sparse-vmemmap.c (20710B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Virtual Memory Map support 4 * 5 * (C) 2007 sgi. Christoph Lameter. 6 * 7 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn, 8 * virt_to_page, page_address() to be implemented as a base offset 9 * calculation without memory access. 10 * 11 * However, virtual mappings need a page table and TLBs. Many Linux 12 * architectures already map their physical space using 1-1 mappings 13 * via TLBs. For those arches the virtual memory map is essentially 14 * for free if we use the same page size as the 1-1 mappings. In that 15 * case the overhead consists of a few additional pages that are 16 * allocated to create a view of memory for vmemmap. 17 * 18 * The architecture is expected to provide a vmemmap_populate() function 19 * to instantiate the mapping. 20 */ 21#include <linux/mm.h> 22#include <linux/mmzone.h> 23#include <linux/memblock.h> 24#include <linux/memremap.h> 25#include <linux/highmem.h> 26#include <linux/slab.h> 27#include <linux/spinlock.h> 28#include <linux/vmalloc.h> 29#include <linux/sched.h> 30#include <linux/pgtable.h> 31#include <linux/bootmem_info.h> 32 33#include <asm/dma.h> 34#include <asm/pgalloc.h> 35#include <asm/tlbflush.h> 36 37#ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP 38/** 39 * struct vmemmap_remap_walk - walk vmemmap page table 40 * 41 * @remap_pte: called for each lowest-level entry (PTE). 42 * @nr_walked: the number of walked pte. 43 * @reuse_page: the page which is reused for the tail vmemmap pages. 44 * @reuse_addr: the virtual address of the @reuse_page page. 45 * @vmemmap_pages: the list head of the vmemmap pages that can be freed 46 * or is mapped from. 47 */ 48struct vmemmap_remap_walk { 49 void (*remap_pte)(pte_t *pte, unsigned long addr, 50 struct vmemmap_remap_walk *walk); 51 unsigned long nr_walked; 52 struct page *reuse_page; 53 unsigned long reuse_addr; 54 struct list_head *vmemmap_pages; 55}; 56 57static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start) 58{ 59 pmd_t __pmd; 60 int i; 61 unsigned long addr = start; 62 struct page *page = pmd_page(*pmd); 63 pte_t *pgtable = pte_alloc_one_kernel(&init_mm); 64 65 if (!pgtable) 66 return -ENOMEM; 67 68 pmd_populate_kernel(&init_mm, &__pmd, pgtable); 69 70 for (i = 0; i < PMD_SIZE / PAGE_SIZE; i++, addr += PAGE_SIZE) { 71 pte_t entry, *pte; 72 pgprot_t pgprot = PAGE_KERNEL; 73 74 entry = mk_pte(page + i, pgprot); 75 pte = pte_offset_kernel(&__pmd, addr); 76 set_pte_at(&init_mm, addr, pte, entry); 77 } 78 79 spin_lock(&init_mm.page_table_lock); 80 if (likely(pmd_leaf(*pmd))) { 81 /* Make pte visible before pmd. See comment in pmd_install(). */ 82 smp_wmb(); 83 pmd_populate_kernel(&init_mm, pmd, pgtable); 84 flush_tlb_kernel_range(start, start + PMD_SIZE); 85 } else { 86 pte_free_kernel(&init_mm, pgtable); 87 } 88 spin_unlock(&init_mm.page_table_lock); 89 90 return 0; 91} 92 93static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start) 94{ 95 int leaf; 96 97 spin_lock(&init_mm.page_table_lock); 98 leaf = pmd_leaf(*pmd); 99 spin_unlock(&init_mm.page_table_lock); 100 101 if (!leaf) 102 return 0; 103 104 return __split_vmemmap_huge_pmd(pmd, start); 105} 106 107static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr, 108 unsigned long end, 109 struct vmemmap_remap_walk *walk) 110{ 111 pte_t *pte = pte_offset_kernel(pmd, addr); 112 113 /* 114 * The reuse_page is found 'first' in table walk before we start 115 * remapping (which is calling @walk->remap_pte). 116 */ 117 if (!walk->reuse_page) { 118 walk->reuse_page = pte_page(*pte); 119 /* 120 * Because the reuse address is part of the range that we are 121 * walking, skip the reuse address range. 122 */ 123 addr += PAGE_SIZE; 124 pte++; 125 walk->nr_walked++; 126 } 127 128 for (; addr != end; addr += PAGE_SIZE, pte++) { 129 walk->remap_pte(pte, addr, walk); 130 walk->nr_walked++; 131 } 132} 133 134static int vmemmap_pmd_range(pud_t *pud, unsigned long addr, 135 unsigned long end, 136 struct vmemmap_remap_walk *walk) 137{ 138 pmd_t *pmd; 139 unsigned long next; 140 141 pmd = pmd_offset(pud, addr); 142 do { 143 int ret; 144 145 ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK); 146 if (ret) 147 return ret; 148 149 next = pmd_addr_end(addr, end); 150 vmemmap_pte_range(pmd, addr, next, walk); 151 } while (pmd++, addr = next, addr != end); 152 153 return 0; 154} 155 156static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr, 157 unsigned long end, 158 struct vmemmap_remap_walk *walk) 159{ 160 pud_t *pud; 161 unsigned long next; 162 163 pud = pud_offset(p4d, addr); 164 do { 165 int ret; 166 167 next = pud_addr_end(addr, end); 168 ret = vmemmap_pmd_range(pud, addr, next, walk); 169 if (ret) 170 return ret; 171 } while (pud++, addr = next, addr != end); 172 173 return 0; 174} 175 176static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr, 177 unsigned long end, 178 struct vmemmap_remap_walk *walk) 179{ 180 p4d_t *p4d; 181 unsigned long next; 182 183 p4d = p4d_offset(pgd, addr); 184 do { 185 int ret; 186 187 next = p4d_addr_end(addr, end); 188 ret = vmemmap_pud_range(p4d, addr, next, walk); 189 if (ret) 190 return ret; 191 } while (p4d++, addr = next, addr != end); 192 193 return 0; 194} 195 196static int vmemmap_remap_range(unsigned long start, unsigned long end, 197 struct vmemmap_remap_walk *walk) 198{ 199 unsigned long addr = start; 200 unsigned long next; 201 pgd_t *pgd; 202 203 VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE)); 204 VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE)); 205 206 pgd = pgd_offset_k(addr); 207 do { 208 int ret; 209 210 next = pgd_addr_end(addr, end); 211 ret = vmemmap_p4d_range(pgd, addr, next, walk); 212 if (ret) 213 return ret; 214 } while (pgd++, addr = next, addr != end); 215 216 /* 217 * We only change the mapping of the vmemmap virtual address range 218 * [@start + PAGE_SIZE, end), so we only need to flush the TLB which 219 * belongs to the range. 220 */ 221 flush_tlb_kernel_range(start + PAGE_SIZE, end); 222 223 return 0; 224} 225 226/* 227 * Free a vmemmap page. A vmemmap page can be allocated from the memblock 228 * allocator or buddy allocator. If the PG_reserved flag is set, it means 229 * that it allocated from the memblock allocator, just free it via the 230 * free_bootmem_page(). Otherwise, use __free_page(). 231 */ 232static inline void free_vmemmap_page(struct page *page) 233{ 234 if (PageReserved(page)) 235 free_bootmem_page(page); 236 else 237 __free_page(page); 238} 239 240/* Free a list of the vmemmap pages */ 241static void free_vmemmap_page_list(struct list_head *list) 242{ 243 struct page *page, *next; 244 245 list_for_each_entry_safe(page, next, list, lru) { 246 list_del(&page->lru); 247 free_vmemmap_page(page); 248 } 249} 250 251static void vmemmap_remap_pte(pte_t *pte, unsigned long addr, 252 struct vmemmap_remap_walk *walk) 253{ 254 /* 255 * Remap the tail pages as read-only to catch illegal write operation 256 * to the tail pages. 257 */ 258 pgprot_t pgprot = PAGE_KERNEL_RO; 259 pte_t entry = mk_pte(walk->reuse_page, pgprot); 260 struct page *page = pte_page(*pte); 261 262 list_add_tail(&page->lru, walk->vmemmap_pages); 263 set_pte_at(&init_mm, addr, pte, entry); 264} 265 266/* 267 * How many struct page structs need to be reset. When we reuse the head 268 * struct page, the special metadata (e.g. page->flags or page->mapping) 269 * cannot copy to the tail struct page structs. The invalid value will be 270 * checked in the free_tail_pages_check(). In order to avoid the message 271 * of "corrupted mapping in tail page". We need to reset at least 3 (one 272 * head struct page struct and two tail struct page structs) struct page 273 * structs. 274 */ 275#define NR_RESET_STRUCT_PAGE 3 276 277static inline void reset_struct_pages(struct page *start) 278{ 279 int i; 280 struct page *from = start + NR_RESET_STRUCT_PAGE; 281 282 for (i = 0; i < NR_RESET_STRUCT_PAGE; i++) 283 memcpy(start + i, from, sizeof(*from)); 284} 285 286static void vmemmap_restore_pte(pte_t *pte, unsigned long addr, 287 struct vmemmap_remap_walk *walk) 288{ 289 pgprot_t pgprot = PAGE_KERNEL; 290 struct page *page; 291 void *to; 292 293 BUG_ON(pte_page(*pte) != walk->reuse_page); 294 295 page = list_first_entry(walk->vmemmap_pages, struct page, lru); 296 list_del(&page->lru); 297 to = page_to_virt(page); 298 copy_page(to, (void *)walk->reuse_addr); 299 reset_struct_pages(to); 300 301 set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot)); 302} 303 304/** 305 * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end) 306 * to the page which @reuse is mapped to, then free vmemmap 307 * which the range are mapped to. 308 * @start: start address of the vmemmap virtual address range that we want 309 * to remap. 310 * @end: end address of the vmemmap virtual address range that we want to 311 * remap. 312 * @reuse: reuse address. 313 * 314 * Return: %0 on success, negative error code otherwise. 315 */ 316int vmemmap_remap_free(unsigned long start, unsigned long end, 317 unsigned long reuse) 318{ 319 int ret; 320 LIST_HEAD(vmemmap_pages); 321 struct vmemmap_remap_walk walk = { 322 .remap_pte = vmemmap_remap_pte, 323 .reuse_addr = reuse, 324 .vmemmap_pages = &vmemmap_pages, 325 }; 326 327 /* 328 * In order to make remapping routine most efficient for the huge pages, 329 * the routine of vmemmap page table walking has the following rules 330 * (see more details from the vmemmap_pte_range()): 331 * 332 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE) 333 * should be continuous. 334 * - The @reuse address is part of the range [@reuse, @end) that we are 335 * walking which is passed to vmemmap_remap_range(). 336 * - The @reuse address is the first in the complete range. 337 * 338 * So we need to make sure that @start and @reuse meet the above rules. 339 */ 340 BUG_ON(start - reuse != PAGE_SIZE); 341 342 mmap_read_lock(&init_mm); 343 ret = vmemmap_remap_range(reuse, end, &walk); 344 if (ret && walk.nr_walked) { 345 end = reuse + walk.nr_walked * PAGE_SIZE; 346 /* 347 * vmemmap_pages contains pages from the previous 348 * vmemmap_remap_range call which failed. These 349 * are pages which were removed from the vmemmap. 350 * They will be restored in the following call. 351 */ 352 walk = (struct vmemmap_remap_walk) { 353 .remap_pte = vmemmap_restore_pte, 354 .reuse_addr = reuse, 355 .vmemmap_pages = &vmemmap_pages, 356 }; 357 358 vmemmap_remap_range(reuse, end, &walk); 359 } 360 mmap_read_unlock(&init_mm); 361 362 free_vmemmap_page_list(&vmemmap_pages); 363 364 return ret; 365} 366 367static int alloc_vmemmap_page_list(unsigned long start, unsigned long end, 368 gfp_t gfp_mask, struct list_head *list) 369{ 370 unsigned long nr_pages = (end - start) >> PAGE_SHIFT; 371 int nid = page_to_nid((struct page *)start); 372 struct page *page, *next; 373 374 while (nr_pages--) { 375 page = alloc_pages_node(nid, gfp_mask, 0); 376 if (!page) 377 goto out; 378 list_add_tail(&page->lru, list); 379 } 380 381 return 0; 382out: 383 list_for_each_entry_safe(page, next, list, lru) 384 __free_pages(page, 0); 385 return -ENOMEM; 386} 387 388/** 389 * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end) 390 * to the page which is from the @vmemmap_pages 391 * respectively. 392 * @start: start address of the vmemmap virtual address range that we want 393 * to remap. 394 * @end: end address of the vmemmap virtual address range that we want to 395 * remap. 396 * @reuse: reuse address. 397 * @gfp_mask: GFP flag for allocating vmemmap pages. 398 * 399 * Return: %0 on success, negative error code otherwise. 400 */ 401int vmemmap_remap_alloc(unsigned long start, unsigned long end, 402 unsigned long reuse, gfp_t gfp_mask) 403{ 404 LIST_HEAD(vmemmap_pages); 405 struct vmemmap_remap_walk walk = { 406 .remap_pte = vmemmap_restore_pte, 407 .reuse_addr = reuse, 408 .vmemmap_pages = &vmemmap_pages, 409 }; 410 411 /* See the comment in the vmemmap_remap_free(). */ 412 BUG_ON(start - reuse != PAGE_SIZE); 413 414 if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages)) 415 return -ENOMEM; 416 417 mmap_read_lock(&init_mm); 418 vmemmap_remap_range(reuse, end, &walk); 419 mmap_read_unlock(&init_mm); 420 421 return 0; 422} 423#endif /* CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP */ 424 425/* 426 * Allocate a block of memory to be used to back the virtual memory map 427 * or to back the page tables that are used to create the mapping. 428 * Uses the main allocators if they are available, else bootmem. 429 */ 430 431static void * __ref __earlyonly_bootmem_alloc(int node, 432 unsigned long size, 433 unsigned long align, 434 unsigned long goal) 435{ 436 return memblock_alloc_try_nid_raw(size, align, goal, 437 MEMBLOCK_ALLOC_ACCESSIBLE, node); 438} 439 440void * __meminit vmemmap_alloc_block(unsigned long size, int node) 441{ 442 /* If the main allocator is up use that, fallback to bootmem. */ 443 if (slab_is_available()) { 444 gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; 445 int order = get_order(size); 446 static bool warned; 447 struct page *page; 448 449 page = alloc_pages_node(node, gfp_mask, order); 450 if (page) 451 return page_address(page); 452 453 if (!warned) { 454 warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL, 455 "vmemmap alloc failure: order:%u", order); 456 warned = true; 457 } 458 return NULL; 459 } else 460 return __earlyonly_bootmem_alloc(node, size, size, 461 __pa(MAX_DMA_ADDRESS)); 462} 463 464static void * __meminit altmap_alloc_block_buf(unsigned long size, 465 struct vmem_altmap *altmap); 466 467/* need to make sure size is all the same during early stage */ 468void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node, 469 struct vmem_altmap *altmap) 470{ 471 void *ptr; 472 473 if (altmap) 474 return altmap_alloc_block_buf(size, altmap); 475 476 ptr = sparse_buffer_alloc(size); 477 if (!ptr) 478 ptr = vmemmap_alloc_block(size, node); 479 return ptr; 480} 481 482static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap) 483{ 484 return altmap->base_pfn + altmap->reserve + altmap->alloc 485 + altmap->align; 486} 487 488static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap) 489{ 490 unsigned long allocated = altmap->alloc + altmap->align; 491 492 if (altmap->free > allocated) 493 return altmap->free - allocated; 494 return 0; 495} 496 497static void * __meminit altmap_alloc_block_buf(unsigned long size, 498 struct vmem_altmap *altmap) 499{ 500 unsigned long pfn, nr_pfns, nr_align; 501 502 if (size & ~PAGE_MASK) { 503 pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n", 504 __func__, size); 505 return NULL; 506 } 507 508 pfn = vmem_altmap_next_pfn(altmap); 509 nr_pfns = size >> PAGE_SHIFT; 510 nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG); 511 nr_align = ALIGN(pfn, nr_align) - pfn; 512 if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap)) 513 return NULL; 514 515 altmap->alloc += nr_pfns; 516 altmap->align += nr_align; 517 pfn += nr_align; 518 519 pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n", 520 __func__, pfn, altmap->alloc, altmap->align, nr_pfns); 521 return __va(__pfn_to_phys(pfn)); 522} 523 524void __meminit vmemmap_verify(pte_t *pte, int node, 525 unsigned long start, unsigned long end) 526{ 527 unsigned long pfn = pte_pfn(*pte); 528 int actual_node = early_pfn_to_nid(pfn); 529 530 if (node_distance(actual_node, node) > LOCAL_DISTANCE) 531 pr_warn("[%lx-%lx] potential offnode page_structs\n", 532 start, end - 1); 533} 534 535pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 536 struct vmem_altmap *altmap, 537 struct page *reuse) 538{ 539 pte_t *pte = pte_offset_kernel(pmd, addr); 540 if (pte_none(*pte)) { 541 pte_t entry; 542 void *p; 543 544 if (!reuse) { 545 p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap); 546 if (!p) 547 return NULL; 548 } else { 549 /* 550 * When a PTE/PMD entry is freed from the init_mm 551 * there's a a free_pages() call to this page allocated 552 * above. Thus this get_page() is paired with the 553 * put_page_testzero() on the freeing path. 554 * This can only called by certain ZONE_DEVICE path, 555 * and through vmemmap_populate_compound_pages() when 556 * slab is available. 557 */ 558 get_page(reuse); 559 p = page_to_virt(reuse); 560 } 561 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL); 562 set_pte_at(&init_mm, addr, pte, entry); 563 } 564 return pte; 565} 566 567static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node) 568{ 569 void *p = vmemmap_alloc_block(size, node); 570 571 if (!p) 572 return NULL; 573 memset(p, 0, size); 574 575 return p; 576} 577 578pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node) 579{ 580 pmd_t *pmd = pmd_offset(pud, addr); 581 if (pmd_none(*pmd)) { 582 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); 583 if (!p) 584 return NULL; 585 pmd_populate_kernel(&init_mm, pmd, p); 586 } 587 return pmd; 588} 589 590pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node) 591{ 592 pud_t *pud = pud_offset(p4d, addr); 593 if (pud_none(*pud)) { 594 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); 595 if (!p) 596 return NULL; 597 pud_populate(&init_mm, pud, p); 598 } 599 return pud; 600} 601 602p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node) 603{ 604 p4d_t *p4d = p4d_offset(pgd, addr); 605 if (p4d_none(*p4d)) { 606 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); 607 if (!p) 608 return NULL; 609 p4d_populate(&init_mm, p4d, p); 610 } 611 return p4d; 612} 613 614pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node) 615{ 616 pgd_t *pgd = pgd_offset_k(addr); 617 if (pgd_none(*pgd)) { 618 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); 619 if (!p) 620 return NULL; 621 pgd_populate(&init_mm, pgd, p); 622 } 623 return pgd; 624} 625 626static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node, 627 struct vmem_altmap *altmap, 628 struct page *reuse) 629{ 630 pgd_t *pgd; 631 p4d_t *p4d; 632 pud_t *pud; 633 pmd_t *pmd; 634 pte_t *pte; 635 636 pgd = vmemmap_pgd_populate(addr, node); 637 if (!pgd) 638 return NULL; 639 p4d = vmemmap_p4d_populate(pgd, addr, node); 640 if (!p4d) 641 return NULL; 642 pud = vmemmap_pud_populate(p4d, addr, node); 643 if (!pud) 644 return NULL; 645 pmd = vmemmap_pmd_populate(pud, addr, node); 646 if (!pmd) 647 return NULL; 648 pte = vmemmap_pte_populate(pmd, addr, node, altmap, reuse); 649 if (!pte) 650 return NULL; 651 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); 652 653 return pte; 654} 655 656static int __meminit vmemmap_populate_range(unsigned long start, 657 unsigned long end, int node, 658 struct vmem_altmap *altmap, 659 struct page *reuse) 660{ 661 unsigned long addr = start; 662 pte_t *pte; 663 664 for (; addr < end; addr += PAGE_SIZE) { 665 pte = vmemmap_populate_address(addr, node, altmap, reuse); 666 if (!pte) 667 return -ENOMEM; 668 } 669 670 return 0; 671} 672 673int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end, 674 int node, struct vmem_altmap *altmap) 675{ 676 return vmemmap_populate_range(start, end, node, altmap, NULL); 677} 678 679/* 680 * For compound pages bigger than section size (e.g. x86 1G compound 681 * pages with 2M subsection size) fill the rest of sections as tail 682 * pages. 683 * 684 * Note that memremap_pages() resets @nr_range value and will increment 685 * it after each range successful onlining. Thus the value or @nr_range 686 * at section memmap populate corresponds to the in-progress range 687 * being onlined here. 688 */ 689static bool __meminit reuse_compound_section(unsigned long start_pfn, 690 struct dev_pagemap *pgmap) 691{ 692 unsigned long nr_pages = pgmap_vmemmap_nr(pgmap); 693 unsigned long offset = start_pfn - 694 PHYS_PFN(pgmap->ranges[pgmap->nr_range].start); 695 696 return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION; 697} 698 699static pte_t * __meminit compound_section_tail_page(unsigned long addr) 700{ 701 pte_t *pte; 702 703 addr -= PAGE_SIZE; 704 705 /* 706 * Assuming sections are populated sequentially, the previous section's 707 * page data can be reused. 708 */ 709 pte = pte_offset_kernel(pmd_off_k(addr), addr); 710 if (!pte) 711 return NULL; 712 713 return pte; 714} 715 716static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn, 717 unsigned long start, 718 unsigned long end, int node, 719 struct dev_pagemap *pgmap) 720{ 721 unsigned long size, addr; 722 pte_t *pte; 723 int rc; 724 725 if (reuse_compound_section(start_pfn, pgmap)) { 726 pte = compound_section_tail_page(start); 727 if (!pte) 728 return -ENOMEM; 729 730 /* 731 * Reuse the page that was populated in the prior iteration 732 * with just tail struct pages. 733 */ 734 return vmemmap_populate_range(start, end, node, NULL, 735 pte_page(*pte)); 736 } 737 738 size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page)); 739 for (addr = start; addr < end; addr += size) { 740 unsigned long next = addr, last = addr + size; 741 742 /* Populate the head page vmemmap page */ 743 pte = vmemmap_populate_address(addr, node, NULL, NULL); 744 if (!pte) 745 return -ENOMEM; 746 747 /* Populate the tail pages vmemmap page */ 748 next = addr + PAGE_SIZE; 749 pte = vmemmap_populate_address(next, node, NULL, NULL); 750 if (!pte) 751 return -ENOMEM; 752 753 /* 754 * Reuse the previous page for the rest of tail pages 755 * See layout diagram in Documentation/vm/vmemmap_dedup.rst 756 */ 757 next += PAGE_SIZE; 758 rc = vmemmap_populate_range(next, last, node, NULL, 759 pte_page(*pte)); 760 if (rc) 761 return -ENOMEM; 762 } 763 764 return 0; 765} 766 767struct page * __meminit __populate_section_memmap(unsigned long pfn, 768 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 769 struct dev_pagemap *pgmap) 770{ 771 unsigned long start = (unsigned long) pfn_to_page(pfn); 772 unsigned long end = start + nr_pages * sizeof(struct page); 773 int r; 774 775 if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) || 776 !IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION))) 777 return NULL; 778 779 if (is_power_of_2(sizeof(struct page)) && 780 pgmap && pgmap_vmemmap_nr(pgmap) > 1 && !altmap) 781 r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap); 782 else 783 r = vmemmap_populate(start, end, nid, altmap); 784 785 if (r < 0) 786 return NULL; 787 788 return pfn_to_page(pfn); 789}