cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vmscan.c (140846B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
      4 *
      5 *  Swap reorganised 29.12.95, Stephen Tweedie.
      6 *  kswapd added: 7.1.96  sct
      7 *  Removed kswapd_ctl limits, and swap out as many pages as needed
      8 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
      9 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
     10 *  Multiqueue VM started 5.8.00, Rik van Riel.
     11 */
     12
     13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     14
     15#include <linux/mm.h>
     16#include <linux/sched/mm.h>
     17#include <linux/module.h>
     18#include <linux/gfp.h>
     19#include <linux/kernel_stat.h>
     20#include <linux/swap.h>
     21#include <linux/pagemap.h>
     22#include <linux/init.h>
     23#include <linux/highmem.h>
     24#include <linux/vmpressure.h>
     25#include <linux/vmstat.h>
     26#include <linux/file.h>
     27#include <linux/writeback.h>
     28#include <linux/blkdev.h>
     29#include <linux/buffer_head.h>	/* for try_to_release_page(),
     30					buffer_heads_over_limit */
     31#include <linux/mm_inline.h>
     32#include <linux/backing-dev.h>
     33#include <linux/rmap.h>
     34#include <linux/topology.h>
     35#include <linux/cpu.h>
     36#include <linux/cpuset.h>
     37#include <linux/compaction.h>
     38#include <linux/notifier.h>
     39#include <linux/rwsem.h>
     40#include <linux/delay.h>
     41#include <linux/kthread.h>
     42#include <linux/freezer.h>
     43#include <linux/memcontrol.h>
     44#include <linux/migrate.h>
     45#include <linux/delayacct.h>
     46#include <linux/sysctl.h>
     47#include <linux/oom.h>
     48#include <linux/pagevec.h>
     49#include <linux/prefetch.h>
     50#include <linux/printk.h>
     51#include <linux/dax.h>
     52#include <linux/psi.h>
     53
     54#include <asm/tlbflush.h>
     55#include <asm/div64.h>
     56
     57#include <linux/swapops.h>
     58#include <linux/balloon_compaction.h>
     59#include <linux/sched/sysctl.h>
     60
     61#include "internal.h"
     62#include "swap.h"
     63
     64#define CREATE_TRACE_POINTS
     65#include <trace/events/vmscan.h>
     66
     67struct scan_control {
     68	/* How many pages shrink_list() should reclaim */
     69	unsigned long nr_to_reclaim;
     70
     71	/*
     72	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
     73	 * are scanned.
     74	 */
     75	nodemask_t	*nodemask;
     76
     77	/*
     78	 * The memory cgroup that hit its limit and as a result is the
     79	 * primary target of this reclaim invocation.
     80	 */
     81	struct mem_cgroup *target_mem_cgroup;
     82
     83	/*
     84	 * Scan pressure balancing between anon and file LRUs
     85	 */
     86	unsigned long	anon_cost;
     87	unsigned long	file_cost;
     88
     89	/* Can active pages be deactivated as part of reclaim? */
     90#define DEACTIVATE_ANON 1
     91#define DEACTIVATE_FILE 2
     92	unsigned int may_deactivate:2;
     93	unsigned int force_deactivate:1;
     94	unsigned int skipped_deactivate:1;
     95
     96	/* Writepage batching in laptop mode; RECLAIM_WRITE */
     97	unsigned int may_writepage:1;
     98
     99	/* Can mapped pages be reclaimed? */
    100	unsigned int may_unmap:1;
    101
    102	/* Can pages be swapped as part of reclaim? */
    103	unsigned int may_swap:1;
    104
    105	/*
    106	 * Cgroup memory below memory.low is protected as long as we
    107	 * don't threaten to OOM. If any cgroup is reclaimed at
    108	 * reduced force or passed over entirely due to its memory.low
    109	 * setting (memcg_low_skipped), and nothing is reclaimed as a
    110	 * result, then go back for one more cycle that reclaims the protected
    111	 * memory (memcg_low_reclaim) to avert OOM.
    112	 */
    113	unsigned int memcg_low_reclaim:1;
    114	unsigned int memcg_low_skipped:1;
    115
    116	unsigned int hibernation_mode:1;
    117
    118	/* One of the zones is ready for compaction */
    119	unsigned int compaction_ready:1;
    120
    121	/* There is easily reclaimable cold cache in the current node */
    122	unsigned int cache_trim_mode:1;
    123
    124	/* The file pages on the current node are dangerously low */
    125	unsigned int file_is_tiny:1;
    126
    127	/* Always discard instead of demoting to lower tier memory */
    128	unsigned int no_demotion:1;
    129
    130	/* Allocation order */
    131	s8 order;
    132
    133	/* Scan (total_size >> priority) pages at once */
    134	s8 priority;
    135
    136	/* The highest zone to isolate pages for reclaim from */
    137	s8 reclaim_idx;
    138
    139	/* This context's GFP mask */
    140	gfp_t gfp_mask;
    141
    142	/* Incremented by the number of inactive pages that were scanned */
    143	unsigned long nr_scanned;
    144
    145	/* Number of pages freed so far during a call to shrink_zones() */
    146	unsigned long nr_reclaimed;
    147
    148	struct {
    149		unsigned int dirty;
    150		unsigned int unqueued_dirty;
    151		unsigned int congested;
    152		unsigned int writeback;
    153		unsigned int immediate;
    154		unsigned int file_taken;
    155		unsigned int taken;
    156	} nr;
    157
    158	/* for recording the reclaimed slab by now */
    159	struct reclaim_state reclaim_state;
    160};
    161
    162#ifdef ARCH_HAS_PREFETCHW
    163#define prefetchw_prev_lru_page(_page, _base, _field)			\
    164	do {								\
    165		if ((_page)->lru.prev != _base) {			\
    166			struct page *prev;				\
    167									\
    168			prev = lru_to_page(&(_page->lru));		\
    169			prefetchw(&prev->_field);			\
    170		}							\
    171	} while (0)
    172#else
    173#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
    174#endif
    175
    176/*
    177 * From 0 .. 200.  Higher means more swappy.
    178 */
    179int vm_swappiness = 60;
    180
    181static void set_task_reclaim_state(struct task_struct *task,
    182				   struct reclaim_state *rs)
    183{
    184	/* Check for an overwrite */
    185	WARN_ON_ONCE(rs && task->reclaim_state);
    186
    187	/* Check for the nulling of an already-nulled member */
    188	WARN_ON_ONCE(!rs && !task->reclaim_state);
    189
    190	task->reclaim_state = rs;
    191}
    192
    193static LIST_HEAD(shrinker_list);
    194static DECLARE_RWSEM(shrinker_rwsem);
    195
    196#ifdef CONFIG_MEMCG
    197static int shrinker_nr_max;
    198
    199/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
    200static inline int shrinker_map_size(int nr_items)
    201{
    202	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
    203}
    204
    205static inline int shrinker_defer_size(int nr_items)
    206{
    207	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
    208}
    209
    210static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
    211						     int nid)
    212{
    213	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
    214					 lockdep_is_held(&shrinker_rwsem));
    215}
    216
    217static int expand_one_shrinker_info(struct mem_cgroup *memcg,
    218				    int map_size, int defer_size,
    219				    int old_map_size, int old_defer_size)
    220{
    221	struct shrinker_info *new, *old;
    222	struct mem_cgroup_per_node *pn;
    223	int nid;
    224	int size = map_size + defer_size;
    225
    226	for_each_node(nid) {
    227		pn = memcg->nodeinfo[nid];
    228		old = shrinker_info_protected(memcg, nid);
    229		/* Not yet online memcg */
    230		if (!old)
    231			return 0;
    232
    233		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
    234		if (!new)
    235			return -ENOMEM;
    236
    237		new->nr_deferred = (atomic_long_t *)(new + 1);
    238		new->map = (void *)new->nr_deferred + defer_size;
    239
    240		/* map: set all old bits, clear all new bits */
    241		memset(new->map, (int)0xff, old_map_size);
    242		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
    243		/* nr_deferred: copy old values, clear all new values */
    244		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
    245		memset((void *)new->nr_deferred + old_defer_size, 0,
    246		       defer_size - old_defer_size);
    247
    248		rcu_assign_pointer(pn->shrinker_info, new);
    249		kvfree_rcu(old, rcu);
    250	}
    251
    252	return 0;
    253}
    254
    255void free_shrinker_info(struct mem_cgroup *memcg)
    256{
    257	struct mem_cgroup_per_node *pn;
    258	struct shrinker_info *info;
    259	int nid;
    260
    261	for_each_node(nid) {
    262		pn = memcg->nodeinfo[nid];
    263		info = rcu_dereference_protected(pn->shrinker_info, true);
    264		kvfree(info);
    265		rcu_assign_pointer(pn->shrinker_info, NULL);
    266	}
    267}
    268
    269int alloc_shrinker_info(struct mem_cgroup *memcg)
    270{
    271	struct shrinker_info *info;
    272	int nid, size, ret = 0;
    273	int map_size, defer_size = 0;
    274
    275	down_write(&shrinker_rwsem);
    276	map_size = shrinker_map_size(shrinker_nr_max);
    277	defer_size = shrinker_defer_size(shrinker_nr_max);
    278	size = map_size + defer_size;
    279	for_each_node(nid) {
    280		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
    281		if (!info) {
    282			free_shrinker_info(memcg);
    283			ret = -ENOMEM;
    284			break;
    285		}
    286		info->nr_deferred = (atomic_long_t *)(info + 1);
    287		info->map = (void *)info->nr_deferred + defer_size;
    288		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
    289	}
    290	up_write(&shrinker_rwsem);
    291
    292	return ret;
    293}
    294
    295static inline bool need_expand(int nr_max)
    296{
    297	return round_up(nr_max, BITS_PER_LONG) >
    298	       round_up(shrinker_nr_max, BITS_PER_LONG);
    299}
    300
    301static int expand_shrinker_info(int new_id)
    302{
    303	int ret = 0;
    304	int new_nr_max = new_id + 1;
    305	int map_size, defer_size = 0;
    306	int old_map_size, old_defer_size = 0;
    307	struct mem_cgroup *memcg;
    308
    309	if (!need_expand(new_nr_max))
    310		goto out;
    311
    312	if (!root_mem_cgroup)
    313		goto out;
    314
    315	lockdep_assert_held(&shrinker_rwsem);
    316
    317	map_size = shrinker_map_size(new_nr_max);
    318	defer_size = shrinker_defer_size(new_nr_max);
    319	old_map_size = shrinker_map_size(shrinker_nr_max);
    320	old_defer_size = shrinker_defer_size(shrinker_nr_max);
    321
    322	memcg = mem_cgroup_iter(NULL, NULL, NULL);
    323	do {
    324		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
    325					       old_map_size, old_defer_size);
    326		if (ret) {
    327			mem_cgroup_iter_break(NULL, memcg);
    328			goto out;
    329		}
    330	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
    331out:
    332	if (!ret)
    333		shrinker_nr_max = new_nr_max;
    334
    335	return ret;
    336}
    337
    338void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
    339{
    340	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
    341		struct shrinker_info *info;
    342
    343		rcu_read_lock();
    344		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
    345		/* Pairs with smp mb in shrink_slab() */
    346		smp_mb__before_atomic();
    347		set_bit(shrinker_id, info->map);
    348		rcu_read_unlock();
    349	}
    350}
    351
    352static DEFINE_IDR(shrinker_idr);
    353
    354static int prealloc_memcg_shrinker(struct shrinker *shrinker)
    355{
    356	int id, ret = -ENOMEM;
    357
    358	if (mem_cgroup_disabled())
    359		return -ENOSYS;
    360
    361	down_write(&shrinker_rwsem);
    362	/* This may call shrinker, so it must use down_read_trylock() */
    363	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
    364	if (id < 0)
    365		goto unlock;
    366
    367	if (id >= shrinker_nr_max) {
    368		if (expand_shrinker_info(id)) {
    369			idr_remove(&shrinker_idr, id);
    370			goto unlock;
    371		}
    372	}
    373	shrinker->id = id;
    374	ret = 0;
    375unlock:
    376	up_write(&shrinker_rwsem);
    377	return ret;
    378}
    379
    380static void unregister_memcg_shrinker(struct shrinker *shrinker)
    381{
    382	int id = shrinker->id;
    383
    384	BUG_ON(id < 0);
    385
    386	lockdep_assert_held(&shrinker_rwsem);
    387
    388	idr_remove(&shrinker_idr, id);
    389}
    390
    391static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
    392				   struct mem_cgroup *memcg)
    393{
    394	struct shrinker_info *info;
    395
    396	info = shrinker_info_protected(memcg, nid);
    397	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
    398}
    399
    400static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
    401				  struct mem_cgroup *memcg)
    402{
    403	struct shrinker_info *info;
    404
    405	info = shrinker_info_protected(memcg, nid);
    406	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
    407}
    408
    409void reparent_shrinker_deferred(struct mem_cgroup *memcg)
    410{
    411	int i, nid;
    412	long nr;
    413	struct mem_cgroup *parent;
    414	struct shrinker_info *child_info, *parent_info;
    415
    416	parent = parent_mem_cgroup(memcg);
    417	if (!parent)
    418		parent = root_mem_cgroup;
    419
    420	/* Prevent from concurrent shrinker_info expand */
    421	down_read(&shrinker_rwsem);
    422	for_each_node(nid) {
    423		child_info = shrinker_info_protected(memcg, nid);
    424		parent_info = shrinker_info_protected(parent, nid);
    425		for (i = 0; i < shrinker_nr_max; i++) {
    426			nr = atomic_long_read(&child_info->nr_deferred[i]);
    427			atomic_long_add(nr, &parent_info->nr_deferred[i]);
    428		}
    429	}
    430	up_read(&shrinker_rwsem);
    431}
    432
    433static bool cgroup_reclaim(struct scan_control *sc)
    434{
    435	return sc->target_mem_cgroup;
    436}
    437
    438/**
    439 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
    440 * @sc: scan_control in question
    441 *
    442 * The normal page dirty throttling mechanism in balance_dirty_pages() is
    443 * completely broken with the legacy memcg and direct stalling in
    444 * shrink_page_list() is used for throttling instead, which lacks all the
    445 * niceties such as fairness, adaptive pausing, bandwidth proportional
    446 * allocation and configurability.
    447 *
    448 * This function tests whether the vmscan currently in progress can assume
    449 * that the normal dirty throttling mechanism is operational.
    450 */
    451static bool writeback_throttling_sane(struct scan_control *sc)
    452{
    453	if (!cgroup_reclaim(sc))
    454		return true;
    455#ifdef CONFIG_CGROUP_WRITEBACK
    456	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
    457		return true;
    458#endif
    459	return false;
    460}
    461#else
    462static int prealloc_memcg_shrinker(struct shrinker *shrinker)
    463{
    464	return -ENOSYS;
    465}
    466
    467static void unregister_memcg_shrinker(struct shrinker *shrinker)
    468{
    469}
    470
    471static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
    472				   struct mem_cgroup *memcg)
    473{
    474	return 0;
    475}
    476
    477static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
    478				  struct mem_cgroup *memcg)
    479{
    480	return 0;
    481}
    482
    483static bool cgroup_reclaim(struct scan_control *sc)
    484{
    485	return false;
    486}
    487
    488static bool writeback_throttling_sane(struct scan_control *sc)
    489{
    490	return true;
    491}
    492#endif
    493
    494static long xchg_nr_deferred(struct shrinker *shrinker,
    495			     struct shrink_control *sc)
    496{
    497	int nid = sc->nid;
    498
    499	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
    500		nid = 0;
    501
    502	if (sc->memcg &&
    503	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
    504		return xchg_nr_deferred_memcg(nid, shrinker,
    505					      sc->memcg);
    506
    507	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
    508}
    509
    510
    511static long add_nr_deferred(long nr, struct shrinker *shrinker,
    512			    struct shrink_control *sc)
    513{
    514	int nid = sc->nid;
    515
    516	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
    517		nid = 0;
    518
    519	if (sc->memcg &&
    520	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
    521		return add_nr_deferred_memcg(nr, nid, shrinker,
    522					     sc->memcg);
    523
    524	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
    525}
    526
    527static bool can_demote(int nid, struct scan_control *sc)
    528{
    529	if (!numa_demotion_enabled)
    530		return false;
    531	if (sc && sc->no_demotion)
    532		return false;
    533	if (next_demotion_node(nid) == NUMA_NO_NODE)
    534		return false;
    535
    536	return true;
    537}
    538
    539static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
    540					  int nid,
    541					  struct scan_control *sc)
    542{
    543	if (memcg == NULL) {
    544		/*
    545		 * For non-memcg reclaim, is there
    546		 * space in any swap device?
    547		 */
    548		if (get_nr_swap_pages() > 0)
    549			return true;
    550	} else {
    551		/* Is the memcg below its swap limit? */
    552		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
    553			return true;
    554	}
    555
    556	/*
    557	 * The page can not be swapped.
    558	 *
    559	 * Can it be reclaimed from this node via demotion?
    560	 */
    561	return can_demote(nid, sc);
    562}
    563
    564/*
    565 * This misses isolated pages which are not accounted for to save counters.
    566 * As the data only determines if reclaim or compaction continues, it is
    567 * not expected that isolated pages will be a dominating factor.
    568 */
    569unsigned long zone_reclaimable_pages(struct zone *zone)
    570{
    571	unsigned long nr;
    572
    573	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
    574		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
    575	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
    576		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
    577			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
    578
    579	return nr;
    580}
    581
    582/**
    583 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
    584 * @lruvec: lru vector
    585 * @lru: lru to use
    586 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
    587 */
    588static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
    589				     int zone_idx)
    590{
    591	unsigned long size = 0;
    592	int zid;
    593
    594	for (zid = 0; zid <= zone_idx; zid++) {
    595		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
    596
    597		if (!managed_zone(zone))
    598			continue;
    599
    600		if (!mem_cgroup_disabled())
    601			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
    602		else
    603			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
    604	}
    605	return size;
    606}
    607
    608/*
    609 * Add a shrinker callback to be called from the vm.
    610 */
    611int prealloc_shrinker(struct shrinker *shrinker)
    612{
    613	unsigned int size;
    614	int err;
    615
    616	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
    617		err = prealloc_memcg_shrinker(shrinker);
    618		if (err != -ENOSYS)
    619			return err;
    620
    621		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
    622	}
    623
    624	size = sizeof(*shrinker->nr_deferred);
    625	if (shrinker->flags & SHRINKER_NUMA_AWARE)
    626		size *= nr_node_ids;
    627
    628	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
    629	if (!shrinker->nr_deferred)
    630		return -ENOMEM;
    631
    632	return 0;
    633}
    634
    635void free_prealloced_shrinker(struct shrinker *shrinker)
    636{
    637	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
    638		down_write(&shrinker_rwsem);
    639		unregister_memcg_shrinker(shrinker);
    640		up_write(&shrinker_rwsem);
    641		return;
    642	}
    643
    644	kfree(shrinker->nr_deferred);
    645	shrinker->nr_deferred = NULL;
    646}
    647
    648void register_shrinker_prepared(struct shrinker *shrinker)
    649{
    650	down_write(&shrinker_rwsem);
    651	list_add_tail(&shrinker->list, &shrinker_list);
    652	shrinker->flags |= SHRINKER_REGISTERED;
    653	up_write(&shrinker_rwsem);
    654}
    655
    656int register_shrinker(struct shrinker *shrinker)
    657{
    658	int err = prealloc_shrinker(shrinker);
    659
    660	if (err)
    661		return err;
    662	register_shrinker_prepared(shrinker);
    663	return 0;
    664}
    665EXPORT_SYMBOL(register_shrinker);
    666
    667/*
    668 * Remove one
    669 */
    670void unregister_shrinker(struct shrinker *shrinker)
    671{
    672	if (!(shrinker->flags & SHRINKER_REGISTERED))
    673		return;
    674
    675	down_write(&shrinker_rwsem);
    676	list_del(&shrinker->list);
    677	shrinker->flags &= ~SHRINKER_REGISTERED;
    678	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
    679		unregister_memcg_shrinker(shrinker);
    680	up_write(&shrinker_rwsem);
    681
    682	kfree(shrinker->nr_deferred);
    683	shrinker->nr_deferred = NULL;
    684}
    685EXPORT_SYMBOL(unregister_shrinker);
    686
    687/**
    688 * synchronize_shrinkers - Wait for all running shrinkers to complete.
    689 *
    690 * This is equivalent to calling unregister_shrink() and register_shrinker(),
    691 * but atomically and with less overhead. This is useful to guarantee that all
    692 * shrinker invocations have seen an update, before freeing memory, similar to
    693 * rcu.
    694 */
    695void synchronize_shrinkers(void)
    696{
    697	down_write(&shrinker_rwsem);
    698	up_write(&shrinker_rwsem);
    699}
    700EXPORT_SYMBOL(synchronize_shrinkers);
    701
    702#define SHRINK_BATCH 128
    703
    704static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
    705				    struct shrinker *shrinker, int priority)
    706{
    707	unsigned long freed = 0;
    708	unsigned long long delta;
    709	long total_scan;
    710	long freeable;
    711	long nr;
    712	long new_nr;
    713	long batch_size = shrinker->batch ? shrinker->batch
    714					  : SHRINK_BATCH;
    715	long scanned = 0, next_deferred;
    716
    717	freeable = shrinker->count_objects(shrinker, shrinkctl);
    718	if (freeable == 0 || freeable == SHRINK_EMPTY)
    719		return freeable;
    720
    721	/*
    722	 * copy the current shrinker scan count into a local variable
    723	 * and zero it so that other concurrent shrinker invocations
    724	 * don't also do this scanning work.
    725	 */
    726	nr = xchg_nr_deferred(shrinker, shrinkctl);
    727
    728	if (shrinker->seeks) {
    729		delta = freeable >> priority;
    730		delta *= 4;
    731		do_div(delta, shrinker->seeks);
    732	} else {
    733		/*
    734		 * These objects don't require any IO to create. Trim
    735		 * them aggressively under memory pressure to keep
    736		 * them from causing refetches in the IO caches.
    737		 */
    738		delta = freeable / 2;
    739	}
    740
    741	total_scan = nr >> priority;
    742	total_scan += delta;
    743	total_scan = min(total_scan, (2 * freeable));
    744
    745	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
    746				   freeable, delta, total_scan, priority);
    747
    748	/*
    749	 * Normally, we should not scan less than batch_size objects in one
    750	 * pass to avoid too frequent shrinker calls, but if the slab has less
    751	 * than batch_size objects in total and we are really tight on memory,
    752	 * we will try to reclaim all available objects, otherwise we can end
    753	 * up failing allocations although there are plenty of reclaimable
    754	 * objects spread over several slabs with usage less than the
    755	 * batch_size.
    756	 *
    757	 * We detect the "tight on memory" situations by looking at the total
    758	 * number of objects we want to scan (total_scan). If it is greater
    759	 * than the total number of objects on slab (freeable), we must be
    760	 * scanning at high prio and therefore should try to reclaim as much as
    761	 * possible.
    762	 */
    763	while (total_scan >= batch_size ||
    764	       total_scan >= freeable) {
    765		unsigned long ret;
    766		unsigned long nr_to_scan = min(batch_size, total_scan);
    767
    768		shrinkctl->nr_to_scan = nr_to_scan;
    769		shrinkctl->nr_scanned = nr_to_scan;
    770		ret = shrinker->scan_objects(shrinker, shrinkctl);
    771		if (ret == SHRINK_STOP)
    772			break;
    773		freed += ret;
    774
    775		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
    776		total_scan -= shrinkctl->nr_scanned;
    777		scanned += shrinkctl->nr_scanned;
    778
    779		cond_resched();
    780	}
    781
    782	/*
    783	 * The deferred work is increased by any new work (delta) that wasn't
    784	 * done, decreased by old deferred work that was done now.
    785	 *
    786	 * And it is capped to two times of the freeable items.
    787	 */
    788	next_deferred = max_t(long, (nr + delta - scanned), 0);
    789	next_deferred = min(next_deferred, (2 * freeable));
    790
    791	/*
    792	 * move the unused scan count back into the shrinker in a
    793	 * manner that handles concurrent updates.
    794	 */
    795	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
    796
    797	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
    798	return freed;
    799}
    800
    801#ifdef CONFIG_MEMCG
    802static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
    803			struct mem_cgroup *memcg, int priority)
    804{
    805	struct shrinker_info *info;
    806	unsigned long ret, freed = 0;
    807	int i;
    808
    809	if (!mem_cgroup_online(memcg))
    810		return 0;
    811
    812	if (!down_read_trylock(&shrinker_rwsem))
    813		return 0;
    814
    815	info = shrinker_info_protected(memcg, nid);
    816	if (unlikely(!info))
    817		goto unlock;
    818
    819	for_each_set_bit(i, info->map, shrinker_nr_max) {
    820		struct shrink_control sc = {
    821			.gfp_mask = gfp_mask,
    822			.nid = nid,
    823			.memcg = memcg,
    824		};
    825		struct shrinker *shrinker;
    826
    827		shrinker = idr_find(&shrinker_idr, i);
    828		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
    829			if (!shrinker)
    830				clear_bit(i, info->map);
    831			continue;
    832		}
    833
    834		/* Call non-slab shrinkers even though kmem is disabled */
    835		if (!memcg_kmem_enabled() &&
    836		    !(shrinker->flags & SHRINKER_NONSLAB))
    837			continue;
    838
    839		ret = do_shrink_slab(&sc, shrinker, priority);
    840		if (ret == SHRINK_EMPTY) {
    841			clear_bit(i, info->map);
    842			/*
    843			 * After the shrinker reported that it had no objects to
    844			 * free, but before we cleared the corresponding bit in
    845			 * the memcg shrinker map, a new object might have been
    846			 * added. To make sure, we have the bit set in this
    847			 * case, we invoke the shrinker one more time and reset
    848			 * the bit if it reports that it is not empty anymore.
    849			 * The memory barrier here pairs with the barrier in
    850			 * set_shrinker_bit():
    851			 *
    852			 * list_lru_add()     shrink_slab_memcg()
    853			 *   list_add_tail()    clear_bit()
    854			 *   <MB>               <MB>
    855			 *   set_bit()          do_shrink_slab()
    856			 */
    857			smp_mb__after_atomic();
    858			ret = do_shrink_slab(&sc, shrinker, priority);
    859			if (ret == SHRINK_EMPTY)
    860				ret = 0;
    861			else
    862				set_shrinker_bit(memcg, nid, i);
    863		}
    864		freed += ret;
    865
    866		if (rwsem_is_contended(&shrinker_rwsem)) {
    867			freed = freed ? : 1;
    868			break;
    869		}
    870	}
    871unlock:
    872	up_read(&shrinker_rwsem);
    873	return freed;
    874}
    875#else /* CONFIG_MEMCG */
    876static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
    877			struct mem_cgroup *memcg, int priority)
    878{
    879	return 0;
    880}
    881#endif /* CONFIG_MEMCG */
    882
    883/**
    884 * shrink_slab - shrink slab caches
    885 * @gfp_mask: allocation context
    886 * @nid: node whose slab caches to target
    887 * @memcg: memory cgroup whose slab caches to target
    888 * @priority: the reclaim priority
    889 *
    890 * Call the shrink functions to age shrinkable caches.
    891 *
    892 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
    893 * unaware shrinkers will receive a node id of 0 instead.
    894 *
    895 * @memcg specifies the memory cgroup to target. Unaware shrinkers
    896 * are called only if it is the root cgroup.
    897 *
    898 * @priority is sc->priority, we take the number of objects and >> by priority
    899 * in order to get the scan target.
    900 *
    901 * Returns the number of reclaimed slab objects.
    902 */
    903static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
    904				 struct mem_cgroup *memcg,
    905				 int priority)
    906{
    907	unsigned long ret, freed = 0;
    908	struct shrinker *shrinker;
    909
    910	/*
    911	 * The root memcg might be allocated even though memcg is disabled
    912	 * via "cgroup_disable=memory" boot parameter.  This could make
    913	 * mem_cgroup_is_root() return false, then just run memcg slab
    914	 * shrink, but skip global shrink.  This may result in premature
    915	 * oom.
    916	 */
    917	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
    918		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
    919
    920	if (!down_read_trylock(&shrinker_rwsem))
    921		goto out;
    922
    923	list_for_each_entry(shrinker, &shrinker_list, list) {
    924		struct shrink_control sc = {
    925			.gfp_mask = gfp_mask,
    926			.nid = nid,
    927			.memcg = memcg,
    928		};
    929
    930		ret = do_shrink_slab(&sc, shrinker, priority);
    931		if (ret == SHRINK_EMPTY)
    932			ret = 0;
    933		freed += ret;
    934		/*
    935		 * Bail out if someone want to register a new shrinker to
    936		 * prevent the registration from being stalled for long periods
    937		 * by parallel ongoing shrinking.
    938		 */
    939		if (rwsem_is_contended(&shrinker_rwsem)) {
    940			freed = freed ? : 1;
    941			break;
    942		}
    943	}
    944
    945	up_read(&shrinker_rwsem);
    946out:
    947	cond_resched();
    948	return freed;
    949}
    950
    951static void drop_slab_node(int nid)
    952{
    953	unsigned long freed;
    954	int shift = 0;
    955
    956	do {
    957		struct mem_cgroup *memcg = NULL;
    958
    959		if (fatal_signal_pending(current))
    960			return;
    961
    962		freed = 0;
    963		memcg = mem_cgroup_iter(NULL, NULL, NULL);
    964		do {
    965			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
    966		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
    967	} while ((freed >> shift++) > 1);
    968}
    969
    970void drop_slab(void)
    971{
    972	int nid;
    973
    974	for_each_online_node(nid)
    975		drop_slab_node(nid);
    976}
    977
    978static inline int is_page_cache_freeable(struct folio *folio)
    979{
    980	/*
    981	 * A freeable page cache page is referenced only by the caller
    982	 * that isolated the page, the page cache and optional buffer
    983	 * heads at page->private.
    984	 */
    985	return folio_ref_count(folio) - folio_test_private(folio) ==
    986		1 + folio_nr_pages(folio);
    987}
    988
    989/*
    990 * We detected a synchronous write error writing a folio out.  Probably
    991 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
    992 * fsync(), msync() or close().
    993 *
    994 * The tricky part is that after writepage we cannot touch the mapping: nothing
    995 * prevents it from being freed up.  But we have a ref on the folio and once
    996 * that folio is locked, the mapping is pinned.
    997 *
    998 * We're allowed to run sleeping folio_lock() here because we know the caller has
    999 * __GFP_FS.
   1000 */
   1001static void handle_write_error(struct address_space *mapping,
   1002				struct folio *folio, int error)
   1003{
   1004	folio_lock(folio);
   1005	if (folio_mapping(folio) == mapping)
   1006		mapping_set_error(mapping, error);
   1007	folio_unlock(folio);
   1008}
   1009
   1010static bool skip_throttle_noprogress(pg_data_t *pgdat)
   1011{
   1012	int reclaimable = 0, write_pending = 0;
   1013	int i;
   1014
   1015	/*
   1016	 * If kswapd is disabled, reschedule if necessary but do not
   1017	 * throttle as the system is likely near OOM.
   1018	 */
   1019	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
   1020		return true;
   1021
   1022	/*
   1023	 * If there are a lot of dirty/writeback pages then do not
   1024	 * throttle as throttling will occur when the pages cycle
   1025	 * towards the end of the LRU if still under writeback.
   1026	 */
   1027	for (i = 0; i < MAX_NR_ZONES; i++) {
   1028		struct zone *zone = pgdat->node_zones + i;
   1029
   1030		if (!managed_zone(zone))
   1031			continue;
   1032
   1033		reclaimable += zone_reclaimable_pages(zone);
   1034		write_pending += zone_page_state_snapshot(zone,
   1035						  NR_ZONE_WRITE_PENDING);
   1036	}
   1037	if (2 * write_pending <= reclaimable)
   1038		return true;
   1039
   1040	return false;
   1041}
   1042
   1043void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
   1044{
   1045	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
   1046	long timeout, ret;
   1047	DEFINE_WAIT(wait);
   1048
   1049	/*
   1050	 * Do not throttle IO workers, kthreads other than kswapd or
   1051	 * workqueues. They may be required for reclaim to make
   1052	 * forward progress (e.g. journalling workqueues or kthreads).
   1053	 */
   1054	if (!current_is_kswapd() &&
   1055	    current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
   1056		cond_resched();
   1057		return;
   1058	}
   1059
   1060	/*
   1061	 * These figures are pulled out of thin air.
   1062	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
   1063	 * parallel reclaimers which is a short-lived event so the timeout is
   1064	 * short. Failing to make progress or waiting on writeback are
   1065	 * potentially long-lived events so use a longer timeout. This is shaky
   1066	 * logic as a failure to make progress could be due to anything from
   1067	 * writeback to a slow device to excessive references pages at the tail
   1068	 * of the inactive LRU.
   1069	 */
   1070	switch(reason) {
   1071	case VMSCAN_THROTTLE_WRITEBACK:
   1072		timeout = HZ/10;
   1073
   1074		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
   1075			WRITE_ONCE(pgdat->nr_reclaim_start,
   1076				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
   1077		}
   1078
   1079		break;
   1080	case VMSCAN_THROTTLE_CONGESTED:
   1081		fallthrough;
   1082	case VMSCAN_THROTTLE_NOPROGRESS:
   1083		if (skip_throttle_noprogress(pgdat)) {
   1084			cond_resched();
   1085			return;
   1086		}
   1087
   1088		timeout = 1;
   1089
   1090		break;
   1091	case VMSCAN_THROTTLE_ISOLATED:
   1092		timeout = HZ/50;
   1093		break;
   1094	default:
   1095		WARN_ON_ONCE(1);
   1096		timeout = HZ;
   1097		break;
   1098	}
   1099
   1100	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
   1101	ret = schedule_timeout(timeout);
   1102	finish_wait(wqh, &wait);
   1103
   1104	if (reason == VMSCAN_THROTTLE_WRITEBACK)
   1105		atomic_dec(&pgdat->nr_writeback_throttled);
   1106
   1107	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
   1108				jiffies_to_usecs(timeout - ret),
   1109				reason);
   1110}
   1111
   1112/*
   1113 * Account for pages written if tasks are throttled waiting on dirty
   1114 * pages to clean. If enough pages have been cleaned since throttling
   1115 * started then wakeup the throttled tasks.
   1116 */
   1117void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
   1118							int nr_throttled)
   1119{
   1120	unsigned long nr_written;
   1121
   1122	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
   1123
   1124	/*
   1125	 * This is an inaccurate read as the per-cpu deltas may not
   1126	 * be synchronised. However, given that the system is
   1127	 * writeback throttled, it is not worth taking the penalty
   1128	 * of getting an accurate count. At worst, the throttle
   1129	 * timeout guarantees forward progress.
   1130	 */
   1131	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
   1132		READ_ONCE(pgdat->nr_reclaim_start);
   1133
   1134	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
   1135		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
   1136}
   1137
   1138/* possible outcome of pageout() */
   1139typedef enum {
   1140	/* failed to write page out, page is locked */
   1141	PAGE_KEEP,
   1142	/* move page to the active list, page is locked */
   1143	PAGE_ACTIVATE,
   1144	/* page has been sent to the disk successfully, page is unlocked */
   1145	PAGE_SUCCESS,
   1146	/* page is clean and locked */
   1147	PAGE_CLEAN,
   1148} pageout_t;
   1149
   1150/*
   1151 * pageout is called by shrink_page_list() for each dirty page.
   1152 * Calls ->writepage().
   1153 */
   1154static pageout_t pageout(struct folio *folio, struct address_space *mapping,
   1155			 struct swap_iocb **plug)
   1156{
   1157	/*
   1158	 * If the folio is dirty, only perform writeback if that write
   1159	 * will be non-blocking.  To prevent this allocation from being
   1160	 * stalled by pagecache activity.  But note that there may be
   1161	 * stalls if we need to run get_block().  We could test
   1162	 * PagePrivate for that.
   1163	 *
   1164	 * If this process is currently in __generic_file_write_iter() against
   1165	 * this folio's queue, we can perform writeback even if that
   1166	 * will block.
   1167	 *
   1168	 * If the folio is swapcache, write it back even if that would
   1169	 * block, for some throttling. This happens by accident, because
   1170	 * swap_backing_dev_info is bust: it doesn't reflect the
   1171	 * congestion state of the swapdevs.  Easy to fix, if needed.
   1172	 */
   1173	if (!is_page_cache_freeable(folio))
   1174		return PAGE_KEEP;
   1175	if (!mapping) {
   1176		/*
   1177		 * Some data journaling orphaned folios can have
   1178		 * folio->mapping == NULL while being dirty with clean buffers.
   1179		 */
   1180		if (folio_test_private(folio)) {
   1181			if (try_to_free_buffers(folio)) {
   1182				folio_clear_dirty(folio);
   1183				pr_info("%s: orphaned folio\n", __func__);
   1184				return PAGE_CLEAN;
   1185			}
   1186		}
   1187		return PAGE_KEEP;
   1188	}
   1189	if (mapping->a_ops->writepage == NULL)
   1190		return PAGE_ACTIVATE;
   1191
   1192	if (folio_clear_dirty_for_io(folio)) {
   1193		int res;
   1194		struct writeback_control wbc = {
   1195			.sync_mode = WB_SYNC_NONE,
   1196			.nr_to_write = SWAP_CLUSTER_MAX,
   1197			.range_start = 0,
   1198			.range_end = LLONG_MAX,
   1199			.for_reclaim = 1,
   1200			.swap_plug = plug,
   1201		};
   1202
   1203		folio_set_reclaim(folio);
   1204		res = mapping->a_ops->writepage(&folio->page, &wbc);
   1205		if (res < 0)
   1206			handle_write_error(mapping, folio, res);
   1207		if (res == AOP_WRITEPAGE_ACTIVATE) {
   1208			folio_clear_reclaim(folio);
   1209			return PAGE_ACTIVATE;
   1210		}
   1211
   1212		if (!folio_test_writeback(folio)) {
   1213			/* synchronous write or broken a_ops? */
   1214			folio_clear_reclaim(folio);
   1215		}
   1216		trace_mm_vmscan_write_folio(folio);
   1217		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
   1218		return PAGE_SUCCESS;
   1219	}
   1220
   1221	return PAGE_CLEAN;
   1222}
   1223
   1224/*
   1225 * Same as remove_mapping, but if the page is removed from the mapping, it
   1226 * gets returned with a refcount of 0.
   1227 */
   1228static int __remove_mapping(struct address_space *mapping, struct folio *folio,
   1229			    bool reclaimed, struct mem_cgroup *target_memcg)
   1230{
   1231	int refcount;
   1232	void *shadow = NULL;
   1233
   1234	BUG_ON(!folio_test_locked(folio));
   1235	BUG_ON(mapping != folio_mapping(folio));
   1236
   1237	if (!folio_test_swapcache(folio))
   1238		spin_lock(&mapping->host->i_lock);
   1239	xa_lock_irq(&mapping->i_pages);
   1240	/*
   1241	 * The non racy check for a busy page.
   1242	 *
   1243	 * Must be careful with the order of the tests. When someone has
   1244	 * a ref to the page, it may be possible that they dirty it then
   1245	 * drop the reference. So if PageDirty is tested before page_count
   1246	 * here, then the following race may occur:
   1247	 *
   1248	 * get_user_pages(&page);
   1249	 * [user mapping goes away]
   1250	 * write_to(page);
   1251	 *				!PageDirty(page)    [good]
   1252	 * SetPageDirty(page);
   1253	 * put_page(page);
   1254	 *				!page_count(page)   [good, discard it]
   1255	 *
   1256	 * [oops, our write_to data is lost]
   1257	 *
   1258	 * Reversing the order of the tests ensures such a situation cannot
   1259	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
   1260	 * load is not satisfied before that of page->_refcount.
   1261	 *
   1262	 * Note that if SetPageDirty is always performed via set_page_dirty,
   1263	 * and thus under the i_pages lock, then this ordering is not required.
   1264	 */
   1265	refcount = 1 + folio_nr_pages(folio);
   1266	if (!folio_ref_freeze(folio, refcount))
   1267		goto cannot_free;
   1268	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
   1269	if (unlikely(folio_test_dirty(folio))) {
   1270		folio_ref_unfreeze(folio, refcount);
   1271		goto cannot_free;
   1272	}
   1273
   1274	if (folio_test_swapcache(folio)) {
   1275		swp_entry_t swap = folio_swap_entry(folio);
   1276		mem_cgroup_swapout(folio, swap);
   1277		if (reclaimed && !mapping_exiting(mapping))
   1278			shadow = workingset_eviction(folio, target_memcg);
   1279		__delete_from_swap_cache(&folio->page, swap, shadow);
   1280		xa_unlock_irq(&mapping->i_pages);
   1281		put_swap_page(&folio->page, swap);
   1282	} else {
   1283		void (*free_folio)(struct folio *);
   1284
   1285		free_folio = mapping->a_ops->free_folio;
   1286		/*
   1287		 * Remember a shadow entry for reclaimed file cache in
   1288		 * order to detect refaults, thus thrashing, later on.
   1289		 *
   1290		 * But don't store shadows in an address space that is
   1291		 * already exiting.  This is not just an optimization,
   1292		 * inode reclaim needs to empty out the radix tree or
   1293		 * the nodes are lost.  Don't plant shadows behind its
   1294		 * back.
   1295		 *
   1296		 * We also don't store shadows for DAX mappings because the
   1297		 * only page cache pages found in these are zero pages
   1298		 * covering holes, and because we don't want to mix DAX
   1299		 * exceptional entries and shadow exceptional entries in the
   1300		 * same address_space.
   1301		 */
   1302		if (reclaimed && folio_is_file_lru(folio) &&
   1303		    !mapping_exiting(mapping) && !dax_mapping(mapping))
   1304			shadow = workingset_eviction(folio, target_memcg);
   1305		__filemap_remove_folio(folio, shadow);
   1306		xa_unlock_irq(&mapping->i_pages);
   1307		if (mapping_shrinkable(mapping))
   1308			inode_add_lru(mapping->host);
   1309		spin_unlock(&mapping->host->i_lock);
   1310
   1311		if (free_folio)
   1312			free_folio(folio);
   1313	}
   1314
   1315	return 1;
   1316
   1317cannot_free:
   1318	xa_unlock_irq(&mapping->i_pages);
   1319	if (!folio_test_swapcache(folio))
   1320		spin_unlock(&mapping->host->i_lock);
   1321	return 0;
   1322}
   1323
   1324/**
   1325 * remove_mapping() - Attempt to remove a folio from its mapping.
   1326 * @mapping: The address space.
   1327 * @folio: The folio to remove.
   1328 *
   1329 * If the folio is dirty, under writeback or if someone else has a ref
   1330 * on it, removal will fail.
   1331 * Return: The number of pages removed from the mapping.  0 if the folio
   1332 * could not be removed.
   1333 * Context: The caller should have a single refcount on the folio and
   1334 * hold its lock.
   1335 */
   1336long remove_mapping(struct address_space *mapping, struct folio *folio)
   1337{
   1338	if (__remove_mapping(mapping, folio, false, NULL)) {
   1339		/*
   1340		 * Unfreezing the refcount with 1 effectively
   1341		 * drops the pagecache ref for us without requiring another
   1342		 * atomic operation.
   1343		 */
   1344		folio_ref_unfreeze(folio, 1);
   1345		return folio_nr_pages(folio);
   1346	}
   1347	return 0;
   1348}
   1349
   1350/**
   1351 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
   1352 * @folio: Folio to be returned to an LRU list.
   1353 *
   1354 * Add previously isolated @folio to appropriate LRU list.
   1355 * The folio may still be unevictable for other reasons.
   1356 *
   1357 * Context: lru_lock must not be held, interrupts must be enabled.
   1358 */
   1359void folio_putback_lru(struct folio *folio)
   1360{
   1361	folio_add_lru(folio);
   1362	folio_put(folio);		/* drop ref from isolate */
   1363}
   1364
   1365enum page_references {
   1366	PAGEREF_RECLAIM,
   1367	PAGEREF_RECLAIM_CLEAN,
   1368	PAGEREF_KEEP,
   1369	PAGEREF_ACTIVATE,
   1370};
   1371
   1372static enum page_references folio_check_references(struct folio *folio,
   1373						  struct scan_control *sc)
   1374{
   1375	int referenced_ptes, referenced_folio;
   1376	unsigned long vm_flags;
   1377
   1378	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
   1379					   &vm_flags);
   1380	referenced_folio = folio_test_clear_referenced(folio);
   1381
   1382	/*
   1383	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
   1384	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
   1385	 */
   1386	if (vm_flags & VM_LOCKED)
   1387		return PAGEREF_ACTIVATE;
   1388
   1389	/* rmap lock contention: rotate */
   1390	if (referenced_ptes == -1)
   1391		return PAGEREF_KEEP;
   1392
   1393	if (referenced_ptes) {
   1394		/*
   1395		 * All mapped folios start out with page table
   1396		 * references from the instantiating fault, so we need
   1397		 * to look twice if a mapped file/anon folio is used more
   1398		 * than once.
   1399		 *
   1400		 * Mark it and spare it for another trip around the
   1401		 * inactive list.  Another page table reference will
   1402		 * lead to its activation.
   1403		 *
   1404		 * Note: the mark is set for activated folios as well
   1405		 * so that recently deactivated but used folios are
   1406		 * quickly recovered.
   1407		 */
   1408		folio_set_referenced(folio);
   1409
   1410		if (referenced_folio || referenced_ptes > 1)
   1411			return PAGEREF_ACTIVATE;
   1412
   1413		/*
   1414		 * Activate file-backed executable folios after first usage.
   1415		 */
   1416		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
   1417			return PAGEREF_ACTIVATE;
   1418
   1419		return PAGEREF_KEEP;
   1420	}
   1421
   1422	/* Reclaim if clean, defer dirty folios to writeback */
   1423	if (referenced_folio && folio_is_file_lru(folio))
   1424		return PAGEREF_RECLAIM_CLEAN;
   1425
   1426	return PAGEREF_RECLAIM;
   1427}
   1428
   1429/* Check if a page is dirty or under writeback */
   1430static void folio_check_dirty_writeback(struct folio *folio,
   1431				       bool *dirty, bool *writeback)
   1432{
   1433	struct address_space *mapping;
   1434
   1435	/*
   1436	 * Anonymous pages are not handled by flushers and must be written
   1437	 * from reclaim context. Do not stall reclaim based on them.
   1438	 * MADV_FREE anonymous pages are put into inactive file list too.
   1439	 * They could be mistakenly treated as file lru. So further anon
   1440	 * test is needed.
   1441	 */
   1442	if (!folio_is_file_lru(folio) ||
   1443	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
   1444		*dirty = false;
   1445		*writeback = false;
   1446		return;
   1447	}
   1448
   1449	/* By default assume that the folio flags are accurate */
   1450	*dirty = folio_test_dirty(folio);
   1451	*writeback = folio_test_writeback(folio);
   1452
   1453	/* Verify dirty/writeback state if the filesystem supports it */
   1454	if (!folio_test_private(folio))
   1455		return;
   1456
   1457	mapping = folio_mapping(folio);
   1458	if (mapping && mapping->a_ops->is_dirty_writeback)
   1459		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
   1460}
   1461
   1462static struct page *alloc_demote_page(struct page *page, unsigned long node)
   1463{
   1464	struct migration_target_control mtc = {
   1465		/*
   1466		 * Allocate from 'node', or fail quickly and quietly.
   1467		 * When this happens, 'page' will likely just be discarded
   1468		 * instead of migrated.
   1469		 */
   1470		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
   1471			    __GFP_THISNODE  | __GFP_NOWARN |
   1472			    __GFP_NOMEMALLOC | GFP_NOWAIT,
   1473		.nid = node
   1474	};
   1475
   1476	return alloc_migration_target(page, (unsigned long)&mtc);
   1477}
   1478
   1479/*
   1480 * Take pages on @demote_list and attempt to demote them to
   1481 * another node.  Pages which are not demoted are left on
   1482 * @demote_pages.
   1483 */
   1484static unsigned int demote_page_list(struct list_head *demote_pages,
   1485				     struct pglist_data *pgdat)
   1486{
   1487	int target_nid = next_demotion_node(pgdat->node_id);
   1488	unsigned int nr_succeeded;
   1489
   1490	if (list_empty(demote_pages))
   1491		return 0;
   1492
   1493	if (target_nid == NUMA_NO_NODE)
   1494		return 0;
   1495
   1496	/* Demotion ignores all cpuset and mempolicy settings */
   1497	migrate_pages(demote_pages, alloc_demote_page, NULL,
   1498			    target_nid, MIGRATE_ASYNC, MR_DEMOTION,
   1499			    &nr_succeeded);
   1500
   1501	if (current_is_kswapd())
   1502		__count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
   1503	else
   1504		__count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
   1505
   1506	return nr_succeeded;
   1507}
   1508
   1509static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
   1510{
   1511	if (gfp_mask & __GFP_FS)
   1512		return true;
   1513	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
   1514		return false;
   1515	/*
   1516	 * We can "enter_fs" for swap-cache with only __GFP_IO
   1517	 * providing this isn't SWP_FS_OPS.
   1518	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
   1519	 * but that will never affect SWP_FS_OPS, so the data_race
   1520	 * is safe.
   1521	 */
   1522	return !data_race(page_swap_flags(&folio->page) & SWP_FS_OPS);
   1523}
   1524
   1525/*
   1526 * shrink_page_list() returns the number of reclaimed pages
   1527 */
   1528static unsigned int shrink_page_list(struct list_head *page_list,
   1529				     struct pglist_data *pgdat,
   1530				     struct scan_control *sc,
   1531				     struct reclaim_stat *stat,
   1532				     bool ignore_references)
   1533{
   1534	LIST_HEAD(ret_pages);
   1535	LIST_HEAD(free_pages);
   1536	LIST_HEAD(demote_pages);
   1537	unsigned int nr_reclaimed = 0;
   1538	unsigned int pgactivate = 0;
   1539	bool do_demote_pass;
   1540	struct swap_iocb *plug = NULL;
   1541
   1542	memset(stat, 0, sizeof(*stat));
   1543	cond_resched();
   1544	do_demote_pass = can_demote(pgdat->node_id, sc);
   1545
   1546retry:
   1547	while (!list_empty(page_list)) {
   1548		struct address_space *mapping;
   1549		struct folio *folio;
   1550		enum page_references references = PAGEREF_RECLAIM;
   1551		bool dirty, writeback;
   1552		unsigned int nr_pages;
   1553
   1554		cond_resched();
   1555
   1556		folio = lru_to_folio(page_list);
   1557		list_del(&folio->lru);
   1558
   1559		if (!folio_trylock(folio))
   1560			goto keep;
   1561
   1562		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
   1563
   1564		nr_pages = folio_nr_pages(folio);
   1565
   1566		/* Account the number of base pages */
   1567		sc->nr_scanned += nr_pages;
   1568
   1569		if (unlikely(!folio_evictable(folio)))
   1570			goto activate_locked;
   1571
   1572		if (!sc->may_unmap && folio_mapped(folio))
   1573			goto keep_locked;
   1574
   1575		/*
   1576		 * The number of dirty pages determines if a node is marked
   1577		 * reclaim_congested. kswapd will stall and start writing
   1578		 * folios if the tail of the LRU is all dirty unqueued folios.
   1579		 */
   1580		folio_check_dirty_writeback(folio, &dirty, &writeback);
   1581		if (dirty || writeback)
   1582			stat->nr_dirty += nr_pages;
   1583
   1584		if (dirty && !writeback)
   1585			stat->nr_unqueued_dirty += nr_pages;
   1586
   1587		/*
   1588		 * Treat this folio as congested if folios are cycling
   1589		 * through the LRU so quickly that the folios marked
   1590		 * for immediate reclaim are making it to the end of
   1591		 * the LRU a second time.
   1592		 */
   1593		if (writeback && folio_test_reclaim(folio))
   1594			stat->nr_congested += nr_pages;
   1595
   1596		/*
   1597		 * If a folio at the tail of the LRU is under writeback, there
   1598		 * are three cases to consider.
   1599		 *
   1600		 * 1) If reclaim is encountering an excessive number
   1601		 *    of folios under writeback and this folio has both
   1602		 *    the writeback and reclaim flags set, then it
   1603		 *    indicates that folios are being queued for I/O but
   1604		 *    are being recycled through the LRU before the I/O
   1605		 *    can complete. Waiting on the folio itself risks an
   1606		 *    indefinite stall if it is impossible to writeback
   1607		 *    the folio due to I/O error or disconnected storage
   1608		 *    so instead note that the LRU is being scanned too
   1609		 *    quickly and the caller can stall after the folio
   1610		 *    list has been processed.
   1611		 *
   1612		 * 2) Global or new memcg reclaim encounters a folio that is
   1613		 *    not marked for immediate reclaim, or the caller does not
   1614		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
   1615		 *    not to fs). In this case mark the folio for immediate
   1616		 *    reclaim and continue scanning.
   1617		 *
   1618		 *    Require may_enter_fs() because we would wait on fs, which
   1619		 *    may not have submitted I/O yet. And the loop driver might
   1620		 *    enter reclaim, and deadlock if it waits on a folio for
   1621		 *    which it is needed to do the write (loop masks off
   1622		 *    __GFP_IO|__GFP_FS for this reason); but more thought
   1623		 *    would probably show more reasons.
   1624		 *
   1625		 * 3) Legacy memcg encounters a folio that already has the
   1626		 *    reclaim flag set. memcg does not have any dirty folio
   1627		 *    throttling so we could easily OOM just because too many
   1628		 *    folios are in writeback and there is nothing else to
   1629		 *    reclaim. Wait for the writeback to complete.
   1630		 *
   1631		 * In cases 1) and 2) we activate the folios to get them out of
   1632		 * the way while we continue scanning for clean folios on the
   1633		 * inactive list and refilling from the active list. The
   1634		 * observation here is that waiting for disk writes is more
   1635		 * expensive than potentially causing reloads down the line.
   1636		 * Since they're marked for immediate reclaim, they won't put
   1637		 * memory pressure on the cache working set any longer than it
   1638		 * takes to write them to disk.
   1639		 */
   1640		if (folio_test_writeback(folio)) {
   1641			/* Case 1 above */
   1642			if (current_is_kswapd() &&
   1643			    folio_test_reclaim(folio) &&
   1644			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
   1645				stat->nr_immediate += nr_pages;
   1646				goto activate_locked;
   1647
   1648			/* Case 2 above */
   1649			} else if (writeback_throttling_sane(sc) ||
   1650			    !folio_test_reclaim(folio) ||
   1651			    !may_enter_fs(folio, sc->gfp_mask)) {
   1652				/*
   1653				 * This is slightly racy -
   1654				 * folio_end_writeback() might have
   1655				 * just cleared the reclaim flag, then
   1656				 * setting the reclaim flag here ends up
   1657				 * interpreted as the readahead flag - but
   1658				 * that does not matter enough to care.
   1659				 * What we do want is for this folio to
   1660				 * have the reclaim flag set next time
   1661				 * memcg reclaim reaches the tests above,
   1662				 * so it will then wait for writeback to
   1663				 * avoid OOM; and it's also appropriate
   1664				 * in global reclaim.
   1665				 */
   1666				folio_set_reclaim(folio);
   1667				stat->nr_writeback += nr_pages;
   1668				goto activate_locked;
   1669
   1670			/* Case 3 above */
   1671			} else {
   1672				folio_unlock(folio);
   1673				folio_wait_writeback(folio);
   1674				/* then go back and try same folio again */
   1675				list_add_tail(&folio->lru, page_list);
   1676				continue;
   1677			}
   1678		}
   1679
   1680		if (!ignore_references)
   1681			references = folio_check_references(folio, sc);
   1682
   1683		switch (references) {
   1684		case PAGEREF_ACTIVATE:
   1685			goto activate_locked;
   1686		case PAGEREF_KEEP:
   1687			stat->nr_ref_keep += nr_pages;
   1688			goto keep_locked;
   1689		case PAGEREF_RECLAIM:
   1690		case PAGEREF_RECLAIM_CLEAN:
   1691			; /* try to reclaim the folio below */
   1692		}
   1693
   1694		/*
   1695		 * Before reclaiming the folio, try to relocate
   1696		 * its contents to another node.
   1697		 */
   1698		if (do_demote_pass &&
   1699		    (thp_migration_supported() || !folio_test_large(folio))) {
   1700			list_add(&folio->lru, &demote_pages);
   1701			folio_unlock(folio);
   1702			continue;
   1703		}
   1704
   1705		/*
   1706		 * Anonymous process memory has backing store?
   1707		 * Try to allocate it some swap space here.
   1708		 * Lazyfree folio could be freed directly
   1709		 */
   1710		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
   1711			if (!folio_test_swapcache(folio)) {
   1712				if (!(sc->gfp_mask & __GFP_IO))
   1713					goto keep_locked;
   1714				if (folio_maybe_dma_pinned(folio))
   1715					goto keep_locked;
   1716				if (folio_test_large(folio)) {
   1717					/* cannot split folio, skip it */
   1718					if (!can_split_folio(folio, NULL))
   1719						goto activate_locked;
   1720					/*
   1721					 * Split folios without a PMD map right
   1722					 * away. Chances are some or all of the
   1723					 * tail pages can be freed without IO.
   1724					 */
   1725					if (!folio_entire_mapcount(folio) &&
   1726					    split_folio_to_list(folio,
   1727								page_list))
   1728						goto activate_locked;
   1729				}
   1730				if (!add_to_swap(folio)) {
   1731					if (!folio_test_large(folio))
   1732						goto activate_locked_split;
   1733					/* Fallback to swap normal pages */
   1734					if (split_folio_to_list(folio,
   1735								page_list))
   1736						goto activate_locked;
   1737#ifdef CONFIG_TRANSPARENT_HUGEPAGE
   1738					count_vm_event(THP_SWPOUT_FALLBACK);
   1739#endif
   1740					if (!add_to_swap(folio))
   1741						goto activate_locked_split;
   1742				}
   1743			}
   1744		} else if (folio_test_swapbacked(folio) &&
   1745			   folio_test_large(folio)) {
   1746			/* Split shmem folio */
   1747			if (split_folio_to_list(folio, page_list))
   1748				goto keep_locked;
   1749		}
   1750
   1751		/*
   1752		 * If the folio was split above, the tail pages will make
   1753		 * their own pass through this function and be accounted
   1754		 * then.
   1755		 */
   1756		if ((nr_pages > 1) && !folio_test_large(folio)) {
   1757			sc->nr_scanned -= (nr_pages - 1);
   1758			nr_pages = 1;
   1759		}
   1760
   1761		/*
   1762		 * The folio is mapped into the page tables of one or more
   1763		 * processes. Try to unmap it here.
   1764		 */
   1765		if (folio_mapped(folio)) {
   1766			enum ttu_flags flags = TTU_BATCH_FLUSH;
   1767			bool was_swapbacked = folio_test_swapbacked(folio);
   1768
   1769			if (folio_test_pmd_mappable(folio))
   1770				flags |= TTU_SPLIT_HUGE_PMD;
   1771
   1772			try_to_unmap(folio, flags);
   1773			if (folio_mapped(folio)) {
   1774				stat->nr_unmap_fail += nr_pages;
   1775				if (!was_swapbacked &&
   1776				    folio_test_swapbacked(folio))
   1777					stat->nr_lazyfree_fail += nr_pages;
   1778				goto activate_locked;
   1779			}
   1780		}
   1781
   1782		mapping = folio_mapping(folio);
   1783		if (folio_test_dirty(folio)) {
   1784			/*
   1785			 * Only kswapd can writeback filesystem folios
   1786			 * to avoid risk of stack overflow. But avoid
   1787			 * injecting inefficient single-folio I/O into
   1788			 * flusher writeback as much as possible: only
   1789			 * write folios when we've encountered many
   1790			 * dirty folios, and when we've already scanned
   1791			 * the rest of the LRU for clean folios and see
   1792			 * the same dirty folios again (with the reclaim
   1793			 * flag set).
   1794			 */
   1795			if (folio_is_file_lru(folio) &&
   1796			    (!current_is_kswapd() ||
   1797			     !folio_test_reclaim(folio) ||
   1798			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
   1799				/*
   1800				 * Immediately reclaim when written back.
   1801				 * Similar in principle to deactivate_page()
   1802				 * except we already have the folio isolated
   1803				 * and know it's dirty
   1804				 */
   1805				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
   1806						nr_pages);
   1807				folio_set_reclaim(folio);
   1808
   1809				goto activate_locked;
   1810			}
   1811
   1812			if (references == PAGEREF_RECLAIM_CLEAN)
   1813				goto keep_locked;
   1814			if (!may_enter_fs(folio, sc->gfp_mask))
   1815				goto keep_locked;
   1816			if (!sc->may_writepage)
   1817				goto keep_locked;
   1818
   1819			/*
   1820			 * Folio is dirty. Flush the TLB if a writable entry
   1821			 * potentially exists to avoid CPU writes after I/O
   1822			 * starts and then write it out here.
   1823			 */
   1824			try_to_unmap_flush_dirty();
   1825			switch (pageout(folio, mapping, &plug)) {
   1826			case PAGE_KEEP:
   1827				goto keep_locked;
   1828			case PAGE_ACTIVATE:
   1829				goto activate_locked;
   1830			case PAGE_SUCCESS:
   1831				stat->nr_pageout += nr_pages;
   1832
   1833				if (folio_test_writeback(folio))
   1834					goto keep;
   1835				if (folio_test_dirty(folio))
   1836					goto keep;
   1837
   1838				/*
   1839				 * A synchronous write - probably a ramdisk.  Go
   1840				 * ahead and try to reclaim the folio.
   1841				 */
   1842				if (!folio_trylock(folio))
   1843					goto keep;
   1844				if (folio_test_dirty(folio) ||
   1845				    folio_test_writeback(folio))
   1846					goto keep_locked;
   1847				mapping = folio_mapping(folio);
   1848				fallthrough;
   1849			case PAGE_CLEAN:
   1850				; /* try to free the folio below */
   1851			}
   1852		}
   1853
   1854		/*
   1855		 * If the folio has buffers, try to free the buffer
   1856		 * mappings associated with this folio. If we succeed
   1857		 * we try to free the folio as well.
   1858		 *
   1859		 * We do this even if the folio is dirty.
   1860		 * filemap_release_folio() does not perform I/O, but it
   1861		 * is possible for a folio to have the dirty flag set,
   1862		 * but it is actually clean (all its buffers are clean).
   1863		 * This happens if the buffers were written out directly,
   1864		 * with submit_bh(). ext3 will do this, as well as
   1865		 * the blockdev mapping.  filemap_release_folio() will
   1866		 * discover that cleanness and will drop the buffers
   1867		 * and mark the folio clean - it can be freed.
   1868		 *
   1869		 * Rarely, folios can have buffers and no ->mapping.
   1870		 * These are the folios which were not successfully
   1871		 * invalidated in truncate_cleanup_folio().  We try to
   1872		 * drop those buffers here and if that worked, and the
   1873		 * folio is no longer mapped into process address space
   1874		 * (refcount == 1) it can be freed.  Otherwise, leave
   1875		 * the folio on the LRU so it is swappable.
   1876		 */
   1877		if (folio_has_private(folio)) {
   1878			if (!filemap_release_folio(folio, sc->gfp_mask))
   1879				goto activate_locked;
   1880			if (!mapping && folio_ref_count(folio) == 1) {
   1881				folio_unlock(folio);
   1882				if (folio_put_testzero(folio))
   1883					goto free_it;
   1884				else {
   1885					/*
   1886					 * rare race with speculative reference.
   1887					 * the speculative reference will free
   1888					 * this folio shortly, so we may
   1889					 * increment nr_reclaimed here (and
   1890					 * leave it off the LRU).
   1891					 */
   1892					nr_reclaimed += nr_pages;
   1893					continue;
   1894				}
   1895			}
   1896		}
   1897
   1898		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
   1899			/* follow __remove_mapping for reference */
   1900			if (!folio_ref_freeze(folio, 1))
   1901				goto keep_locked;
   1902			/*
   1903			 * The folio has only one reference left, which is
   1904			 * from the isolation. After the caller puts the
   1905			 * folio back on the lru and drops the reference, the
   1906			 * folio will be freed anyway. It doesn't matter
   1907			 * which lru it goes on. So we don't bother checking
   1908			 * the dirty flag here.
   1909			 */
   1910			count_vm_events(PGLAZYFREED, nr_pages);
   1911			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
   1912		} else if (!mapping || !__remove_mapping(mapping, folio, true,
   1913							 sc->target_mem_cgroup))
   1914			goto keep_locked;
   1915
   1916		folio_unlock(folio);
   1917free_it:
   1918		/*
   1919		 * Folio may get swapped out as a whole, need to account
   1920		 * all pages in it.
   1921		 */
   1922		nr_reclaimed += nr_pages;
   1923
   1924		/*
   1925		 * Is there need to periodically free_page_list? It would
   1926		 * appear not as the counts should be low
   1927		 */
   1928		if (unlikely(folio_test_large(folio)))
   1929			destroy_compound_page(&folio->page);
   1930		else
   1931			list_add(&folio->lru, &free_pages);
   1932		continue;
   1933
   1934activate_locked_split:
   1935		/*
   1936		 * The tail pages that are failed to add into swap cache
   1937		 * reach here.  Fixup nr_scanned and nr_pages.
   1938		 */
   1939		if (nr_pages > 1) {
   1940			sc->nr_scanned -= (nr_pages - 1);
   1941			nr_pages = 1;
   1942		}
   1943activate_locked:
   1944		/* Not a candidate for swapping, so reclaim swap space. */
   1945		if (folio_test_swapcache(folio) &&
   1946		    (mem_cgroup_swap_full(&folio->page) ||
   1947		     folio_test_mlocked(folio)))
   1948			try_to_free_swap(&folio->page);
   1949		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
   1950		if (!folio_test_mlocked(folio)) {
   1951			int type = folio_is_file_lru(folio);
   1952			folio_set_active(folio);
   1953			stat->nr_activate[type] += nr_pages;
   1954			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
   1955		}
   1956keep_locked:
   1957		folio_unlock(folio);
   1958keep:
   1959		list_add(&folio->lru, &ret_pages);
   1960		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
   1961				folio_test_unevictable(folio), folio);
   1962	}
   1963	/* 'page_list' is always empty here */
   1964
   1965	/* Migrate folios selected for demotion */
   1966	nr_reclaimed += demote_page_list(&demote_pages, pgdat);
   1967	/* Folios that could not be demoted are still in @demote_pages */
   1968	if (!list_empty(&demote_pages)) {
   1969		/* Folios which weren't demoted go back on @page_list for retry: */
   1970		list_splice_init(&demote_pages, page_list);
   1971		do_demote_pass = false;
   1972		goto retry;
   1973	}
   1974
   1975	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
   1976
   1977	mem_cgroup_uncharge_list(&free_pages);
   1978	try_to_unmap_flush();
   1979	free_unref_page_list(&free_pages);
   1980
   1981	list_splice(&ret_pages, page_list);
   1982	count_vm_events(PGACTIVATE, pgactivate);
   1983
   1984	if (plug)
   1985		swap_write_unplug(plug);
   1986	return nr_reclaimed;
   1987}
   1988
   1989unsigned int reclaim_clean_pages_from_list(struct zone *zone,
   1990					    struct list_head *page_list)
   1991{
   1992	struct scan_control sc = {
   1993		.gfp_mask = GFP_KERNEL,
   1994		.may_unmap = 1,
   1995	};
   1996	struct reclaim_stat stat;
   1997	unsigned int nr_reclaimed;
   1998	struct page *page, *next;
   1999	LIST_HEAD(clean_pages);
   2000	unsigned int noreclaim_flag;
   2001
   2002	list_for_each_entry_safe(page, next, page_list, lru) {
   2003		if (!PageHuge(page) && page_is_file_lru(page) &&
   2004		    !PageDirty(page) && !__PageMovable(page) &&
   2005		    !PageUnevictable(page)) {
   2006			ClearPageActive(page);
   2007			list_move(&page->lru, &clean_pages);
   2008		}
   2009	}
   2010
   2011	/*
   2012	 * We should be safe here since we are only dealing with file pages and
   2013	 * we are not kswapd and therefore cannot write dirty file pages. But
   2014	 * call memalloc_noreclaim_save() anyway, just in case these conditions
   2015	 * change in the future.
   2016	 */
   2017	noreclaim_flag = memalloc_noreclaim_save();
   2018	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
   2019					&stat, true);
   2020	memalloc_noreclaim_restore(noreclaim_flag);
   2021
   2022	list_splice(&clean_pages, page_list);
   2023	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
   2024			    -(long)nr_reclaimed);
   2025	/*
   2026	 * Since lazyfree pages are isolated from file LRU from the beginning,
   2027	 * they will rotate back to anonymous LRU in the end if it failed to
   2028	 * discard so isolated count will be mismatched.
   2029	 * Compensate the isolated count for both LRU lists.
   2030	 */
   2031	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
   2032			    stat.nr_lazyfree_fail);
   2033	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
   2034			    -(long)stat.nr_lazyfree_fail);
   2035	return nr_reclaimed;
   2036}
   2037
   2038/*
   2039 * Update LRU sizes after isolating pages. The LRU size updates must
   2040 * be complete before mem_cgroup_update_lru_size due to a sanity check.
   2041 */
   2042static __always_inline void update_lru_sizes(struct lruvec *lruvec,
   2043			enum lru_list lru, unsigned long *nr_zone_taken)
   2044{
   2045	int zid;
   2046
   2047	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
   2048		if (!nr_zone_taken[zid])
   2049			continue;
   2050
   2051		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
   2052	}
   2053
   2054}
   2055
   2056/*
   2057 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
   2058 *
   2059 * lruvec->lru_lock is heavily contended.  Some of the functions that
   2060 * shrink the lists perform better by taking out a batch of pages
   2061 * and working on them outside the LRU lock.
   2062 *
   2063 * For pagecache intensive workloads, this function is the hottest
   2064 * spot in the kernel (apart from copy_*_user functions).
   2065 *
   2066 * Lru_lock must be held before calling this function.
   2067 *
   2068 * @nr_to_scan:	The number of eligible pages to look through on the list.
   2069 * @lruvec:	The LRU vector to pull pages from.
   2070 * @dst:	The temp list to put pages on to.
   2071 * @nr_scanned:	The number of pages that were scanned.
   2072 * @sc:		The scan_control struct for this reclaim session
   2073 * @lru:	LRU list id for isolating
   2074 *
   2075 * returns how many pages were moved onto *@dst.
   2076 */
   2077static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
   2078		struct lruvec *lruvec, struct list_head *dst,
   2079		unsigned long *nr_scanned, struct scan_control *sc,
   2080		enum lru_list lru)
   2081{
   2082	struct list_head *src = &lruvec->lists[lru];
   2083	unsigned long nr_taken = 0;
   2084	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
   2085	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
   2086	unsigned long skipped = 0;
   2087	unsigned long scan, total_scan, nr_pages;
   2088	LIST_HEAD(pages_skipped);
   2089
   2090	total_scan = 0;
   2091	scan = 0;
   2092	while (scan < nr_to_scan && !list_empty(src)) {
   2093		struct list_head *move_to = src;
   2094		struct page *page;
   2095
   2096		page = lru_to_page(src);
   2097		prefetchw_prev_lru_page(page, src, flags);
   2098
   2099		nr_pages = compound_nr(page);
   2100		total_scan += nr_pages;
   2101
   2102		if (page_zonenum(page) > sc->reclaim_idx) {
   2103			nr_skipped[page_zonenum(page)] += nr_pages;
   2104			move_to = &pages_skipped;
   2105			goto move;
   2106		}
   2107
   2108		/*
   2109		 * Do not count skipped pages because that makes the function
   2110		 * return with no isolated pages if the LRU mostly contains
   2111		 * ineligible pages.  This causes the VM to not reclaim any
   2112		 * pages, triggering a premature OOM.
   2113		 * Account all tail pages of THP.
   2114		 */
   2115		scan += nr_pages;
   2116
   2117		if (!PageLRU(page))
   2118			goto move;
   2119		if (!sc->may_unmap && page_mapped(page))
   2120			goto move;
   2121
   2122		/*
   2123		 * Be careful not to clear PageLRU until after we're
   2124		 * sure the page is not being freed elsewhere -- the
   2125		 * page release code relies on it.
   2126		 */
   2127		if (unlikely(!get_page_unless_zero(page)))
   2128			goto move;
   2129
   2130		if (!TestClearPageLRU(page)) {
   2131			/* Another thread is already isolating this page */
   2132			put_page(page);
   2133			goto move;
   2134		}
   2135
   2136		nr_taken += nr_pages;
   2137		nr_zone_taken[page_zonenum(page)] += nr_pages;
   2138		move_to = dst;
   2139move:
   2140		list_move(&page->lru, move_to);
   2141	}
   2142
   2143	/*
   2144	 * Splice any skipped pages to the start of the LRU list. Note that
   2145	 * this disrupts the LRU order when reclaiming for lower zones but
   2146	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
   2147	 * scanning would soon rescan the same pages to skip and waste lots
   2148	 * of cpu cycles.
   2149	 */
   2150	if (!list_empty(&pages_skipped)) {
   2151		int zid;
   2152
   2153		list_splice(&pages_skipped, src);
   2154		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
   2155			if (!nr_skipped[zid])
   2156				continue;
   2157
   2158			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
   2159			skipped += nr_skipped[zid];
   2160		}
   2161	}
   2162	*nr_scanned = total_scan;
   2163	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
   2164				    total_scan, skipped, nr_taken,
   2165				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
   2166	update_lru_sizes(lruvec, lru, nr_zone_taken);
   2167	return nr_taken;
   2168}
   2169
   2170/**
   2171 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
   2172 * @folio: Folio to isolate from its LRU list.
   2173 *
   2174 * Isolate a @folio from an LRU list and adjust the vmstat statistic
   2175 * corresponding to whatever LRU list the folio was on.
   2176 *
   2177 * The folio will have its LRU flag cleared.  If it was found on the
   2178 * active list, it will have the Active flag set.  If it was found on the
   2179 * unevictable list, it will have the Unevictable flag set.  These flags
   2180 * may need to be cleared by the caller before letting the page go.
   2181 *
   2182 * Context:
   2183 *
   2184 * (1) Must be called with an elevated refcount on the page. This is a
   2185 *     fundamental difference from isolate_lru_pages() (which is called
   2186 *     without a stable reference).
   2187 * (2) The lru_lock must not be held.
   2188 * (3) Interrupts must be enabled.
   2189 *
   2190 * Return: 0 if the folio was removed from an LRU list.
   2191 * -EBUSY if the folio was not on an LRU list.
   2192 */
   2193int folio_isolate_lru(struct folio *folio)
   2194{
   2195	int ret = -EBUSY;
   2196
   2197	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
   2198
   2199	if (folio_test_clear_lru(folio)) {
   2200		struct lruvec *lruvec;
   2201
   2202		folio_get(folio);
   2203		lruvec = folio_lruvec_lock_irq(folio);
   2204		lruvec_del_folio(lruvec, folio);
   2205		unlock_page_lruvec_irq(lruvec);
   2206		ret = 0;
   2207	}
   2208
   2209	return ret;
   2210}
   2211
   2212/*
   2213 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
   2214 * then get rescheduled. When there are massive number of tasks doing page
   2215 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
   2216 * the LRU list will go small and be scanned faster than necessary, leading to
   2217 * unnecessary swapping, thrashing and OOM.
   2218 */
   2219static int too_many_isolated(struct pglist_data *pgdat, int file,
   2220		struct scan_control *sc)
   2221{
   2222	unsigned long inactive, isolated;
   2223	bool too_many;
   2224
   2225	if (current_is_kswapd())
   2226		return 0;
   2227
   2228	if (!writeback_throttling_sane(sc))
   2229		return 0;
   2230
   2231	if (file) {
   2232		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
   2233		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
   2234	} else {
   2235		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
   2236		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
   2237	}
   2238
   2239	/*
   2240	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
   2241	 * won't get blocked by normal direct-reclaimers, forming a circular
   2242	 * deadlock.
   2243	 */
   2244	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
   2245		inactive >>= 3;
   2246
   2247	too_many = isolated > inactive;
   2248
   2249	/* Wake up tasks throttled due to too_many_isolated. */
   2250	if (!too_many)
   2251		wake_throttle_isolated(pgdat);
   2252
   2253	return too_many;
   2254}
   2255
   2256/*
   2257 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
   2258 * On return, @list is reused as a list of pages to be freed by the caller.
   2259 *
   2260 * Returns the number of pages moved to the given lruvec.
   2261 */
   2262static unsigned int move_pages_to_lru(struct lruvec *lruvec,
   2263				      struct list_head *list)
   2264{
   2265	int nr_pages, nr_moved = 0;
   2266	LIST_HEAD(pages_to_free);
   2267	struct page *page;
   2268
   2269	while (!list_empty(list)) {
   2270		page = lru_to_page(list);
   2271		VM_BUG_ON_PAGE(PageLRU(page), page);
   2272		list_del(&page->lru);
   2273		if (unlikely(!page_evictable(page))) {
   2274			spin_unlock_irq(&lruvec->lru_lock);
   2275			putback_lru_page(page);
   2276			spin_lock_irq(&lruvec->lru_lock);
   2277			continue;
   2278		}
   2279
   2280		/*
   2281		 * The SetPageLRU needs to be kept here for list integrity.
   2282		 * Otherwise:
   2283		 *   #0 move_pages_to_lru             #1 release_pages
   2284		 *   if !put_page_testzero
   2285		 *				      if (put_page_testzero())
   2286		 *				        !PageLRU //skip lru_lock
   2287		 *     SetPageLRU()
   2288		 *     list_add(&page->lru,)
   2289		 *                                        list_add(&page->lru,)
   2290		 */
   2291		SetPageLRU(page);
   2292
   2293		if (unlikely(put_page_testzero(page))) {
   2294			__clear_page_lru_flags(page);
   2295
   2296			if (unlikely(PageCompound(page))) {
   2297				spin_unlock_irq(&lruvec->lru_lock);
   2298				destroy_compound_page(page);
   2299				spin_lock_irq(&lruvec->lru_lock);
   2300			} else
   2301				list_add(&page->lru, &pages_to_free);
   2302
   2303			continue;
   2304		}
   2305
   2306		/*
   2307		 * All pages were isolated from the same lruvec (and isolation
   2308		 * inhibits memcg migration).
   2309		 */
   2310		VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
   2311		add_page_to_lru_list(page, lruvec);
   2312		nr_pages = thp_nr_pages(page);
   2313		nr_moved += nr_pages;
   2314		if (PageActive(page))
   2315			workingset_age_nonresident(lruvec, nr_pages);
   2316	}
   2317
   2318	/*
   2319	 * To save our caller's stack, now use input list for pages to free.
   2320	 */
   2321	list_splice(&pages_to_free, list);
   2322
   2323	return nr_moved;
   2324}
   2325
   2326/*
   2327 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
   2328 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
   2329 * we should not throttle.  Otherwise it is safe to do so.
   2330 */
   2331static int current_may_throttle(void)
   2332{
   2333	return !(current->flags & PF_LOCAL_THROTTLE);
   2334}
   2335
   2336/*
   2337 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
   2338 * of reclaimed pages
   2339 */
   2340static unsigned long
   2341shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
   2342		     struct scan_control *sc, enum lru_list lru)
   2343{
   2344	LIST_HEAD(page_list);
   2345	unsigned long nr_scanned;
   2346	unsigned int nr_reclaimed = 0;
   2347	unsigned long nr_taken;
   2348	struct reclaim_stat stat;
   2349	bool file = is_file_lru(lru);
   2350	enum vm_event_item item;
   2351	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
   2352	bool stalled = false;
   2353
   2354	while (unlikely(too_many_isolated(pgdat, file, sc))) {
   2355		if (stalled)
   2356			return 0;
   2357
   2358		/* wait a bit for the reclaimer. */
   2359		stalled = true;
   2360		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
   2361
   2362		/* We are about to die and free our memory. Return now. */
   2363		if (fatal_signal_pending(current))
   2364			return SWAP_CLUSTER_MAX;
   2365	}
   2366
   2367	lru_add_drain();
   2368
   2369	spin_lock_irq(&lruvec->lru_lock);
   2370
   2371	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
   2372				     &nr_scanned, sc, lru);
   2373
   2374	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
   2375	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
   2376	if (!cgroup_reclaim(sc))
   2377		__count_vm_events(item, nr_scanned);
   2378	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
   2379	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
   2380
   2381	spin_unlock_irq(&lruvec->lru_lock);
   2382
   2383	if (nr_taken == 0)
   2384		return 0;
   2385
   2386	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
   2387
   2388	spin_lock_irq(&lruvec->lru_lock);
   2389	move_pages_to_lru(lruvec, &page_list);
   2390
   2391	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
   2392	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
   2393	if (!cgroup_reclaim(sc))
   2394		__count_vm_events(item, nr_reclaimed);
   2395	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
   2396	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
   2397	spin_unlock_irq(&lruvec->lru_lock);
   2398
   2399	lru_note_cost(lruvec, file, stat.nr_pageout);
   2400	mem_cgroup_uncharge_list(&page_list);
   2401	free_unref_page_list(&page_list);
   2402
   2403	/*
   2404	 * If dirty pages are scanned that are not queued for IO, it
   2405	 * implies that flushers are not doing their job. This can
   2406	 * happen when memory pressure pushes dirty pages to the end of
   2407	 * the LRU before the dirty limits are breached and the dirty
   2408	 * data has expired. It can also happen when the proportion of
   2409	 * dirty pages grows not through writes but through memory
   2410	 * pressure reclaiming all the clean cache. And in some cases,
   2411	 * the flushers simply cannot keep up with the allocation
   2412	 * rate. Nudge the flusher threads in case they are asleep.
   2413	 */
   2414	if (stat.nr_unqueued_dirty == nr_taken)
   2415		wakeup_flusher_threads(WB_REASON_VMSCAN);
   2416
   2417	sc->nr.dirty += stat.nr_dirty;
   2418	sc->nr.congested += stat.nr_congested;
   2419	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
   2420	sc->nr.writeback += stat.nr_writeback;
   2421	sc->nr.immediate += stat.nr_immediate;
   2422	sc->nr.taken += nr_taken;
   2423	if (file)
   2424		sc->nr.file_taken += nr_taken;
   2425
   2426	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
   2427			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
   2428	return nr_reclaimed;
   2429}
   2430
   2431/*
   2432 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
   2433 *
   2434 * We move them the other way if the page is referenced by one or more
   2435 * processes.
   2436 *
   2437 * If the pages are mostly unmapped, the processing is fast and it is
   2438 * appropriate to hold lru_lock across the whole operation.  But if
   2439 * the pages are mapped, the processing is slow (folio_referenced()), so
   2440 * we should drop lru_lock around each page.  It's impossible to balance
   2441 * this, so instead we remove the pages from the LRU while processing them.
   2442 * It is safe to rely on PG_active against the non-LRU pages in here because
   2443 * nobody will play with that bit on a non-LRU page.
   2444 *
   2445 * The downside is that we have to touch page->_refcount against each page.
   2446 * But we had to alter page->flags anyway.
   2447 */
   2448static void shrink_active_list(unsigned long nr_to_scan,
   2449			       struct lruvec *lruvec,
   2450			       struct scan_control *sc,
   2451			       enum lru_list lru)
   2452{
   2453	unsigned long nr_taken;
   2454	unsigned long nr_scanned;
   2455	unsigned long vm_flags;
   2456	LIST_HEAD(l_hold);	/* The pages which were snipped off */
   2457	LIST_HEAD(l_active);
   2458	LIST_HEAD(l_inactive);
   2459	unsigned nr_deactivate, nr_activate;
   2460	unsigned nr_rotated = 0;
   2461	int file = is_file_lru(lru);
   2462	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
   2463
   2464	lru_add_drain();
   2465
   2466	spin_lock_irq(&lruvec->lru_lock);
   2467
   2468	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
   2469				     &nr_scanned, sc, lru);
   2470
   2471	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
   2472
   2473	if (!cgroup_reclaim(sc))
   2474		__count_vm_events(PGREFILL, nr_scanned);
   2475	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
   2476
   2477	spin_unlock_irq(&lruvec->lru_lock);
   2478
   2479	while (!list_empty(&l_hold)) {
   2480		struct folio *folio;
   2481		struct page *page;
   2482
   2483		cond_resched();
   2484		folio = lru_to_folio(&l_hold);
   2485		list_del(&folio->lru);
   2486		page = &folio->page;
   2487
   2488		if (unlikely(!page_evictable(page))) {
   2489			putback_lru_page(page);
   2490			continue;
   2491		}
   2492
   2493		if (unlikely(buffer_heads_over_limit)) {
   2494			if (page_has_private(page) && trylock_page(page)) {
   2495				if (page_has_private(page))
   2496					try_to_release_page(page, 0);
   2497				unlock_page(page);
   2498			}
   2499		}
   2500
   2501		/* Referenced or rmap lock contention: rotate */
   2502		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
   2503				     &vm_flags) != 0) {
   2504			/*
   2505			 * Identify referenced, file-backed active pages and
   2506			 * give them one more trip around the active list. So
   2507			 * that executable code get better chances to stay in
   2508			 * memory under moderate memory pressure.  Anon pages
   2509			 * are not likely to be evicted by use-once streaming
   2510			 * IO, plus JVM can create lots of anon VM_EXEC pages,
   2511			 * so we ignore them here.
   2512			 */
   2513			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
   2514				nr_rotated += thp_nr_pages(page);
   2515				list_add(&page->lru, &l_active);
   2516				continue;
   2517			}
   2518		}
   2519
   2520		ClearPageActive(page);	/* we are de-activating */
   2521		SetPageWorkingset(page);
   2522		list_add(&page->lru, &l_inactive);
   2523	}
   2524
   2525	/*
   2526	 * Move pages back to the lru list.
   2527	 */
   2528	spin_lock_irq(&lruvec->lru_lock);
   2529
   2530	nr_activate = move_pages_to_lru(lruvec, &l_active);
   2531	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
   2532	/* Keep all free pages in l_active list */
   2533	list_splice(&l_inactive, &l_active);
   2534
   2535	__count_vm_events(PGDEACTIVATE, nr_deactivate);
   2536	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
   2537
   2538	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
   2539	spin_unlock_irq(&lruvec->lru_lock);
   2540
   2541	mem_cgroup_uncharge_list(&l_active);
   2542	free_unref_page_list(&l_active);
   2543	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
   2544			nr_deactivate, nr_rotated, sc->priority, file);
   2545}
   2546
   2547static unsigned int reclaim_page_list(struct list_head *page_list,
   2548				      struct pglist_data *pgdat)
   2549{
   2550	struct reclaim_stat dummy_stat;
   2551	unsigned int nr_reclaimed;
   2552	struct folio *folio;
   2553	struct scan_control sc = {
   2554		.gfp_mask = GFP_KERNEL,
   2555		.may_writepage = 1,
   2556		.may_unmap = 1,
   2557		.may_swap = 1,
   2558		.no_demotion = 1,
   2559	};
   2560
   2561	nr_reclaimed = shrink_page_list(page_list, pgdat, &sc, &dummy_stat, false);
   2562	while (!list_empty(page_list)) {
   2563		folio = lru_to_folio(page_list);
   2564		list_del(&folio->lru);
   2565		folio_putback_lru(folio);
   2566	}
   2567
   2568	return nr_reclaimed;
   2569}
   2570
   2571unsigned long reclaim_pages(struct list_head *page_list)
   2572{
   2573	int nid;
   2574	unsigned int nr_reclaimed = 0;
   2575	LIST_HEAD(node_page_list);
   2576	struct page *page;
   2577	unsigned int noreclaim_flag;
   2578
   2579	if (list_empty(page_list))
   2580		return nr_reclaimed;
   2581
   2582	noreclaim_flag = memalloc_noreclaim_save();
   2583
   2584	nid = page_to_nid(lru_to_page(page_list));
   2585	do {
   2586		page = lru_to_page(page_list);
   2587
   2588		if (nid == page_to_nid(page)) {
   2589			ClearPageActive(page);
   2590			list_move(&page->lru, &node_page_list);
   2591			continue;
   2592		}
   2593
   2594		nr_reclaimed += reclaim_page_list(&node_page_list, NODE_DATA(nid));
   2595		nid = page_to_nid(lru_to_page(page_list));
   2596	} while (!list_empty(page_list));
   2597
   2598	nr_reclaimed += reclaim_page_list(&node_page_list, NODE_DATA(nid));
   2599
   2600	memalloc_noreclaim_restore(noreclaim_flag);
   2601
   2602	return nr_reclaimed;
   2603}
   2604
   2605static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
   2606				 struct lruvec *lruvec, struct scan_control *sc)
   2607{
   2608	if (is_active_lru(lru)) {
   2609		if (sc->may_deactivate & (1 << is_file_lru(lru)))
   2610			shrink_active_list(nr_to_scan, lruvec, sc, lru);
   2611		else
   2612			sc->skipped_deactivate = 1;
   2613		return 0;
   2614	}
   2615
   2616	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
   2617}
   2618
   2619/*
   2620 * The inactive anon list should be small enough that the VM never has
   2621 * to do too much work.
   2622 *
   2623 * The inactive file list should be small enough to leave most memory
   2624 * to the established workingset on the scan-resistant active list,
   2625 * but large enough to avoid thrashing the aggregate readahead window.
   2626 *
   2627 * Both inactive lists should also be large enough that each inactive
   2628 * page has a chance to be referenced again before it is reclaimed.
   2629 *
   2630 * If that fails and refaulting is observed, the inactive list grows.
   2631 *
   2632 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
   2633 * on this LRU, maintained by the pageout code. An inactive_ratio
   2634 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
   2635 *
   2636 * total     target    max
   2637 * memory    ratio     inactive
   2638 * -------------------------------------
   2639 *   10MB       1         5MB
   2640 *  100MB       1        50MB
   2641 *    1GB       3       250MB
   2642 *   10GB      10       0.9GB
   2643 *  100GB      31         3GB
   2644 *    1TB     101        10GB
   2645 *   10TB     320        32GB
   2646 */
   2647static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
   2648{
   2649	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
   2650	unsigned long inactive, active;
   2651	unsigned long inactive_ratio;
   2652	unsigned long gb;
   2653
   2654	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
   2655	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
   2656
   2657	gb = (inactive + active) >> (30 - PAGE_SHIFT);
   2658	if (gb)
   2659		inactive_ratio = int_sqrt(10 * gb);
   2660	else
   2661		inactive_ratio = 1;
   2662
   2663	return inactive * inactive_ratio < active;
   2664}
   2665
   2666enum scan_balance {
   2667	SCAN_EQUAL,
   2668	SCAN_FRACT,
   2669	SCAN_ANON,
   2670	SCAN_FILE,
   2671};
   2672
   2673/*
   2674 * Determine how aggressively the anon and file LRU lists should be
   2675 * scanned.
   2676 *
   2677 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
   2678 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
   2679 */
   2680static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
   2681			   unsigned long *nr)
   2682{
   2683	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
   2684	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
   2685	unsigned long anon_cost, file_cost, total_cost;
   2686	int swappiness = mem_cgroup_swappiness(memcg);
   2687	u64 fraction[ANON_AND_FILE];
   2688	u64 denominator = 0;	/* gcc */
   2689	enum scan_balance scan_balance;
   2690	unsigned long ap, fp;
   2691	enum lru_list lru;
   2692
   2693	/* If we have no swap space, do not bother scanning anon pages. */
   2694	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
   2695		scan_balance = SCAN_FILE;
   2696		goto out;
   2697	}
   2698
   2699	/*
   2700	 * Global reclaim will swap to prevent OOM even with no
   2701	 * swappiness, but memcg users want to use this knob to
   2702	 * disable swapping for individual groups completely when
   2703	 * using the memory controller's swap limit feature would be
   2704	 * too expensive.
   2705	 */
   2706	if (cgroup_reclaim(sc) && !swappiness) {
   2707		scan_balance = SCAN_FILE;
   2708		goto out;
   2709	}
   2710
   2711	/*
   2712	 * Do not apply any pressure balancing cleverness when the
   2713	 * system is close to OOM, scan both anon and file equally
   2714	 * (unless the swappiness setting disagrees with swapping).
   2715	 */
   2716	if (!sc->priority && swappiness) {
   2717		scan_balance = SCAN_EQUAL;
   2718		goto out;
   2719	}
   2720
   2721	/*
   2722	 * If the system is almost out of file pages, force-scan anon.
   2723	 */
   2724	if (sc->file_is_tiny) {
   2725		scan_balance = SCAN_ANON;
   2726		goto out;
   2727	}
   2728
   2729	/*
   2730	 * If there is enough inactive page cache, we do not reclaim
   2731	 * anything from the anonymous working right now.
   2732	 */
   2733	if (sc->cache_trim_mode) {
   2734		scan_balance = SCAN_FILE;
   2735		goto out;
   2736	}
   2737
   2738	scan_balance = SCAN_FRACT;
   2739	/*
   2740	 * Calculate the pressure balance between anon and file pages.
   2741	 *
   2742	 * The amount of pressure we put on each LRU is inversely
   2743	 * proportional to the cost of reclaiming each list, as
   2744	 * determined by the share of pages that are refaulting, times
   2745	 * the relative IO cost of bringing back a swapped out
   2746	 * anonymous page vs reloading a filesystem page (swappiness).
   2747	 *
   2748	 * Although we limit that influence to ensure no list gets
   2749	 * left behind completely: at least a third of the pressure is
   2750	 * applied, before swappiness.
   2751	 *
   2752	 * With swappiness at 100, anon and file have equal IO cost.
   2753	 */
   2754	total_cost = sc->anon_cost + sc->file_cost;
   2755	anon_cost = total_cost + sc->anon_cost;
   2756	file_cost = total_cost + sc->file_cost;
   2757	total_cost = anon_cost + file_cost;
   2758
   2759	ap = swappiness * (total_cost + 1);
   2760	ap /= anon_cost + 1;
   2761
   2762	fp = (200 - swappiness) * (total_cost + 1);
   2763	fp /= file_cost + 1;
   2764
   2765	fraction[0] = ap;
   2766	fraction[1] = fp;
   2767	denominator = ap + fp;
   2768out:
   2769	for_each_evictable_lru(lru) {
   2770		int file = is_file_lru(lru);
   2771		unsigned long lruvec_size;
   2772		unsigned long low, min;
   2773		unsigned long scan;
   2774
   2775		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
   2776		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
   2777				      &min, &low);
   2778
   2779		if (min || low) {
   2780			/*
   2781			 * Scale a cgroup's reclaim pressure by proportioning
   2782			 * its current usage to its memory.low or memory.min
   2783			 * setting.
   2784			 *
   2785			 * This is important, as otherwise scanning aggression
   2786			 * becomes extremely binary -- from nothing as we
   2787			 * approach the memory protection threshold, to totally
   2788			 * nominal as we exceed it.  This results in requiring
   2789			 * setting extremely liberal protection thresholds. It
   2790			 * also means we simply get no protection at all if we
   2791			 * set it too low, which is not ideal.
   2792			 *
   2793			 * If there is any protection in place, we reduce scan
   2794			 * pressure by how much of the total memory used is
   2795			 * within protection thresholds.
   2796			 *
   2797			 * There is one special case: in the first reclaim pass,
   2798			 * we skip over all groups that are within their low
   2799			 * protection. If that fails to reclaim enough pages to
   2800			 * satisfy the reclaim goal, we come back and override
   2801			 * the best-effort low protection. However, we still
   2802			 * ideally want to honor how well-behaved groups are in
   2803			 * that case instead of simply punishing them all
   2804			 * equally. As such, we reclaim them based on how much
   2805			 * memory they are using, reducing the scan pressure
   2806			 * again by how much of the total memory used is under
   2807			 * hard protection.
   2808			 */
   2809			unsigned long cgroup_size = mem_cgroup_size(memcg);
   2810			unsigned long protection;
   2811
   2812			/* memory.low scaling, make sure we retry before OOM */
   2813			if (!sc->memcg_low_reclaim && low > min) {
   2814				protection = low;
   2815				sc->memcg_low_skipped = 1;
   2816			} else {
   2817				protection = min;
   2818			}
   2819
   2820			/* Avoid TOCTOU with earlier protection check */
   2821			cgroup_size = max(cgroup_size, protection);
   2822
   2823			scan = lruvec_size - lruvec_size * protection /
   2824				(cgroup_size + 1);
   2825
   2826			/*
   2827			 * Minimally target SWAP_CLUSTER_MAX pages to keep
   2828			 * reclaim moving forwards, avoiding decrementing
   2829			 * sc->priority further than desirable.
   2830			 */
   2831			scan = max(scan, SWAP_CLUSTER_MAX);
   2832		} else {
   2833			scan = lruvec_size;
   2834		}
   2835
   2836		scan >>= sc->priority;
   2837
   2838		/*
   2839		 * If the cgroup's already been deleted, make sure to
   2840		 * scrape out the remaining cache.
   2841		 */
   2842		if (!scan && !mem_cgroup_online(memcg))
   2843			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
   2844
   2845		switch (scan_balance) {
   2846		case SCAN_EQUAL:
   2847			/* Scan lists relative to size */
   2848			break;
   2849		case SCAN_FRACT:
   2850			/*
   2851			 * Scan types proportional to swappiness and
   2852			 * their relative recent reclaim efficiency.
   2853			 * Make sure we don't miss the last page on
   2854			 * the offlined memory cgroups because of a
   2855			 * round-off error.
   2856			 */
   2857			scan = mem_cgroup_online(memcg) ?
   2858			       div64_u64(scan * fraction[file], denominator) :
   2859			       DIV64_U64_ROUND_UP(scan * fraction[file],
   2860						  denominator);
   2861			break;
   2862		case SCAN_FILE:
   2863		case SCAN_ANON:
   2864			/* Scan one type exclusively */
   2865			if ((scan_balance == SCAN_FILE) != file)
   2866				scan = 0;
   2867			break;
   2868		default:
   2869			/* Look ma, no brain */
   2870			BUG();
   2871		}
   2872
   2873		nr[lru] = scan;
   2874	}
   2875}
   2876
   2877/*
   2878 * Anonymous LRU management is a waste if there is
   2879 * ultimately no way to reclaim the memory.
   2880 */
   2881static bool can_age_anon_pages(struct pglist_data *pgdat,
   2882			       struct scan_control *sc)
   2883{
   2884	/* Aging the anon LRU is valuable if swap is present: */
   2885	if (total_swap_pages > 0)
   2886		return true;
   2887
   2888	/* Also valuable if anon pages can be demoted: */
   2889	return can_demote(pgdat->node_id, sc);
   2890}
   2891
   2892static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
   2893{
   2894	unsigned long nr[NR_LRU_LISTS];
   2895	unsigned long targets[NR_LRU_LISTS];
   2896	unsigned long nr_to_scan;
   2897	enum lru_list lru;
   2898	unsigned long nr_reclaimed = 0;
   2899	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
   2900	struct blk_plug plug;
   2901	bool scan_adjusted;
   2902
   2903	get_scan_count(lruvec, sc, nr);
   2904
   2905	/* Record the original scan target for proportional adjustments later */
   2906	memcpy(targets, nr, sizeof(nr));
   2907
   2908	/*
   2909	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
   2910	 * event that can occur when there is little memory pressure e.g.
   2911	 * multiple streaming readers/writers. Hence, we do not abort scanning
   2912	 * when the requested number of pages are reclaimed when scanning at
   2913	 * DEF_PRIORITY on the assumption that the fact we are direct
   2914	 * reclaiming implies that kswapd is not keeping up and it is best to
   2915	 * do a batch of work at once. For memcg reclaim one check is made to
   2916	 * abort proportional reclaim if either the file or anon lru has already
   2917	 * dropped to zero at the first pass.
   2918	 */
   2919	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
   2920			 sc->priority == DEF_PRIORITY);
   2921
   2922	blk_start_plug(&plug);
   2923	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
   2924					nr[LRU_INACTIVE_FILE]) {
   2925		unsigned long nr_anon, nr_file, percentage;
   2926		unsigned long nr_scanned;
   2927
   2928		for_each_evictable_lru(lru) {
   2929			if (nr[lru]) {
   2930				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
   2931				nr[lru] -= nr_to_scan;
   2932
   2933				nr_reclaimed += shrink_list(lru, nr_to_scan,
   2934							    lruvec, sc);
   2935			}
   2936		}
   2937
   2938		cond_resched();
   2939
   2940		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
   2941			continue;
   2942
   2943		/*
   2944		 * For kswapd and memcg, reclaim at least the number of pages
   2945		 * requested. Ensure that the anon and file LRUs are scanned
   2946		 * proportionally what was requested by get_scan_count(). We
   2947		 * stop reclaiming one LRU and reduce the amount scanning
   2948		 * proportional to the original scan target.
   2949		 */
   2950		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
   2951		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
   2952
   2953		/*
   2954		 * It's just vindictive to attack the larger once the smaller
   2955		 * has gone to zero.  And given the way we stop scanning the
   2956		 * smaller below, this makes sure that we only make one nudge
   2957		 * towards proportionality once we've got nr_to_reclaim.
   2958		 */
   2959		if (!nr_file || !nr_anon)
   2960			break;
   2961
   2962		if (nr_file > nr_anon) {
   2963			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
   2964						targets[LRU_ACTIVE_ANON] + 1;
   2965			lru = LRU_BASE;
   2966			percentage = nr_anon * 100 / scan_target;
   2967		} else {
   2968			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
   2969						targets[LRU_ACTIVE_FILE] + 1;
   2970			lru = LRU_FILE;
   2971			percentage = nr_file * 100 / scan_target;
   2972		}
   2973
   2974		/* Stop scanning the smaller of the LRU */
   2975		nr[lru] = 0;
   2976		nr[lru + LRU_ACTIVE] = 0;
   2977
   2978		/*
   2979		 * Recalculate the other LRU scan count based on its original
   2980		 * scan target and the percentage scanning already complete
   2981		 */
   2982		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
   2983		nr_scanned = targets[lru] - nr[lru];
   2984		nr[lru] = targets[lru] * (100 - percentage) / 100;
   2985		nr[lru] -= min(nr[lru], nr_scanned);
   2986
   2987		lru += LRU_ACTIVE;
   2988		nr_scanned = targets[lru] - nr[lru];
   2989		nr[lru] = targets[lru] * (100 - percentage) / 100;
   2990		nr[lru] -= min(nr[lru], nr_scanned);
   2991
   2992		scan_adjusted = true;
   2993	}
   2994	blk_finish_plug(&plug);
   2995	sc->nr_reclaimed += nr_reclaimed;
   2996
   2997	/*
   2998	 * Even if we did not try to evict anon pages at all, we want to
   2999	 * rebalance the anon lru active/inactive ratio.
   3000	 */
   3001	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
   3002	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
   3003		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
   3004				   sc, LRU_ACTIVE_ANON);
   3005}
   3006
   3007/* Use reclaim/compaction for costly allocs or under memory pressure */
   3008static bool in_reclaim_compaction(struct scan_control *sc)
   3009{
   3010	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
   3011			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
   3012			 sc->priority < DEF_PRIORITY - 2))
   3013		return true;
   3014
   3015	return false;
   3016}
   3017
   3018/*
   3019 * Reclaim/compaction is used for high-order allocation requests. It reclaims
   3020 * order-0 pages before compacting the zone. should_continue_reclaim() returns
   3021 * true if more pages should be reclaimed such that when the page allocator
   3022 * calls try_to_compact_pages() that it will have enough free pages to succeed.
   3023 * It will give up earlier than that if there is difficulty reclaiming pages.
   3024 */
   3025static inline bool should_continue_reclaim(struct pglist_data *pgdat,
   3026					unsigned long nr_reclaimed,
   3027					struct scan_control *sc)
   3028{
   3029	unsigned long pages_for_compaction;
   3030	unsigned long inactive_lru_pages;
   3031	int z;
   3032
   3033	/* If not in reclaim/compaction mode, stop */
   3034	if (!in_reclaim_compaction(sc))
   3035		return false;
   3036
   3037	/*
   3038	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
   3039	 * number of pages that were scanned. This will return to the caller
   3040	 * with the risk reclaim/compaction and the resulting allocation attempt
   3041	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
   3042	 * allocations through requiring that the full LRU list has been scanned
   3043	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
   3044	 * scan, but that approximation was wrong, and there were corner cases
   3045	 * where always a non-zero amount of pages were scanned.
   3046	 */
   3047	if (!nr_reclaimed)
   3048		return false;
   3049
   3050	/* If compaction would go ahead or the allocation would succeed, stop */
   3051	for (z = 0; z <= sc->reclaim_idx; z++) {
   3052		struct zone *zone = &pgdat->node_zones[z];
   3053		if (!managed_zone(zone))
   3054			continue;
   3055
   3056		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
   3057		case COMPACT_SUCCESS:
   3058		case COMPACT_CONTINUE:
   3059			return false;
   3060		default:
   3061			/* check next zone */
   3062			;
   3063		}
   3064	}
   3065
   3066	/*
   3067	 * If we have not reclaimed enough pages for compaction and the
   3068	 * inactive lists are large enough, continue reclaiming
   3069	 */
   3070	pages_for_compaction = compact_gap(sc->order);
   3071	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
   3072	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
   3073		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
   3074
   3075	return inactive_lru_pages > pages_for_compaction;
   3076}
   3077
   3078static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
   3079{
   3080	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
   3081	struct mem_cgroup *memcg;
   3082
   3083	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
   3084	do {
   3085		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
   3086		unsigned long reclaimed;
   3087		unsigned long scanned;
   3088
   3089		/*
   3090		 * This loop can become CPU-bound when target memcgs
   3091		 * aren't eligible for reclaim - either because they
   3092		 * don't have any reclaimable pages, or because their
   3093		 * memory is explicitly protected. Avoid soft lockups.
   3094		 */
   3095		cond_resched();
   3096
   3097		mem_cgroup_calculate_protection(target_memcg, memcg);
   3098
   3099		if (mem_cgroup_below_min(memcg)) {
   3100			/*
   3101			 * Hard protection.
   3102			 * If there is no reclaimable memory, OOM.
   3103			 */
   3104			continue;
   3105		} else if (mem_cgroup_below_low(memcg)) {
   3106			/*
   3107			 * Soft protection.
   3108			 * Respect the protection only as long as
   3109			 * there is an unprotected supply
   3110			 * of reclaimable memory from other cgroups.
   3111			 */
   3112			if (!sc->memcg_low_reclaim) {
   3113				sc->memcg_low_skipped = 1;
   3114				continue;
   3115			}
   3116			memcg_memory_event(memcg, MEMCG_LOW);
   3117		}
   3118
   3119		reclaimed = sc->nr_reclaimed;
   3120		scanned = sc->nr_scanned;
   3121
   3122		shrink_lruvec(lruvec, sc);
   3123
   3124		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
   3125			    sc->priority);
   3126
   3127		/* Record the group's reclaim efficiency */
   3128		vmpressure(sc->gfp_mask, memcg, false,
   3129			   sc->nr_scanned - scanned,
   3130			   sc->nr_reclaimed - reclaimed);
   3131
   3132	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
   3133}
   3134
   3135static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
   3136{
   3137	struct reclaim_state *reclaim_state = current->reclaim_state;
   3138	unsigned long nr_reclaimed, nr_scanned;
   3139	struct lruvec *target_lruvec;
   3140	bool reclaimable = false;
   3141	unsigned long file;
   3142
   3143	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
   3144
   3145again:
   3146	/*
   3147	 * Flush the memory cgroup stats, so that we read accurate per-memcg
   3148	 * lruvec stats for heuristics.
   3149	 */
   3150	mem_cgroup_flush_stats();
   3151
   3152	memset(&sc->nr, 0, sizeof(sc->nr));
   3153
   3154	nr_reclaimed = sc->nr_reclaimed;
   3155	nr_scanned = sc->nr_scanned;
   3156
   3157	/*
   3158	 * Determine the scan balance between anon and file LRUs.
   3159	 */
   3160	spin_lock_irq(&target_lruvec->lru_lock);
   3161	sc->anon_cost = target_lruvec->anon_cost;
   3162	sc->file_cost = target_lruvec->file_cost;
   3163	spin_unlock_irq(&target_lruvec->lru_lock);
   3164
   3165	/*
   3166	 * Target desirable inactive:active list ratios for the anon
   3167	 * and file LRU lists.
   3168	 */
   3169	if (!sc->force_deactivate) {
   3170		unsigned long refaults;
   3171
   3172		refaults = lruvec_page_state(target_lruvec,
   3173				WORKINGSET_ACTIVATE_ANON);
   3174		if (refaults != target_lruvec->refaults[0] ||
   3175			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
   3176			sc->may_deactivate |= DEACTIVATE_ANON;
   3177		else
   3178			sc->may_deactivate &= ~DEACTIVATE_ANON;
   3179
   3180		/*
   3181		 * When refaults are being observed, it means a new
   3182		 * workingset is being established. Deactivate to get
   3183		 * rid of any stale active pages quickly.
   3184		 */
   3185		refaults = lruvec_page_state(target_lruvec,
   3186				WORKINGSET_ACTIVATE_FILE);
   3187		if (refaults != target_lruvec->refaults[1] ||
   3188		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
   3189			sc->may_deactivate |= DEACTIVATE_FILE;
   3190		else
   3191			sc->may_deactivate &= ~DEACTIVATE_FILE;
   3192	} else
   3193		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
   3194
   3195	/*
   3196	 * If we have plenty of inactive file pages that aren't
   3197	 * thrashing, try to reclaim those first before touching
   3198	 * anonymous pages.
   3199	 */
   3200	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
   3201	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
   3202		sc->cache_trim_mode = 1;
   3203	else
   3204		sc->cache_trim_mode = 0;
   3205
   3206	/*
   3207	 * Prevent the reclaimer from falling into the cache trap: as
   3208	 * cache pages start out inactive, every cache fault will tip
   3209	 * the scan balance towards the file LRU.  And as the file LRU
   3210	 * shrinks, so does the window for rotation from references.
   3211	 * This means we have a runaway feedback loop where a tiny
   3212	 * thrashing file LRU becomes infinitely more attractive than
   3213	 * anon pages.  Try to detect this based on file LRU size.
   3214	 */
   3215	if (!cgroup_reclaim(sc)) {
   3216		unsigned long total_high_wmark = 0;
   3217		unsigned long free, anon;
   3218		int z;
   3219
   3220		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
   3221		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
   3222			   node_page_state(pgdat, NR_INACTIVE_FILE);
   3223
   3224		for (z = 0; z < MAX_NR_ZONES; z++) {
   3225			struct zone *zone = &pgdat->node_zones[z];
   3226			if (!managed_zone(zone))
   3227				continue;
   3228
   3229			total_high_wmark += high_wmark_pages(zone);
   3230		}
   3231
   3232		/*
   3233		 * Consider anon: if that's low too, this isn't a
   3234		 * runaway file reclaim problem, but rather just
   3235		 * extreme pressure. Reclaim as per usual then.
   3236		 */
   3237		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
   3238
   3239		sc->file_is_tiny =
   3240			file + free <= total_high_wmark &&
   3241			!(sc->may_deactivate & DEACTIVATE_ANON) &&
   3242			anon >> sc->priority;
   3243	}
   3244
   3245	shrink_node_memcgs(pgdat, sc);
   3246
   3247	if (reclaim_state) {
   3248		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
   3249		reclaim_state->reclaimed_slab = 0;
   3250	}
   3251
   3252	/* Record the subtree's reclaim efficiency */
   3253	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
   3254		   sc->nr_scanned - nr_scanned,
   3255		   sc->nr_reclaimed - nr_reclaimed);
   3256
   3257	if (sc->nr_reclaimed - nr_reclaimed)
   3258		reclaimable = true;
   3259
   3260	if (current_is_kswapd()) {
   3261		/*
   3262		 * If reclaim is isolating dirty pages under writeback,
   3263		 * it implies that the long-lived page allocation rate
   3264		 * is exceeding the page laundering rate. Either the
   3265		 * global limits are not being effective at throttling
   3266		 * processes due to the page distribution throughout
   3267		 * zones or there is heavy usage of a slow backing
   3268		 * device. The only option is to throttle from reclaim
   3269		 * context which is not ideal as there is no guarantee
   3270		 * the dirtying process is throttled in the same way
   3271		 * balance_dirty_pages() manages.
   3272		 *
   3273		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
   3274		 * count the number of pages under pages flagged for
   3275		 * immediate reclaim and stall if any are encountered
   3276		 * in the nr_immediate check below.
   3277		 */
   3278		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
   3279			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
   3280
   3281		/* Allow kswapd to start writing pages during reclaim.*/
   3282		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
   3283			set_bit(PGDAT_DIRTY, &pgdat->flags);
   3284
   3285		/*
   3286		 * If kswapd scans pages marked for immediate
   3287		 * reclaim and under writeback (nr_immediate), it
   3288		 * implies that pages are cycling through the LRU
   3289		 * faster than they are written so forcibly stall
   3290		 * until some pages complete writeback.
   3291		 */
   3292		if (sc->nr.immediate)
   3293			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
   3294	}
   3295
   3296	/*
   3297	 * Tag a node/memcg as congested if all the dirty pages were marked
   3298	 * for writeback and immediate reclaim (counted in nr.congested).
   3299	 *
   3300	 * Legacy memcg will stall in page writeback so avoid forcibly
   3301	 * stalling in reclaim_throttle().
   3302	 */
   3303	if ((current_is_kswapd() ||
   3304	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
   3305	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
   3306		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
   3307
   3308	/*
   3309	 * Stall direct reclaim for IO completions if the lruvec is
   3310	 * node is congested. Allow kswapd to continue until it
   3311	 * starts encountering unqueued dirty pages or cycling through
   3312	 * the LRU too quickly.
   3313	 */
   3314	if (!current_is_kswapd() && current_may_throttle() &&
   3315	    !sc->hibernation_mode &&
   3316	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
   3317		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
   3318
   3319	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
   3320				    sc))
   3321		goto again;
   3322
   3323	/*
   3324	 * Kswapd gives up on balancing particular nodes after too
   3325	 * many failures to reclaim anything from them and goes to
   3326	 * sleep. On reclaim progress, reset the failure counter. A
   3327	 * successful direct reclaim run will revive a dormant kswapd.
   3328	 */
   3329	if (reclaimable)
   3330		pgdat->kswapd_failures = 0;
   3331}
   3332
   3333/*
   3334 * Returns true if compaction should go ahead for a costly-order request, or
   3335 * the allocation would already succeed without compaction. Return false if we
   3336 * should reclaim first.
   3337 */
   3338static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
   3339{
   3340	unsigned long watermark;
   3341	enum compact_result suitable;
   3342
   3343	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
   3344	if (suitable == COMPACT_SUCCESS)
   3345		/* Allocation should succeed already. Don't reclaim. */
   3346		return true;
   3347	if (suitable == COMPACT_SKIPPED)
   3348		/* Compaction cannot yet proceed. Do reclaim. */
   3349		return false;
   3350
   3351	/*
   3352	 * Compaction is already possible, but it takes time to run and there
   3353	 * are potentially other callers using the pages just freed. So proceed
   3354	 * with reclaim to make a buffer of free pages available to give
   3355	 * compaction a reasonable chance of completing and allocating the page.
   3356	 * Note that we won't actually reclaim the whole buffer in one attempt
   3357	 * as the target watermark in should_continue_reclaim() is lower. But if
   3358	 * we are already above the high+gap watermark, don't reclaim at all.
   3359	 */
   3360	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
   3361
   3362	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
   3363}
   3364
   3365static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
   3366{
   3367	/*
   3368	 * If reclaim is making progress greater than 12% efficiency then
   3369	 * wake all the NOPROGRESS throttled tasks.
   3370	 */
   3371	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
   3372		wait_queue_head_t *wqh;
   3373
   3374		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
   3375		if (waitqueue_active(wqh))
   3376			wake_up(wqh);
   3377
   3378		return;
   3379	}
   3380
   3381	/*
   3382	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
   3383	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
   3384	 * under writeback and marked for immediate reclaim at the tail of the
   3385	 * LRU.
   3386	 */
   3387	if (current_is_kswapd() || cgroup_reclaim(sc))
   3388		return;
   3389
   3390	/* Throttle if making no progress at high prioities. */
   3391	if (sc->priority == 1 && !sc->nr_reclaimed)
   3392		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
   3393}
   3394
   3395/*
   3396 * This is the direct reclaim path, for page-allocating processes.  We only
   3397 * try to reclaim pages from zones which will satisfy the caller's allocation
   3398 * request.
   3399 *
   3400 * If a zone is deemed to be full of pinned pages then just give it a light
   3401 * scan then give up on it.
   3402 */
   3403static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
   3404{
   3405	struct zoneref *z;
   3406	struct zone *zone;
   3407	unsigned long nr_soft_reclaimed;
   3408	unsigned long nr_soft_scanned;
   3409	gfp_t orig_mask;
   3410	pg_data_t *last_pgdat = NULL;
   3411	pg_data_t *first_pgdat = NULL;
   3412
   3413	/*
   3414	 * If the number of buffer_heads in the machine exceeds the maximum
   3415	 * allowed level, force direct reclaim to scan the highmem zone as
   3416	 * highmem pages could be pinning lowmem pages storing buffer_heads
   3417	 */
   3418	orig_mask = sc->gfp_mask;
   3419	if (buffer_heads_over_limit) {
   3420		sc->gfp_mask |= __GFP_HIGHMEM;
   3421		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
   3422	}
   3423
   3424	for_each_zone_zonelist_nodemask(zone, z, zonelist,
   3425					sc->reclaim_idx, sc->nodemask) {
   3426		/*
   3427		 * Take care memory controller reclaiming has small influence
   3428		 * to global LRU.
   3429		 */
   3430		if (!cgroup_reclaim(sc)) {
   3431			if (!cpuset_zone_allowed(zone,
   3432						 GFP_KERNEL | __GFP_HARDWALL))
   3433				continue;
   3434
   3435			/*
   3436			 * If we already have plenty of memory free for
   3437			 * compaction in this zone, don't free any more.
   3438			 * Even though compaction is invoked for any
   3439			 * non-zero order, only frequent costly order
   3440			 * reclamation is disruptive enough to become a
   3441			 * noticeable problem, like transparent huge
   3442			 * page allocations.
   3443			 */
   3444			if (IS_ENABLED(CONFIG_COMPACTION) &&
   3445			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
   3446			    compaction_ready(zone, sc)) {
   3447				sc->compaction_ready = true;
   3448				continue;
   3449			}
   3450
   3451			/*
   3452			 * Shrink each node in the zonelist once. If the
   3453			 * zonelist is ordered by zone (not the default) then a
   3454			 * node may be shrunk multiple times but in that case
   3455			 * the user prefers lower zones being preserved.
   3456			 */
   3457			if (zone->zone_pgdat == last_pgdat)
   3458				continue;
   3459
   3460			/*
   3461			 * This steals pages from memory cgroups over softlimit
   3462			 * and returns the number of reclaimed pages and
   3463			 * scanned pages. This works for global memory pressure
   3464			 * and balancing, not for a memcg's limit.
   3465			 */
   3466			nr_soft_scanned = 0;
   3467			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
   3468						sc->order, sc->gfp_mask,
   3469						&nr_soft_scanned);
   3470			sc->nr_reclaimed += nr_soft_reclaimed;
   3471			sc->nr_scanned += nr_soft_scanned;
   3472			/* need some check for avoid more shrink_zone() */
   3473		}
   3474
   3475		if (!first_pgdat)
   3476			first_pgdat = zone->zone_pgdat;
   3477
   3478		/* See comment about same check for global reclaim above */
   3479		if (zone->zone_pgdat == last_pgdat)
   3480			continue;
   3481		last_pgdat = zone->zone_pgdat;
   3482		shrink_node(zone->zone_pgdat, sc);
   3483	}
   3484
   3485	if (first_pgdat)
   3486		consider_reclaim_throttle(first_pgdat, sc);
   3487
   3488	/*
   3489	 * Restore to original mask to avoid the impact on the caller if we
   3490	 * promoted it to __GFP_HIGHMEM.
   3491	 */
   3492	sc->gfp_mask = orig_mask;
   3493}
   3494
   3495static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
   3496{
   3497	struct lruvec *target_lruvec;
   3498	unsigned long refaults;
   3499
   3500	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
   3501	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
   3502	target_lruvec->refaults[0] = refaults;
   3503	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
   3504	target_lruvec->refaults[1] = refaults;
   3505}
   3506
   3507/*
   3508 * This is the main entry point to direct page reclaim.
   3509 *
   3510 * If a full scan of the inactive list fails to free enough memory then we
   3511 * are "out of memory" and something needs to be killed.
   3512 *
   3513 * If the caller is !__GFP_FS then the probability of a failure is reasonably
   3514 * high - the zone may be full of dirty or under-writeback pages, which this
   3515 * caller can't do much about.  We kick the writeback threads and take explicit
   3516 * naps in the hope that some of these pages can be written.  But if the
   3517 * allocating task holds filesystem locks which prevent writeout this might not
   3518 * work, and the allocation attempt will fail.
   3519 *
   3520 * returns:	0, if no pages reclaimed
   3521 * 		else, the number of pages reclaimed
   3522 */
   3523static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
   3524					  struct scan_control *sc)
   3525{
   3526	int initial_priority = sc->priority;
   3527	pg_data_t *last_pgdat;
   3528	struct zoneref *z;
   3529	struct zone *zone;
   3530retry:
   3531	delayacct_freepages_start();
   3532
   3533	if (!cgroup_reclaim(sc))
   3534		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
   3535
   3536	do {
   3537		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
   3538				sc->priority);
   3539		sc->nr_scanned = 0;
   3540		shrink_zones(zonelist, sc);
   3541
   3542		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
   3543			break;
   3544
   3545		if (sc->compaction_ready)
   3546			break;
   3547
   3548		/*
   3549		 * If we're getting trouble reclaiming, start doing
   3550		 * writepage even in laptop mode.
   3551		 */
   3552		if (sc->priority < DEF_PRIORITY - 2)
   3553			sc->may_writepage = 1;
   3554	} while (--sc->priority >= 0);
   3555
   3556	last_pgdat = NULL;
   3557	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
   3558					sc->nodemask) {
   3559		if (zone->zone_pgdat == last_pgdat)
   3560			continue;
   3561		last_pgdat = zone->zone_pgdat;
   3562
   3563		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
   3564
   3565		if (cgroup_reclaim(sc)) {
   3566			struct lruvec *lruvec;
   3567
   3568			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
   3569						   zone->zone_pgdat);
   3570			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
   3571		}
   3572	}
   3573
   3574	delayacct_freepages_end();
   3575
   3576	if (sc->nr_reclaimed)
   3577		return sc->nr_reclaimed;
   3578
   3579	/* Aborted reclaim to try compaction? don't OOM, then */
   3580	if (sc->compaction_ready)
   3581		return 1;
   3582
   3583	/*
   3584	 * We make inactive:active ratio decisions based on the node's
   3585	 * composition of memory, but a restrictive reclaim_idx or a
   3586	 * memory.low cgroup setting can exempt large amounts of
   3587	 * memory from reclaim. Neither of which are very common, so
   3588	 * instead of doing costly eligibility calculations of the
   3589	 * entire cgroup subtree up front, we assume the estimates are
   3590	 * good, and retry with forcible deactivation if that fails.
   3591	 */
   3592	if (sc->skipped_deactivate) {
   3593		sc->priority = initial_priority;
   3594		sc->force_deactivate = 1;
   3595		sc->skipped_deactivate = 0;
   3596		goto retry;
   3597	}
   3598
   3599	/* Untapped cgroup reserves?  Don't OOM, retry. */
   3600	if (sc->memcg_low_skipped) {
   3601		sc->priority = initial_priority;
   3602		sc->force_deactivate = 0;
   3603		sc->memcg_low_reclaim = 1;
   3604		sc->memcg_low_skipped = 0;
   3605		goto retry;
   3606	}
   3607
   3608	return 0;
   3609}
   3610
   3611static bool allow_direct_reclaim(pg_data_t *pgdat)
   3612{
   3613	struct zone *zone;
   3614	unsigned long pfmemalloc_reserve = 0;
   3615	unsigned long free_pages = 0;
   3616	int i;
   3617	bool wmark_ok;
   3618
   3619	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
   3620		return true;
   3621
   3622	for (i = 0; i <= ZONE_NORMAL; i++) {
   3623		zone = &pgdat->node_zones[i];
   3624		if (!managed_zone(zone))
   3625			continue;
   3626
   3627		if (!zone_reclaimable_pages(zone))
   3628			continue;
   3629
   3630		pfmemalloc_reserve += min_wmark_pages(zone);
   3631		free_pages += zone_page_state(zone, NR_FREE_PAGES);
   3632	}
   3633
   3634	/* If there are no reserves (unexpected config) then do not throttle */
   3635	if (!pfmemalloc_reserve)
   3636		return true;
   3637
   3638	wmark_ok = free_pages > pfmemalloc_reserve / 2;
   3639
   3640	/* kswapd must be awake if processes are being throttled */
   3641	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
   3642		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
   3643			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
   3644
   3645		wake_up_interruptible(&pgdat->kswapd_wait);
   3646	}
   3647
   3648	return wmark_ok;
   3649}
   3650
   3651/*
   3652 * Throttle direct reclaimers if backing storage is backed by the network
   3653 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
   3654 * depleted. kswapd will continue to make progress and wake the processes
   3655 * when the low watermark is reached.
   3656 *
   3657 * Returns true if a fatal signal was delivered during throttling. If this
   3658 * happens, the page allocator should not consider triggering the OOM killer.
   3659 */
   3660static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
   3661					nodemask_t *nodemask)
   3662{
   3663	struct zoneref *z;
   3664	struct zone *zone;
   3665	pg_data_t *pgdat = NULL;
   3666
   3667	/*
   3668	 * Kernel threads should not be throttled as they may be indirectly
   3669	 * responsible for cleaning pages necessary for reclaim to make forward
   3670	 * progress. kjournald for example may enter direct reclaim while
   3671	 * committing a transaction where throttling it could forcing other
   3672	 * processes to block on log_wait_commit().
   3673	 */
   3674	if (current->flags & PF_KTHREAD)
   3675		goto out;
   3676
   3677	/*
   3678	 * If a fatal signal is pending, this process should not throttle.
   3679	 * It should return quickly so it can exit and free its memory
   3680	 */
   3681	if (fatal_signal_pending(current))
   3682		goto out;
   3683
   3684	/*
   3685	 * Check if the pfmemalloc reserves are ok by finding the first node
   3686	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
   3687	 * GFP_KERNEL will be required for allocating network buffers when
   3688	 * swapping over the network so ZONE_HIGHMEM is unusable.
   3689	 *
   3690	 * Throttling is based on the first usable node and throttled processes
   3691	 * wait on a queue until kswapd makes progress and wakes them. There
   3692	 * is an affinity then between processes waking up and where reclaim
   3693	 * progress has been made assuming the process wakes on the same node.
   3694	 * More importantly, processes running on remote nodes will not compete
   3695	 * for remote pfmemalloc reserves and processes on different nodes
   3696	 * should make reasonable progress.
   3697	 */
   3698	for_each_zone_zonelist_nodemask(zone, z, zonelist,
   3699					gfp_zone(gfp_mask), nodemask) {
   3700		if (zone_idx(zone) > ZONE_NORMAL)
   3701			continue;
   3702
   3703		/* Throttle based on the first usable node */
   3704		pgdat = zone->zone_pgdat;
   3705		if (allow_direct_reclaim(pgdat))
   3706			goto out;
   3707		break;
   3708	}
   3709
   3710	/* If no zone was usable by the allocation flags then do not throttle */
   3711	if (!pgdat)
   3712		goto out;
   3713
   3714	/* Account for the throttling */
   3715	count_vm_event(PGSCAN_DIRECT_THROTTLE);
   3716
   3717	/*
   3718	 * If the caller cannot enter the filesystem, it's possible that it
   3719	 * is due to the caller holding an FS lock or performing a journal
   3720	 * transaction in the case of a filesystem like ext[3|4]. In this case,
   3721	 * it is not safe to block on pfmemalloc_wait as kswapd could be
   3722	 * blocked waiting on the same lock. Instead, throttle for up to a
   3723	 * second before continuing.
   3724	 */
   3725	if (!(gfp_mask & __GFP_FS))
   3726		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
   3727			allow_direct_reclaim(pgdat), HZ);
   3728	else
   3729		/* Throttle until kswapd wakes the process */
   3730		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
   3731			allow_direct_reclaim(pgdat));
   3732
   3733	if (fatal_signal_pending(current))
   3734		return true;
   3735
   3736out:
   3737	return false;
   3738}
   3739
   3740unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
   3741				gfp_t gfp_mask, nodemask_t *nodemask)
   3742{
   3743	unsigned long nr_reclaimed;
   3744	struct scan_control sc = {
   3745		.nr_to_reclaim = SWAP_CLUSTER_MAX,
   3746		.gfp_mask = current_gfp_context(gfp_mask),
   3747		.reclaim_idx = gfp_zone(gfp_mask),
   3748		.order = order,
   3749		.nodemask = nodemask,
   3750		.priority = DEF_PRIORITY,
   3751		.may_writepage = !laptop_mode,
   3752		.may_unmap = 1,
   3753		.may_swap = 1,
   3754	};
   3755
   3756	/*
   3757	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
   3758	 * Confirm they are large enough for max values.
   3759	 */
   3760	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
   3761	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
   3762	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
   3763
   3764	/*
   3765	 * Do not enter reclaim if fatal signal was delivered while throttled.
   3766	 * 1 is returned so that the page allocator does not OOM kill at this
   3767	 * point.
   3768	 */
   3769	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
   3770		return 1;
   3771
   3772	set_task_reclaim_state(current, &sc.reclaim_state);
   3773	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
   3774
   3775	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
   3776
   3777	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
   3778	set_task_reclaim_state(current, NULL);
   3779
   3780	return nr_reclaimed;
   3781}
   3782
   3783#ifdef CONFIG_MEMCG
   3784
   3785/* Only used by soft limit reclaim. Do not reuse for anything else. */
   3786unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
   3787						gfp_t gfp_mask, bool noswap,
   3788						pg_data_t *pgdat,
   3789						unsigned long *nr_scanned)
   3790{
   3791	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
   3792	struct scan_control sc = {
   3793		.nr_to_reclaim = SWAP_CLUSTER_MAX,
   3794		.target_mem_cgroup = memcg,
   3795		.may_writepage = !laptop_mode,
   3796		.may_unmap = 1,
   3797		.reclaim_idx = MAX_NR_ZONES - 1,
   3798		.may_swap = !noswap,
   3799	};
   3800
   3801	WARN_ON_ONCE(!current->reclaim_state);
   3802
   3803	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
   3804			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
   3805
   3806	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
   3807						      sc.gfp_mask);
   3808
   3809	/*
   3810	 * NOTE: Although we can get the priority field, using it
   3811	 * here is not a good idea, since it limits the pages we can scan.
   3812	 * if we don't reclaim here, the shrink_node from balance_pgdat
   3813	 * will pick up pages from other mem cgroup's as well. We hack
   3814	 * the priority and make it zero.
   3815	 */
   3816	shrink_lruvec(lruvec, &sc);
   3817
   3818	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
   3819
   3820	*nr_scanned = sc.nr_scanned;
   3821
   3822	return sc.nr_reclaimed;
   3823}
   3824
   3825unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
   3826					   unsigned long nr_pages,
   3827					   gfp_t gfp_mask,
   3828					   bool may_swap)
   3829{
   3830	unsigned long nr_reclaimed;
   3831	unsigned int noreclaim_flag;
   3832	struct scan_control sc = {
   3833		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
   3834		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
   3835				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
   3836		.reclaim_idx = MAX_NR_ZONES - 1,
   3837		.target_mem_cgroup = memcg,
   3838		.priority = DEF_PRIORITY,
   3839		.may_writepage = !laptop_mode,
   3840		.may_unmap = 1,
   3841		.may_swap = may_swap,
   3842	};
   3843	/*
   3844	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
   3845	 * equal pressure on all the nodes. This is based on the assumption that
   3846	 * the reclaim does not bail out early.
   3847	 */
   3848	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
   3849
   3850	set_task_reclaim_state(current, &sc.reclaim_state);
   3851	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
   3852	noreclaim_flag = memalloc_noreclaim_save();
   3853
   3854	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
   3855
   3856	memalloc_noreclaim_restore(noreclaim_flag);
   3857	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
   3858	set_task_reclaim_state(current, NULL);
   3859
   3860	return nr_reclaimed;
   3861}
   3862#endif
   3863
   3864static void age_active_anon(struct pglist_data *pgdat,
   3865				struct scan_control *sc)
   3866{
   3867	struct mem_cgroup *memcg;
   3868	struct lruvec *lruvec;
   3869
   3870	if (!can_age_anon_pages(pgdat, sc))
   3871		return;
   3872
   3873	lruvec = mem_cgroup_lruvec(NULL, pgdat);
   3874	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
   3875		return;
   3876
   3877	memcg = mem_cgroup_iter(NULL, NULL, NULL);
   3878	do {
   3879		lruvec = mem_cgroup_lruvec(memcg, pgdat);
   3880		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
   3881				   sc, LRU_ACTIVE_ANON);
   3882		memcg = mem_cgroup_iter(NULL, memcg, NULL);
   3883	} while (memcg);
   3884}
   3885
   3886static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
   3887{
   3888	int i;
   3889	struct zone *zone;
   3890
   3891	/*
   3892	 * Check for watermark boosts top-down as the higher zones
   3893	 * are more likely to be boosted. Both watermarks and boosts
   3894	 * should not be checked at the same time as reclaim would
   3895	 * start prematurely when there is no boosting and a lower
   3896	 * zone is balanced.
   3897	 */
   3898	for (i = highest_zoneidx; i >= 0; i--) {
   3899		zone = pgdat->node_zones + i;
   3900		if (!managed_zone(zone))
   3901			continue;
   3902
   3903		if (zone->watermark_boost)
   3904			return true;
   3905	}
   3906
   3907	return false;
   3908}
   3909
   3910/*
   3911 * Returns true if there is an eligible zone balanced for the request order
   3912 * and highest_zoneidx
   3913 */
   3914static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
   3915{
   3916	int i;
   3917	unsigned long mark = -1;
   3918	struct zone *zone;
   3919
   3920	/*
   3921	 * Check watermarks bottom-up as lower zones are more likely to
   3922	 * meet watermarks.
   3923	 */
   3924	for (i = 0; i <= highest_zoneidx; i++) {
   3925		zone = pgdat->node_zones + i;
   3926
   3927		if (!managed_zone(zone))
   3928			continue;
   3929
   3930		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
   3931			mark = wmark_pages(zone, WMARK_PROMO);
   3932		else
   3933			mark = high_wmark_pages(zone);
   3934		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
   3935			return true;
   3936	}
   3937
   3938	/*
   3939	 * If a node has no managed zone within highest_zoneidx, it does not
   3940	 * need balancing by definition. This can happen if a zone-restricted
   3941	 * allocation tries to wake a remote kswapd.
   3942	 */
   3943	if (mark == -1)
   3944		return true;
   3945
   3946	return false;
   3947}
   3948
   3949/* Clear pgdat state for congested, dirty or under writeback. */
   3950static void clear_pgdat_congested(pg_data_t *pgdat)
   3951{
   3952	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
   3953
   3954	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
   3955	clear_bit(PGDAT_DIRTY, &pgdat->flags);
   3956	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
   3957}
   3958
   3959/*
   3960 * Prepare kswapd for sleeping. This verifies that there are no processes
   3961 * waiting in throttle_direct_reclaim() and that watermarks have been met.
   3962 *
   3963 * Returns true if kswapd is ready to sleep
   3964 */
   3965static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
   3966				int highest_zoneidx)
   3967{
   3968	/*
   3969	 * The throttled processes are normally woken up in balance_pgdat() as
   3970	 * soon as allow_direct_reclaim() is true. But there is a potential
   3971	 * race between when kswapd checks the watermarks and a process gets
   3972	 * throttled. There is also a potential race if processes get
   3973	 * throttled, kswapd wakes, a large process exits thereby balancing the
   3974	 * zones, which causes kswapd to exit balance_pgdat() before reaching
   3975	 * the wake up checks. If kswapd is going to sleep, no process should
   3976	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
   3977	 * the wake up is premature, processes will wake kswapd and get
   3978	 * throttled again. The difference from wake ups in balance_pgdat() is
   3979	 * that here we are under prepare_to_wait().
   3980	 */
   3981	if (waitqueue_active(&pgdat->pfmemalloc_wait))
   3982		wake_up_all(&pgdat->pfmemalloc_wait);
   3983
   3984	/* Hopeless node, leave it to direct reclaim */
   3985	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
   3986		return true;
   3987
   3988	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
   3989		clear_pgdat_congested(pgdat);
   3990		return true;
   3991	}
   3992
   3993	return false;
   3994}
   3995
   3996/*
   3997 * kswapd shrinks a node of pages that are at or below the highest usable
   3998 * zone that is currently unbalanced.
   3999 *
   4000 * Returns true if kswapd scanned at least the requested number of pages to
   4001 * reclaim or if the lack of progress was due to pages under writeback.
   4002 * This is used to determine if the scanning priority needs to be raised.
   4003 */
   4004static bool kswapd_shrink_node(pg_data_t *pgdat,
   4005			       struct scan_control *sc)
   4006{
   4007	struct zone *zone;
   4008	int z;
   4009
   4010	/* Reclaim a number of pages proportional to the number of zones */
   4011	sc->nr_to_reclaim = 0;
   4012	for (z = 0; z <= sc->reclaim_idx; z++) {
   4013		zone = pgdat->node_zones + z;
   4014		if (!managed_zone(zone))
   4015			continue;
   4016
   4017		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
   4018	}
   4019
   4020	/*
   4021	 * Historically care was taken to put equal pressure on all zones but
   4022	 * now pressure is applied based on node LRU order.
   4023	 */
   4024	shrink_node(pgdat, sc);
   4025
   4026	/*
   4027	 * Fragmentation may mean that the system cannot be rebalanced for
   4028	 * high-order allocations. If twice the allocation size has been
   4029	 * reclaimed then recheck watermarks only at order-0 to prevent
   4030	 * excessive reclaim. Assume that a process requested a high-order
   4031	 * can direct reclaim/compact.
   4032	 */
   4033	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
   4034		sc->order = 0;
   4035
   4036	return sc->nr_scanned >= sc->nr_to_reclaim;
   4037}
   4038
   4039/* Page allocator PCP high watermark is lowered if reclaim is active. */
   4040static inline void
   4041update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
   4042{
   4043	int i;
   4044	struct zone *zone;
   4045
   4046	for (i = 0; i <= highest_zoneidx; i++) {
   4047		zone = pgdat->node_zones + i;
   4048
   4049		if (!managed_zone(zone))
   4050			continue;
   4051
   4052		if (active)
   4053			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
   4054		else
   4055			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
   4056	}
   4057}
   4058
   4059static inline void
   4060set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
   4061{
   4062	update_reclaim_active(pgdat, highest_zoneidx, true);
   4063}
   4064
   4065static inline void
   4066clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
   4067{
   4068	update_reclaim_active(pgdat, highest_zoneidx, false);
   4069}
   4070
   4071/*
   4072 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
   4073 * that are eligible for use by the caller until at least one zone is
   4074 * balanced.
   4075 *
   4076 * Returns the order kswapd finished reclaiming at.
   4077 *
   4078 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
   4079 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
   4080 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
   4081 * or lower is eligible for reclaim until at least one usable zone is
   4082 * balanced.
   4083 */
   4084static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
   4085{
   4086	int i;
   4087	unsigned long nr_soft_reclaimed;
   4088	unsigned long nr_soft_scanned;
   4089	unsigned long pflags;
   4090	unsigned long nr_boost_reclaim;
   4091	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
   4092	bool boosted;
   4093	struct zone *zone;
   4094	struct scan_control sc = {
   4095		.gfp_mask = GFP_KERNEL,
   4096		.order = order,
   4097		.may_unmap = 1,
   4098	};
   4099
   4100	set_task_reclaim_state(current, &sc.reclaim_state);
   4101	psi_memstall_enter(&pflags);
   4102	__fs_reclaim_acquire(_THIS_IP_);
   4103
   4104	count_vm_event(PAGEOUTRUN);
   4105
   4106	/*
   4107	 * Account for the reclaim boost. Note that the zone boost is left in
   4108	 * place so that parallel allocations that are near the watermark will
   4109	 * stall or direct reclaim until kswapd is finished.
   4110	 */
   4111	nr_boost_reclaim = 0;
   4112	for (i = 0; i <= highest_zoneidx; i++) {
   4113		zone = pgdat->node_zones + i;
   4114		if (!managed_zone(zone))
   4115			continue;
   4116
   4117		nr_boost_reclaim += zone->watermark_boost;
   4118		zone_boosts[i] = zone->watermark_boost;
   4119	}
   4120	boosted = nr_boost_reclaim;
   4121
   4122restart:
   4123	set_reclaim_active(pgdat, highest_zoneidx);
   4124	sc.priority = DEF_PRIORITY;
   4125	do {
   4126		unsigned long nr_reclaimed = sc.nr_reclaimed;
   4127		bool raise_priority = true;
   4128		bool balanced;
   4129		bool ret;
   4130
   4131		sc.reclaim_idx = highest_zoneidx;
   4132
   4133		/*
   4134		 * If the number of buffer_heads exceeds the maximum allowed
   4135		 * then consider reclaiming from all zones. This has a dual
   4136		 * purpose -- on 64-bit systems it is expected that
   4137		 * buffer_heads are stripped during active rotation. On 32-bit
   4138		 * systems, highmem pages can pin lowmem memory and shrinking
   4139		 * buffers can relieve lowmem pressure. Reclaim may still not
   4140		 * go ahead if all eligible zones for the original allocation
   4141		 * request are balanced to avoid excessive reclaim from kswapd.
   4142		 */
   4143		if (buffer_heads_over_limit) {
   4144			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
   4145				zone = pgdat->node_zones + i;
   4146				if (!managed_zone(zone))
   4147					continue;
   4148
   4149				sc.reclaim_idx = i;
   4150				break;
   4151			}
   4152		}
   4153
   4154		/*
   4155		 * If the pgdat is imbalanced then ignore boosting and preserve
   4156		 * the watermarks for a later time and restart. Note that the
   4157		 * zone watermarks will be still reset at the end of balancing
   4158		 * on the grounds that the normal reclaim should be enough to
   4159		 * re-evaluate if boosting is required when kswapd next wakes.
   4160		 */
   4161		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
   4162		if (!balanced && nr_boost_reclaim) {
   4163			nr_boost_reclaim = 0;
   4164			goto restart;
   4165		}
   4166
   4167		/*
   4168		 * If boosting is not active then only reclaim if there are no
   4169		 * eligible zones. Note that sc.reclaim_idx is not used as
   4170		 * buffer_heads_over_limit may have adjusted it.
   4171		 */
   4172		if (!nr_boost_reclaim && balanced)
   4173			goto out;
   4174
   4175		/* Limit the priority of boosting to avoid reclaim writeback */
   4176		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
   4177			raise_priority = false;
   4178
   4179		/*
   4180		 * Do not writeback or swap pages for boosted reclaim. The
   4181		 * intent is to relieve pressure not issue sub-optimal IO
   4182		 * from reclaim context. If no pages are reclaimed, the
   4183		 * reclaim will be aborted.
   4184		 */
   4185		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
   4186		sc.may_swap = !nr_boost_reclaim;
   4187
   4188		/*
   4189		 * Do some background aging of the anon list, to give
   4190		 * pages a chance to be referenced before reclaiming. All
   4191		 * pages are rotated regardless of classzone as this is
   4192		 * about consistent aging.
   4193		 */
   4194		age_active_anon(pgdat, &sc);
   4195
   4196		/*
   4197		 * If we're getting trouble reclaiming, start doing writepage
   4198		 * even in laptop mode.
   4199		 */
   4200		if (sc.priority < DEF_PRIORITY - 2)
   4201			sc.may_writepage = 1;
   4202
   4203		/* Call soft limit reclaim before calling shrink_node. */
   4204		sc.nr_scanned = 0;
   4205		nr_soft_scanned = 0;
   4206		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
   4207						sc.gfp_mask, &nr_soft_scanned);
   4208		sc.nr_reclaimed += nr_soft_reclaimed;
   4209
   4210		/*
   4211		 * There should be no need to raise the scanning priority if
   4212		 * enough pages are already being scanned that that high
   4213		 * watermark would be met at 100% efficiency.
   4214		 */
   4215		if (kswapd_shrink_node(pgdat, &sc))
   4216			raise_priority = false;
   4217
   4218		/*
   4219		 * If the low watermark is met there is no need for processes
   4220		 * to be throttled on pfmemalloc_wait as they should not be
   4221		 * able to safely make forward progress. Wake them
   4222		 */
   4223		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
   4224				allow_direct_reclaim(pgdat))
   4225			wake_up_all(&pgdat->pfmemalloc_wait);
   4226
   4227		/* Check if kswapd should be suspending */
   4228		__fs_reclaim_release(_THIS_IP_);
   4229		ret = try_to_freeze();
   4230		__fs_reclaim_acquire(_THIS_IP_);
   4231		if (ret || kthread_should_stop())
   4232			break;
   4233
   4234		/*
   4235		 * Raise priority if scanning rate is too low or there was no
   4236		 * progress in reclaiming pages
   4237		 */
   4238		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
   4239		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
   4240
   4241		/*
   4242		 * If reclaim made no progress for a boost, stop reclaim as
   4243		 * IO cannot be queued and it could be an infinite loop in
   4244		 * extreme circumstances.
   4245		 */
   4246		if (nr_boost_reclaim && !nr_reclaimed)
   4247			break;
   4248
   4249		if (raise_priority || !nr_reclaimed)
   4250			sc.priority--;
   4251	} while (sc.priority >= 1);
   4252
   4253	if (!sc.nr_reclaimed)
   4254		pgdat->kswapd_failures++;
   4255
   4256out:
   4257	clear_reclaim_active(pgdat, highest_zoneidx);
   4258
   4259	/* If reclaim was boosted, account for the reclaim done in this pass */
   4260	if (boosted) {
   4261		unsigned long flags;
   4262
   4263		for (i = 0; i <= highest_zoneidx; i++) {
   4264			if (!zone_boosts[i])
   4265				continue;
   4266
   4267			/* Increments are under the zone lock */
   4268			zone = pgdat->node_zones + i;
   4269			spin_lock_irqsave(&zone->lock, flags);
   4270			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
   4271			spin_unlock_irqrestore(&zone->lock, flags);
   4272		}
   4273
   4274		/*
   4275		 * As there is now likely space, wakeup kcompact to defragment
   4276		 * pageblocks.
   4277		 */
   4278		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
   4279	}
   4280
   4281	snapshot_refaults(NULL, pgdat);
   4282	__fs_reclaim_release(_THIS_IP_);
   4283	psi_memstall_leave(&pflags);
   4284	set_task_reclaim_state(current, NULL);
   4285
   4286	/*
   4287	 * Return the order kswapd stopped reclaiming at as
   4288	 * prepare_kswapd_sleep() takes it into account. If another caller
   4289	 * entered the allocator slow path while kswapd was awake, order will
   4290	 * remain at the higher level.
   4291	 */
   4292	return sc.order;
   4293}
   4294
   4295/*
   4296 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
   4297 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
   4298 * not a valid index then either kswapd runs for first time or kswapd couldn't
   4299 * sleep after previous reclaim attempt (node is still unbalanced). In that
   4300 * case return the zone index of the previous kswapd reclaim cycle.
   4301 */
   4302static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
   4303					   enum zone_type prev_highest_zoneidx)
   4304{
   4305	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
   4306
   4307	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
   4308}
   4309
   4310static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
   4311				unsigned int highest_zoneidx)
   4312{
   4313	long remaining = 0;
   4314	DEFINE_WAIT(wait);
   4315
   4316	if (freezing(current) || kthread_should_stop())
   4317		return;
   4318
   4319	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
   4320
   4321	/*
   4322	 * Try to sleep for a short interval. Note that kcompactd will only be
   4323	 * woken if it is possible to sleep for a short interval. This is
   4324	 * deliberate on the assumption that if reclaim cannot keep an
   4325	 * eligible zone balanced that it's also unlikely that compaction will
   4326	 * succeed.
   4327	 */
   4328	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
   4329		/*
   4330		 * Compaction records what page blocks it recently failed to
   4331		 * isolate pages from and skips them in the future scanning.
   4332		 * When kswapd is going to sleep, it is reasonable to assume
   4333		 * that pages and compaction may succeed so reset the cache.
   4334		 */
   4335		reset_isolation_suitable(pgdat);
   4336
   4337		/*
   4338		 * We have freed the memory, now we should compact it to make
   4339		 * allocation of the requested order possible.
   4340		 */
   4341		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
   4342
   4343		remaining = schedule_timeout(HZ/10);
   4344
   4345		/*
   4346		 * If woken prematurely then reset kswapd_highest_zoneidx and
   4347		 * order. The values will either be from a wakeup request or
   4348		 * the previous request that slept prematurely.
   4349		 */
   4350		if (remaining) {
   4351			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
   4352					kswapd_highest_zoneidx(pgdat,
   4353							highest_zoneidx));
   4354
   4355			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
   4356				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
   4357		}
   4358
   4359		finish_wait(&pgdat->kswapd_wait, &wait);
   4360		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
   4361	}
   4362
   4363	/*
   4364	 * After a short sleep, check if it was a premature sleep. If not, then
   4365	 * go fully to sleep until explicitly woken up.
   4366	 */
   4367	if (!remaining &&
   4368	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
   4369		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
   4370
   4371		/*
   4372		 * vmstat counters are not perfectly accurate and the estimated
   4373		 * value for counters such as NR_FREE_PAGES can deviate from the
   4374		 * true value by nr_online_cpus * threshold. To avoid the zone
   4375		 * watermarks being breached while under pressure, we reduce the
   4376		 * per-cpu vmstat threshold while kswapd is awake and restore
   4377		 * them before going back to sleep.
   4378		 */
   4379		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
   4380
   4381		if (!kthread_should_stop())
   4382			schedule();
   4383
   4384		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
   4385	} else {
   4386		if (remaining)
   4387			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
   4388		else
   4389			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
   4390	}
   4391	finish_wait(&pgdat->kswapd_wait, &wait);
   4392}
   4393
   4394/*
   4395 * The background pageout daemon, started as a kernel thread
   4396 * from the init process.
   4397 *
   4398 * This basically trickles out pages so that we have _some_
   4399 * free memory available even if there is no other activity
   4400 * that frees anything up. This is needed for things like routing
   4401 * etc, where we otherwise might have all activity going on in
   4402 * asynchronous contexts that cannot page things out.
   4403 *
   4404 * If there are applications that are active memory-allocators
   4405 * (most normal use), this basically shouldn't matter.
   4406 */
   4407static int kswapd(void *p)
   4408{
   4409	unsigned int alloc_order, reclaim_order;
   4410	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
   4411	pg_data_t *pgdat = (pg_data_t *)p;
   4412	struct task_struct *tsk = current;
   4413	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
   4414
   4415	if (!cpumask_empty(cpumask))
   4416		set_cpus_allowed_ptr(tsk, cpumask);
   4417
   4418	/*
   4419	 * Tell the memory management that we're a "memory allocator",
   4420	 * and that if we need more memory we should get access to it
   4421	 * regardless (see "__alloc_pages()"). "kswapd" should
   4422	 * never get caught in the normal page freeing logic.
   4423	 *
   4424	 * (Kswapd normally doesn't need memory anyway, but sometimes
   4425	 * you need a small amount of memory in order to be able to
   4426	 * page out something else, and this flag essentially protects
   4427	 * us from recursively trying to free more memory as we're
   4428	 * trying to free the first piece of memory in the first place).
   4429	 */
   4430	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
   4431	set_freezable();
   4432
   4433	WRITE_ONCE(pgdat->kswapd_order, 0);
   4434	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
   4435	atomic_set(&pgdat->nr_writeback_throttled, 0);
   4436	for ( ; ; ) {
   4437		bool ret;
   4438
   4439		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
   4440		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
   4441							highest_zoneidx);
   4442
   4443kswapd_try_sleep:
   4444		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
   4445					highest_zoneidx);
   4446
   4447		/* Read the new order and highest_zoneidx */
   4448		alloc_order = READ_ONCE(pgdat->kswapd_order);
   4449		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
   4450							highest_zoneidx);
   4451		WRITE_ONCE(pgdat->kswapd_order, 0);
   4452		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
   4453
   4454		ret = try_to_freeze();
   4455		if (kthread_should_stop())
   4456			break;
   4457
   4458		/*
   4459		 * We can speed up thawing tasks if we don't call balance_pgdat
   4460		 * after returning from the refrigerator
   4461		 */
   4462		if (ret)
   4463			continue;
   4464
   4465		/*
   4466		 * Reclaim begins at the requested order but if a high-order
   4467		 * reclaim fails then kswapd falls back to reclaiming for
   4468		 * order-0. If that happens, kswapd will consider sleeping
   4469		 * for the order it finished reclaiming at (reclaim_order)
   4470		 * but kcompactd is woken to compact for the original
   4471		 * request (alloc_order).
   4472		 */
   4473		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
   4474						alloc_order);
   4475		reclaim_order = balance_pgdat(pgdat, alloc_order,
   4476						highest_zoneidx);
   4477		if (reclaim_order < alloc_order)
   4478			goto kswapd_try_sleep;
   4479	}
   4480
   4481	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
   4482
   4483	return 0;
   4484}
   4485
   4486/*
   4487 * A zone is low on free memory or too fragmented for high-order memory.  If
   4488 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
   4489 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
   4490 * has failed or is not needed, still wake up kcompactd if only compaction is
   4491 * needed.
   4492 */
   4493void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
   4494		   enum zone_type highest_zoneidx)
   4495{
   4496	pg_data_t *pgdat;
   4497	enum zone_type curr_idx;
   4498
   4499	if (!managed_zone(zone))
   4500		return;
   4501
   4502	if (!cpuset_zone_allowed(zone, gfp_flags))
   4503		return;
   4504
   4505	pgdat = zone->zone_pgdat;
   4506	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
   4507
   4508	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
   4509		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
   4510
   4511	if (READ_ONCE(pgdat->kswapd_order) < order)
   4512		WRITE_ONCE(pgdat->kswapd_order, order);
   4513
   4514	if (!waitqueue_active(&pgdat->kswapd_wait))
   4515		return;
   4516
   4517	/* Hopeless node, leave it to direct reclaim if possible */
   4518	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
   4519	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
   4520	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
   4521		/*
   4522		 * There may be plenty of free memory available, but it's too
   4523		 * fragmented for high-order allocations.  Wake up kcompactd
   4524		 * and rely on compaction_suitable() to determine if it's
   4525		 * needed.  If it fails, it will defer subsequent attempts to
   4526		 * ratelimit its work.
   4527		 */
   4528		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
   4529			wakeup_kcompactd(pgdat, order, highest_zoneidx);
   4530		return;
   4531	}
   4532
   4533	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
   4534				      gfp_flags);
   4535	wake_up_interruptible(&pgdat->kswapd_wait);
   4536}
   4537
   4538#ifdef CONFIG_HIBERNATION
   4539/*
   4540 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
   4541 * freed pages.
   4542 *
   4543 * Rather than trying to age LRUs the aim is to preserve the overall
   4544 * LRU order by reclaiming preferentially
   4545 * inactive > active > active referenced > active mapped
   4546 */
   4547unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
   4548{
   4549	struct scan_control sc = {
   4550		.nr_to_reclaim = nr_to_reclaim,
   4551		.gfp_mask = GFP_HIGHUSER_MOVABLE,
   4552		.reclaim_idx = MAX_NR_ZONES - 1,
   4553		.priority = DEF_PRIORITY,
   4554		.may_writepage = 1,
   4555		.may_unmap = 1,
   4556		.may_swap = 1,
   4557		.hibernation_mode = 1,
   4558	};
   4559	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
   4560	unsigned long nr_reclaimed;
   4561	unsigned int noreclaim_flag;
   4562
   4563	fs_reclaim_acquire(sc.gfp_mask);
   4564	noreclaim_flag = memalloc_noreclaim_save();
   4565	set_task_reclaim_state(current, &sc.reclaim_state);
   4566
   4567	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
   4568
   4569	set_task_reclaim_state(current, NULL);
   4570	memalloc_noreclaim_restore(noreclaim_flag);
   4571	fs_reclaim_release(sc.gfp_mask);
   4572
   4573	return nr_reclaimed;
   4574}
   4575#endif /* CONFIG_HIBERNATION */
   4576
   4577/*
   4578 * This kswapd start function will be called by init and node-hot-add.
   4579 */
   4580void kswapd_run(int nid)
   4581{
   4582	pg_data_t *pgdat = NODE_DATA(nid);
   4583
   4584	if (pgdat->kswapd)
   4585		return;
   4586
   4587	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
   4588	if (IS_ERR(pgdat->kswapd)) {
   4589		/* failure at boot is fatal */
   4590		BUG_ON(system_state < SYSTEM_RUNNING);
   4591		pr_err("Failed to start kswapd on node %d\n", nid);
   4592		pgdat->kswapd = NULL;
   4593	}
   4594}
   4595
   4596/*
   4597 * Called by memory hotplug when all memory in a node is offlined.  Caller must
   4598 * hold mem_hotplug_begin/end().
   4599 */
   4600void kswapd_stop(int nid)
   4601{
   4602	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
   4603
   4604	if (kswapd) {
   4605		kthread_stop(kswapd);
   4606		NODE_DATA(nid)->kswapd = NULL;
   4607	}
   4608}
   4609
   4610static int __init kswapd_init(void)
   4611{
   4612	int nid;
   4613
   4614	swap_setup();
   4615	for_each_node_state(nid, N_MEMORY)
   4616 		kswapd_run(nid);
   4617	return 0;
   4618}
   4619
   4620module_init(kswapd_init)
   4621
   4622#ifdef CONFIG_NUMA
   4623/*
   4624 * Node reclaim mode
   4625 *
   4626 * If non-zero call node_reclaim when the number of free pages falls below
   4627 * the watermarks.
   4628 */
   4629int node_reclaim_mode __read_mostly;
   4630
   4631/*
   4632 * Priority for NODE_RECLAIM. This determines the fraction of pages
   4633 * of a node considered for each zone_reclaim. 4 scans 1/16th of
   4634 * a zone.
   4635 */
   4636#define NODE_RECLAIM_PRIORITY 4
   4637
   4638/*
   4639 * Percentage of pages in a zone that must be unmapped for node_reclaim to
   4640 * occur.
   4641 */
   4642int sysctl_min_unmapped_ratio = 1;
   4643
   4644/*
   4645 * If the number of slab pages in a zone grows beyond this percentage then
   4646 * slab reclaim needs to occur.
   4647 */
   4648int sysctl_min_slab_ratio = 5;
   4649
   4650static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
   4651{
   4652	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
   4653	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
   4654		node_page_state(pgdat, NR_ACTIVE_FILE);
   4655
   4656	/*
   4657	 * It's possible for there to be more file mapped pages than
   4658	 * accounted for by the pages on the file LRU lists because
   4659	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
   4660	 */
   4661	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
   4662}
   4663
   4664/* Work out how many page cache pages we can reclaim in this reclaim_mode */
   4665static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
   4666{
   4667	unsigned long nr_pagecache_reclaimable;
   4668	unsigned long delta = 0;
   4669
   4670	/*
   4671	 * If RECLAIM_UNMAP is set, then all file pages are considered
   4672	 * potentially reclaimable. Otherwise, we have to worry about
   4673	 * pages like swapcache and node_unmapped_file_pages() provides
   4674	 * a better estimate
   4675	 */
   4676	if (node_reclaim_mode & RECLAIM_UNMAP)
   4677		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
   4678	else
   4679		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
   4680
   4681	/* If we can't clean pages, remove dirty pages from consideration */
   4682	if (!(node_reclaim_mode & RECLAIM_WRITE))
   4683		delta += node_page_state(pgdat, NR_FILE_DIRTY);
   4684
   4685	/* Watch for any possible underflows due to delta */
   4686	if (unlikely(delta > nr_pagecache_reclaimable))
   4687		delta = nr_pagecache_reclaimable;
   4688
   4689	return nr_pagecache_reclaimable - delta;
   4690}
   4691
   4692/*
   4693 * Try to free up some pages from this node through reclaim.
   4694 */
   4695static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
   4696{
   4697	/* Minimum pages needed in order to stay on node */
   4698	const unsigned long nr_pages = 1 << order;
   4699	struct task_struct *p = current;
   4700	unsigned int noreclaim_flag;
   4701	struct scan_control sc = {
   4702		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
   4703		.gfp_mask = current_gfp_context(gfp_mask),
   4704		.order = order,
   4705		.priority = NODE_RECLAIM_PRIORITY,
   4706		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
   4707		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
   4708		.may_swap = 1,
   4709		.reclaim_idx = gfp_zone(gfp_mask),
   4710	};
   4711	unsigned long pflags;
   4712
   4713	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
   4714					   sc.gfp_mask);
   4715
   4716	cond_resched();
   4717	psi_memstall_enter(&pflags);
   4718	fs_reclaim_acquire(sc.gfp_mask);
   4719	/*
   4720	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
   4721	 */
   4722	noreclaim_flag = memalloc_noreclaim_save();
   4723	set_task_reclaim_state(p, &sc.reclaim_state);
   4724
   4725	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
   4726	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
   4727		/*
   4728		 * Free memory by calling shrink node with increasing
   4729		 * priorities until we have enough memory freed.
   4730		 */
   4731		do {
   4732			shrink_node(pgdat, &sc);
   4733		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
   4734	}
   4735
   4736	set_task_reclaim_state(p, NULL);
   4737	memalloc_noreclaim_restore(noreclaim_flag);
   4738	fs_reclaim_release(sc.gfp_mask);
   4739	psi_memstall_leave(&pflags);
   4740
   4741	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
   4742
   4743	return sc.nr_reclaimed >= nr_pages;
   4744}
   4745
   4746int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
   4747{
   4748	int ret;
   4749
   4750	/*
   4751	 * Node reclaim reclaims unmapped file backed pages and
   4752	 * slab pages if we are over the defined limits.
   4753	 *
   4754	 * A small portion of unmapped file backed pages is needed for
   4755	 * file I/O otherwise pages read by file I/O will be immediately
   4756	 * thrown out if the node is overallocated. So we do not reclaim
   4757	 * if less than a specified percentage of the node is used by
   4758	 * unmapped file backed pages.
   4759	 */
   4760	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
   4761	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
   4762	    pgdat->min_slab_pages)
   4763		return NODE_RECLAIM_FULL;
   4764
   4765	/*
   4766	 * Do not scan if the allocation should not be delayed.
   4767	 */
   4768	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
   4769		return NODE_RECLAIM_NOSCAN;
   4770
   4771	/*
   4772	 * Only run node reclaim on the local node or on nodes that do not
   4773	 * have associated processors. This will favor the local processor
   4774	 * over remote processors and spread off node memory allocations
   4775	 * as wide as possible.
   4776	 */
   4777	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
   4778		return NODE_RECLAIM_NOSCAN;
   4779
   4780	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
   4781		return NODE_RECLAIM_NOSCAN;
   4782
   4783	ret = __node_reclaim(pgdat, gfp_mask, order);
   4784	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
   4785
   4786	if (!ret)
   4787		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
   4788
   4789	return ret;
   4790}
   4791#endif
   4792
   4793/**
   4794 * check_move_unevictable_pages - check pages for evictability and move to
   4795 * appropriate zone lru list
   4796 * @pvec: pagevec with lru pages to check
   4797 *
   4798 * Checks pages for evictability, if an evictable page is in the unevictable
   4799 * lru list, moves it to the appropriate evictable lru list. This function
   4800 * should be only used for lru pages.
   4801 */
   4802void check_move_unevictable_pages(struct pagevec *pvec)
   4803{
   4804	struct lruvec *lruvec = NULL;
   4805	int pgscanned = 0;
   4806	int pgrescued = 0;
   4807	int i;
   4808
   4809	for (i = 0; i < pvec->nr; i++) {
   4810		struct page *page = pvec->pages[i];
   4811		struct folio *folio = page_folio(page);
   4812		int nr_pages;
   4813
   4814		if (PageTransTail(page))
   4815			continue;
   4816
   4817		nr_pages = thp_nr_pages(page);
   4818		pgscanned += nr_pages;
   4819
   4820		/* block memcg migration during page moving between lru */
   4821		if (!TestClearPageLRU(page))
   4822			continue;
   4823
   4824		lruvec = folio_lruvec_relock_irq(folio, lruvec);
   4825		if (page_evictable(page) && PageUnevictable(page)) {
   4826			del_page_from_lru_list(page, lruvec);
   4827			ClearPageUnevictable(page);
   4828			add_page_to_lru_list(page, lruvec);
   4829			pgrescued += nr_pages;
   4830		}
   4831		SetPageLRU(page);
   4832	}
   4833
   4834	if (lruvec) {
   4835		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
   4836		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
   4837		unlock_page_lruvec_irq(lruvec);
   4838	} else if (pgscanned) {
   4839		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
   4840	}
   4841}
   4842EXPORT_SYMBOL_GPL(check_move_unevictable_pages);