cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sparse.c (26266B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * sparse memory mappings.
      4 */
      5#include <linux/mm.h>
      6#include <linux/slab.h>
      7#include <linux/mmzone.h>
      8#include <linux/memblock.h>
      9#include <linux/compiler.h>
     10#include <linux/highmem.h>
     11#include <linux/export.h>
     12#include <linux/spinlock.h>
     13#include <linux/vmalloc.h>
     14#include <linux/swap.h>
     15#include <linux/swapops.h>
     16#include <linux/bootmem_info.h>
     17
     18#include "internal.h"
     19#include <asm/dma.h>
     20
     21/*
     22 * Permanent SPARSEMEM data:
     23 *
     24 * 1) mem_section	- memory sections, mem_map's for valid memory
     25 */
     26#ifdef CONFIG_SPARSEMEM_EXTREME
     27struct mem_section **mem_section;
     28#else
     29struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
     30	____cacheline_internodealigned_in_smp;
     31#endif
     32EXPORT_SYMBOL(mem_section);
     33
     34#ifdef NODE_NOT_IN_PAGE_FLAGS
     35/*
     36 * If we did not store the node number in the page then we have to
     37 * do a lookup in the section_to_node_table in order to find which
     38 * node the page belongs to.
     39 */
     40#if MAX_NUMNODES <= 256
     41static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
     42#else
     43static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
     44#endif
     45
     46int page_to_nid(const struct page *page)
     47{
     48	return section_to_node_table[page_to_section(page)];
     49}
     50EXPORT_SYMBOL(page_to_nid);
     51
     52static void set_section_nid(unsigned long section_nr, int nid)
     53{
     54	section_to_node_table[section_nr] = nid;
     55}
     56#else /* !NODE_NOT_IN_PAGE_FLAGS */
     57static inline void set_section_nid(unsigned long section_nr, int nid)
     58{
     59}
     60#endif
     61
     62#ifdef CONFIG_SPARSEMEM_EXTREME
     63static noinline struct mem_section __ref *sparse_index_alloc(int nid)
     64{
     65	struct mem_section *section = NULL;
     66	unsigned long array_size = SECTIONS_PER_ROOT *
     67				   sizeof(struct mem_section);
     68
     69	if (slab_is_available()) {
     70		section = kzalloc_node(array_size, GFP_KERNEL, nid);
     71	} else {
     72		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
     73					      nid);
     74		if (!section)
     75			panic("%s: Failed to allocate %lu bytes nid=%d\n",
     76			      __func__, array_size, nid);
     77	}
     78
     79	return section;
     80}
     81
     82static int __meminit sparse_index_init(unsigned long section_nr, int nid)
     83{
     84	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
     85	struct mem_section *section;
     86
     87	/*
     88	 * An existing section is possible in the sub-section hotplug
     89	 * case. First hot-add instantiates, follow-on hot-add reuses
     90	 * the existing section.
     91	 *
     92	 * The mem_hotplug_lock resolves the apparent race below.
     93	 */
     94	if (mem_section[root])
     95		return 0;
     96
     97	section = sparse_index_alloc(nid);
     98	if (!section)
     99		return -ENOMEM;
    100
    101	mem_section[root] = section;
    102
    103	return 0;
    104}
    105#else /* !SPARSEMEM_EXTREME */
    106static inline int sparse_index_init(unsigned long section_nr, int nid)
    107{
    108	return 0;
    109}
    110#endif
    111
    112/*
    113 * During early boot, before section_mem_map is used for an actual
    114 * mem_map, we use section_mem_map to store the section's NUMA
    115 * node.  This keeps us from having to use another data structure.  The
    116 * node information is cleared just before we store the real mem_map.
    117 */
    118static inline unsigned long sparse_encode_early_nid(int nid)
    119{
    120	return ((unsigned long)nid << SECTION_NID_SHIFT);
    121}
    122
    123static inline int sparse_early_nid(struct mem_section *section)
    124{
    125	return (section->section_mem_map >> SECTION_NID_SHIFT);
    126}
    127
    128/* Validate the physical addressing limitations of the model */
    129static void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
    130						unsigned long *end_pfn)
    131{
    132	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
    133
    134	/*
    135	 * Sanity checks - do not allow an architecture to pass
    136	 * in larger pfns than the maximum scope of sparsemem:
    137	 */
    138	if (*start_pfn > max_sparsemem_pfn) {
    139		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
    140			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
    141			*start_pfn, *end_pfn, max_sparsemem_pfn);
    142		WARN_ON_ONCE(1);
    143		*start_pfn = max_sparsemem_pfn;
    144		*end_pfn = max_sparsemem_pfn;
    145	} else if (*end_pfn > max_sparsemem_pfn) {
    146		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
    147			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
    148			*start_pfn, *end_pfn, max_sparsemem_pfn);
    149		WARN_ON_ONCE(1);
    150		*end_pfn = max_sparsemem_pfn;
    151	}
    152}
    153
    154/*
    155 * There are a number of times that we loop over NR_MEM_SECTIONS,
    156 * looking for section_present() on each.  But, when we have very
    157 * large physical address spaces, NR_MEM_SECTIONS can also be
    158 * very large which makes the loops quite long.
    159 *
    160 * Keeping track of this gives us an easy way to break out of
    161 * those loops early.
    162 */
    163unsigned long __highest_present_section_nr;
    164static void __section_mark_present(struct mem_section *ms,
    165		unsigned long section_nr)
    166{
    167	if (section_nr > __highest_present_section_nr)
    168		__highest_present_section_nr = section_nr;
    169
    170	ms->section_mem_map |= SECTION_MARKED_PRESENT;
    171}
    172
    173#define for_each_present_section_nr(start, section_nr)		\
    174	for (section_nr = next_present_section_nr(start-1);	\
    175	     ((section_nr != -1) &&				\
    176	      (section_nr <= __highest_present_section_nr));	\
    177	     section_nr = next_present_section_nr(section_nr))
    178
    179static inline unsigned long first_present_section_nr(void)
    180{
    181	return next_present_section_nr(-1);
    182}
    183
    184#ifdef CONFIG_SPARSEMEM_VMEMMAP
    185static void subsection_mask_set(unsigned long *map, unsigned long pfn,
    186		unsigned long nr_pages)
    187{
    188	int idx = subsection_map_index(pfn);
    189	int end = subsection_map_index(pfn + nr_pages - 1);
    190
    191	bitmap_set(map, idx, end - idx + 1);
    192}
    193
    194void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
    195{
    196	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
    197	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
    198
    199	if (!nr_pages)
    200		return;
    201
    202	for (nr = start_sec; nr <= end_sec; nr++) {
    203		struct mem_section *ms;
    204		unsigned long pfns;
    205
    206		pfns = min(nr_pages, PAGES_PER_SECTION
    207				- (pfn & ~PAGE_SECTION_MASK));
    208		ms = __nr_to_section(nr);
    209		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
    210
    211		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
    212				pfns, subsection_map_index(pfn),
    213				subsection_map_index(pfn + pfns - 1));
    214
    215		pfn += pfns;
    216		nr_pages -= pfns;
    217	}
    218}
    219#else
    220void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
    221{
    222}
    223#endif
    224
    225/* Record a memory area against a node. */
    226static void __init memory_present(int nid, unsigned long start, unsigned long end)
    227{
    228	unsigned long pfn;
    229
    230#ifdef CONFIG_SPARSEMEM_EXTREME
    231	if (unlikely(!mem_section)) {
    232		unsigned long size, align;
    233
    234		size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
    235		align = 1 << (INTERNODE_CACHE_SHIFT);
    236		mem_section = memblock_alloc(size, align);
    237		if (!mem_section)
    238			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
    239			      __func__, size, align);
    240	}
    241#endif
    242
    243	start &= PAGE_SECTION_MASK;
    244	mminit_validate_memmodel_limits(&start, &end);
    245	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
    246		unsigned long section = pfn_to_section_nr(pfn);
    247		struct mem_section *ms;
    248
    249		sparse_index_init(section, nid);
    250		set_section_nid(section, nid);
    251
    252		ms = __nr_to_section(section);
    253		if (!ms->section_mem_map) {
    254			ms->section_mem_map = sparse_encode_early_nid(nid) |
    255							SECTION_IS_ONLINE;
    256			__section_mark_present(ms, section);
    257		}
    258	}
    259}
    260
    261/*
    262 * Mark all memblocks as present using memory_present().
    263 * This is a convenience function that is useful to mark all of the systems
    264 * memory as present during initialization.
    265 */
    266static void __init memblocks_present(void)
    267{
    268	unsigned long start, end;
    269	int i, nid;
    270
    271	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
    272		memory_present(nid, start, end);
    273}
    274
    275/*
    276 * Subtle, we encode the real pfn into the mem_map such that
    277 * the identity pfn - section_mem_map will return the actual
    278 * physical page frame number.
    279 */
    280static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
    281{
    282	unsigned long coded_mem_map =
    283		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
    284	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
    285	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
    286	return coded_mem_map;
    287}
    288
    289#ifdef CONFIG_MEMORY_HOTPLUG
    290/*
    291 * Decode mem_map from the coded memmap
    292 */
    293struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
    294{
    295	/* mask off the extra low bits of information */
    296	coded_mem_map &= SECTION_MAP_MASK;
    297	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
    298}
    299#endif /* CONFIG_MEMORY_HOTPLUG */
    300
    301static void __meminit sparse_init_one_section(struct mem_section *ms,
    302		unsigned long pnum, struct page *mem_map,
    303		struct mem_section_usage *usage, unsigned long flags)
    304{
    305	ms->section_mem_map &= ~SECTION_MAP_MASK;
    306	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
    307		| SECTION_HAS_MEM_MAP | flags;
    308	ms->usage = usage;
    309}
    310
    311static unsigned long usemap_size(void)
    312{
    313	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
    314}
    315
    316size_t mem_section_usage_size(void)
    317{
    318	return sizeof(struct mem_section_usage) + usemap_size();
    319}
    320
    321static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
    322{
    323#ifndef CONFIG_NUMA
    324	VM_BUG_ON(pgdat != &contig_page_data);
    325	return __pa_symbol(&contig_page_data);
    326#else
    327	return __pa(pgdat);
    328#endif
    329}
    330
    331#ifdef CONFIG_MEMORY_HOTREMOVE
    332static struct mem_section_usage * __init
    333sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
    334					 unsigned long size)
    335{
    336	struct mem_section_usage *usage;
    337	unsigned long goal, limit;
    338	int nid;
    339	/*
    340	 * A page may contain usemaps for other sections preventing the
    341	 * page being freed and making a section unremovable while
    342	 * other sections referencing the usemap remain active. Similarly,
    343	 * a pgdat can prevent a section being removed. If section A
    344	 * contains a pgdat and section B contains the usemap, both
    345	 * sections become inter-dependent. This allocates usemaps
    346	 * from the same section as the pgdat where possible to avoid
    347	 * this problem.
    348	 */
    349	goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
    350	limit = goal + (1UL << PA_SECTION_SHIFT);
    351	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
    352again:
    353	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
    354	if (!usage && limit) {
    355		limit = 0;
    356		goto again;
    357	}
    358	return usage;
    359}
    360
    361static void __init check_usemap_section_nr(int nid,
    362		struct mem_section_usage *usage)
    363{
    364	unsigned long usemap_snr, pgdat_snr;
    365	static unsigned long old_usemap_snr;
    366	static unsigned long old_pgdat_snr;
    367	struct pglist_data *pgdat = NODE_DATA(nid);
    368	int usemap_nid;
    369
    370	/* First call */
    371	if (!old_usemap_snr) {
    372		old_usemap_snr = NR_MEM_SECTIONS;
    373		old_pgdat_snr = NR_MEM_SECTIONS;
    374	}
    375
    376	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
    377	pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
    378	if (usemap_snr == pgdat_snr)
    379		return;
    380
    381	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
    382		/* skip redundant message */
    383		return;
    384
    385	old_usemap_snr = usemap_snr;
    386	old_pgdat_snr = pgdat_snr;
    387
    388	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
    389	if (usemap_nid != nid) {
    390		pr_info("node %d must be removed before remove section %ld\n",
    391			nid, usemap_snr);
    392		return;
    393	}
    394	/*
    395	 * There is a circular dependency.
    396	 * Some platforms allow un-removable section because they will just
    397	 * gather other removable sections for dynamic partitioning.
    398	 * Just notify un-removable section's number here.
    399	 */
    400	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
    401		usemap_snr, pgdat_snr, nid);
    402}
    403#else
    404static struct mem_section_usage * __init
    405sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
    406					 unsigned long size)
    407{
    408	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
    409}
    410
    411static void __init check_usemap_section_nr(int nid,
    412		struct mem_section_usage *usage)
    413{
    414}
    415#endif /* CONFIG_MEMORY_HOTREMOVE */
    416
    417#ifdef CONFIG_SPARSEMEM_VMEMMAP
    418static unsigned long __init section_map_size(void)
    419{
    420	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
    421}
    422
    423#else
    424static unsigned long __init section_map_size(void)
    425{
    426	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
    427}
    428
    429struct page __init *__populate_section_memmap(unsigned long pfn,
    430		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
    431		struct dev_pagemap *pgmap)
    432{
    433	unsigned long size = section_map_size();
    434	struct page *map = sparse_buffer_alloc(size);
    435	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
    436
    437	if (map)
    438		return map;
    439
    440	map = memmap_alloc(size, size, addr, nid, false);
    441	if (!map)
    442		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
    443		      __func__, size, PAGE_SIZE, nid, &addr);
    444
    445	return map;
    446}
    447#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
    448
    449static void *sparsemap_buf __meminitdata;
    450static void *sparsemap_buf_end __meminitdata;
    451
    452static inline void __meminit sparse_buffer_free(unsigned long size)
    453{
    454	WARN_ON(!sparsemap_buf || size == 0);
    455	memblock_free(sparsemap_buf, size);
    456}
    457
    458static void __init sparse_buffer_init(unsigned long size, int nid)
    459{
    460	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
    461	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
    462	/*
    463	 * Pre-allocated buffer is mainly used by __populate_section_memmap
    464	 * and we want it to be properly aligned to the section size - this is
    465	 * especially the case for VMEMMAP which maps memmap to PMDs
    466	 */
    467	sparsemap_buf = memmap_alloc(size, section_map_size(), addr, nid, true);
    468	sparsemap_buf_end = sparsemap_buf + size;
    469}
    470
    471static void __init sparse_buffer_fini(void)
    472{
    473	unsigned long size = sparsemap_buf_end - sparsemap_buf;
    474
    475	if (sparsemap_buf && size > 0)
    476		sparse_buffer_free(size);
    477	sparsemap_buf = NULL;
    478}
    479
    480void * __meminit sparse_buffer_alloc(unsigned long size)
    481{
    482	void *ptr = NULL;
    483
    484	if (sparsemap_buf) {
    485		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
    486		if (ptr + size > sparsemap_buf_end)
    487			ptr = NULL;
    488		else {
    489			/* Free redundant aligned space */
    490			if ((unsigned long)(ptr - sparsemap_buf) > 0)
    491				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
    492			sparsemap_buf = ptr + size;
    493		}
    494	}
    495	return ptr;
    496}
    497
    498void __weak __meminit vmemmap_populate_print_last(void)
    499{
    500}
    501
    502/*
    503 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
    504 * And number of present sections in this node is map_count.
    505 */
    506static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
    507				   unsigned long pnum_end,
    508				   unsigned long map_count)
    509{
    510	struct mem_section_usage *usage;
    511	unsigned long pnum;
    512	struct page *map;
    513
    514	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
    515			mem_section_usage_size() * map_count);
    516	if (!usage) {
    517		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
    518		goto failed;
    519	}
    520	sparse_buffer_init(map_count * section_map_size(), nid);
    521	for_each_present_section_nr(pnum_begin, pnum) {
    522		unsigned long pfn = section_nr_to_pfn(pnum);
    523
    524		if (pnum >= pnum_end)
    525			break;
    526
    527		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
    528				nid, NULL, NULL);
    529		if (!map) {
    530			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
    531			       __func__, nid);
    532			pnum_begin = pnum;
    533			sparse_buffer_fini();
    534			goto failed;
    535		}
    536		check_usemap_section_nr(nid, usage);
    537		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
    538				SECTION_IS_EARLY);
    539		usage = (void *) usage + mem_section_usage_size();
    540	}
    541	sparse_buffer_fini();
    542	return;
    543failed:
    544	/* We failed to allocate, mark all the following pnums as not present */
    545	for_each_present_section_nr(pnum_begin, pnum) {
    546		struct mem_section *ms;
    547
    548		if (pnum >= pnum_end)
    549			break;
    550		ms = __nr_to_section(pnum);
    551		ms->section_mem_map = 0;
    552	}
    553}
    554
    555/*
    556 * Allocate the accumulated non-linear sections, allocate a mem_map
    557 * for each and record the physical to section mapping.
    558 */
    559void __init sparse_init(void)
    560{
    561	unsigned long pnum_end, pnum_begin, map_count = 1;
    562	int nid_begin;
    563
    564	memblocks_present();
    565
    566	pnum_begin = first_present_section_nr();
    567	nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
    568
    569	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
    570	set_pageblock_order();
    571
    572	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
    573		int nid = sparse_early_nid(__nr_to_section(pnum_end));
    574
    575		if (nid == nid_begin) {
    576			map_count++;
    577			continue;
    578		}
    579		/* Init node with sections in range [pnum_begin, pnum_end) */
    580		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
    581		nid_begin = nid;
    582		pnum_begin = pnum_end;
    583		map_count = 1;
    584	}
    585	/* cover the last node */
    586	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
    587	vmemmap_populate_print_last();
    588}
    589
    590#ifdef CONFIG_MEMORY_HOTPLUG
    591
    592/* Mark all memory sections within the pfn range as online */
    593void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
    594{
    595	unsigned long pfn;
    596
    597	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
    598		unsigned long section_nr = pfn_to_section_nr(pfn);
    599		struct mem_section *ms;
    600
    601		/* onlining code should never touch invalid ranges */
    602		if (WARN_ON(!valid_section_nr(section_nr)))
    603			continue;
    604
    605		ms = __nr_to_section(section_nr);
    606		ms->section_mem_map |= SECTION_IS_ONLINE;
    607	}
    608}
    609
    610/* Mark all memory sections within the pfn range as offline */
    611void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
    612{
    613	unsigned long pfn;
    614
    615	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
    616		unsigned long section_nr = pfn_to_section_nr(pfn);
    617		struct mem_section *ms;
    618
    619		/*
    620		 * TODO this needs some double checking. Offlining code makes
    621		 * sure to check pfn_valid but those checks might be just bogus
    622		 */
    623		if (WARN_ON(!valid_section_nr(section_nr)))
    624			continue;
    625
    626		ms = __nr_to_section(section_nr);
    627		ms->section_mem_map &= ~SECTION_IS_ONLINE;
    628	}
    629}
    630
    631#ifdef CONFIG_SPARSEMEM_VMEMMAP
    632static struct page * __meminit populate_section_memmap(unsigned long pfn,
    633		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
    634		struct dev_pagemap *pgmap)
    635{
    636	return __populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
    637}
    638
    639static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
    640		struct vmem_altmap *altmap)
    641{
    642	unsigned long start = (unsigned long) pfn_to_page(pfn);
    643	unsigned long end = start + nr_pages * sizeof(struct page);
    644
    645	vmemmap_free(start, end, altmap);
    646}
    647static void free_map_bootmem(struct page *memmap)
    648{
    649	unsigned long start = (unsigned long)memmap;
    650	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
    651
    652	vmemmap_free(start, end, NULL);
    653}
    654
    655static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
    656{
    657	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
    658	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
    659	struct mem_section *ms = __pfn_to_section(pfn);
    660	unsigned long *subsection_map = ms->usage
    661		? &ms->usage->subsection_map[0] : NULL;
    662
    663	subsection_mask_set(map, pfn, nr_pages);
    664	if (subsection_map)
    665		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
    666
    667	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
    668				"section already deactivated (%#lx + %ld)\n",
    669				pfn, nr_pages))
    670		return -EINVAL;
    671
    672	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
    673	return 0;
    674}
    675
    676static bool is_subsection_map_empty(struct mem_section *ms)
    677{
    678	return bitmap_empty(&ms->usage->subsection_map[0],
    679			    SUBSECTIONS_PER_SECTION);
    680}
    681
    682static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
    683{
    684	struct mem_section *ms = __pfn_to_section(pfn);
    685	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
    686	unsigned long *subsection_map;
    687	int rc = 0;
    688
    689	subsection_mask_set(map, pfn, nr_pages);
    690
    691	subsection_map = &ms->usage->subsection_map[0];
    692
    693	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
    694		rc = -EINVAL;
    695	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
    696		rc = -EEXIST;
    697	else
    698		bitmap_or(subsection_map, map, subsection_map,
    699				SUBSECTIONS_PER_SECTION);
    700
    701	return rc;
    702}
    703#else
    704struct page * __meminit populate_section_memmap(unsigned long pfn,
    705		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
    706		struct dev_pagemap *pgmap)
    707{
    708	return kvmalloc_node(array_size(sizeof(struct page),
    709					PAGES_PER_SECTION), GFP_KERNEL, nid);
    710}
    711
    712static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
    713		struct vmem_altmap *altmap)
    714{
    715	kvfree(pfn_to_page(pfn));
    716}
    717
    718static void free_map_bootmem(struct page *memmap)
    719{
    720	unsigned long maps_section_nr, removing_section_nr, i;
    721	unsigned long magic, nr_pages;
    722	struct page *page = virt_to_page(memmap);
    723
    724	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
    725		>> PAGE_SHIFT;
    726
    727	for (i = 0; i < nr_pages; i++, page++) {
    728		magic = page->index;
    729
    730		BUG_ON(magic == NODE_INFO);
    731
    732		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
    733		removing_section_nr = page_private(page);
    734
    735		/*
    736		 * When this function is called, the removing section is
    737		 * logical offlined state. This means all pages are isolated
    738		 * from page allocator. If removing section's memmap is placed
    739		 * on the same section, it must not be freed.
    740		 * If it is freed, page allocator may allocate it which will
    741		 * be removed physically soon.
    742		 */
    743		if (maps_section_nr != removing_section_nr)
    744			put_page_bootmem(page);
    745	}
    746}
    747
    748static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
    749{
    750	return 0;
    751}
    752
    753static bool is_subsection_map_empty(struct mem_section *ms)
    754{
    755	return true;
    756}
    757
    758static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
    759{
    760	return 0;
    761}
    762#endif /* CONFIG_SPARSEMEM_VMEMMAP */
    763
    764/*
    765 * To deactivate a memory region, there are 3 cases to handle across
    766 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
    767 *
    768 * 1. deactivation of a partial hot-added section (only possible in
    769 *    the SPARSEMEM_VMEMMAP=y case).
    770 *      a) section was present at memory init.
    771 *      b) section was hot-added post memory init.
    772 * 2. deactivation of a complete hot-added section.
    773 * 3. deactivation of a complete section from memory init.
    774 *
    775 * For 1, when subsection_map does not empty we will not be freeing the
    776 * usage map, but still need to free the vmemmap range.
    777 *
    778 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
    779 */
    780static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
    781		struct vmem_altmap *altmap)
    782{
    783	struct mem_section *ms = __pfn_to_section(pfn);
    784	bool section_is_early = early_section(ms);
    785	struct page *memmap = NULL;
    786	bool empty;
    787
    788	if (clear_subsection_map(pfn, nr_pages))
    789		return;
    790
    791	empty = is_subsection_map_empty(ms);
    792	if (empty) {
    793		unsigned long section_nr = pfn_to_section_nr(pfn);
    794
    795		/*
    796		 * When removing an early section, the usage map is kept (as the
    797		 * usage maps of other sections fall into the same page). It
    798		 * will be re-used when re-adding the section - which is then no
    799		 * longer an early section. If the usage map is PageReserved, it
    800		 * was allocated during boot.
    801		 */
    802		if (!PageReserved(virt_to_page(ms->usage))) {
    803			kfree(ms->usage);
    804			ms->usage = NULL;
    805		}
    806		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
    807		/*
    808		 * Mark the section invalid so that valid_section()
    809		 * return false. This prevents code from dereferencing
    810		 * ms->usage array.
    811		 */
    812		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
    813	}
    814
    815	/*
    816	 * The memmap of early sections is always fully populated. See
    817	 * section_activate() and pfn_valid() .
    818	 */
    819	if (!section_is_early)
    820		depopulate_section_memmap(pfn, nr_pages, altmap);
    821	else if (memmap)
    822		free_map_bootmem(memmap);
    823
    824	if (empty)
    825		ms->section_mem_map = (unsigned long)NULL;
    826}
    827
    828static struct page * __meminit section_activate(int nid, unsigned long pfn,
    829		unsigned long nr_pages, struct vmem_altmap *altmap,
    830		struct dev_pagemap *pgmap)
    831{
    832	struct mem_section *ms = __pfn_to_section(pfn);
    833	struct mem_section_usage *usage = NULL;
    834	struct page *memmap;
    835	int rc = 0;
    836
    837	if (!ms->usage) {
    838		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
    839		if (!usage)
    840			return ERR_PTR(-ENOMEM);
    841		ms->usage = usage;
    842	}
    843
    844	rc = fill_subsection_map(pfn, nr_pages);
    845	if (rc) {
    846		if (usage)
    847			ms->usage = NULL;
    848		kfree(usage);
    849		return ERR_PTR(rc);
    850	}
    851
    852	/*
    853	 * The early init code does not consider partially populated
    854	 * initial sections, it simply assumes that memory will never be
    855	 * referenced.  If we hot-add memory into such a section then we
    856	 * do not need to populate the memmap and can simply reuse what
    857	 * is already there.
    858	 */
    859	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
    860		return pfn_to_page(pfn);
    861
    862	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
    863	if (!memmap) {
    864		section_deactivate(pfn, nr_pages, altmap);
    865		return ERR_PTR(-ENOMEM);
    866	}
    867
    868	return memmap;
    869}
    870
    871/**
    872 * sparse_add_section - add a memory section, or populate an existing one
    873 * @nid: The node to add section on
    874 * @start_pfn: start pfn of the memory range
    875 * @nr_pages: number of pfns to add in the section
    876 * @altmap: alternate pfns to allocate the memmap backing store
    877 * @pgmap: alternate compound page geometry for devmap mappings
    878 *
    879 * This is only intended for hotplug.
    880 *
    881 * Note that only VMEMMAP supports sub-section aligned hotplug,
    882 * the proper alignment and size are gated by check_pfn_span().
    883 *
    884 *
    885 * Return:
    886 * * 0		- On success.
    887 * * -EEXIST	- Section has been present.
    888 * * -ENOMEM	- Out of memory.
    889 */
    890int __meminit sparse_add_section(int nid, unsigned long start_pfn,
    891		unsigned long nr_pages, struct vmem_altmap *altmap,
    892		struct dev_pagemap *pgmap)
    893{
    894	unsigned long section_nr = pfn_to_section_nr(start_pfn);
    895	struct mem_section *ms;
    896	struct page *memmap;
    897	int ret;
    898
    899	ret = sparse_index_init(section_nr, nid);
    900	if (ret < 0)
    901		return ret;
    902
    903	memmap = section_activate(nid, start_pfn, nr_pages, altmap, pgmap);
    904	if (IS_ERR(memmap))
    905		return PTR_ERR(memmap);
    906
    907	/*
    908	 * Poison uninitialized struct pages in order to catch invalid flags
    909	 * combinations.
    910	 */
    911	page_init_poison(memmap, sizeof(struct page) * nr_pages);
    912
    913	ms = __nr_to_section(section_nr);
    914	set_section_nid(section_nr, nid);
    915	__section_mark_present(ms, section_nr);
    916
    917	/* Align memmap to section boundary in the subsection case */
    918	if (section_nr_to_pfn(section_nr) != start_pfn)
    919		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
    920	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
    921
    922	return 0;
    923}
    924
    925void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
    926		unsigned long nr_pages, unsigned long map_offset,
    927		struct vmem_altmap *altmap)
    928{
    929	clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
    930			nr_pages - map_offset);
    931	section_deactivate(pfn, nr_pages, altmap);
    932}
    933#endif /* CONFIG_MEMORY_HOTPLUG */