pte_at(mm, address, pvmw.pte, pteval);
   1628			}
   1629
   1630		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
   1631			/*
   1632			 * The guest indicated that the page content is of no
   1633			 * interest anymore. Simply discard the pte, vmscan
   1634			 * will take care of the rest.
   1635			 * A future reference will then fault in a new zero
   1636			 * page. When userfaultfd is active, we must not drop
   1637			 * this page though, as its main user (postcopy
   1638			 * migration) will not expect userfaults on already
   1639			 * copied pages.
   1640			 */
   1641			dec_mm_counter(mm, mm_counter(&folio->page));
   1642			/* We have to invalidate as we cleared the pte */
   1643			mmu_notifier_invalidate_range(mm, address,
   1644						      address + PAGE_SIZE);
   1645		} else if (folio_test_anon(folio)) {
   1646			swp_entry_t entry = { .val = page_private(subpage) };
   1647			pte_t swp_pte;
   1648			/*
   1649			 * Store the swap location in the pte.
   1650			 * See handle_pte_fault() ...
   1651			 */
   1652			if (unlikely(folio_test_swapbacked(folio) !=
   1653					folio_test_swapcache(folio))) {
   1654				WARN_ON_ONCE(1);
   1655				ret = false;
   1656				/* We have to invalidate as we cleared the pte */
   1657				mmu_notifier_invalidate_range(mm, address,
   1658							address + PAGE_SIZE);
   1659				page_vma_mapped_walk_done(&pvmw);
   1660				break;
   1661			}
   1662
   1663			/* MADV_FREE page check */
   1664			if (!folio_test_swapbacked(folio)) {
   1665				int ref_count, map_count;
   1666
   1667				/*
   1668				 * Synchronize with gup_pte_range():
   1669				 * - clear PTE; barrier; read refcount
   1670				 * - inc refcount; barrier; read PTE
   1671				 */
   1672				smp_mb();
   1673
   1674				ref_count = folio_ref_count(folio);
   1675				map_count = folio_mapcount(folio);
   1676
   1677				/*
   1678				 * Order reads for page refcount and dirty flag
   1679				 * (see comments in __remove_mapping()).
   1680				 */
   1681				smp_rmb();
   1682
   1683				/*
   1684				 * The only page refs must be one from isolation
   1685				 * plus the rmap(s) (dropped by discard:).
   1686				 */
   1687				if (ref_count == 1 + map_count &&
   1688				    !folio_test_dirty(folio)) {
   1689					/* Invalidate as we cleared the pte */
   1690					mmu_notifier_invalidate_range(mm,
   1691						address, address + PAGE_SIZE);
   1692					dec_mm_counter(mm, MM_ANONPAGES);
   1693					goto discard;
   1694				}
   1695
   1696				/*
   1697				 * If the folio was redirtied, it cannot be
   1698				 * discarded. Remap the page to page table.
   1699				 */
   1700				set_pte_at(mm, address, pvmw.pte, pteval);
   1701				folio_set_swapbacked(folio);
   1702				ret = false;
   1703				page_vma_mapped_walk_done(&pvmw);
   1704				break;
   1705			}
   1706
   1707			if (swap_duplicate(entry) < 0) {
   1708				set_pte_at(mm, address, pvmw.pte, pteval);
   1709				ret = false;
   1710				page_vma_mapped_walk_done(&pvmw);
   1711				break;
   1712			}
   1713			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
   1714				swap_free(entry);
   1715				set_pte_at(mm, address, pvmw.pte, pteval);
   1716				ret = false;
   1717				page_vma_mapped_walk_done(&pvmw);
   1718				break;
   1719			}
   1720			if (anon_exclusive &&
   1721			    page_try_share_anon_rmap(subpage)) {
   1722				swap_free(entry);
   1723				set_pte_at(mm, address, pvmw.pte, pteval);
   1724				ret = false;
   1725				page_vma_mapped_walk_done(&pvmw);
   1726				break;
   1727			}
   1728			/*
   1729			 * Note: We *don't* remember if the page was mapped
   1730			 * exclusively in the swap pte if the architecture
   1731			 * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In
   1732			 * that case, swapin code has to re-determine that
   1733			 * manually and might detect the page as possibly
   1734			 * shared, for example, if there are other references on
   1735			 * the page or if the page is under writeback. We made
   1736			 * sure that there are no GUP pins on the page that
   1737			 * would rely on it, so for GUP pins this is fine.
   1738			 */
   1739			if (list_empty(&mm->mmlist)) {
   1740				spin_lock(&mmlist_lock);
   1741				if (list_empty(&mm->mmlist))
   1742					list_add(&mm->mmlist, &init_mm.mmlist);
   1743				spin_unlock(&mmlist_lock);
   1744			}
   1745			dec_mm_counter(mm, MM_ANONPAGES);
   1746			inc_mm_counter(mm, MM_SWAPENTS);
   1747			swp_pte = swp_entry_to_pte(entry);
   1748			if (anon_exclusive)
   1749				swp_pte = pte_swp_mkexclusive(swp_pte);
   1750			if (pte_soft_dirty(pteval))
   1751				swp_pte = pte_swp_mksoft_dirty(swp_pte);
   1752			if (pte_uffd_wp(pteval))
   1753				swp_pte = pte_swp_mkuffd_wp(swp_pte);
   1754			set_pte_at(mm, address, pvmw.pte, swp_pte);
   1755			/* Invalidate as we cleared the pte */
   1756			mmu_notifier_invalidate_range(mm, address,
   1757						      address + PAGE_SIZE);
   1758		} else {
   1759			/*
   1760			 * This is a locked file-backed folio,
   1761			 * so it cannot be removed from the page
   1762			 * cache and replaced by a new folio before
   1763			 * mmu_notifier_invalidate_range_end, so no
   1764			 * concurrent thread might update its page table
   1765			 * to point at a new folio while a device is
   1766			 * still using this folio.
   1767			 *
   1768			 * See Documentation/vm/mmu_notifier.rst
   1769			 */
   1770			dec_mm_counter(mm, mm_counter_file(&folio->page));
   1771		}
   1772discard:
   1773		/*
   1774		 * No need to call mmu_notifier_invalidate_range() it has be
   1775		 * done above for all cases requiring it to happen under page
   1776		 * table lock before mmu_notifier_invalidate_range_end()
   1777		 *
   1778		 * See Documentation/vm/mmu_notifier.rst
   1779		 */
   1780		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
   1781		if (vma->vm_flags & VM_LOCKED)
   1782			mlock_page_drain_local();
   1783		folio_put(folio);
   1784	}
   1785
   1786	mmu_notifier_invalidate_range_end(&range);
   1787
   1788	return ret;
   1789}
   1790
   1791static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
   1792{
   1793	return vma_is_temporary_stack(vma);
   1794}
   1795
   1796static int page_not_mapped(struct folio *folio)
   1797{
   1798	return !folio_mapped(folio);
   1799}
   1800
   1801/**
   1802 * try_to_unmap - Try to remove all page table mappings to a folio.
   1803 * @folio: The folio to unmap.
   1804 * @flags: action and flags
   1805 *
   1806 * Tries to remove all the page table entries which are mapping this
   1807 * folio.  It is the caller's responsibility to check if the folio is
   1808 * still mapped if needed (use TTU_SYNC to prevent accounting races).
   1809 *
   1810 * Context: Caller must hold the folio lock.
   1811 */
   1812void try_to_unmap(struct folio *folio, enum ttu_flags flags)
   1813{
   1814	struct rmap_walk_control rwc = {
   1815		.rmap_one = try_to_unmap_one,
   1816		.arg = (void *)flags,
   1817		.done = page_not_mapped,
   1818		.anon_lock = folio_lock_anon_vma_read,
   1819	};
   1820
   1821	if (flags & TTU_RMAP_LOCKED)
   1822		rmap_walk_locked(folio, &rwc);
   1823	else
   1824		rmap_walk(folio, &rwc);
   1825}
   1826
   1827/*
   1828 * @arg: enum ttu_flags will be passed to this argument.
   1829 *
   1830 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
   1831 * containing migration entries.
   1832 */
   1833static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
   1834		     unsigned long address, void *arg)
   1835{
   1836	struct mm_struct *mm = vma->vm_mm;
   1837	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
   1838	pte_t pteval;
   1839	struct page *subpage;
   1840	bool anon_exclusive, ret = true;
   1841	struct mmu_notifier_range range;
   1842	enum ttu_flags flags = (enum ttu_flags)(long)arg;
   1843
   1844	/*
   1845	 * When racing against e.g. zap_pte_range() on another cpu,
   1846	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
   1847	 * try_to_migrate() may return before page_mapped() has become false,
   1848	 * if page table locking is skipped: use TTU_SYNC to wait for that.
   1849	 */
   1850	if (flags & TTU_SYNC)
   1851		pvmw.flags = PVMW_SYNC;
   1852
   1853	/*
   1854	 * unmap_page() in mm/huge_memory.c is the only user of migration with
   1855	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
   1856	 */
   1857	if (flags & TTU_SPLIT_HUGE_PMD)
   1858		split_huge_pmd_address(vma, address, true, folio);
   1859
   1860	/*
   1861	 * For THP, we have to assume the worse case ie pmd for invalidation.
   1862	 * For hugetlb, it could be much worse if we need to do pud
   1863	 * invalidation in the case of pmd sharing.
   1864	 *
   1865	 * Note that the page can not be free in this function as call of
   1866	 * try_to_unmap() must hold a reference on the page.
   1867	 */
   1868	range.end = vma_address_end(&pvmw);
   1869	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
   1870				address, range.end);
   1871	if (folio_test_hugetlb(folio)) {
   1872		/*
   1873		 * If sharing is possible, start and end will be adjusted
   1874		 * accordingly.
   1875		 */
   1876		adjust_range_if_pmd_sharing_possible(vma, &range.start,
   1877						     &range.end);
   1878	}
   1879	mmu_notifier_invalidate_range_start(&range);
   1880
   1881	while (page_vma_mapped_walk(&pvmw)) {
   1882#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
   1883		/* PMD-mapped THP migration entry */
   1884		if (!pvmw.pte) {
   1885			subpage = folio_page(folio,
   1886				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
   1887			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
   1888					!folio_test_pmd_mappable(folio), folio);
   1889
   1890			if (set_pmd_migration_entry(&pvmw, subpage)) {
   1891				ret = false;
   1892				page_vma_mapped_walk_done(&pvmw);
   1893				break;
   1894			}
   1895			continue;
   1896		}
   1897#endif
   1898
   1899		/* Unexpected PMD-mapped THP? */
   1900		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
   1901
   1902		subpage = folio_page(folio,
   1903				pte_pfn(*pvmw.pte) - folio_pfn(folio));
   1904		address = pvmw.address;
   1905		anon_exclusive = folio_test_anon(folio) &&
   1906				 PageAnonExclusive(subpage);
   1907
   1908		if (folio_test_hugetlb(folio)) {
   1909			/*
   1910			 * huge_pmd_unshare may unmap an entire PMD page.
   1911			 * There is no way of knowing exactly which PMDs may
   1912			 * be cached for this mm, so we must flush them all.
   1913			 * start/end were already adjusted above to cover this
   1914			 * range.
   1915			 */
   1916			flush_cache_range(vma, range.start, range.end);
   1917
   1918			if (!folio_test_anon(folio)) {
   1919				/*
   1920				 * To call huge_pmd_unshare, i_mmap_rwsem must be
   1921				 * held in write mode.  Caller needs to explicitly
   1922				 * do this outside rmap routines.
   1923				 */
   1924				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
   1925
   1926				if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
   1927					flush_tlb_range(vma, range.start, range.end);
   1928					mmu_notifier_invalidate_range(mm, range.start,
   1929								      range.end);
   1930
   1931					/*
   1932					 * The ref count of the PMD page was dropped
   1933					 * which is part of the way map counting
   1934					 * is done for shared PMDs.  Return 'true'
   1935					 * here.  When there is no other sharing,
   1936					 * huge_pmd_unshare returns false and we will
   1937					 * unmap the actual page and drop map count
   1938					 * to zero.
   1939					 */
   1940					page_vma_mapped_walk_done(&pvmw);
   1941					break;
   1942				}
   1943			}
   1944
   1945			/* Nuke the hugetlb page table entry */
   1946			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
   1947		} else {
   1948			flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
   1949			/* Nuke the page table entry. */
   1950			pteval = ptep_clear_flush(vma, address, pvmw.pte);
   1951		}
   1952
   1953		/* Set the dirty flag on the folio now the pte is gone. */
   1954		if (pte_dirty(pteval))
   1955			folio_mark_dirty(folio);
   1956
   1957		/* Update high watermark before we lower rss */
   1958		update_hiwater_rss(mm);
   1959
   1960		if (folio_is_zone_device(folio)) {
   1961			unsigned long pfn = folio_pfn(folio);
   1962			swp_entry_t entry;
   1963			pte_t swp_pte;
   1964
   1965			if (anon_exclusive)
   1966				BUG_ON(page_try_share_anon_rmap(subpage));
   1967
   1968			/*
   1969			 * Store the pfn of the page in a special migration
   1970			 * pte. do_swap_page() will wait until the migration
   1971			 * pte is removed and then restart fault handling.
   1972			 */
   1973			entry = pte_to_swp_entry(pteval);
   1974			if (is_writable_device_private_entry(entry))
   1975				entry = make_writable_migration_entry(pfn);
   1976			else if (anon_exclusive)
   1977				entry = make_readable_exclusive_migration_entry(pfn);
   1978			else
   1979				entry = make_readable_migration_entry(pfn);
   1980			swp_pte = swp_entry_to_pte(entry);
   1981
   1982			/*
   1983			 * pteval maps a zone device page and is therefore
   1984			 * a swap pte.
   1985			 */
   1986			if (pte_swp_soft_dirty(pteval))
   1987				swp_pte = pte_swp_mksoft_dirty(swp_pte);
   1988			if (pte_swp_uffd_wp(pteval))
   1989				swp_pte = pte_swp_mkuffd_wp(swp_pte);
   1990			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
   1991			trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
   1992						compound_order(&folio->page));
   1993			/*
   1994			 * No need to invalidate here it will synchronize on
   1995			 * against the special swap migration pte.
   1996			 *
   1997			 * The assignment to subpage above was computed from a
   1998			 * swap PTE which results in an invalid pointer.
   1999			 * Since only PAGE_SIZE pages can currently be
   2000			 * migrated, just set it to page. This will need to be
   2001			 * changed when hugepage migrations to device private
   2002			 * memory are supported.
   2003			 */
   2004			subpage = &folio->page;
   2005		} else if (PageHWPoison(subpage)) {
   2006			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
   2007			if (folio_test_hugetlb(folio)) {
   2008				hugetlb_count_sub(folio_nr_pages(folio), mm);
   2009				set_huge_swap_pte_at(mm, address,
   2010						     pvmw.pte, pteval,
   2011						     vma_mmu_pagesize(vma));
   2012			} else {
   2013				dec_mm_counter(mm, mm_counter(&folio->page));
   2014				set_pte_at(mm, address, pvmw.pte, pteval);
   2015			}
   2016
   2017		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
   2018			/*
   2019			 * The guest indicated that the page content is of no
   2020			 * interest anymore. Simply discard the pte, vmscan
   2021			 * will take care of the rest.
   2022			 * A future reference will then fault in a new zero
   2023			 * page. When userfaultfd is active, we must not drop
   2024			 * this page though, as its main user (postcopy
   2025			 * migration) will not expect userfaults on already
   2026			 * copied pages.
   2027			 */
   2028			dec_mm_counter(mm, mm_counter(&folio->page));
   2029			/* We have to invalidate as we cleared the pte */
   2030			mmu_notifier_invalidate_range(mm, address,
   2031						      address + PAGE_SIZE);
   2032		} else {
   2033			swp_entry_t entry;
   2034			pte_t swp_pte;
   2035
   2036			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
   2037				if (folio_test_hugetlb(folio))
   2038					set_huge_pte_at(mm, address, pvmw.pte, pteval);
   2039				else
   2040					set_pte_at(mm, address, pvmw.pte, pteval);
   2041				ret = false;
   2042				page_vma_mapped_walk_done(&pvmw);
   2043				break;
   2044			}
   2045			VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
   2046				       !anon_exclusive, subpage);
   2047			if (anon_exclusive &&
   2048			    page_try_share_anon_rmap(subpage)) {
   2049				if (folio_test_hugetlb(folio))
   2050					set_huge_pte_at(mm, address, pvmw.pte, pteval);
   2051				else
   2052					set_pte_at(mm, address, pvmw.pte, pteval);
   2053				ret = false;
   2054				page_vma_mapped_walk_done(&pvmw);
   2055				break;
   2056			}
   2057
   2058			/*
   2059			 * Store the pfn of the page in a special migration
   2060			 * pte. do_swap_page() will wait until the migration
   2061			 * pte is removed and then restart fault handling.
   2062			 */
   2063			if (pte_write(pteval))
   2064				entry = make_writable_migration_entry(
   2065							page_to_pfn(subpage));
   2066			else if (anon_exclusive)
   2067				entry = make_readable_exclusive_migration_entry(
   2068							page_to_pfn(subpage));
   2069			else
   2070				entry = make_readable_migration_entry(
   2071							page_to_pfn(subpage));
   2072
   2073			swp_pte = swp_entry_to_pte(entry);
   2074			if (pte_soft_dirty(pteval))
   2075				swp_pte = pte_swp_mksoft_dirty(swp_pte);
   2076			if (pte_uffd_wp(pteval))
   2077				swp_pte = pte_swp_mkuffd_wp(swp_pte);
   2078			if (folio_test_hugetlb(folio))
   2079				set_huge_swap_pte_at(mm, address, pvmw.pte,
   2080						     swp_pte, vma_mmu_pagesize(vma));
   2081			else
   2082				set_pte_at(mm, address, pvmw.pte, swp_pte);
   2083			trace_set_migration_pte(address, pte_val(swp_pte),
   2084						compound_order(&folio->page));
   2085			/*
   2086			 * No need to invalidate here it will synchronize on
   2087			 * against the special swap migration pte.
   2088			 */
   2089		}
   2090
   2091		/*
   2092		 * No need to call mmu_notifier_invalidate_range() it has be
   2093		 * done above for all cases requiring it to happen under page
   2094		 * table lock before mmu_notifier_invalidate_range_end()
   2095		 *
   2096		 * See Documentation/vm/mmu_notifier.rst
   2097		 */
   2098		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
   2099		if (vma->vm_flags & VM_LOCKED)
   2100			mlock_page_drain_local();
   2101		folio_put(folio);
   2102	}
   2103
   2104	mmu_notifier_invalidate_range_end(&range);
   2105
   2106	return ret;
   2107}
   2108
   2109/**
   2110 * try_to_migrate - try to replace all page table mappings with swap entries
   2111 * @folio: the folio to replace page table entries for
   2112 * @flags: action and flags
   2113 *
   2114 * Tries to remove all the page table entries which are mapping this folio and
   2115 * replace them with special swap entries. Caller must hold the folio lock.
   2116 */
   2117void try_to_migrate(struct folio *folio, enum ttu_flags flags)
   2118{
   2119	struct rmap_walk_control rwc = {
   2120		.rmap_one = try_to_migrate_one,
   2121		.arg = (void *)flags,
   2122		.done = page_not_mapped,
   2123		.anon_lock = folio_lock_anon_vma_read,
   2124	};
   2125
   2126	/*
   2127	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
   2128	 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
   2129	 */
   2130	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
   2131					TTU_SYNC)))
   2132		return;
   2133
   2134	if (folio_is_zone_device(folio) && !folio_is_device_private(folio))
   2135		return;
   2136
   2137	/*
   2138	 * During exec, a temporary VMA is setup and later moved.
   2139	 * The VMA is moved under the anon_vma lock but not the
   2140	 * page tables leading to a race where migration cannot
   2141	 * find the migration ptes. Rather than increasing the
   2142	 * locking requirements of exec(), migration skips
   2143	 * temporary VMAs until after exec() completes.
   2144	 */
   2145	if (!folio_test_ksm(folio) && folio_test_anon(folio))
   2146		rwc.invalid_vma = invalid_migration_vma;
   2147
   2148	if (flags & TTU_RMAP_LOCKED)
   2149		rmap_walk_locked(folio, &rwc);
   2150	else
   2151		rmap_walk(folio, &rwc);
   2152}
   2153
   2154#ifdef CONFIG_DEVICE_PRIVATE
   2155struct make_exclusive_args {
   2156	struct mm_struct *mm;
   2157	unsigned long address;
   2158	void *owner;
   2159	bool valid;
   2160};
   2161
   2162static bool page_make_device_exclusive_one(struct folio *folio,
   2163		struct vm_area_struct *vma, unsigned long address, void *priv)
   2164{
   2165	struct mm_struct *mm = vma->vm_mm;
   2166	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
   2167	struct make_exclusive_args *args = priv;
   2168	pte_t pteval;
   2169	struct page *subpage;
   2170	bool ret = true;
   2171	struct mmu_notifier_range range;
   2172	swp_entry_t entry;
   2173	pte_t swp_pte;
   2174
   2175	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
   2176				      vma->vm_mm, address, min(vma->vm_end,
   2177				      address + folio_size(folio)),
   2178				      args->owner);
   2179	mmu_notifier_invalidate_range_start(&range);
   2180
   2181	while (page_vma_mapped_walk(&pvmw)) {
   2182		/* Unexpected PMD-mapped THP? */
   2183		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
   2184
   2185		if (!pte_present(*pvmw.pte)) {
   2186			ret = false;
   2187			page_vma_mapped_walk_done(&pvmw);
   2188			break;
   2189		}
   2190
   2191		subpage = folio_page(folio,
   2192				pte_pfn(*pvmw.pte) - folio_pfn(folio));
   2193		address = pvmw.address;
   2194
   2195		/* Nuke the page table entry. */
   2196		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
   2197		pteval = ptep_clear_flush(vma, address, pvmw.pte);
   2198
   2199		/* Set the dirty flag on the folio now the pte is gone. */
   2200		if (pte_dirty(pteval))
   2201			folio_mark_dirty(folio);
   2202
   2203		/*
   2204		 * Check that our target page is still mapped at the expected
   2205		 * address.
   2206		 */
   2207		if (args->mm == mm && args->address == address &&
   2208		    pte_write(pteval))
   2209			args->valid = true;
   2210
   2211		/*
   2212		 * Store the pfn of the page in a special migration
   2213		 * pte. do_swap_page() will wait until the migration
   2214		 * pte is removed and then restart fault handling.
   2215		 */
   2216		if (pte_write(pteval))
   2217			entry = make_writable_device_exclusive_entry(
   2218							page_to_pfn(subpage));
   2219		else
   2220			entry = make_readable_device_exclusive_entry(
   2221							page_to_pfn(subpage));
   2222		swp_pte = swp_entry_to_pte(entry);
   2223		if (pte_soft_dirty(pteval))
   2224			swp_pte = pte_swp_mksoft_dirty(swp_pte);
   2225		if (pte_uffd_wp(pteval))
   2226			swp_pte = pte_swp_mkuffd_wp(swp_pte);
   2227
   2228		set_pte_at(mm, address, pvmw.pte, swp_pte);
   2229
   2230		/*
   2231		 * There is a reference on the page for the swap entry which has
   2232		 * been removed, so shouldn't take another.
   2233		 */
   2234		page_remove_rmap(subpage, vma, false);
   2235	}
   2236
   2237	mmu_notifier_invalidate_range_end(&range);
   2238
   2239	return ret;
   2240}
   2241
   2242/**
   2243 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
   2244 * @folio: The folio to replace page table entries for.
   2245 * @mm: The mm_struct where the folio is expected to be mapped.
   2246 * @address: Address where the folio is expected to be mapped.
   2247 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
   2248 *
   2249 * Tries to remove all the page table entries which are mapping this
   2250 * folio and replace them with special device exclusive swap entries to
   2251 * grant a device exclusive access to the folio.
   2252 *
   2253 * Context: Caller must hold the folio lock.
   2254 * Return: false if the page is still mapped, or if it could not be unmapped
   2255 * from the expected address. Otherwise returns true (success).
   2256 */
   2257static bool folio_make_device_exclusive(struct folio *folio,
   2258		struct mm_struct *mm, unsigned long address, void *owner)
   2259{
   2260	struct make_exclusive_args args = {
   2261		.mm = mm,
   2262		.address = address,
   2263		.owner = owner,
   2264		.valid = false,
   2265	};
   2266	struct rmap_walk_control rwc = {
   2267		.rmap_one = page_make_device_exclusive_one,
   2268		.done = page_not_mapped,
   2269		.anon_lock = folio_lock_anon_vma_read,
   2270		.arg = &args,
   2271	};
   2272
   2273	/*
   2274	 * Restrict to anonymous folios for now to avoid potential writeback
   2275	 * issues.
   2276	 */
   2277	if (!folio_test_anon(folio))
   2278		return false;
   2279
   2280	rmap_walk(folio, &rwc);
   2281
   2282	return args.valid && !folio_mapcount(folio);
   2283}
   2284
   2285/**
   2286 * make_device_exclusive_range() - Mark a range for exclusive use by a device
   2287 * @mm: mm_struct of associated target process
   2288 * @start: start of the region to mark for exclusive device access
   2289 * @end: end address of region
   2290 * @pages: returns the pages which were successfully marked for exclusive access
   2291 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
   2292 *
   2293 * Returns: number of pages found in the range by GUP. A page is marked for
   2294 * exclusive access only if the page pointer is non-NULL.
   2295 *
   2296 * This function finds ptes mapping page(s) to the given address range, locks
   2297 * them and replaces mappings with special swap entries preventing userspace CPU
   2298 * access. On fault these entries are replaced with the original mapping after
   2299 * calling MMU notifiers.
   2300 *
   2301 * A driver using this to program access from a device must use a mmu notifier
   2302 * critical section to hold a device specific lock during programming. Once
   2303 * programming is complete it should drop the page lock and reference after
   2304 * which point CPU access to the page will revoke the exclusive access.
   2305 */
   2306int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
   2307				unsigned long end, struct page **pages,
   2308				void *owner)
   2309{
   2310	long npages = (end - start) >> PAGE_SHIFT;
   2311	long i;
   2312
   2313	npages = get_user_pages_remote(mm, start, npages,
   2314				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
   2315				       pages, NULL, NULL);
   2316	if (npages < 0)
   2317		return npages;
   2318
   2319	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
   2320		struct folio *folio = page_folio(pages[i]);
   2321		if (PageTail(pages[i]) || !folio_trylock(folio)) {
   2322			folio_put(folio);
   2323			pages[i] = NULL;
   2324			continue;
   2325		}
   2326
   2327		if (!folio_make_device_exclusive(folio, mm, start, owner)) {
   2328			folio_unlock(folio);
   2329			folio_put(folio);
   2330			pages[i] = NULL;
   2331		}
   2332	}
   2333
   2334	return npages;
   2335}
   2336EXPORT_SYMBOL_GPL(make_device_exclusive_range);
   2337#endif
   2338
   2339void __put_anon_vma(struct anon_vma *anon_vma)
   2340{
   2341	struct anon_vma *root = anon_vma->root;
   2342
   2343	anon_vma_free(anon_vma);
   2344	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
   2345		anon_vma_free(root);
   2346}
   2347
   2348static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
   2349					    struct rmap_walk_control *rwc)
   2350{
   2351	struct anon_vma *anon_vma;
   2352
   2353	if (rwc->anon_lock)
   2354		return rwc->anon_lock(folio, rwc);
   2355
   2356	/*
   2357	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
   2358	 * because that depends on page_mapped(); but not all its usages
   2359	 * are holding mmap_lock. Users without mmap_lock are required to
   2360	 * take a reference count to prevent the anon_vma disappearing
   2361	 */
   2362	anon_vma = folio_anon_vma(folio);
   2363	if (!anon_vma)
   2364		return NULL;
   2365
   2366	if (anon_vma_trylock_read(anon_vma))
   2367		goto out;
   2368
   2369	if (rwc->try_lock) {
   2370		anon_vma = NULL;
   2371		rwc->contended = true;
   2372		goto out;
   2373	}
   2374
   2375	anon_vma_lock_read(anon_vma);
   2376out:
   2377	return anon_vma;
   2378}
   2379
   2380/*
   2381 * rmap_walk_anon - do something to anonymous page using the object-based
   2382 * rmap method
   2383 * @page: the page to be handled
   2384 * @rwc: control variable according to each walk type
   2385 *
   2386 * Find all the mappings of a page using the mapping pointer and the vma chains
   2387 * contained in the anon_vma struct it points to.
   2388 */
   2389static void rmap_walk_anon(struct folio *folio,
   2390		struct rmap_walk_control *rwc, bool locked)
   2391{
   2392	struct anon_vma *anon_vma;
   2393	pgoff_t pgoff_start, pgoff_end;
   2394	struct anon_vma_chain *avc;
   2395
   2396	if (locked) {
   2397		anon_vma = folio_anon_vma(folio);
   2398		/* anon_vma disappear under us? */
   2399		VM_BUG_ON_FOLIO(!anon_vma, folio);
   2400	} else {
   2401		anon_vma = rmap_walk_anon_lock(folio, rwc);
   2402	}
   2403	if (!anon_vma)
   2404		return;
   2405
   2406	pgoff_start = folio_pgoff(folio);
   2407	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
   2408	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
   2409			pgoff_start, pgoff_end) {
   2410		struct vm_area_struct *vma = avc->vma;
   2411		unsigned long address = vma_address(&folio->page, vma);
   2412
   2413		VM_BUG_ON_VMA(address == -EFAULT, vma);
   2414		cond_resched();
   2415
   2416		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
   2417			continue;
   2418
   2419		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
   2420			break;
   2421		if (rwc->done && rwc->done(folio))
   2422			break;
   2423	}
   2424
   2425	if (!locked)
   2426		anon_vma_unlock_read(anon_vma);
   2427}
   2428
   2429/*
   2430 * rmap_walk_file - do something to file page using the object-based rmap method
   2431 * @page: the page to be handled
   2432 * @rwc: control variable according to each walk type
   2433 *
   2434 * Find all the mappings of a page using the mapping pointer and the vma chains
   2435 * contained in the address_space struct it points to.
   2436 */
   2437static void rmap_walk_file(struct folio *folio,
   2438		struct rmap_walk_control *rwc, bool locked)
   2439{
   2440	struct address_space *mapping = folio_mapping(folio);
   2441	pgoff_t pgoff_start, pgoff_end;
   2442	struct vm_area_struct *vma;
   2443
   2444	/*
   2445	 * The page lock not only makes sure that page->mapping cannot
   2446	 * suddenly be NULLified by truncation, it makes sure that the
   2447	 * structure at mapping cannot be freed and reused yet,
   2448	 * so we can safely take mapping->i_mmap_rwsem.
   2449	 */
   2450	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
   2451
   2452	if (!mapping)
   2453		return;
   2454
   2455	pgoff_start = folio_pgoff(folio);
   2456	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
   2457	if (!locked) {
   2458		if (i_mmap_trylock_read(mapping))
   2459			goto lookup;
   2460
   2461		if (rwc->try_lock) {
   2462			rwc->contended = true;
   2463			return;
   2464		}
   2465
   2466		i_mmap_lock_read(mapping);
   2467	}
   2468lookup:
   2469	vma_interval_tree_foreach(vma, &mapping->i_mmap,
   2470			pgoff_start, pgoff_end) {
   2471		unsigned long address = vma_address(&folio->page, vma);
   2472
   2473		VM_BUG_ON_VMA(address == -EFAULT, vma);
   2474		cond_resched();
   2475
   2476		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
   2477			continue;
   2478
   2479		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
   2480			goto done;
   2481		if (rwc->done && rwc->done(folio))
   2482			goto done;
   2483	}
   2484
   2485done:
   2486	if (!locked)
   2487		i_mmap_unlock_read(mapping);
   2488}
   2489
   2490void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
   2491{
   2492	if (unlikely(folio_test_ksm(folio)))
   2493		rmap_walk_ksm(folio, rwc);
   2494	else if (folio_test_anon(folio))
   2495		rmap_walk_anon(folio, rwc, false);
   2496	else
   2497		rmap_walk_file(folio, rwc, false);
   2498}
   2499
   2500/* Like rmap_walk, but caller holds relevant rmap lock */
   2501void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
   2502{
   2503	/* no ksm support for now */
   2504	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
   2505	if (folio_test_anon(folio))
   2506		rmap_walk_anon(folio, rwc, true);
   2507	else
   2508		rmap_walk_file(folio, rwc, true);
   2509}
   2510
   2511#ifdef CONFIG_HUGETLB_PAGE
   2512/*
   2513 * The following two functions are for anonymous (private mapped) hugepages.
   2514 * Unlike common anonymous pages, anonymous hugepages have no accounting code
   2515 * and no lru code, because we handle hugepages differently from common pages.
   2516 *
   2517 * RMAP_COMPOUND is ignored.
   2518 */
   2519void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
   2520			    unsigned long address, rmap_t flags)
   2521{
   2522	struct anon_vma *anon_vma = vma->anon_vma;
   2523	int first;
   2524
   2525	BUG_ON(!PageLocked(page));
   2526	BUG_ON(!anon_vma);
   2527	/* address might be in next vma when migration races vma_adjust */
   2528	first = atomic_inc_and_test(compound_mapcount_ptr(page));
   2529	VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
   2530	VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
   2531	if (first)
   2532		__page_set_anon_rmap(page, vma, address,
   2533				     !!(flags & RMAP_EXCLUSIVE));
   2534}
   2535
   2536void hugepage_add_new_anon_rmap(struct page *page,
   2537			struct vm_area_struct *vma, unsigned long address)
   2538{
   2539	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
   2540	atomic_set(compound_mapcount_ptr(page), 0);
   2541	atomic_set(compound_pincount_ptr(page), 0);
   2542
   2543	__page_set_anon_rmap(page, vma, address, 1);
   2544}
   2545#endif /* CONFIG_HUGETLB_PAGE */