cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

truncate.c (26791B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * mm/truncate.c - code for taking down pages from address_spaces
      4 *
      5 * Copyright (C) 2002, Linus Torvalds
      6 *
      7 * 10Sep2002	Andrew Morton
      8 *		Initial version.
      9 */
     10
     11#include <linux/kernel.h>
     12#include <linux/backing-dev.h>
     13#include <linux/dax.h>
     14#include <linux/gfp.h>
     15#include <linux/mm.h>
     16#include <linux/swap.h>
     17#include <linux/export.h>
     18#include <linux/pagemap.h>
     19#include <linux/highmem.h>
     20#include <linux/pagevec.h>
     21#include <linux/task_io_accounting_ops.h>
     22#include <linux/buffer_head.h>	/* grr. try_to_release_page */
     23#include <linux/shmem_fs.h>
     24#include <linux/rmap.h>
     25#include "internal.h"
     26
     27/*
     28 * Regular page slots are stabilized by the page lock even without the tree
     29 * itself locked.  These unlocked entries need verification under the tree
     30 * lock.
     31 */
     32static inline void __clear_shadow_entry(struct address_space *mapping,
     33				pgoff_t index, void *entry)
     34{
     35	XA_STATE(xas, &mapping->i_pages, index);
     36
     37	xas_set_update(&xas, workingset_update_node);
     38	if (xas_load(&xas) != entry)
     39		return;
     40	xas_store(&xas, NULL);
     41}
     42
     43static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
     44			       void *entry)
     45{
     46	spin_lock(&mapping->host->i_lock);
     47	xa_lock_irq(&mapping->i_pages);
     48	__clear_shadow_entry(mapping, index, entry);
     49	xa_unlock_irq(&mapping->i_pages);
     50	if (mapping_shrinkable(mapping))
     51		inode_add_lru(mapping->host);
     52	spin_unlock(&mapping->host->i_lock);
     53}
     54
     55/*
     56 * Unconditionally remove exceptional entries. Usually called from truncate
     57 * path. Note that the folio_batch may be altered by this function by removing
     58 * exceptional entries similar to what folio_batch_remove_exceptionals() does.
     59 */
     60static void truncate_folio_batch_exceptionals(struct address_space *mapping,
     61				struct folio_batch *fbatch, pgoff_t *indices)
     62{
     63	int i, j;
     64	bool dax;
     65
     66	/* Handled by shmem itself */
     67	if (shmem_mapping(mapping))
     68		return;
     69
     70	for (j = 0; j < folio_batch_count(fbatch); j++)
     71		if (xa_is_value(fbatch->folios[j]))
     72			break;
     73
     74	if (j == folio_batch_count(fbatch))
     75		return;
     76
     77	dax = dax_mapping(mapping);
     78	if (!dax) {
     79		spin_lock(&mapping->host->i_lock);
     80		xa_lock_irq(&mapping->i_pages);
     81	}
     82
     83	for (i = j; i < folio_batch_count(fbatch); i++) {
     84		struct folio *folio = fbatch->folios[i];
     85		pgoff_t index = indices[i];
     86
     87		if (!xa_is_value(folio)) {
     88			fbatch->folios[j++] = folio;
     89			continue;
     90		}
     91
     92		if (unlikely(dax)) {
     93			dax_delete_mapping_entry(mapping, index);
     94			continue;
     95		}
     96
     97		__clear_shadow_entry(mapping, index, folio);
     98	}
     99
    100	if (!dax) {
    101		xa_unlock_irq(&mapping->i_pages);
    102		if (mapping_shrinkable(mapping))
    103			inode_add_lru(mapping->host);
    104		spin_unlock(&mapping->host->i_lock);
    105	}
    106	fbatch->nr = j;
    107}
    108
    109/*
    110 * Invalidate exceptional entry if easily possible. This handles exceptional
    111 * entries for invalidate_inode_pages().
    112 */
    113static int invalidate_exceptional_entry(struct address_space *mapping,
    114					pgoff_t index, void *entry)
    115{
    116	/* Handled by shmem itself, or for DAX we do nothing. */
    117	if (shmem_mapping(mapping) || dax_mapping(mapping))
    118		return 1;
    119	clear_shadow_entry(mapping, index, entry);
    120	return 1;
    121}
    122
    123/*
    124 * Invalidate exceptional entry if clean. This handles exceptional entries for
    125 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
    126 */
    127static int invalidate_exceptional_entry2(struct address_space *mapping,
    128					 pgoff_t index, void *entry)
    129{
    130	/* Handled by shmem itself */
    131	if (shmem_mapping(mapping))
    132		return 1;
    133	if (dax_mapping(mapping))
    134		return dax_invalidate_mapping_entry_sync(mapping, index);
    135	clear_shadow_entry(mapping, index, entry);
    136	return 1;
    137}
    138
    139/**
    140 * folio_invalidate - Invalidate part or all of a folio.
    141 * @folio: The folio which is affected.
    142 * @offset: start of the range to invalidate
    143 * @length: length of the range to invalidate
    144 *
    145 * folio_invalidate() is called when all or part of the folio has become
    146 * invalidated by a truncate operation.
    147 *
    148 * folio_invalidate() does not have to release all buffers, but it must
    149 * ensure that no dirty buffer is left outside @offset and that no I/O
    150 * is underway against any of the blocks which are outside the truncation
    151 * point.  Because the caller is about to free (and possibly reuse) those
    152 * blocks on-disk.
    153 */
    154void folio_invalidate(struct folio *folio, size_t offset, size_t length)
    155{
    156	const struct address_space_operations *aops = folio->mapping->a_ops;
    157
    158	if (aops->invalidate_folio)
    159		aops->invalidate_folio(folio, offset, length);
    160}
    161EXPORT_SYMBOL_GPL(folio_invalidate);
    162
    163/*
    164 * If truncate cannot remove the fs-private metadata from the page, the page
    165 * becomes orphaned.  It will be left on the LRU and may even be mapped into
    166 * user pagetables if we're racing with filemap_fault().
    167 *
    168 * We need to bail out if page->mapping is no longer equal to the original
    169 * mapping.  This happens a) when the VM reclaimed the page while we waited on
    170 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
    171 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
    172 */
    173static void truncate_cleanup_folio(struct folio *folio)
    174{
    175	if (folio_mapped(folio))
    176		unmap_mapping_folio(folio);
    177
    178	if (folio_has_private(folio))
    179		folio_invalidate(folio, 0, folio_size(folio));
    180
    181	/*
    182	 * Some filesystems seem to re-dirty the page even after
    183	 * the VM has canceled the dirty bit (eg ext3 journaling).
    184	 * Hence dirty accounting check is placed after invalidation.
    185	 */
    186	folio_cancel_dirty(folio);
    187	folio_clear_mappedtodisk(folio);
    188}
    189
    190int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
    191{
    192	if (folio->mapping != mapping)
    193		return -EIO;
    194
    195	truncate_cleanup_folio(folio);
    196	filemap_remove_folio(folio);
    197	return 0;
    198}
    199
    200/*
    201 * Handle partial folios.  The folio may be entirely within the
    202 * range if a split has raced with us.  If not, we zero the part of the
    203 * folio that's within the [start, end] range, and then split the folio if
    204 * it's large.  split_page_range() will discard pages which now lie beyond
    205 * i_size, and we rely on the caller to discard pages which lie within a
    206 * newly created hole.
    207 *
    208 * Returns false if splitting failed so the caller can avoid
    209 * discarding the entire folio which is stubbornly unsplit.
    210 */
    211bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
    212{
    213	loff_t pos = folio_pos(folio);
    214	unsigned int offset, length;
    215
    216	if (pos < start)
    217		offset = start - pos;
    218	else
    219		offset = 0;
    220	length = folio_size(folio);
    221	if (pos + length <= (u64)end)
    222		length = length - offset;
    223	else
    224		length = end + 1 - pos - offset;
    225
    226	folio_wait_writeback(folio);
    227	if (length == folio_size(folio)) {
    228		truncate_inode_folio(folio->mapping, folio);
    229		return true;
    230	}
    231
    232	/*
    233	 * We may be zeroing pages we're about to discard, but it avoids
    234	 * doing a complex calculation here, and then doing the zeroing
    235	 * anyway if the page split fails.
    236	 */
    237	folio_zero_range(folio, offset, length);
    238
    239	if (folio_has_private(folio))
    240		folio_invalidate(folio, offset, length);
    241	if (!folio_test_large(folio))
    242		return true;
    243	if (split_huge_page(&folio->page) == 0)
    244		return true;
    245	if (folio_test_dirty(folio))
    246		return false;
    247	truncate_inode_folio(folio->mapping, folio);
    248	return true;
    249}
    250
    251/*
    252 * Used to get rid of pages on hardware memory corruption.
    253 */
    254int generic_error_remove_page(struct address_space *mapping, struct page *page)
    255{
    256	VM_BUG_ON_PAGE(PageTail(page), page);
    257
    258	if (!mapping)
    259		return -EINVAL;
    260	/*
    261	 * Only punch for normal data pages for now.
    262	 * Handling other types like directories would need more auditing.
    263	 */
    264	if (!S_ISREG(mapping->host->i_mode))
    265		return -EIO;
    266	return truncate_inode_folio(mapping, page_folio(page));
    267}
    268EXPORT_SYMBOL(generic_error_remove_page);
    269
    270static long mapping_evict_folio(struct address_space *mapping,
    271		struct folio *folio)
    272{
    273	if (folio_test_dirty(folio) || folio_test_writeback(folio))
    274		return 0;
    275	/* The refcount will be elevated if any page in the folio is mapped */
    276	if (folio_ref_count(folio) >
    277			folio_nr_pages(folio) + folio_has_private(folio) + 1)
    278		return 0;
    279	if (folio_has_private(folio) && !filemap_release_folio(folio, 0))
    280		return 0;
    281
    282	return remove_mapping(mapping, folio);
    283}
    284
    285/**
    286 * invalidate_inode_page() - Remove an unused page from the pagecache.
    287 * @page: The page to remove.
    288 *
    289 * Safely invalidate one page from its pagecache mapping.
    290 * It only drops clean, unused pages.
    291 *
    292 * Context: Page must be locked.
    293 * Return: The number of pages successfully removed.
    294 */
    295long invalidate_inode_page(struct page *page)
    296{
    297	struct folio *folio = page_folio(page);
    298	struct address_space *mapping = folio_mapping(folio);
    299
    300	/* The page may have been truncated before it was locked */
    301	if (!mapping)
    302		return 0;
    303	return mapping_evict_folio(mapping, folio);
    304}
    305
    306/**
    307 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
    308 * @mapping: mapping to truncate
    309 * @lstart: offset from which to truncate
    310 * @lend: offset to which to truncate (inclusive)
    311 *
    312 * Truncate the page cache, removing the pages that are between
    313 * specified offsets (and zeroing out partial pages
    314 * if lstart or lend + 1 is not page aligned).
    315 *
    316 * Truncate takes two passes - the first pass is nonblocking.  It will not
    317 * block on page locks and it will not block on writeback.  The second pass
    318 * will wait.  This is to prevent as much IO as possible in the affected region.
    319 * The first pass will remove most pages, so the search cost of the second pass
    320 * is low.
    321 *
    322 * We pass down the cache-hot hint to the page freeing code.  Even if the
    323 * mapping is large, it is probably the case that the final pages are the most
    324 * recently touched, and freeing happens in ascending file offset order.
    325 *
    326 * Note that since ->invalidate_folio() accepts range to invalidate
    327 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
    328 * page aligned properly.
    329 */
    330void truncate_inode_pages_range(struct address_space *mapping,
    331				loff_t lstart, loff_t lend)
    332{
    333	pgoff_t		start;		/* inclusive */
    334	pgoff_t		end;		/* exclusive */
    335	struct folio_batch fbatch;
    336	pgoff_t		indices[PAGEVEC_SIZE];
    337	pgoff_t		index;
    338	int		i;
    339	struct folio	*folio;
    340	bool		same_folio;
    341
    342	if (mapping_empty(mapping))
    343		return;
    344
    345	/*
    346	 * 'start' and 'end' always covers the range of pages to be fully
    347	 * truncated. Partial pages are covered with 'partial_start' at the
    348	 * start of the range and 'partial_end' at the end of the range.
    349	 * Note that 'end' is exclusive while 'lend' is inclusive.
    350	 */
    351	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
    352	if (lend == -1)
    353		/*
    354		 * lend == -1 indicates end-of-file so we have to set 'end'
    355		 * to the highest possible pgoff_t and since the type is
    356		 * unsigned we're using -1.
    357		 */
    358		end = -1;
    359	else
    360		end = (lend + 1) >> PAGE_SHIFT;
    361
    362	folio_batch_init(&fbatch);
    363	index = start;
    364	while (index < end && find_lock_entries(mapping, index, end - 1,
    365			&fbatch, indices)) {
    366		index = indices[folio_batch_count(&fbatch) - 1] + 1;
    367		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
    368		for (i = 0; i < folio_batch_count(&fbatch); i++)
    369			truncate_cleanup_folio(fbatch.folios[i]);
    370		delete_from_page_cache_batch(mapping, &fbatch);
    371		for (i = 0; i < folio_batch_count(&fbatch); i++)
    372			folio_unlock(fbatch.folios[i]);
    373		folio_batch_release(&fbatch);
    374		cond_resched();
    375	}
    376
    377	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
    378	folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
    379	if (folio) {
    380		same_folio = lend < folio_pos(folio) + folio_size(folio);
    381		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
    382			start = folio->index + folio_nr_pages(folio);
    383			if (same_folio)
    384				end = folio->index;
    385		}
    386		folio_unlock(folio);
    387		folio_put(folio);
    388		folio = NULL;
    389	}
    390
    391	if (!same_folio)
    392		folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
    393						FGP_LOCK, 0);
    394	if (folio) {
    395		if (!truncate_inode_partial_folio(folio, lstart, lend))
    396			end = folio->index;
    397		folio_unlock(folio);
    398		folio_put(folio);
    399	}
    400
    401	index = start;
    402	while (index < end) {
    403		cond_resched();
    404		if (!find_get_entries(mapping, index, end - 1, &fbatch,
    405				indices)) {
    406			/* If all gone from start onwards, we're done */
    407			if (index == start)
    408				break;
    409			/* Otherwise restart to make sure all gone */
    410			index = start;
    411			continue;
    412		}
    413
    414		for (i = 0; i < folio_batch_count(&fbatch); i++) {
    415			struct folio *folio = fbatch.folios[i];
    416
    417			/* We rely upon deletion not changing page->index */
    418			index = indices[i];
    419
    420			if (xa_is_value(folio))
    421				continue;
    422
    423			folio_lock(folio);
    424			VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
    425			folio_wait_writeback(folio);
    426			truncate_inode_folio(mapping, folio);
    427			folio_unlock(folio);
    428			index = folio_index(folio) + folio_nr_pages(folio) - 1;
    429		}
    430		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
    431		folio_batch_release(&fbatch);
    432		index++;
    433	}
    434}
    435EXPORT_SYMBOL(truncate_inode_pages_range);
    436
    437/**
    438 * truncate_inode_pages - truncate *all* the pages from an offset
    439 * @mapping: mapping to truncate
    440 * @lstart: offset from which to truncate
    441 *
    442 * Called under (and serialised by) inode->i_rwsem and
    443 * mapping->invalidate_lock.
    444 *
    445 * Note: When this function returns, there can be a page in the process of
    446 * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
    447 * mapping->nrpages can be non-zero when this function returns even after
    448 * truncation of the whole mapping.
    449 */
    450void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
    451{
    452	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
    453}
    454EXPORT_SYMBOL(truncate_inode_pages);
    455
    456/**
    457 * truncate_inode_pages_final - truncate *all* pages before inode dies
    458 * @mapping: mapping to truncate
    459 *
    460 * Called under (and serialized by) inode->i_rwsem.
    461 *
    462 * Filesystems have to use this in the .evict_inode path to inform the
    463 * VM that this is the final truncate and the inode is going away.
    464 */
    465void truncate_inode_pages_final(struct address_space *mapping)
    466{
    467	/*
    468	 * Page reclaim can not participate in regular inode lifetime
    469	 * management (can't call iput()) and thus can race with the
    470	 * inode teardown.  Tell it when the address space is exiting,
    471	 * so that it does not install eviction information after the
    472	 * final truncate has begun.
    473	 */
    474	mapping_set_exiting(mapping);
    475
    476	if (!mapping_empty(mapping)) {
    477		/*
    478		 * As truncation uses a lockless tree lookup, cycle
    479		 * the tree lock to make sure any ongoing tree
    480		 * modification that does not see AS_EXITING is
    481		 * completed before starting the final truncate.
    482		 */
    483		xa_lock_irq(&mapping->i_pages);
    484		xa_unlock_irq(&mapping->i_pages);
    485	}
    486
    487	truncate_inode_pages(mapping, 0);
    488}
    489EXPORT_SYMBOL(truncate_inode_pages_final);
    490
    491/**
    492 * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode
    493 * @mapping: the address_space which holds the pages to invalidate
    494 * @start: the offset 'from' which to invalidate
    495 * @end: the offset 'to' which to invalidate (inclusive)
    496 * @nr_pagevec: invalidate failed page number for caller
    497 *
    498 * This helper is similar to invalidate_mapping_pages(), except that it accounts
    499 * for pages that are likely on a pagevec and counts them in @nr_pagevec, which
    500 * will be used by the caller.
    501 */
    502unsigned long invalidate_mapping_pagevec(struct address_space *mapping,
    503		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
    504{
    505	pgoff_t indices[PAGEVEC_SIZE];
    506	struct folio_batch fbatch;
    507	pgoff_t index = start;
    508	unsigned long ret;
    509	unsigned long count = 0;
    510	int i;
    511
    512	folio_batch_init(&fbatch);
    513	while (find_lock_entries(mapping, index, end, &fbatch, indices)) {
    514		for (i = 0; i < folio_batch_count(&fbatch); i++) {
    515			struct folio *folio = fbatch.folios[i];
    516
    517			/* We rely upon deletion not changing folio->index */
    518			index = indices[i];
    519
    520			if (xa_is_value(folio)) {
    521				count += invalidate_exceptional_entry(mapping,
    522								      index,
    523								      folio);
    524				continue;
    525			}
    526			index += folio_nr_pages(folio) - 1;
    527
    528			ret = mapping_evict_folio(mapping, folio);
    529			folio_unlock(folio);
    530			/*
    531			 * Invalidation is a hint that the folio is no longer
    532			 * of interest and try to speed up its reclaim.
    533			 */
    534			if (!ret) {
    535				deactivate_file_folio(folio);
    536				/* It is likely on the pagevec of a remote CPU */
    537				if (nr_pagevec)
    538					(*nr_pagevec)++;
    539			}
    540			count += ret;
    541		}
    542		folio_batch_remove_exceptionals(&fbatch);
    543		folio_batch_release(&fbatch);
    544		cond_resched();
    545		index++;
    546	}
    547	return count;
    548}
    549
    550/**
    551 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
    552 * @mapping: the address_space which holds the cache to invalidate
    553 * @start: the offset 'from' which to invalidate
    554 * @end: the offset 'to' which to invalidate (inclusive)
    555 *
    556 * This function removes pages that are clean, unmapped and unlocked,
    557 * as well as shadow entries. It will not block on IO activity.
    558 *
    559 * If you want to remove all the pages of one inode, regardless of
    560 * their use and writeback state, use truncate_inode_pages().
    561 *
    562 * Return: the number of the cache entries that were invalidated
    563 */
    564unsigned long invalidate_mapping_pages(struct address_space *mapping,
    565		pgoff_t start, pgoff_t end)
    566{
    567	return invalidate_mapping_pagevec(mapping, start, end, NULL);
    568}
    569EXPORT_SYMBOL(invalidate_mapping_pages);
    570
    571/*
    572 * This is like invalidate_inode_page(), except it ignores the page's
    573 * refcount.  We do this because invalidate_inode_pages2() needs stronger
    574 * invalidation guarantees, and cannot afford to leave pages behind because
    575 * shrink_page_list() has a temp ref on them, or because they're transiently
    576 * sitting in the lru_cache_add() pagevecs.
    577 */
    578static int invalidate_complete_folio2(struct address_space *mapping,
    579					struct folio *folio)
    580{
    581	if (folio->mapping != mapping)
    582		return 0;
    583
    584	if (folio_has_private(folio) &&
    585	    !filemap_release_folio(folio, GFP_KERNEL))
    586		return 0;
    587
    588	spin_lock(&mapping->host->i_lock);
    589	xa_lock_irq(&mapping->i_pages);
    590	if (folio_test_dirty(folio))
    591		goto failed;
    592
    593	BUG_ON(folio_has_private(folio));
    594	__filemap_remove_folio(folio, NULL);
    595	xa_unlock_irq(&mapping->i_pages);
    596	if (mapping_shrinkable(mapping))
    597		inode_add_lru(mapping->host);
    598	spin_unlock(&mapping->host->i_lock);
    599
    600	filemap_free_folio(mapping, folio);
    601	return 1;
    602failed:
    603	xa_unlock_irq(&mapping->i_pages);
    604	spin_unlock(&mapping->host->i_lock);
    605	return 0;
    606}
    607
    608static int folio_launder(struct address_space *mapping, struct folio *folio)
    609{
    610	if (!folio_test_dirty(folio))
    611		return 0;
    612	if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL)
    613		return 0;
    614	return mapping->a_ops->launder_folio(folio);
    615}
    616
    617/**
    618 * invalidate_inode_pages2_range - remove range of pages from an address_space
    619 * @mapping: the address_space
    620 * @start: the page offset 'from' which to invalidate
    621 * @end: the page offset 'to' which to invalidate (inclusive)
    622 *
    623 * Any pages which are found to be mapped into pagetables are unmapped prior to
    624 * invalidation.
    625 *
    626 * Return: -EBUSY if any pages could not be invalidated.
    627 */
    628int invalidate_inode_pages2_range(struct address_space *mapping,
    629				  pgoff_t start, pgoff_t end)
    630{
    631	pgoff_t indices[PAGEVEC_SIZE];
    632	struct folio_batch fbatch;
    633	pgoff_t index;
    634	int i;
    635	int ret = 0;
    636	int ret2 = 0;
    637	int did_range_unmap = 0;
    638
    639	if (mapping_empty(mapping))
    640		return 0;
    641
    642	folio_batch_init(&fbatch);
    643	index = start;
    644	while (find_get_entries(mapping, index, end, &fbatch, indices)) {
    645		for (i = 0; i < folio_batch_count(&fbatch); i++) {
    646			struct folio *folio = fbatch.folios[i];
    647
    648			/* We rely upon deletion not changing folio->index */
    649			index = indices[i];
    650
    651			if (xa_is_value(folio)) {
    652				if (!invalidate_exceptional_entry2(mapping,
    653						index, folio))
    654					ret = -EBUSY;
    655				continue;
    656			}
    657
    658			if (!did_range_unmap && folio_mapped(folio)) {
    659				/*
    660				 * If folio is mapped, before taking its lock,
    661				 * zap the rest of the file in one hit.
    662				 */
    663				unmap_mapping_pages(mapping, index,
    664						(1 + end - index), false);
    665				did_range_unmap = 1;
    666			}
    667
    668			folio_lock(folio);
    669			VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
    670			if (folio->mapping != mapping) {
    671				folio_unlock(folio);
    672				continue;
    673			}
    674			folio_wait_writeback(folio);
    675
    676			if (folio_mapped(folio))
    677				unmap_mapping_folio(folio);
    678			BUG_ON(folio_mapped(folio));
    679
    680			ret2 = folio_launder(mapping, folio);
    681			if (ret2 == 0) {
    682				if (!invalidate_complete_folio2(mapping, folio))
    683					ret2 = -EBUSY;
    684			}
    685			if (ret2 < 0)
    686				ret = ret2;
    687			folio_unlock(folio);
    688		}
    689		folio_batch_remove_exceptionals(&fbatch);
    690		folio_batch_release(&fbatch);
    691		cond_resched();
    692		index++;
    693	}
    694	/*
    695	 * For DAX we invalidate page tables after invalidating page cache.  We
    696	 * could invalidate page tables while invalidating each entry however
    697	 * that would be expensive. And doing range unmapping before doesn't
    698	 * work as we have no cheap way to find whether page cache entry didn't
    699	 * get remapped later.
    700	 */
    701	if (dax_mapping(mapping)) {
    702		unmap_mapping_pages(mapping, start, end - start + 1, false);
    703	}
    704	return ret;
    705}
    706EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
    707
    708/**
    709 * invalidate_inode_pages2 - remove all pages from an address_space
    710 * @mapping: the address_space
    711 *
    712 * Any pages which are found to be mapped into pagetables are unmapped prior to
    713 * invalidation.
    714 *
    715 * Return: -EBUSY if any pages could not be invalidated.
    716 */
    717int invalidate_inode_pages2(struct address_space *mapping)
    718{
    719	return invalidate_inode_pages2_range(mapping, 0, -1);
    720}
    721EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
    722
    723/**
    724 * truncate_pagecache - unmap and remove pagecache that has been truncated
    725 * @inode: inode
    726 * @newsize: new file size
    727 *
    728 * inode's new i_size must already be written before truncate_pagecache
    729 * is called.
    730 *
    731 * This function should typically be called before the filesystem
    732 * releases resources associated with the freed range (eg. deallocates
    733 * blocks). This way, pagecache will always stay logically coherent
    734 * with on-disk format, and the filesystem would not have to deal with
    735 * situations such as writepage being called for a page that has already
    736 * had its underlying blocks deallocated.
    737 */
    738void truncate_pagecache(struct inode *inode, loff_t newsize)
    739{
    740	struct address_space *mapping = inode->i_mapping;
    741	loff_t holebegin = round_up(newsize, PAGE_SIZE);
    742
    743	/*
    744	 * unmap_mapping_range is called twice, first simply for
    745	 * efficiency so that truncate_inode_pages does fewer
    746	 * single-page unmaps.  However after this first call, and
    747	 * before truncate_inode_pages finishes, it is possible for
    748	 * private pages to be COWed, which remain after
    749	 * truncate_inode_pages finishes, hence the second
    750	 * unmap_mapping_range call must be made for correctness.
    751	 */
    752	unmap_mapping_range(mapping, holebegin, 0, 1);
    753	truncate_inode_pages(mapping, newsize);
    754	unmap_mapping_range(mapping, holebegin, 0, 1);
    755}
    756EXPORT_SYMBOL(truncate_pagecache);
    757
    758/**
    759 * truncate_setsize - update inode and pagecache for a new file size
    760 * @inode: inode
    761 * @newsize: new file size
    762 *
    763 * truncate_setsize updates i_size and performs pagecache truncation (if
    764 * necessary) to @newsize. It will be typically be called from the filesystem's
    765 * setattr function when ATTR_SIZE is passed in.
    766 *
    767 * Must be called with a lock serializing truncates and writes (generally
    768 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
    769 * specific block truncation has been performed.
    770 */
    771void truncate_setsize(struct inode *inode, loff_t newsize)
    772{
    773	loff_t oldsize = inode->i_size;
    774
    775	i_size_write(inode, newsize);
    776	if (newsize > oldsize)
    777		pagecache_isize_extended(inode, oldsize, newsize);
    778	truncate_pagecache(inode, newsize);
    779}
    780EXPORT_SYMBOL(truncate_setsize);
    781
    782/**
    783 * pagecache_isize_extended - update pagecache after extension of i_size
    784 * @inode:	inode for which i_size was extended
    785 * @from:	original inode size
    786 * @to:		new inode size
    787 *
    788 * Handle extension of inode size either caused by extending truncate or by
    789 * write starting after current i_size. We mark the page straddling current
    790 * i_size RO so that page_mkwrite() is called on the nearest write access to
    791 * the page.  This way filesystem can be sure that page_mkwrite() is called on
    792 * the page before user writes to the page via mmap after the i_size has been
    793 * changed.
    794 *
    795 * The function must be called after i_size is updated so that page fault
    796 * coming after we unlock the page will already see the new i_size.
    797 * The function must be called while we still hold i_rwsem - this not only
    798 * makes sure i_size is stable but also that userspace cannot observe new
    799 * i_size value before we are prepared to store mmap writes at new inode size.
    800 */
    801void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
    802{
    803	int bsize = i_blocksize(inode);
    804	loff_t rounded_from;
    805	struct page *page;
    806	pgoff_t index;
    807
    808	WARN_ON(to > inode->i_size);
    809
    810	if (from >= to || bsize == PAGE_SIZE)
    811		return;
    812	/* Page straddling @from will not have any hole block created? */
    813	rounded_from = round_up(from, bsize);
    814	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
    815		return;
    816
    817	index = from >> PAGE_SHIFT;
    818	page = find_lock_page(inode->i_mapping, index);
    819	/* Page not cached? Nothing to do */
    820	if (!page)
    821		return;
    822	/*
    823	 * See clear_page_dirty_for_io() for details why set_page_dirty()
    824	 * is needed.
    825	 */
    826	if (page_mkclean(page))
    827		set_page_dirty(page);
    828	unlock_page(page);
    829	put_page(page);
    830}
    831EXPORT_SYMBOL(pagecache_isize_extended);
    832
    833/**
    834 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
    835 * @inode: inode
    836 * @lstart: offset of beginning of hole
    837 * @lend: offset of last byte of hole
    838 *
    839 * This function should typically be called before the filesystem
    840 * releases resources associated with the freed range (eg. deallocates
    841 * blocks). This way, pagecache will always stay logically coherent
    842 * with on-disk format, and the filesystem would not have to deal with
    843 * situations such as writepage being called for a page that has already
    844 * had its underlying blocks deallocated.
    845 */
    846void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
    847{
    848	struct address_space *mapping = inode->i_mapping;
    849	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
    850	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
    851	/*
    852	 * This rounding is currently just for example: unmap_mapping_range
    853	 * expands its hole outwards, whereas we want it to contract the hole
    854	 * inwards.  However, existing callers of truncate_pagecache_range are
    855	 * doing their own page rounding first.  Note that unmap_mapping_range
    856	 * allows holelen 0 for all, and we allow lend -1 for end of file.
    857	 */
    858
    859	/*
    860	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
    861	 * once (before truncating pagecache), and without "even_cows" flag:
    862	 * hole-punching should not remove private COWed pages from the hole.
    863	 */
    864	if ((u64)unmap_end > (u64)unmap_start)
    865		unmap_mapping_range(mapping, unmap_start,
    866				    1 + unmap_end - unmap_start, 0);
    867	truncate_inode_pages_range(mapping, lstart, lend);
    868}
    869EXPORT_SYMBOL(truncate_pagecache_range);