truncate.c (26791B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * mm/truncate.c - code for taking down pages from address_spaces 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 10Sep2002 Andrew Morton 8 * Initial version. 9 */ 10 11#include <linux/kernel.h> 12#include <linux/backing-dev.h> 13#include <linux/dax.h> 14#include <linux/gfp.h> 15#include <linux/mm.h> 16#include <linux/swap.h> 17#include <linux/export.h> 18#include <linux/pagemap.h> 19#include <linux/highmem.h> 20#include <linux/pagevec.h> 21#include <linux/task_io_accounting_ops.h> 22#include <linux/buffer_head.h> /* grr. try_to_release_page */ 23#include <linux/shmem_fs.h> 24#include <linux/rmap.h> 25#include "internal.h" 26 27/* 28 * Regular page slots are stabilized by the page lock even without the tree 29 * itself locked. These unlocked entries need verification under the tree 30 * lock. 31 */ 32static inline void __clear_shadow_entry(struct address_space *mapping, 33 pgoff_t index, void *entry) 34{ 35 XA_STATE(xas, &mapping->i_pages, index); 36 37 xas_set_update(&xas, workingset_update_node); 38 if (xas_load(&xas) != entry) 39 return; 40 xas_store(&xas, NULL); 41} 42 43static void clear_shadow_entry(struct address_space *mapping, pgoff_t index, 44 void *entry) 45{ 46 spin_lock(&mapping->host->i_lock); 47 xa_lock_irq(&mapping->i_pages); 48 __clear_shadow_entry(mapping, index, entry); 49 xa_unlock_irq(&mapping->i_pages); 50 if (mapping_shrinkable(mapping)) 51 inode_add_lru(mapping->host); 52 spin_unlock(&mapping->host->i_lock); 53} 54 55/* 56 * Unconditionally remove exceptional entries. Usually called from truncate 57 * path. Note that the folio_batch may be altered by this function by removing 58 * exceptional entries similar to what folio_batch_remove_exceptionals() does. 59 */ 60static void truncate_folio_batch_exceptionals(struct address_space *mapping, 61 struct folio_batch *fbatch, pgoff_t *indices) 62{ 63 int i, j; 64 bool dax; 65 66 /* Handled by shmem itself */ 67 if (shmem_mapping(mapping)) 68 return; 69 70 for (j = 0; j < folio_batch_count(fbatch); j++) 71 if (xa_is_value(fbatch->folios[j])) 72 break; 73 74 if (j == folio_batch_count(fbatch)) 75 return; 76 77 dax = dax_mapping(mapping); 78 if (!dax) { 79 spin_lock(&mapping->host->i_lock); 80 xa_lock_irq(&mapping->i_pages); 81 } 82 83 for (i = j; i < folio_batch_count(fbatch); i++) { 84 struct folio *folio = fbatch->folios[i]; 85 pgoff_t index = indices[i]; 86 87 if (!xa_is_value(folio)) { 88 fbatch->folios[j++] = folio; 89 continue; 90 } 91 92 if (unlikely(dax)) { 93 dax_delete_mapping_entry(mapping, index); 94 continue; 95 } 96 97 __clear_shadow_entry(mapping, index, folio); 98 } 99 100 if (!dax) { 101 xa_unlock_irq(&mapping->i_pages); 102 if (mapping_shrinkable(mapping)) 103 inode_add_lru(mapping->host); 104 spin_unlock(&mapping->host->i_lock); 105 } 106 fbatch->nr = j; 107} 108 109/* 110 * Invalidate exceptional entry if easily possible. This handles exceptional 111 * entries for invalidate_inode_pages(). 112 */ 113static int invalidate_exceptional_entry(struct address_space *mapping, 114 pgoff_t index, void *entry) 115{ 116 /* Handled by shmem itself, or for DAX we do nothing. */ 117 if (shmem_mapping(mapping) || dax_mapping(mapping)) 118 return 1; 119 clear_shadow_entry(mapping, index, entry); 120 return 1; 121} 122 123/* 124 * Invalidate exceptional entry if clean. This handles exceptional entries for 125 * invalidate_inode_pages2() so for DAX it evicts only clean entries. 126 */ 127static int invalidate_exceptional_entry2(struct address_space *mapping, 128 pgoff_t index, void *entry) 129{ 130 /* Handled by shmem itself */ 131 if (shmem_mapping(mapping)) 132 return 1; 133 if (dax_mapping(mapping)) 134 return dax_invalidate_mapping_entry_sync(mapping, index); 135 clear_shadow_entry(mapping, index, entry); 136 return 1; 137} 138 139/** 140 * folio_invalidate - Invalidate part or all of a folio. 141 * @folio: The folio which is affected. 142 * @offset: start of the range to invalidate 143 * @length: length of the range to invalidate 144 * 145 * folio_invalidate() is called when all or part of the folio has become 146 * invalidated by a truncate operation. 147 * 148 * folio_invalidate() does not have to release all buffers, but it must 149 * ensure that no dirty buffer is left outside @offset and that no I/O 150 * is underway against any of the blocks which are outside the truncation 151 * point. Because the caller is about to free (and possibly reuse) those 152 * blocks on-disk. 153 */ 154void folio_invalidate(struct folio *folio, size_t offset, size_t length) 155{ 156 const struct address_space_operations *aops = folio->mapping->a_ops; 157 158 if (aops->invalidate_folio) 159 aops->invalidate_folio(folio, offset, length); 160} 161EXPORT_SYMBOL_GPL(folio_invalidate); 162 163/* 164 * If truncate cannot remove the fs-private metadata from the page, the page 165 * becomes orphaned. It will be left on the LRU and may even be mapped into 166 * user pagetables if we're racing with filemap_fault(). 167 * 168 * We need to bail out if page->mapping is no longer equal to the original 169 * mapping. This happens a) when the VM reclaimed the page while we waited on 170 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 171 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 172 */ 173static void truncate_cleanup_folio(struct folio *folio) 174{ 175 if (folio_mapped(folio)) 176 unmap_mapping_folio(folio); 177 178 if (folio_has_private(folio)) 179 folio_invalidate(folio, 0, folio_size(folio)); 180 181 /* 182 * Some filesystems seem to re-dirty the page even after 183 * the VM has canceled the dirty bit (eg ext3 journaling). 184 * Hence dirty accounting check is placed after invalidation. 185 */ 186 folio_cancel_dirty(folio); 187 folio_clear_mappedtodisk(folio); 188} 189 190int truncate_inode_folio(struct address_space *mapping, struct folio *folio) 191{ 192 if (folio->mapping != mapping) 193 return -EIO; 194 195 truncate_cleanup_folio(folio); 196 filemap_remove_folio(folio); 197 return 0; 198} 199 200/* 201 * Handle partial folios. The folio may be entirely within the 202 * range if a split has raced with us. If not, we zero the part of the 203 * folio that's within the [start, end] range, and then split the folio if 204 * it's large. split_page_range() will discard pages which now lie beyond 205 * i_size, and we rely on the caller to discard pages which lie within a 206 * newly created hole. 207 * 208 * Returns false if splitting failed so the caller can avoid 209 * discarding the entire folio which is stubbornly unsplit. 210 */ 211bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end) 212{ 213 loff_t pos = folio_pos(folio); 214 unsigned int offset, length; 215 216 if (pos < start) 217 offset = start - pos; 218 else 219 offset = 0; 220 length = folio_size(folio); 221 if (pos + length <= (u64)end) 222 length = length - offset; 223 else 224 length = end + 1 - pos - offset; 225 226 folio_wait_writeback(folio); 227 if (length == folio_size(folio)) { 228 truncate_inode_folio(folio->mapping, folio); 229 return true; 230 } 231 232 /* 233 * We may be zeroing pages we're about to discard, but it avoids 234 * doing a complex calculation here, and then doing the zeroing 235 * anyway if the page split fails. 236 */ 237 folio_zero_range(folio, offset, length); 238 239 if (folio_has_private(folio)) 240 folio_invalidate(folio, offset, length); 241 if (!folio_test_large(folio)) 242 return true; 243 if (split_huge_page(&folio->page) == 0) 244 return true; 245 if (folio_test_dirty(folio)) 246 return false; 247 truncate_inode_folio(folio->mapping, folio); 248 return true; 249} 250 251/* 252 * Used to get rid of pages on hardware memory corruption. 253 */ 254int generic_error_remove_page(struct address_space *mapping, struct page *page) 255{ 256 VM_BUG_ON_PAGE(PageTail(page), page); 257 258 if (!mapping) 259 return -EINVAL; 260 /* 261 * Only punch for normal data pages for now. 262 * Handling other types like directories would need more auditing. 263 */ 264 if (!S_ISREG(mapping->host->i_mode)) 265 return -EIO; 266 return truncate_inode_folio(mapping, page_folio(page)); 267} 268EXPORT_SYMBOL(generic_error_remove_page); 269 270static long mapping_evict_folio(struct address_space *mapping, 271 struct folio *folio) 272{ 273 if (folio_test_dirty(folio) || folio_test_writeback(folio)) 274 return 0; 275 /* The refcount will be elevated if any page in the folio is mapped */ 276 if (folio_ref_count(folio) > 277 folio_nr_pages(folio) + folio_has_private(folio) + 1) 278 return 0; 279 if (folio_has_private(folio) && !filemap_release_folio(folio, 0)) 280 return 0; 281 282 return remove_mapping(mapping, folio); 283} 284 285/** 286 * invalidate_inode_page() - Remove an unused page from the pagecache. 287 * @page: The page to remove. 288 * 289 * Safely invalidate one page from its pagecache mapping. 290 * It only drops clean, unused pages. 291 * 292 * Context: Page must be locked. 293 * Return: The number of pages successfully removed. 294 */ 295long invalidate_inode_page(struct page *page) 296{ 297 struct folio *folio = page_folio(page); 298 struct address_space *mapping = folio_mapping(folio); 299 300 /* The page may have been truncated before it was locked */ 301 if (!mapping) 302 return 0; 303 return mapping_evict_folio(mapping, folio); 304} 305 306/** 307 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 308 * @mapping: mapping to truncate 309 * @lstart: offset from which to truncate 310 * @lend: offset to which to truncate (inclusive) 311 * 312 * Truncate the page cache, removing the pages that are between 313 * specified offsets (and zeroing out partial pages 314 * if lstart or lend + 1 is not page aligned). 315 * 316 * Truncate takes two passes - the first pass is nonblocking. It will not 317 * block on page locks and it will not block on writeback. The second pass 318 * will wait. This is to prevent as much IO as possible in the affected region. 319 * The first pass will remove most pages, so the search cost of the second pass 320 * is low. 321 * 322 * We pass down the cache-hot hint to the page freeing code. Even if the 323 * mapping is large, it is probably the case that the final pages are the most 324 * recently touched, and freeing happens in ascending file offset order. 325 * 326 * Note that since ->invalidate_folio() accepts range to invalidate 327 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 328 * page aligned properly. 329 */ 330void truncate_inode_pages_range(struct address_space *mapping, 331 loff_t lstart, loff_t lend) 332{ 333 pgoff_t start; /* inclusive */ 334 pgoff_t end; /* exclusive */ 335 struct folio_batch fbatch; 336 pgoff_t indices[PAGEVEC_SIZE]; 337 pgoff_t index; 338 int i; 339 struct folio *folio; 340 bool same_folio; 341 342 if (mapping_empty(mapping)) 343 return; 344 345 /* 346 * 'start' and 'end' always covers the range of pages to be fully 347 * truncated. Partial pages are covered with 'partial_start' at the 348 * start of the range and 'partial_end' at the end of the range. 349 * Note that 'end' is exclusive while 'lend' is inclusive. 350 */ 351 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 352 if (lend == -1) 353 /* 354 * lend == -1 indicates end-of-file so we have to set 'end' 355 * to the highest possible pgoff_t and since the type is 356 * unsigned we're using -1. 357 */ 358 end = -1; 359 else 360 end = (lend + 1) >> PAGE_SHIFT; 361 362 folio_batch_init(&fbatch); 363 index = start; 364 while (index < end && find_lock_entries(mapping, index, end - 1, 365 &fbatch, indices)) { 366 index = indices[folio_batch_count(&fbatch) - 1] + 1; 367 truncate_folio_batch_exceptionals(mapping, &fbatch, indices); 368 for (i = 0; i < folio_batch_count(&fbatch); i++) 369 truncate_cleanup_folio(fbatch.folios[i]); 370 delete_from_page_cache_batch(mapping, &fbatch); 371 for (i = 0; i < folio_batch_count(&fbatch); i++) 372 folio_unlock(fbatch.folios[i]); 373 folio_batch_release(&fbatch); 374 cond_resched(); 375 } 376 377 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 378 folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0); 379 if (folio) { 380 same_folio = lend < folio_pos(folio) + folio_size(folio); 381 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 382 start = folio->index + folio_nr_pages(folio); 383 if (same_folio) 384 end = folio->index; 385 } 386 folio_unlock(folio); 387 folio_put(folio); 388 folio = NULL; 389 } 390 391 if (!same_folio) 392 folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT, 393 FGP_LOCK, 0); 394 if (folio) { 395 if (!truncate_inode_partial_folio(folio, lstart, lend)) 396 end = folio->index; 397 folio_unlock(folio); 398 folio_put(folio); 399 } 400 401 index = start; 402 while (index < end) { 403 cond_resched(); 404 if (!find_get_entries(mapping, index, end - 1, &fbatch, 405 indices)) { 406 /* If all gone from start onwards, we're done */ 407 if (index == start) 408 break; 409 /* Otherwise restart to make sure all gone */ 410 index = start; 411 continue; 412 } 413 414 for (i = 0; i < folio_batch_count(&fbatch); i++) { 415 struct folio *folio = fbatch.folios[i]; 416 417 /* We rely upon deletion not changing page->index */ 418 index = indices[i]; 419 420 if (xa_is_value(folio)) 421 continue; 422 423 folio_lock(folio); 424 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 425 folio_wait_writeback(folio); 426 truncate_inode_folio(mapping, folio); 427 folio_unlock(folio); 428 index = folio_index(folio) + folio_nr_pages(folio) - 1; 429 } 430 truncate_folio_batch_exceptionals(mapping, &fbatch, indices); 431 folio_batch_release(&fbatch); 432 index++; 433 } 434} 435EXPORT_SYMBOL(truncate_inode_pages_range); 436 437/** 438 * truncate_inode_pages - truncate *all* the pages from an offset 439 * @mapping: mapping to truncate 440 * @lstart: offset from which to truncate 441 * 442 * Called under (and serialised by) inode->i_rwsem and 443 * mapping->invalidate_lock. 444 * 445 * Note: When this function returns, there can be a page in the process of 446 * deletion (inside __delete_from_page_cache()) in the specified range. Thus 447 * mapping->nrpages can be non-zero when this function returns even after 448 * truncation of the whole mapping. 449 */ 450void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 451{ 452 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 453} 454EXPORT_SYMBOL(truncate_inode_pages); 455 456/** 457 * truncate_inode_pages_final - truncate *all* pages before inode dies 458 * @mapping: mapping to truncate 459 * 460 * Called under (and serialized by) inode->i_rwsem. 461 * 462 * Filesystems have to use this in the .evict_inode path to inform the 463 * VM that this is the final truncate and the inode is going away. 464 */ 465void truncate_inode_pages_final(struct address_space *mapping) 466{ 467 /* 468 * Page reclaim can not participate in regular inode lifetime 469 * management (can't call iput()) and thus can race with the 470 * inode teardown. Tell it when the address space is exiting, 471 * so that it does not install eviction information after the 472 * final truncate has begun. 473 */ 474 mapping_set_exiting(mapping); 475 476 if (!mapping_empty(mapping)) { 477 /* 478 * As truncation uses a lockless tree lookup, cycle 479 * the tree lock to make sure any ongoing tree 480 * modification that does not see AS_EXITING is 481 * completed before starting the final truncate. 482 */ 483 xa_lock_irq(&mapping->i_pages); 484 xa_unlock_irq(&mapping->i_pages); 485 } 486 487 truncate_inode_pages(mapping, 0); 488} 489EXPORT_SYMBOL(truncate_inode_pages_final); 490 491/** 492 * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode 493 * @mapping: the address_space which holds the pages to invalidate 494 * @start: the offset 'from' which to invalidate 495 * @end: the offset 'to' which to invalidate (inclusive) 496 * @nr_pagevec: invalidate failed page number for caller 497 * 498 * This helper is similar to invalidate_mapping_pages(), except that it accounts 499 * for pages that are likely on a pagevec and counts them in @nr_pagevec, which 500 * will be used by the caller. 501 */ 502unsigned long invalidate_mapping_pagevec(struct address_space *mapping, 503 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec) 504{ 505 pgoff_t indices[PAGEVEC_SIZE]; 506 struct folio_batch fbatch; 507 pgoff_t index = start; 508 unsigned long ret; 509 unsigned long count = 0; 510 int i; 511 512 folio_batch_init(&fbatch); 513 while (find_lock_entries(mapping, index, end, &fbatch, indices)) { 514 for (i = 0; i < folio_batch_count(&fbatch); i++) { 515 struct folio *folio = fbatch.folios[i]; 516 517 /* We rely upon deletion not changing folio->index */ 518 index = indices[i]; 519 520 if (xa_is_value(folio)) { 521 count += invalidate_exceptional_entry(mapping, 522 index, 523 folio); 524 continue; 525 } 526 index += folio_nr_pages(folio) - 1; 527 528 ret = mapping_evict_folio(mapping, folio); 529 folio_unlock(folio); 530 /* 531 * Invalidation is a hint that the folio is no longer 532 * of interest and try to speed up its reclaim. 533 */ 534 if (!ret) { 535 deactivate_file_folio(folio); 536 /* It is likely on the pagevec of a remote CPU */ 537 if (nr_pagevec) 538 (*nr_pagevec)++; 539 } 540 count += ret; 541 } 542 folio_batch_remove_exceptionals(&fbatch); 543 folio_batch_release(&fbatch); 544 cond_resched(); 545 index++; 546 } 547 return count; 548} 549 550/** 551 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode 552 * @mapping: the address_space which holds the cache to invalidate 553 * @start: the offset 'from' which to invalidate 554 * @end: the offset 'to' which to invalidate (inclusive) 555 * 556 * This function removes pages that are clean, unmapped and unlocked, 557 * as well as shadow entries. It will not block on IO activity. 558 * 559 * If you want to remove all the pages of one inode, regardless of 560 * their use and writeback state, use truncate_inode_pages(). 561 * 562 * Return: the number of the cache entries that were invalidated 563 */ 564unsigned long invalidate_mapping_pages(struct address_space *mapping, 565 pgoff_t start, pgoff_t end) 566{ 567 return invalidate_mapping_pagevec(mapping, start, end, NULL); 568} 569EXPORT_SYMBOL(invalidate_mapping_pages); 570 571/* 572 * This is like invalidate_inode_page(), except it ignores the page's 573 * refcount. We do this because invalidate_inode_pages2() needs stronger 574 * invalidation guarantees, and cannot afford to leave pages behind because 575 * shrink_page_list() has a temp ref on them, or because they're transiently 576 * sitting in the lru_cache_add() pagevecs. 577 */ 578static int invalidate_complete_folio2(struct address_space *mapping, 579 struct folio *folio) 580{ 581 if (folio->mapping != mapping) 582 return 0; 583 584 if (folio_has_private(folio) && 585 !filemap_release_folio(folio, GFP_KERNEL)) 586 return 0; 587 588 spin_lock(&mapping->host->i_lock); 589 xa_lock_irq(&mapping->i_pages); 590 if (folio_test_dirty(folio)) 591 goto failed; 592 593 BUG_ON(folio_has_private(folio)); 594 __filemap_remove_folio(folio, NULL); 595 xa_unlock_irq(&mapping->i_pages); 596 if (mapping_shrinkable(mapping)) 597 inode_add_lru(mapping->host); 598 spin_unlock(&mapping->host->i_lock); 599 600 filemap_free_folio(mapping, folio); 601 return 1; 602failed: 603 xa_unlock_irq(&mapping->i_pages); 604 spin_unlock(&mapping->host->i_lock); 605 return 0; 606} 607 608static int folio_launder(struct address_space *mapping, struct folio *folio) 609{ 610 if (!folio_test_dirty(folio)) 611 return 0; 612 if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL) 613 return 0; 614 return mapping->a_ops->launder_folio(folio); 615} 616 617/** 618 * invalidate_inode_pages2_range - remove range of pages from an address_space 619 * @mapping: the address_space 620 * @start: the page offset 'from' which to invalidate 621 * @end: the page offset 'to' which to invalidate (inclusive) 622 * 623 * Any pages which are found to be mapped into pagetables are unmapped prior to 624 * invalidation. 625 * 626 * Return: -EBUSY if any pages could not be invalidated. 627 */ 628int invalidate_inode_pages2_range(struct address_space *mapping, 629 pgoff_t start, pgoff_t end) 630{ 631 pgoff_t indices[PAGEVEC_SIZE]; 632 struct folio_batch fbatch; 633 pgoff_t index; 634 int i; 635 int ret = 0; 636 int ret2 = 0; 637 int did_range_unmap = 0; 638 639 if (mapping_empty(mapping)) 640 return 0; 641 642 folio_batch_init(&fbatch); 643 index = start; 644 while (find_get_entries(mapping, index, end, &fbatch, indices)) { 645 for (i = 0; i < folio_batch_count(&fbatch); i++) { 646 struct folio *folio = fbatch.folios[i]; 647 648 /* We rely upon deletion not changing folio->index */ 649 index = indices[i]; 650 651 if (xa_is_value(folio)) { 652 if (!invalidate_exceptional_entry2(mapping, 653 index, folio)) 654 ret = -EBUSY; 655 continue; 656 } 657 658 if (!did_range_unmap && folio_mapped(folio)) { 659 /* 660 * If folio is mapped, before taking its lock, 661 * zap the rest of the file in one hit. 662 */ 663 unmap_mapping_pages(mapping, index, 664 (1 + end - index), false); 665 did_range_unmap = 1; 666 } 667 668 folio_lock(folio); 669 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 670 if (folio->mapping != mapping) { 671 folio_unlock(folio); 672 continue; 673 } 674 folio_wait_writeback(folio); 675 676 if (folio_mapped(folio)) 677 unmap_mapping_folio(folio); 678 BUG_ON(folio_mapped(folio)); 679 680 ret2 = folio_launder(mapping, folio); 681 if (ret2 == 0) { 682 if (!invalidate_complete_folio2(mapping, folio)) 683 ret2 = -EBUSY; 684 } 685 if (ret2 < 0) 686 ret = ret2; 687 folio_unlock(folio); 688 } 689 folio_batch_remove_exceptionals(&fbatch); 690 folio_batch_release(&fbatch); 691 cond_resched(); 692 index++; 693 } 694 /* 695 * For DAX we invalidate page tables after invalidating page cache. We 696 * could invalidate page tables while invalidating each entry however 697 * that would be expensive. And doing range unmapping before doesn't 698 * work as we have no cheap way to find whether page cache entry didn't 699 * get remapped later. 700 */ 701 if (dax_mapping(mapping)) { 702 unmap_mapping_pages(mapping, start, end - start + 1, false); 703 } 704 return ret; 705} 706EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 707 708/** 709 * invalidate_inode_pages2 - remove all pages from an address_space 710 * @mapping: the address_space 711 * 712 * Any pages which are found to be mapped into pagetables are unmapped prior to 713 * invalidation. 714 * 715 * Return: -EBUSY if any pages could not be invalidated. 716 */ 717int invalidate_inode_pages2(struct address_space *mapping) 718{ 719 return invalidate_inode_pages2_range(mapping, 0, -1); 720} 721EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 722 723/** 724 * truncate_pagecache - unmap and remove pagecache that has been truncated 725 * @inode: inode 726 * @newsize: new file size 727 * 728 * inode's new i_size must already be written before truncate_pagecache 729 * is called. 730 * 731 * This function should typically be called before the filesystem 732 * releases resources associated with the freed range (eg. deallocates 733 * blocks). This way, pagecache will always stay logically coherent 734 * with on-disk format, and the filesystem would not have to deal with 735 * situations such as writepage being called for a page that has already 736 * had its underlying blocks deallocated. 737 */ 738void truncate_pagecache(struct inode *inode, loff_t newsize) 739{ 740 struct address_space *mapping = inode->i_mapping; 741 loff_t holebegin = round_up(newsize, PAGE_SIZE); 742 743 /* 744 * unmap_mapping_range is called twice, first simply for 745 * efficiency so that truncate_inode_pages does fewer 746 * single-page unmaps. However after this first call, and 747 * before truncate_inode_pages finishes, it is possible for 748 * private pages to be COWed, which remain after 749 * truncate_inode_pages finishes, hence the second 750 * unmap_mapping_range call must be made for correctness. 751 */ 752 unmap_mapping_range(mapping, holebegin, 0, 1); 753 truncate_inode_pages(mapping, newsize); 754 unmap_mapping_range(mapping, holebegin, 0, 1); 755} 756EXPORT_SYMBOL(truncate_pagecache); 757 758/** 759 * truncate_setsize - update inode and pagecache for a new file size 760 * @inode: inode 761 * @newsize: new file size 762 * 763 * truncate_setsize updates i_size and performs pagecache truncation (if 764 * necessary) to @newsize. It will be typically be called from the filesystem's 765 * setattr function when ATTR_SIZE is passed in. 766 * 767 * Must be called with a lock serializing truncates and writes (generally 768 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem 769 * specific block truncation has been performed. 770 */ 771void truncate_setsize(struct inode *inode, loff_t newsize) 772{ 773 loff_t oldsize = inode->i_size; 774 775 i_size_write(inode, newsize); 776 if (newsize > oldsize) 777 pagecache_isize_extended(inode, oldsize, newsize); 778 truncate_pagecache(inode, newsize); 779} 780EXPORT_SYMBOL(truncate_setsize); 781 782/** 783 * pagecache_isize_extended - update pagecache after extension of i_size 784 * @inode: inode for which i_size was extended 785 * @from: original inode size 786 * @to: new inode size 787 * 788 * Handle extension of inode size either caused by extending truncate or by 789 * write starting after current i_size. We mark the page straddling current 790 * i_size RO so that page_mkwrite() is called on the nearest write access to 791 * the page. This way filesystem can be sure that page_mkwrite() is called on 792 * the page before user writes to the page via mmap after the i_size has been 793 * changed. 794 * 795 * The function must be called after i_size is updated so that page fault 796 * coming after we unlock the page will already see the new i_size. 797 * The function must be called while we still hold i_rwsem - this not only 798 * makes sure i_size is stable but also that userspace cannot observe new 799 * i_size value before we are prepared to store mmap writes at new inode size. 800 */ 801void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 802{ 803 int bsize = i_blocksize(inode); 804 loff_t rounded_from; 805 struct page *page; 806 pgoff_t index; 807 808 WARN_ON(to > inode->i_size); 809 810 if (from >= to || bsize == PAGE_SIZE) 811 return; 812 /* Page straddling @from will not have any hole block created? */ 813 rounded_from = round_up(from, bsize); 814 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 815 return; 816 817 index = from >> PAGE_SHIFT; 818 page = find_lock_page(inode->i_mapping, index); 819 /* Page not cached? Nothing to do */ 820 if (!page) 821 return; 822 /* 823 * See clear_page_dirty_for_io() for details why set_page_dirty() 824 * is needed. 825 */ 826 if (page_mkclean(page)) 827 set_page_dirty(page); 828 unlock_page(page); 829 put_page(page); 830} 831EXPORT_SYMBOL(pagecache_isize_extended); 832 833/** 834 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 835 * @inode: inode 836 * @lstart: offset of beginning of hole 837 * @lend: offset of last byte of hole 838 * 839 * This function should typically be called before the filesystem 840 * releases resources associated with the freed range (eg. deallocates 841 * blocks). This way, pagecache will always stay logically coherent 842 * with on-disk format, and the filesystem would not have to deal with 843 * situations such as writepage being called for a page that has already 844 * had its underlying blocks deallocated. 845 */ 846void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 847{ 848 struct address_space *mapping = inode->i_mapping; 849 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 850 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 851 /* 852 * This rounding is currently just for example: unmap_mapping_range 853 * expands its hole outwards, whereas we want it to contract the hole 854 * inwards. However, existing callers of truncate_pagecache_range are 855 * doing their own page rounding first. Note that unmap_mapping_range 856 * allows holelen 0 for all, and we allow lend -1 for end of file. 857 */ 858 859 /* 860 * Unlike in truncate_pagecache, unmap_mapping_range is called only 861 * once (before truncating pagecache), and without "even_cows" flag: 862 * hole-punching should not remove private COWed pages from the hole. 863 */ 864 if ((u64)unmap_end > (u64)unmap_start) 865 unmap_mapping_range(mapping, unmap_start, 866 1 + unmap_end - unmap_start, 0); 867 truncate_inode_pages_range(mapping, lstart, lend); 868} 869EXPORT_SYMBOL(truncate_pagecache_range);