util.c (31269B)
1// SPDX-License-Identifier: GPL-2.0-only 2#include <linux/mm.h> 3#include <linux/slab.h> 4#include <linux/string.h> 5#include <linux/compiler.h> 6#include <linux/export.h> 7#include <linux/err.h> 8#include <linux/sched.h> 9#include <linux/sched/mm.h> 10#include <linux/sched/signal.h> 11#include <linux/sched/task_stack.h> 12#include <linux/security.h> 13#include <linux/swap.h> 14#include <linux/swapops.h> 15#include <linux/mman.h> 16#include <linux/hugetlb.h> 17#include <linux/vmalloc.h> 18#include <linux/userfaultfd_k.h> 19#include <linux/elf.h> 20#include <linux/elf-randomize.h> 21#include <linux/personality.h> 22#include <linux/random.h> 23#include <linux/processor.h> 24#include <linux/sizes.h> 25#include <linux/compat.h> 26 27#include <linux/uaccess.h> 28 29#include "internal.h" 30#include "swap.h" 31 32/** 33 * kfree_const - conditionally free memory 34 * @x: pointer to the memory 35 * 36 * Function calls kfree only if @x is not in .rodata section. 37 */ 38void kfree_const(const void *x) 39{ 40 if (!is_kernel_rodata((unsigned long)x)) 41 kfree(x); 42} 43EXPORT_SYMBOL(kfree_const); 44 45/** 46 * kstrdup - allocate space for and copy an existing string 47 * @s: the string to duplicate 48 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 49 * 50 * Return: newly allocated copy of @s or %NULL in case of error 51 */ 52char *kstrdup(const char *s, gfp_t gfp) 53{ 54 size_t len; 55 char *buf; 56 57 if (!s) 58 return NULL; 59 60 len = strlen(s) + 1; 61 buf = kmalloc_track_caller(len, gfp); 62 if (buf) 63 memcpy(buf, s, len); 64 return buf; 65} 66EXPORT_SYMBOL(kstrdup); 67 68/** 69 * kstrdup_const - conditionally duplicate an existing const string 70 * @s: the string to duplicate 71 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 72 * 73 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and 74 * must not be passed to krealloc(). 75 * 76 * Return: source string if it is in .rodata section otherwise 77 * fallback to kstrdup. 78 */ 79const char *kstrdup_const(const char *s, gfp_t gfp) 80{ 81 if (is_kernel_rodata((unsigned long)s)) 82 return s; 83 84 return kstrdup(s, gfp); 85} 86EXPORT_SYMBOL(kstrdup_const); 87 88/** 89 * kstrndup - allocate space for and copy an existing string 90 * @s: the string to duplicate 91 * @max: read at most @max chars from @s 92 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 93 * 94 * Note: Use kmemdup_nul() instead if the size is known exactly. 95 * 96 * Return: newly allocated copy of @s or %NULL in case of error 97 */ 98char *kstrndup(const char *s, size_t max, gfp_t gfp) 99{ 100 size_t len; 101 char *buf; 102 103 if (!s) 104 return NULL; 105 106 len = strnlen(s, max); 107 buf = kmalloc_track_caller(len+1, gfp); 108 if (buf) { 109 memcpy(buf, s, len); 110 buf[len] = '\0'; 111 } 112 return buf; 113} 114EXPORT_SYMBOL(kstrndup); 115 116/** 117 * kmemdup - duplicate region of memory 118 * 119 * @src: memory region to duplicate 120 * @len: memory region length 121 * @gfp: GFP mask to use 122 * 123 * Return: newly allocated copy of @src or %NULL in case of error 124 */ 125void *kmemdup(const void *src, size_t len, gfp_t gfp) 126{ 127 void *p; 128 129 p = kmalloc_track_caller(len, gfp); 130 if (p) 131 memcpy(p, src, len); 132 return p; 133} 134EXPORT_SYMBOL(kmemdup); 135 136/** 137 * kmemdup_nul - Create a NUL-terminated string from unterminated data 138 * @s: The data to stringify 139 * @len: The size of the data 140 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 141 * 142 * Return: newly allocated copy of @s with NUL-termination or %NULL in 143 * case of error 144 */ 145char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) 146{ 147 char *buf; 148 149 if (!s) 150 return NULL; 151 152 buf = kmalloc_track_caller(len + 1, gfp); 153 if (buf) { 154 memcpy(buf, s, len); 155 buf[len] = '\0'; 156 } 157 return buf; 158} 159EXPORT_SYMBOL(kmemdup_nul); 160 161/** 162 * memdup_user - duplicate memory region from user space 163 * 164 * @src: source address in user space 165 * @len: number of bytes to copy 166 * 167 * Return: an ERR_PTR() on failure. Result is physically 168 * contiguous, to be freed by kfree(). 169 */ 170void *memdup_user(const void __user *src, size_t len) 171{ 172 void *p; 173 174 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); 175 if (!p) 176 return ERR_PTR(-ENOMEM); 177 178 if (copy_from_user(p, src, len)) { 179 kfree(p); 180 return ERR_PTR(-EFAULT); 181 } 182 183 return p; 184} 185EXPORT_SYMBOL(memdup_user); 186 187/** 188 * vmemdup_user - duplicate memory region from user space 189 * 190 * @src: source address in user space 191 * @len: number of bytes to copy 192 * 193 * Return: an ERR_PTR() on failure. Result may be not 194 * physically contiguous. Use kvfree() to free. 195 */ 196void *vmemdup_user(const void __user *src, size_t len) 197{ 198 void *p; 199 200 p = kvmalloc(len, GFP_USER); 201 if (!p) 202 return ERR_PTR(-ENOMEM); 203 204 if (copy_from_user(p, src, len)) { 205 kvfree(p); 206 return ERR_PTR(-EFAULT); 207 } 208 209 return p; 210} 211EXPORT_SYMBOL(vmemdup_user); 212 213/** 214 * strndup_user - duplicate an existing string from user space 215 * @s: The string to duplicate 216 * @n: Maximum number of bytes to copy, including the trailing NUL. 217 * 218 * Return: newly allocated copy of @s or an ERR_PTR() in case of error 219 */ 220char *strndup_user(const char __user *s, long n) 221{ 222 char *p; 223 long length; 224 225 length = strnlen_user(s, n); 226 227 if (!length) 228 return ERR_PTR(-EFAULT); 229 230 if (length > n) 231 return ERR_PTR(-EINVAL); 232 233 p = memdup_user(s, length); 234 235 if (IS_ERR(p)) 236 return p; 237 238 p[length - 1] = '\0'; 239 240 return p; 241} 242EXPORT_SYMBOL(strndup_user); 243 244/** 245 * memdup_user_nul - duplicate memory region from user space and NUL-terminate 246 * 247 * @src: source address in user space 248 * @len: number of bytes to copy 249 * 250 * Return: an ERR_PTR() on failure. 251 */ 252void *memdup_user_nul(const void __user *src, size_t len) 253{ 254 char *p; 255 256 /* 257 * Always use GFP_KERNEL, since copy_from_user() can sleep and 258 * cause pagefault, which makes it pointless to use GFP_NOFS 259 * or GFP_ATOMIC. 260 */ 261 p = kmalloc_track_caller(len + 1, GFP_KERNEL); 262 if (!p) 263 return ERR_PTR(-ENOMEM); 264 265 if (copy_from_user(p, src, len)) { 266 kfree(p); 267 return ERR_PTR(-EFAULT); 268 } 269 p[len] = '\0'; 270 271 return p; 272} 273EXPORT_SYMBOL(memdup_user_nul); 274 275void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 276 struct vm_area_struct *prev) 277{ 278 struct vm_area_struct *next; 279 280 vma->vm_prev = prev; 281 if (prev) { 282 next = prev->vm_next; 283 prev->vm_next = vma; 284 } else { 285 next = mm->mmap; 286 mm->mmap = vma; 287 } 288 vma->vm_next = next; 289 if (next) 290 next->vm_prev = vma; 291} 292 293void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma) 294{ 295 struct vm_area_struct *prev, *next; 296 297 next = vma->vm_next; 298 prev = vma->vm_prev; 299 if (prev) 300 prev->vm_next = next; 301 else 302 mm->mmap = next; 303 if (next) 304 next->vm_prev = prev; 305} 306 307/* Check if the vma is being used as a stack by this task */ 308int vma_is_stack_for_current(struct vm_area_struct *vma) 309{ 310 struct task_struct * __maybe_unused t = current; 311 312 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); 313} 314 315/* 316 * Change backing file, only valid to use during initial VMA setup. 317 */ 318void vma_set_file(struct vm_area_struct *vma, struct file *file) 319{ 320 /* Changing an anonymous vma with this is illegal */ 321 get_file(file); 322 swap(vma->vm_file, file); 323 fput(file); 324} 325EXPORT_SYMBOL(vma_set_file); 326 327#ifndef STACK_RND_MASK 328#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ 329#endif 330 331unsigned long randomize_stack_top(unsigned long stack_top) 332{ 333 unsigned long random_variable = 0; 334 335 if (current->flags & PF_RANDOMIZE) { 336 random_variable = get_random_long(); 337 random_variable &= STACK_RND_MASK; 338 random_variable <<= PAGE_SHIFT; 339 } 340#ifdef CONFIG_STACK_GROWSUP 341 return PAGE_ALIGN(stack_top) + random_variable; 342#else 343 return PAGE_ALIGN(stack_top) - random_variable; 344#endif 345} 346 347/** 348 * randomize_page - Generate a random, page aligned address 349 * @start: The smallest acceptable address the caller will take. 350 * @range: The size of the area, starting at @start, within which the 351 * random address must fall. 352 * 353 * If @start + @range would overflow, @range is capped. 354 * 355 * NOTE: Historical use of randomize_range, which this replaces, presumed that 356 * @start was already page aligned. We now align it regardless. 357 * 358 * Return: A page aligned address within [start, start + range). On error, 359 * @start is returned. 360 */ 361unsigned long randomize_page(unsigned long start, unsigned long range) 362{ 363 if (!PAGE_ALIGNED(start)) { 364 range -= PAGE_ALIGN(start) - start; 365 start = PAGE_ALIGN(start); 366 } 367 368 if (start > ULONG_MAX - range) 369 range = ULONG_MAX - start; 370 371 range >>= PAGE_SHIFT; 372 373 if (range == 0) 374 return start; 375 376 return start + (get_random_long() % range << PAGE_SHIFT); 377} 378 379#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 380unsigned long __weak arch_randomize_brk(struct mm_struct *mm) 381{ 382 /* Is the current task 32bit ? */ 383 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) 384 return randomize_page(mm->brk, SZ_32M); 385 386 return randomize_page(mm->brk, SZ_1G); 387} 388 389unsigned long arch_mmap_rnd(void) 390{ 391 unsigned long rnd; 392 393#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 394 if (is_compat_task()) 395 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); 396 else 397#endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ 398 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); 399 400 return rnd << PAGE_SHIFT; 401} 402 403static int mmap_is_legacy(struct rlimit *rlim_stack) 404{ 405 if (current->personality & ADDR_COMPAT_LAYOUT) 406 return 1; 407 408 if (rlim_stack->rlim_cur == RLIM_INFINITY) 409 return 1; 410 411 return sysctl_legacy_va_layout; 412} 413 414/* 415 * Leave enough space between the mmap area and the stack to honour ulimit in 416 * the face of randomisation. 417 */ 418#define MIN_GAP (SZ_128M) 419#define MAX_GAP (STACK_TOP / 6 * 5) 420 421static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) 422{ 423 unsigned long gap = rlim_stack->rlim_cur; 424 unsigned long pad = stack_guard_gap; 425 426 /* Account for stack randomization if necessary */ 427 if (current->flags & PF_RANDOMIZE) 428 pad += (STACK_RND_MASK << PAGE_SHIFT); 429 430 /* Values close to RLIM_INFINITY can overflow. */ 431 if (gap + pad > gap) 432 gap += pad; 433 434 if (gap < MIN_GAP) 435 gap = MIN_GAP; 436 else if (gap > MAX_GAP) 437 gap = MAX_GAP; 438 439 return PAGE_ALIGN(STACK_TOP - gap - rnd); 440} 441 442void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 443{ 444 unsigned long random_factor = 0UL; 445 446 if (current->flags & PF_RANDOMIZE) 447 random_factor = arch_mmap_rnd(); 448 449 if (mmap_is_legacy(rlim_stack)) { 450 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; 451 mm->get_unmapped_area = arch_get_unmapped_area; 452 } else { 453 mm->mmap_base = mmap_base(random_factor, rlim_stack); 454 mm->get_unmapped_area = arch_get_unmapped_area_topdown; 455 } 456} 457#elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) 458void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 459{ 460 mm->mmap_base = TASK_UNMAPPED_BASE; 461 mm->get_unmapped_area = arch_get_unmapped_area; 462} 463#endif 464 465/** 466 * __account_locked_vm - account locked pages to an mm's locked_vm 467 * @mm: mm to account against 468 * @pages: number of pages to account 469 * @inc: %true if @pages should be considered positive, %false if not 470 * @task: task used to check RLIMIT_MEMLOCK 471 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped 472 * 473 * Assumes @task and @mm are valid (i.e. at least one reference on each), and 474 * that mmap_lock is held as writer. 475 * 476 * Return: 477 * * 0 on success 478 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 479 */ 480int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 481 struct task_struct *task, bool bypass_rlim) 482{ 483 unsigned long locked_vm, limit; 484 int ret = 0; 485 486 mmap_assert_write_locked(mm); 487 488 locked_vm = mm->locked_vm; 489 if (inc) { 490 if (!bypass_rlim) { 491 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; 492 if (locked_vm + pages > limit) 493 ret = -ENOMEM; 494 } 495 if (!ret) 496 mm->locked_vm = locked_vm + pages; 497 } else { 498 WARN_ON_ONCE(pages > locked_vm); 499 mm->locked_vm = locked_vm - pages; 500 } 501 502 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, 503 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, 504 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), 505 ret ? " - exceeded" : ""); 506 507 return ret; 508} 509EXPORT_SYMBOL_GPL(__account_locked_vm); 510 511/** 512 * account_locked_vm - account locked pages to an mm's locked_vm 513 * @mm: mm to account against, may be NULL 514 * @pages: number of pages to account 515 * @inc: %true if @pages should be considered positive, %false if not 516 * 517 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). 518 * 519 * Return: 520 * * 0 on success, or if mm is NULL 521 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 522 */ 523int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) 524{ 525 int ret; 526 527 if (pages == 0 || !mm) 528 return 0; 529 530 mmap_write_lock(mm); 531 ret = __account_locked_vm(mm, pages, inc, current, 532 capable(CAP_IPC_LOCK)); 533 mmap_write_unlock(mm); 534 535 return ret; 536} 537EXPORT_SYMBOL_GPL(account_locked_vm); 538 539unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, 540 unsigned long len, unsigned long prot, 541 unsigned long flag, unsigned long pgoff) 542{ 543 unsigned long ret; 544 struct mm_struct *mm = current->mm; 545 unsigned long populate; 546 LIST_HEAD(uf); 547 548 ret = security_mmap_file(file, prot, flag); 549 if (!ret) { 550 if (mmap_write_lock_killable(mm)) 551 return -EINTR; 552 ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate, 553 &uf); 554 mmap_write_unlock(mm); 555 userfaultfd_unmap_complete(mm, &uf); 556 if (populate) 557 mm_populate(ret, populate); 558 } 559 return ret; 560} 561 562unsigned long vm_mmap(struct file *file, unsigned long addr, 563 unsigned long len, unsigned long prot, 564 unsigned long flag, unsigned long offset) 565{ 566 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 567 return -EINVAL; 568 if (unlikely(offset_in_page(offset))) 569 return -EINVAL; 570 571 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 572} 573EXPORT_SYMBOL(vm_mmap); 574 575/** 576 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon 577 * failure, fall back to non-contiguous (vmalloc) allocation. 578 * @size: size of the request. 579 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 580 * @node: numa node to allocate from 581 * 582 * Uses kmalloc to get the memory but if the allocation fails then falls back 583 * to the vmalloc allocator. Use kvfree for freeing the memory. 584 * 585 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. 586 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 587 * preferable to the vmalloc fallback, due to visible performance drawbacks. 588 * 589 * Return: pointer to the allocated memory of %NULL in case of failure 590 */ 591void *kvmalloc_node(size_t size, gfp_t flags, int node) 592{ 593 gfp_t kmalloc_flags = flags; 594 void *ret; 595 596 /* 597 * We want to attempt a large physically contiguous block first because 598 * it is less likely to fragment multiple larger blocks and therefore 599 * contribute to a long term fragmentation less than vmalloc fallback. 600 * However make sure that larger requests are not too disruptive - no 601 * OOM killer and no allocation failure warnings as we have a fallback. 602 */ 603 if (size > PAGE_SIZE) { 604 kmalloc_flags |= __GFP_NOWARN; 605 606 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) 607 kmalloc_flags |= __GFP_NORETRY; 608 609 /* nofail semantic is implemented by the vmalloc fallback */ 610 kmalloc_flags &= ~__GFP_NOFAIL; 611 } 612 613 ret = kmalloc_node(size, kmalloc_flags, node); 614 615 /* 616 * It doesn't really make sense to fallback to vmalloc for sub page 617 * requests 618 */ 619 if (ret || size <= PAGE_SIZE) 620 return ret; 621 622 /* Don't even allow crazy sizes */ 623 if (unlikely(size > INT_MAX)) { 624 WARN_ON_ONCE(!(flags & __GFP_NOWARN)); 625 return NULL; 626 } 627 628 /* 629 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, 630 * since the callers already cannot assume anything 631 * about the resulting pointer, and cannot play 632 * protection games. 633 */ 634 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 635 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 636 node, __builtin_return_address(0)); 637} 638EXPORT_SYMBOL(kvmalloc_node); 639 640/** 641 * kvfree() - Free memory. 642 * @addr: Pointer to allocated memory. 643 * 644 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 645 * It is slightly more efficient to use kfree() or vfree() if you are certain 646 * that you know which one to use. 647 * 648 * Context: Either preemptible task context or not-NMI interrupt. 649 */ 650void kvfree(const void *addr) 651{ 652 if (is_vmalloc_addr(addr)) 653 vfree(addr); 654 else 655 kfree(addr); 656} 657EXPORT_SYMBOL(kvfree); 658 659/** 660 * kvfree_sensitive - Free a data object containing sensitive information. 661 * @addr: address of the data object to be freed. 662 * @len: length of the data object. 663 * 664 * Use the special memzero_explicit() function to clear the content of a 665 * kvmalloc'ed object containing sensitive data to make sure that the 666 * compiler won't optimize out the data clearing. 667 */ 668void kvfree_sensitive(const void *addr, size_t len) 669{ 670 if (likely(!ZERO_OR_NULL_PTR(addr))) { 671 memzero_explicit((void *)addr, len); 672 kvfree(addr); 673 } 674} 675EXPORT_SYMBOL(kvfree_sensitive); 676 677void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags) 678{ 679 void *newp; 680 681 if (oldsize >= newsize) 682 return (void *)p; 683 newp = kvmalloc(newsize, flags); 684 if (!newp) 685 return NULL; 686 memcpy(newp, p, oldsize); 687 kvfree(p); 688 return newp; 689} 690EXPORT_SYMBOL(kvrealloc); 691 692/** 693 * __vmalloc_array - allocate memory for a virtually contiguous array. 694 * @n: number of elements. 695 * @size: element size. 696 * @flags: the type of memory to allocate (see kmalloc). 697 */ 698void *__vmalloc_array(size_t n, size_t size, gfp_t flags) 699{ 700 size_t bytes; 701 702 if (unlikely(check_mul_overflow(n, size, &bytes))) 703 return NULL; 704 return __vmalloc(bytes, flags); 705} 706EXPORT_SYMBOL(__vmalloc_array); 707 708/** 709 * vmalloc_array - allocate memory for a virtually contiguous array. 710 * @n: number of elements. 711 * @size: element size. 712 */ 713void *vmalloc_array(size_t n, size_t size) 714{ 715 return __vmalloc_array(n, size, GFP_KERNEL); 716} 717EXPORT_SYMBOL(vmalloc_array); 718 719/** 720 * __vcalloc - allocate and zero memory for a virtually contiguous array. 721 * @n: number of elements. 722 * @size: element size. 723 * @flags: the type of memory to allocate (see kmalloc). 724 */ 725void *__vcalloc(size_t n, size_t size, gfp_t flags) 726{ 727 return __vmalloc_array(n, size, flags | __GFP_ZERO); 728} 729EXPORT_SYMBOL(__vcalloc); 730 731/** 732 * vcalloc - allocate and zero memory for a virtually contiguous array. 733 * @n: number of elements. 734 * @size: element size. 735 */ 736void *vcalloc(size_t n, size_t size) 737{ 738 return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO); 739} 740EXPORT_SYMBOL(vcalloc); 741 742/* Neutral page->mapping pointer to address_space or anon_vma or other */ 743void *page_rmapping(struct page *page) 744{ 745 return folio_raw_mapping(page_folio(page)); 746} 747 748/** 749 * folio_mapped - Is this folio mapped into userspace? 750 * @folio: The folio. 751 * 752 * Return: True if any page in this folio is referenced by user page tables. 753 */ 754bool folio_mapped(struct folio *folio) 755{ 756 long i, nr; 757 758 if (!folio_test_large(folio)) 759 return atomic_read(&folio->_mapcount) >= 0; 760 if (atomic_read(folio_mapcount_ptr(folio)) >= 0) 761 return true; 762 if (folio_test_hugetlb(folio)) 763 return false; 764 765 nr = folio_nr_pages(folio); 766 for (i = 0; i < nr; i++) { 767 if (atomic_read(&folio_page(folio, i)->_mapcount) >= 0) 768 return true; 769 } 770 return false; 771} 772EXPORT_SYMBOL(folio_mapped); 773 774struct anon_vma *folio_anon_vma(struct folio *folio) 775{ 776 unsigned long mapping = (unsigned long)folio->mapping; 777 778 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 779 return NULL; 780 return (void *)(mapping - PAGE_MAPPING_ANON); 781} 782 783/** 784 * folio_mapping - Find the mapping where this folio is stored. 785 * @folio: The folio. 786 * 787 * For folios which are in the page cache, return the mapping that this 788 * page belongs to. Folios in the swap cache return the swap mapping 789 * this page is stored in (which is different from the mapping for the 790 * swap file or swap device where the data is stored). 791 * 792 * You can call this for folios which aren't in the swap cache or page 793 * cache and it will return NULL. 794 */ 795struct address_space *folio_mapping(struct folio *folio) 796{ 797 struct address_space *mapping; 798 799 /* This happens if someone calls flush_dcache_page on slab page */ 800 if (unlikely(folio_test_slab(folio))) 801 return NULL; 802 803 if (unlikely(folio_test_swapcache(folio))) 804 return swap_address_space(folio_swap_entry(folio)); 805 806 mapping = folio->mapping; 807 if ((unsigned long)mapping & PAGE_MAPPING_ANON) 808 return NULL; 809 810 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS); 811} 812EXPORT_SYMBOL(folio_mapping); 813 814/* Slow path of page_mapcount() for compound pages */ 815int __page_mapcount(struct page *page) 816{ 817 int ret; 818 819 ret = atomic_read(&page->_mapcount) + 1; 820 /* 821 * For file THP page->_mapcount contains total number of mapping 822 * of the page: no need to look into compound_mapcount. 823 */ 824 if (!PageAnon(page) && !PageHuge(page)) 825 return ret; 826 page = compound_head(page); 827 ret += atomic_read(compound_mapcount_ptr(page)) + 1; 828 if (PageDoubleMap(page)) 829 ret--; 830 return ret; 831} 832EXPORT_SYMBOL_GPL(__page_mapcount); 833 834/** 835 * folio_mapcount() - Calculate the number of mappings of this folio. 836 * @folio: The folio. 837 * 838 * A large folio tracks both how many times the entire folio is mapped, 839 * and how many times each individual page in the folio is mapped. 840 * This function calculates the total number of times the folio is 841 * mapped. 842 * 843 * Return: The number of times this folio is mapped. 844 */ 845int folio_mapcount(struct folio *folio) 846{ 847 int i, compound, nr, ret; 848 849 if (likely(!folio_test_large(folio))) 850 return atomic_read(&folio->_mapcount) + 1; 851 852 compound = folio_entire_mapcount(folio); 853 nr = folio_nr_pages(folio); 854 if (folio_test_hugetlb(folio)) 855 return compound; 856 ret = compound; 857 for (i = 0; i < nr; i++) 858 ret += atomic_read(&folio_page(folio, i)->_mapcount) + 1; 859 /* File pages has compound_mapcount included in _mapcount */ 860 if (!folio_test_anon(folio)) 861 return ret - compound * nr; 862 if (folio_test_double_map(folio)) 863 ret -= nr; 864 return ret; 865} 866 867/** 868 * folio_copy - Copy the contents of one folio to another. 869 * @dst: Folio to copy to. 870 * @src: Folio to copy from. 871 * 872 * The bytes in the folio represented by @src are copied to @dst. 873 * Assumes the caller has validated that @dst is at least as large as @src. 874 * Can be called in atomic context for order-0 folios, but if the folio is 875 * larger, it may sleep. 876 */ 877void folio_copy(struct folio *dst, struct folio *src) 878{ 879 long i = 0; 880 long nr = folio_nr_pages(src); 881 882 for (;;) { 883 copy_highpage(folio_page(dst, i), folio_page(src, i)); 884 if (++i == nr) 885 break; 886 cond_resched(); 887 } 888} 889 890int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; 891int sysctl_overcommit_ratio __read_mostly = 50; 892unsigned long sysctl_overcommit_kbytes __read_mostly; 893int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 894unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 895unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 896 897int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer, 898 size_t *lenp, loff_t *ppos) 899{ 900 int ret; 901 902 ret = proc_dointvec(table, write, buffer, lenp, ppos); 903 if (ret == 0 && write) 904 sysctl_overcommit_kbytes = 0; 905 return ret; 906} 907 908static void sync_overcommit_as(struct work_struct *dummy) 909{ 910 percpu_counter_sync(&vm_committed_as); 911} 912 913int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer, 914 size_t *lenp, loff_t *ppos) 915{ 916 struct ctl_table t; 917 int new_policy = -1; 918 int ret; 919 920 /* 921 * The deviation of sync_overcommit_as could be big with loose policy 922 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to 923 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply 924 * with the strict "NEVER", and to avoid possible race condition (even 925 * though user usually won't too frequently do the switching to policy 926 * OVERCOMMIT_NEVER), the switch is done in the following order: 927 * 1. changing the batch 928 * 2. sync percpu count on each CPU 929 * 3. switch the policy 930 */ 931 if (write) { 932 t = *table; 933 t.data = &new_policy; 934 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 935 if (ret || new_policy == -1) 936 return ret; 937 938 mm_compute_batch(new_policy); 939 if (new_policy == OVERCOMMIT_NEVER) 940 schedule_on_each_cpu(sync_overcommit_as); 941 sysctl_overcommit_memory = new_policy; 942 } else { 943 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 944 } 945 946 return ret; 947} 948 949int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer, 950 size_t *lenp, loff_t *ppos) 951{ 952 int ret; 953 954 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 955 if (ret == 0 && write) 956 sysctl_overcommit_ratio = 0; 957 return ret; 958} 959 960/* 961 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used 962 */ 963unsigned long vm_commit_limit(void) 964{ 965 unsigned long allowed; 966 967 if (sysctl_overcommit_kbytes) 968 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); 969 else 970 allowed = ((totalram_pages() - hugetlb_total_pages()) 971 * sysctl_overcommit_ratio / 100); 972 allowed += total_swap_pages; 973 974 return allowed; 975} 976 977/* 978 * Make sure vm_committed_as in one cacheline and not cacheline shared with 979 * other variables. It can be updated by several CPUs frequently. 980 */ 981struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 982 983/* 984 * The global memory commitment made in the system can be a metric 985 * that can be used to drive ballooning decisions when Linux is hosted 986 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 987 * balancing memory across competing virtual machines that are hosted. 988 * Several metrics drive this policy engine including the guest reported 989 * memory commitment. 990 * 991 * The time cost of this is very low for small platforms, and for big 992 * platform like a 2S/36C/72T Skylake server, in worst case where 993 * vm_committed_as's spinlock is under severe contention, the time cost 994 * could be about 30~40 microseconds. 995 */ 996unsigned long vm_memory_committed(void) 997{ 998 return percpu_counter_sum_positive(&vm_committed_as); 999} 1000EXPORT_SYMBOL_GPL(vm_memory_committed); 1001 1002/* 1003 * Check that a process has enough memory to allocate a new virtual 1004 * mapping. 0 means there is enough memory for the allocation to 1005 * succeed and -ENOMEM implies there is not. 1006 * 1007 * We currently support three overcommit policies, which are set via the 1008 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst 1009 * 1010 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 1011 * Additional code 2002 Jul 20 by Robert Love. 1012 * 1013 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 1014 * 1015 * Note this is a helper function intended to be used by LSMs which 1016 * wish to use this logic. 1017 */ 1018int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 1019{ 1020 long allowed; 1021 1022 vm_acct_memory(pages); 1023 1024 /* 1025 * Sometimes we want to use more memory than we have 1026 */ 1027 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 1028 return 0; 1029 1030 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 1031 if (pages > totalram_pages() + total_swap_pages) 1032 goto error; 1033 return 0; 1034 } 1035 1036 allowed = vm_commit_limit(); 1037 /* 1038 * Reserve some for root 1039 */ 1040 if (!cap_sys_admin) 1041 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 1042 1043 /* 1044 * Don't let a single process grow so big a user can't recover 1045 */ 1046 if (mm) { 1047 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 1048 1049 allowed -= min_t(long, mm->total_vm / 32, reserve); 1050 } 1051 1052 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 1053 return 0; 1054error: 1055 vm_unacct_memory(pages); 1056 1057 return -ENOMEM; 1058} 1059 1060/** 1061 * get_cmdline() - copy the cmdline value to a buffer. 1062 * @task: the task whose cmdline value to copy. 1063 * @buffer: the buffer to copy to. 1064 * @buflen: the length of the buffer. Larger cmdline values are truncated 1065 * to this length. 1066 * 1067 * Return: the size of the cmdline field copied. Note that the copy does 1068 * not guarantee an ending NULL byte. 1069 */ 1070int get_cmdline(struct task_struct *task, char *buffer, int buflen) 1071{ 1072 int res = 0; 1073 unsigned int len; 1074 struct mm_struct *mm = get_task_mm(task); 1075 unsigned long arg_start, arg_end, env_start, env_end; 1076 if (!mm) 1077 goto out; 1078 if (!mm->arg_end) 1079 goto out_mm; /* Shh! No looking before we're done */ 1080 1081 spin_lock(&mm->arg_lock); 1082 arg_start = mm->arg_start; 1083 arg_end = mm->arg_end; 1084 env_start = mm->env_start; 1085 env_end = mm->env_end; 1086 spin_unlock(&mm->arg_lock); 1087 1088 len = arg_end - arg_start; 1089 1090 if (len > buflen) 1091 len = buflen; 1092 1093 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); 1094 1095 /* 1096 * If the nul at the end of args has been overwritten, then 1097 * assume application is using setproctitle(3). 1098 */ 1099 if (res > 0 && buffer[res-1] != '\0' && len < buflen) { 1100 len = strnlen(buffer, res); 1101 if (len < res) { 1102 res = len; 1103 } else { 1104 len = env_end - env_start; 1105 if (len > buflen - res) 1106 len = buflen - res; 1107 res += access_process_vm(task, env_start, 1108 buffer+res, len, 1109 FOLL_FORCE); 1110 res = strnlen(buffer, res); 1111 } 1112 } 1113out_mm: 1114 mmput(mm); 1115out: 1116 return res; 1117} 1118 1119int __weak memcmp_pages(struct page *page1, struct page *page2) 1120{ 1121 char *addr1, *addr2; 1122 int ret; 1123 1124 addr1 = kmap_atomic(page1); 1125 addr2 = kmap_atomic(page2); 1126 ret = memcmp(addr1, addr2, PAGE_SIZE); 1127 kunmap_atomic(addr2); 1128 kunmap_atomic(addr1); 1129 return ret; 1130} 1131 1132#ifdef CONFIG_PRINTK 1133/** 1134 * mem_dump_obj - Print available provenance information 1135 * @object: object for which to find provenance information. 1136 * 1137 * This function uses pr_cont(), so that the caller is expected to have 1138 * printed out whatever preamble is appropriate. The provenance information 1139 * depends on the type of object and on how much debugging is enabled. 1140 * For example, for a slab-cache object, the slab name is printed, and, 1141 * if available, the return address and stack trace from the allocation 1142 * and last free path of that object. 1143 */ 1144void mem_dump_obj(void *object) 1145{ 1146 const char *type; 1147 1148 if (kmem_valid_obj(object)) { 1149 kmem_dump_obj(object); 1150 return; 1151 } 1152 1153 if (vmalloc_dump_obj(object)) 1154 return; 1155 1156 if (virt_addr_valid(object)) 1157 type = "non-slab/vmalloc memory"; 1158 else if (object == NULL) 1159 type = "NULL pointer"; 1160 else if (object == ZERO_SIZE_PTR) 1161 type = "zero-size pointer"; 1162 else 1163 type = "non-paged memory"; 1164 1165 pr_cont(" %s\n", type); 1166} 1167EXPORT_SYMBOL_GPL(mem_dump_obj); 1168#endif 1169 1170/* 1171 * A driver might set a page logically offline -- PageOffline() -- and 1172 * turn the page inaccessible in the hypervisor; after that, access to page 1173 * content can be fatal. 1174 * 1175 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random 1176 * pages after checking PageOffline(); however, these PFN walkers can race 1177 * with drivers that set PageOffline(). 1178 * 1179 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to 1180 * synchronize with such drivers, achieving that a page cannot be set 1181 * PageOffline() while frozen. 1182 * 1183 * page_offline_begin()/page_offline_end() is used by drivers that care about 1184 * such races when setting a page PageOffline(). 1185 */ 1186static DECLARE_RWSEM(page_offline_rwsem); 1187 1188void page_offline_freeze(void) 1189{ 1190 down_read(&page_offline_rwsem); 1191} 1192 1193void page_offline_thaw(void) 1194{ 1195 up_read(&page_offline_rwsem); 1196} 1197 1198void page_offline_begin(void) 1199{ 1200 down_write(&page_offline_rwsem); 1201} 1202EXPORT_SYMBOL(page_offline_begin); 1203 1204void page_offline_end(void) 1205{ 1206 up_write(&page_offline_rwsem); 1207} 1208EXPORT_SYMBOL(page_offline_end); 1209 1210#ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_FOLIO 1211void flush_dcache_folio(struct folio *folio) 1212{ 1213 long i, nr = folio_nr_pages(folio); 1214 1215 for (i = 0; i < nr; i++) 1216 flush_dcache_page(folio_page(folio, i)); 1217} 1218EXPORT_SYMBOL(flush_dcache_folio); 1219#endif