cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

zsmalloc.c (59513B)


      1/*
      2 * zsmalloc memory allocator
      3 *
      4 * Copyright (C) 2011  Nitin Gupta
      5 * Copyright (C) 2012, 2013 Minchan Kim
      6 *
      7 * This code is released using a dual license strategy: BSD/GPL
      8 * You can choose the license that better fits your requirements.
      9 *
     10 * Released under the terms of 3-clause BSD License
     11 * Released under the terms of GNU General Public License Version 2.0
     12 */
     13
     14/*
     15 * Following is how we use various fields and flags of underlying
     16 * struct page(s) to form a zspage.
     17 *
     18 * Usage of struct page fields:
     19 *	page->private: points to zspage
     20 *	page->index: links together all component pages of a zspage
     21 *		For the huge page, this is always 0, so we use this field
     22 *		to store handle.
     23 *	page->page_type: first object offset in a subpage of zspage
     24 *
     25 * Usage of struct page flags:
     26 *	PG_private: identifies the first component page
     27 *	PG_owner_priv_1: identifies the huge component page
     28 *
     29 */
     30
     31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     32
     33/*
     34 * lock ordering:
     35 *	page_lock
     36 *	pool->migrate_lock
     37 *	class->lock
     38 *	zspage->lock
     39 */
     40
     41#include <linux/module.h>
     42#include <linux/kernel.h>
     43#include <linux/sched.h>
     44#include <linux/magic.h>
     45#include <linux/bitops.h>
     46#include <linux/errno.h>
     47#include <linux/highmem.h>
     48#include <linux/string.h>
     49#include <linux/slab.h>
     50#include <linux/pgtable.h>
     51#include <asm/tlbflush.h>
     52#include <linux/cpumask.h>
     53#include <linux/cpu.h>
     54#include <linux/vmalloc.h>
     55#include <linux/preempt.h>
     56#include <linux/spinlock.h>
     57#include <linux/shrinker.h>
     58#include <linux/types.h>
     59#include <linux/debugfs.h>
     60#include <linux/zsmalloc.h>
     61#include <linux/zpool.h>
     62#include <linux/mount.h>
     63#include <linux/pseudo_fs.h>
     64#include <linux/migrate.h>
     65#include <linux/wait.h>
     66#include <linux/pagemap.h>
     67#include <linux/fs.h>
     68#include <linux/local_lock.h>
     69
     70#define ZSPAGE_MAGIC	0x58
     71
     72/*
     73 * This must be power of 2 and greater than or equal to sizeof(link_free).
     74 * These two conditions ensure that any 'struct link_free' itself doesn't
     75 * span more than 1 page which avoids complex case of mapping 2 pages simply
     76 * to restore link_free pointer values.
     77 */
     78#define ZS_ALIGN		8
     79
     80/*
     81 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
     82 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
     83 */
     84#define ZS_MAX_ZSPAGE_ORDER 2
     85#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
     86
     87#define ZS_HANDLE_SIZE (sizeof(unsigned long))
     88
     89/*
     90 * Object location (<PFN>, <obj_idx>) is encoded as
     91 * a single (unsigned long) handle value.
     92 *
     93 * Note that object index <obj_idx> starts from 0.
     94 *
     95 * This is made more complicated by various memory models and PAE.
     96 */
     97
     98#ifndef MAX_POSSIBLE_PHYSMEM_BITS
     99#ifdef MAX_PHYSMEM_BITS
    100#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
    101#else
    102/*
    103 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
    104 * be PAGE_SHIFT
    105 */
    106#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
    107#endif
    108#endif
    109
    110#define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
    111
    112/*
    113 * Head in allocated object should have OBJ_ALLOCATED_TAG
    114 * to identify the object was allocated or not.
    115 * It's okay to add the status bit in the least bit because
    116 * header keeps handle which is 4byte-aligned address so we
    117 * have room for two bit at least.
    118 */
    119#define OBJ_ALLOCATED_TAG 1
    120#define OBJ_TAG_BITS 1
    121#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
    122#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
    123
    124#define HUGE_BITS	1
    125#define FULLNESS_BITS	2
    126#define CLASS_BITS	8
    127#define ISOLATED_BITS	3
    128#define MAGIC_VAL_BITS	8
    129
    130#define MAX(a, b) ((a) >= (b) ? (a) : (b))
    131/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
    132#define ZS_MIN_ALLOC_SIZE \
    133	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
    134/* each chunk includes extra space to keep handle */
    135#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
    136
    137/*
    138 * On systems with 4K page size, this gives 255 size classes! There is a
    139 * trader-off here:
    140 *  - Large number of size classes is potentially wasteful as free page are
    141 *    spread across these classes
    142 *  - Small number of size classes causes large internal fragmentation
    143 *  - Probably its better to use specific size classes (empirically
    144 *    determined). NOTE: all those class sizes must be set as multiple of
    145 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
    146 *
    147 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
    148 *  (reason above)
    149 */
    150#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
    151#define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
    152				      ZS_SIZE_CLASS_DELTA) + 1)
    153
    154enum fullness_group {
    155	ZS_EMPTY,
    156	ZS_ALMOST_EMPTY,
    157	ZS_ALMOST_FULL,
    158	ZS_FULL,
    159	NR_ZS_FULLNESS,
    160};
    161
    162enum class_stat_type {
    163	CLASS_EMPTY,
    164	CLASS_ALMOST_EMPTY,
    165	CLASS_ALMOST_FULL,
    166	CLASS_FULL,
    167	OBJ_ALLOCATED,
    168	OBJ_USED,
    169	NR_ZS_STAT_TYPE,
    170};
    171
    172struct zs_size_stat {
    173	unsigned long objs[NR_ZS_STAT_TYPE];
    174};
    175
    176#ifdef CONFIG_ZSMALLOC_STAT
    177static struct dentry *zs_stat_root;
    178#endif
    179
    180#ifdef CONFIG_COMPACTION
    181static struct vfsmount *zsmalloc_mnt;
    182#endif
    183
    184/*
    185 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
    186 *	n <= N / f, where
    187 * n = number of allocated objects
    188 * N = total number of objects zspage can store
    189 * f = fullness_threshold_frac
    190 *
    191 * Similarly, we assign zspage to:
    192 *	ZS_ALMOST_FULL	when n > N / f
    193 *	ZS_EMPTY	when n == 0
    194 *	ZS_FULL		when n == N
    195 *
    196 * (see: fix_fullness_group())
    197 */
    198static const int fullness_threshold_frac = 4;
    199static size_t huge_class_size;
    200
    201struct size_class {
    202	spinlock_t lock;
    203	struct list_head fullness_list[NR_ZS_FULLNESS];
    204	/*
    205	 * Size of objects stored in this class. Must be multiple
    206	 * of ZS_ALIGN.
    207	 */
    208	int size;
    209	int objs_per_zspage;
    210	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
    211	int pages_per_zspage;
    212
    213	unsigned int index;
    214	struct zs_size_stat stats;
    215};
    216
    217/*
    218 * Placed within free objects to form a singly linked list.
    219 * For every zspage, zspage->freeobj gives head of this list.
    220 *
    221 * This must be power of 2 and less than or equal to ZS_ALIGN
    222 */
    223struct link_free {
    224	union {
    225		/*
    226		 * Free object index;
    227		 * It's valid for non-allocated object
    228		 */
    229		unsigned long next;
    230		/*
    231		 * Handle of allocated object.
    232		 */
    233		unsigned long handle;
    234	};
    235};
    236
    237struct zs_pool {
    238	const char *name;
    239
    240	struct size_class *size_class[ZS_SIZE_CLASSES];
    241	struct kmem_cache *handle_cachep;
    242	struct kmem_cache *zspage_cachep;
    243
    244	atomic_long_t pages_allocated;
    245
    246	struct zs_pool_stats stats;
    247
    248	/* Compact classes */
    249	struct shrinker shrinker;
    250
    251#ifdef CONFIG_ZSMALLOC_STAT
    252	struct dentry *stat_dentry;
    253#endif
    254#ifdef CONFIG_COMPACTION
    255	struct inode *inode;
    256	struct work_struct free_work;
    257#endif
    258	/* protect page/zspage migration */
    259	rwlock_t migrate_lock;
    260};
    261
    262struct zspage {
    263	struct {
    264		unsigned int huge:HUGE_BITS;
    265		unsigned int fullness:FULLNESS_BITS;
    266		unsigned int class:CLASS_BITS + 1;
    267		unsigned int isolated:ISOLATED_BITS;
    268		unsigned int magic:MAGIC_VAL_BITS;
    269	};
    270	unsigned int inuse;
    271	unsigned int freeobj;
    272	struct page *first_page;
    273	struct list_head list; /* fullness list */
    274#ifdef CONFIG_COMPACTION
    275	rwlock_t lock;
    276#endif
    277};
    278
    279struct mapping_area {
    280	local_lock_t lock;
    281	char *vm_buf; /* copy buffer for objects that span pages */
    282	char *vm_addr; /* address of kmap_atomic()'ed pages */
    283	enum zs_mapmode vm_mm; /* mapping mode */
    284};
    285
    286/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
    287static void SetZsHugePage(struct zspage *zspage)
    288{
    289	zspage->huge = 1;
    290}
    291
    292static bool ZsHugePage(struct zspage *zspage)
    293{
    294	return zspage->huge;
    295}
    296
    297#ifdef CONFIG_COMPACTION
    298static int zs_register_migration(struct zs_pool *pool);
    299static void zs_unregister_migration(struct zs_pool *pool);
    300static void migrate_lock_init(struct zspage *zspage);
    301static void migrate_read_lock(struct zspage *zspage);
    302static void migrate_read_unlock(struct zspage *zspage);
    303static void migrate_write_lock(struct zspage *zspage);
    304static void migrate_write_lock_nested(struct zspage *zspage);
    305static void migrate_write_unlock(struct zspage *zspage);
    306static void kick_deferred_free(struct zs_pool *pool);
    307static void init_deferred_free(struct zs_pool *pool);
    308static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
    309#else
    310static int zsmalloc_mount(void) { return 0; }
    311static void zsmalloc_unmount(void) {}
    312static int zs_register_migration(struct zs_pool *pool) { return 0; }
    313static void zs_unregister_migration(struct zs_pool *pool) {}
    314static void migrate_lock_init(struct zspage *zspage) {}
    315static void migrate_read_lock(struct zspage *zspage) {}
    316static void migrate_read_unlock(struct zspage *zspage) {}
    317static void migrate_write_lock(struct zspage *zspage) {}
    318static void migrate_write_lock_nested(struct zspage *zspage) {}
    319static void migrate_write_unlock(struct zspage *zspage) {}
    320static void kick_deferred_free(struct zs_pool *pool) {}
    321static void init_deferred_free(struct zs_pool *pool) {}
    322static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
    323#endif
    324
    325static int create_cache(struct zs_pool *pool)
    326{
    327	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
    328					0, 0, NULL);
    329	if (!pool->handle_cachep)
    330		return 1;
    331
    332	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
    333					0, 0, NULL);
    334	if (!pool->zspage_cachep) {
    335		kmem_cache_destroy(pool->handle_cachep);
    336		pool->handle_cachep = NULL;
    337		return 1;
    338	}
    339
    340	return 0;
    341}
    342
    343static void destroy_cache(struct zs_pool *pool)
    344{
    345	kmem_cache_destroy(pool->handle_cachep);
    346	kmem_cache_destroy(pool->zspage_cachep);
    347}
    348
    349static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
    350{
    351	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
    352			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
    353}
    354
    355static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
    356{
    357	kmem_cache_free(pool->handle_cachep, (void *)handle);
    358}
    359
    360static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
    361{
    362	return kmem_cache_zalloc(pool->zspage_cachep,
    363			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
    364}
    365
    366static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
    367{
    368	kmem_cache_free(pool->zspage_cachep, zspage);
    369}
    370
    371/* class->lock(which owns the handle) synchronizes races */
    372static void record_obj(unsigned long handle, unsigned long obj)
    373{
    374	*(unsigned long *)handle = obj;
    375}
    376
    377/* zpool driver */
    378
    379#ifdef CONFIG_ZPOOL
    380
    381static void *zs_zpool_create(const char *name, gfp_t gfp,
    382			     const struct zpool_ops *zpool_ops,
    383			     struct zpool *zpool)
    384{
    385	/*
    386	 * Ignore global gfp flags: zs_malloc() may be invoked from
    387	 * different contexts and its caller must provide a valid
    388	 * gfp mask.
    389	 */
    390	return zs_create_pool(name);
    391}
    392
    393static void zs_zpool_destroy(void *pool)
    394{
    395	zs_destroy_pool(pool);
    396}
    397
    398static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
    399			unsigned long *handle)
    400{
    401	*handle = zs_malloc(pool, size, gfp);
    402	return *handle ? 0 : -1;
    403}
    404static void zs_zpool_free(void *pool, unsigned long handle)
    405{
    406	zs_free(pool, handle);
    407}
    408
    409static void *zs_zpool_map(void *pool, unsigned long handle,
    410			enum zpool_mapmode mm)
    411{
    412	enum zs_mapmode zs_mm;
    413
    414	switch (mm) {
    415	case ZPOOL_MM_RO:
    416		zs_mm = ZS_MM_RO;
    417		break;
    418	case ZPOOL_MM_WO:
    419		zs_mm = ZS_MM_WO;
    420		break;
    421	case ZPOOL_MM_RW:
    422	default:
    423		zs_mm = ZS_MM_RW;
    424		break;
    425	}
    426
    427	return zs_map_object(pool, handle, zs_mm);
    428}
    429static void zs_zpool_unmap(void *pool, unsigned long handle)
    430{
    431	zs_unmap_object(pool, handle);
    432}
    433
    434static u64 zs_zpool_total_size(void *pool)
    435{
    436	return zs_get_total_pages(pool) << PAGE_SHIFT;
    437}
    438
    439static struct zpool_driver zs_zpool_driver = {
    440	.type =			  "zsmalloc",
    441	.owner =		  THIS_MODULE,
    442	.create =		  zs_zpool_create,
    443	.destroy =		  zs_zpool_destroy,
    444	.malloc_support_movable = true,
    445	.malloc =		  zs_zpool_malloc,
    446	.free =			  zs_zpool_free,
    447	.map =			  zs_zpool_map,
    448	.unmap =		  zs_zpool_unmap,
    449	.total_size =		  zs_zpool_total_size,
    450};
    451
    452MODULE_ALIAS("zpool-zsmalloc");
    453#endif /* CONFIG_ZPOOL */
    454
    455/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
    456static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
    457	.lock	= INIT_LOCAL_LOCK(lock),
    458};
    459
    460static __maybe_unused int is_first_page(struct page *page)
    461{
    462	return PagePrivate(page);
    463}
    464
    465/* Protected by class->lock */
    466static inline int get_zspage_inuse(struct zspage *zspage)
    467{
    468	return zspage->inuse;
    469}
    470
    471
    472static inline void mod_zspage_inuse(struct zspage *zspage, int val)
    473{
    474	zspage->inuse += val;
    475}
    476
    477static inline struct page *get_first_page(struct zspage *zspage)
    478{
    479	struct page *first_page = zspage->first_page;
    480
    481	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
    482	return first_page;
    483}
    484
    485static inline int get_first_obj_offset(struct page *page)
    486{
    487	return page->page_type;
    488}
    489
    490static inline void set_first_obj_offset(struct page *page, int offset)
    491{
    492	page->page_type = offset;
    493}
    494
    495static inline unsigned int get_freeobj(struct zspage *zspage)
    496{
    497	return zspage->freeobj;
    498}
    499
    500static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
    501{
    502	zspage->freeobj = obj;
    503}
    504
    505static void get_zspage_mapping(struct zspage *zspage,
    506				unsigned int *class_idx,
    507				enum fullness_group *fullness)
    508{
    509	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
    510
    511	*fullness = zspage->fullness;
    512	*class_idx = zspage->class;
    513}
    514
    515static struct size_class *zspage_class(struct zs_pool *pool,
    516					     struct zspage *zspage)
    517{
    518	return pool->size_class[zspage->class];
    519}
    520
    521static void set_zspage_mapping(struct zspage *zspage,
    522				unsigned int class_idx,
    523				enum fullness_group fullness)
    524{
    525	zspage->class = class_idx;
    526	zspage->fullness = fullness;
    527}
    528
    529/*
    530 * zsmalloc divides the pool into various size classes where each
    531 * class maintains a list of zspages where each zspage is divided
    532 * into equal sized chunks. Each allocation falls into one of these
    533 * classes depending on its size. This function returns index of the
    534 * size class which has chunk size big enough to hold the given size.
    535 */
    536static int get_size_class_index(int size)
    537{
    538	int idx = 0;
    539
    540	if (likely(size > ZS_MIN_ALLOC_SIZE))
    541		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
    542				ZS_SIZE_CLASS_DELTA);
    543
    544	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
    545}
    546
    547/* type can be of enum type class_stat_type or fullness_group */
    548static inline void class_stat_inc(struct size_class *class,
    549				int type, unsigned long cnt)
    550{
    551	class->stats.objs[type] += cnt;
    552}
    553
    554/* type can be of enum type class_stat_type or fullness_group */
    555static inline void class_stat_dec(struct size_class *class,
    556				int type, unsigned long cnt)
    557{
    558	class->stats.objs[type] -= cnt;
    559}
    560
    561/* type can be of enum type class_stat_type or fullness_group */
    562static inline unsigned long zs_stat_get(struct size_class *class,
    563				int type)
    564{
    565	return class->stats.objs[type];
    566}
    567
    568#ifdef CONFIG_ZSMALLOC_STAT
    569
    570static void __init zs_stat_init(void)
    571{
    572	if (!debugfs_initialized()) {
    573		pr_warn("debugfs not available, stat dir not created\n");
    574		return;
    575	}
    576
    577	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
    578}
    579
    580static void __exit zs_stat_exit(void)
    581{
    582	debugfs_remove_recursive(zs_stat_root);
    583}
    584
    585static unsigned long zs_can_compact(struct size_class *class);
    586
    587static int zs_stats_size_show(struct seq_file *s, void *v)
    588{
    589	int i;
    590	struct zs_pool *pool = s->private;
    591	struct size_class *class;
    592	int objs_per_zspage;
    593	unsigned long class_almost_full, class_almost_empty;
    594	unsigned long obj_allocated, obj_used, pages_used, freeable;
    595	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
    596	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
    597	unsigned long total_freeable = 0;
    598
    599	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
    600			"class", "size", "almost_full", "almost_empty",
    601			"obj_allocated", "obj_used", "pages_used",
    602			"pages_per_zspage", "freeable");
    603
    604	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
    605		class = pool->size_class[i];
    606
    607		if (class->index != i)
    608			continue;
    609
    610		spin_lock(&class->lock);
    611		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
    612		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
    613		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
    614		obj_used = zs_stat_get(class, OBJ_USED);
    615		freeable = zs_can_compact(class);
    616		spin_unlock(&class->lock);
    617
    618		objs_per_zspage = class->objs_per_zspage;
    619		pages_used = obj_allocated / objs_per_zspage *
    620				class->pages_per_zspage;
    621
    622		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
    623				" %10lu %10lu %16d %8lu\n",
    624			i, class->size, class_almost_full, class_almost_empty,
    625			obj_allocated, obj_used, pages_used,
    626			class->pages_per_zspage, freeable);
    627
    628		total_class_almost_full += class_almost_full;
    629		total_class_almost_empty += class_almost_empty;
    630		total_objs += obj_allocated;
    631		total_used_objs += obj_used;
    632		total_pages += pages_used;
    633		total_freeable += freeable;
    634	}
    635
    636	seq_puts(s, "\n");
    637	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
    638			"Total", "", total_class_almost_full,
    639			total_class_almost_empty, total_objs,
    640			total_used_objs, total_pages, "", total_freeable);
    641
    642	return 0;
    643}
    644DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
    645
    646static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
    647{
    648	if (!zs_stat_root) {
    649		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
    650		return;
    651	}
    652
    653	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
    654
    655	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
    656			    &zs_stats_size_fops);
    657}
    658
    659static void zs_pool_stat_destroy(struct zs_pool *pool)
    660{
    661	debugfs_remove_recursive(pool->stat_dentry);
    662}
    663
    664#else /* CONFIG_ZSMALLOC_STAT */
    665static void __init zs_stat_init(void)
    666{
    667}
    668
    669static void __exit zs_stat_exit(void)
    670{
    671}
    672
    673static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
    674{
    675}
    676
    677static inline void zs_pool_stat_destroy(struct zs_pool *pool)
    678{
    679}
    680#endif
    681
    682
    683/*
    684 * For each size class, zspages are divided into different groups
    685 * depending on how "full" they are. This was done so that we could
    686 * easily find empty or nearly empty zspages when we try to shrink
    687 * the pool (not yet implemented). This function returns fullness
    688 * status of the given page.
    689 */
    690static enum fullness_group get_fullness_group(struct size_class *class,
    691						struct zspage *zspage)
    692{
    693	int inuse, objs_per_zspage;
    694	enum fullness_group fg;
    695
    696	inuse = get_zspage_inuse(zspage);
    697	objs_per_zspage = class->objs_per_zspage;
    698
    699	if (inuse == 0)
    700		fg = ZS_EMPTY;
    701	else if (inuse == objs_per_zspage)
    702		fg = ZS_FULL;
    703	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
    704		fg = ZS_ALMOST_EMPTY;
    705	else
    706		fg = ZS_ALMOST_FULL;
    707
    708	return fg;
    709}
    710
    711/*
    712 * Each size class maintains various freelists and zspages are assigned
    713 * to one of these freelists based on the number of live objects they
    714 * have. This functions inserts the given zspage into the freelist
    715 * identified by <class, fullness_group>.
    716 */
    717static void insert_zspage(struct size_class *class,
    718				struct zspage *zspage,
    719				enum fullness_group fullness)
    720{
    721	struct zspage *head;
    722
    723	class_stat_inc(class, fullness, 1);
    724	head = list_first_entry_or_null(&class->fullness_list[fullness],
    725					struct zspage, list);
    726	/*
    727	 * We want to see more ZS_FULL pages and less almost empty/full.
    728	 * Put pages with higher ->inuse first.
    729	 */
    730	if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
    731		list_add(&zspage->list, &head->list);
    732	else
    733		list_add(&zspage->list, &class->fullness_list[fullness]);
    734}
    735
    736/*
    737 * This function removes the given zspage from the freelist identified
    738 * by <class, fullness_group>.
    739 */
    740static void remove_zspage(struct size_class *class,
    741				struct zspage *zspage,
    742				enum fullness_group fullness)
    743{
    744	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
    745
    746	list_del_init(&zspage->list);
    747	class_stat_dec(class, fullness, 1);
    748}
    749
    750/*
    751 * Each size class maintains zspages in different fullness groups depending
    752 * on the number of live objects they contain. When allocating or freeing
    753 * objects, the fullness status of the page can change, say, from ALMOST_FULL
    754 * to ALMOST_EMPTY when freeing an object. This function checks if such
    755 * a status change has occurred for the given page and accordingly moves the
    756 * page from the freelist of the old fullness group to that of the new
    757 * fullness group.
    758 */
    759static enum fullness_group fix_fullness_group(struct size_class *class,
    760						struct zspage *zspage)
    761{
    762	int class_idx;
    763	enum fullness_group currfg, newfg;
    764
    765	get_zspage_mapping(zspage, &class_idx, &currfg);
    766	newfg = get_fullness_group(class, zspage);
    767	if (newfg == currfg)
    768		goto out;
    769
    770	remove_zspage(class, zspage, currfg);
    771	insert_zspage(class, zspage, newfg);
    772	set_zspage_mapping(zspage, class_idx, newfg);
    773out:
    774	return newfg;
    775}
    776
    777/*
    778 * We have to decide on how many pages to link together
    779 * to form a zspage for each size class. This is important
    780 * to reduce wastage due to unusable space left at end of
    781 * each zspage which is given as:
    782 *     wastage = Zp % class_size
    783 *     usage = Zp - wastage
    784 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
    785 *
    786 * For example, for size class of 3/8 * PAGE_SIZE, we should
    787 * link together 3 PAGE_SIZE sized pages to form a zspage
    788 * since then we can perfectly fit in 8 such objects.
    789 */
    790static int get_pages_per_zspage(int class_size)
    791{
    792	int i, max_usedpc = 0;
    793	/* zspage order which gives maximum used size per KB */
    794	int max_usedpc_order = 1;
    795
    796	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
    797		int zspage_size;
    798		int waste, usedpc;
    799
    800		zspage_size = i * PAGE_SIZE;
    801		waste = zspage_size % class_size;
    802		usedpc = (zspage_size - waste) * 100 / zspage_size;
    803
    804		if (usedpc > max_usedpc) {
    805			max_usedpc = usedpc;
    806			max_usedpc_order = i;
    807		}
    808	}
    809
    810	return max_usedpc_order;
    811}
    812
    813static struct zspage *get_zspage(struct page *page)
    814{
    815	struct zspage *zspage = (struct zspage *)page_private(page);
    816
    817	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
    818	return zspage;
    819}
    820
    821static struct page *get_next_page(struct page *page)
    822{
    823	struct zspage *zspage = get_zspage(page);
    824
    825	if (unlikely(ZsHugePage(zspage)))
    826		return NULL;
    827
    828	return (struct page *)page->index;
    829}
    830
    831/**
    832 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
    833 * @obj: the encoded object value
    834 * @page: page object resides in zspage
    835 * @obj_idx: object index
    836 */
    837static void obj_to_location(unsigned long obj, struct page **page,
    838				unsigned int *obj_idx)
    839{
    840	obj >>= OBJ_TAG_BITS;
    841	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
    842	*obj_idx = (obj & OBJ_INDEX_MASK);
    843}
    844
    845static void obj_to_page(unsigned long obj, struct page **page)
    846{
    847	obj >>= OBJ_TAG_BITS;
    848	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
    849}
    850
    851/**
    852 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
    853 * @page: page object resides in zspage
    854 * @obj_idx: object index
    855 */
    856static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
    857{
    858	unsigned long obj;
    859
    860	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
    861	obj |= obj_idx & OBJ_INDEX_MASK;
    862	obj <<= OBJ_TAG_BITS;
    863
    864	return obj;
    865}
    866
    867static unsigned long handle_to_obj(unsigned long handle)
    868{
    869	return *(unsigned long *)handle;
    870}
    871
    872static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
    873{
    874	unsigned long handle;
    875	struct zspage *zspage = get_zspage(page);
    876
    877	if (unlikely(ZsHugePage(zspage))) {
    878		VM_BUG_ON_PAGE(!is_first_page(page), page);
    879		handle = page->index;
    880	} else
    881		handle = *(unsigned long *)obj;
    882
    883	if (!(handle & OBJ_ALLOCATED_TAG))
    884		return false;
    885
    886	*phandle = handle & ~OBJ_ALLOCATED_TAG;
    887	return true;
    888}
    889
    890static void reset_page(struct page *page)
    891{
    892	__ClearPageMovable(page);
    893	ClearPagePrivate(page);
    894	set_page_private(page, 0);
    895	page_mapcount_reset(page);
    896	page->index = 0;
    897}
    898
    899static int trylock_zspage(struct zspage *zspage)
    900{
    901	struct page *cursor, *fail;
    902
    903	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
    904					get_next_page(cursor)) {
    905		if (!trylock_page(cursor)) {
    906			fail = cursor;
    907			goto unlock;
    908		}
    909	}
    910
    911	return 1;
    912unlock:
    913	for (cursor = get_first_page(zspage); cursor != fail; cursor =
    914					get_next_page(cursor))
    915		unlock_page(cursor);
    916
    917	return 0;
    918}
    919
    920static void __free_zspage(struct zs_pool *pool, struct size_class *class,
    921				struct zspage *zspage)
    922{
    923	struct page *page, *next;
    924	enum fullness_group fg;
    925	unsigned int class_idx;
    926
    927	get_zspage_mapping(zspage, &class_idx, &fg);
    928
    929	assert_spin_locked(&class->lock);
    930
    931	VM_BUG_ON(get_zspage_inuse(zspage));
    932	VM_BUG_ON(fg != ZS_EMPTY);
    933
    934	next = page = get_first_page(zspage);
    935	do {
    936		VM_BUG_ON_PAGE(!PageLocked(page), page);
    937		next = get_next_page(page);
    938		reset_page(page);
    939		unlock_page(page);
    940		dec_zone_page_state(page, NR_ZSPAGES);
    941		put_page(page);
    942		page = next;
    943	} while (page != NULL);
    944
    945	cache_free_zspage(pool, zspage);
    946
    947	class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
    948	atomic_long_sub(class->pages_per_zspage,
    949					&pool->pages_allocated);
    950}
    951
    952static void free_zspage(struct zs_pool *pool, struct size_class *class,
    953				struct zspage *zspage)
    954{
    955	VM_BUG_ON(get_zspage_inuse(zspage));
    956	VM_BUG_ON(list_empty(&zspage->list));
    957
    958	/*
    959	 * Since zs_free couldn't be sleepable, this function cannot call
    960	 * lock_page. The page locks trylock_zspage got will be released
    961	 * by __free_zspage.
    962	 */
    963	if (!trylock_zspage(zspage)) {
    964		kick_deferred_free(pool);
    965		return;
    966	}
    967
    968	remove_zspage(class, zspage, ZS_EMPTY);
    969	__free_zspage(pool, class, zspage);
    970}
    971
    972/* Initialize a newly allocated zspage */
    973static void init_zspage(struct size_class *class, struct zspage *zspage)
    974{
    975	unsigned int freeobj = 1;
    976	unsigned long off = 0;
    977	struct page *page = get_first_page(zspage);
    978
    979	while (page) {
    980		struct page *next_page;
    981		struct link_free *link;
    982		void *vaddr;
    983
    984		set_first_obj_offset(page, off);
    985
    986		vaddr = kmap_atomic(page);
    987		link = (struct link_free *)vaddr + off / sizeof(*link);
    988
    989		while ((off += class->size) < PAGE_SIZE) {
    990			link->next = freeobj++ << OBJ_TAG_BITS;
    991			link += class->size / sizeof(*link);
    992		}
    993
    994		/*
    995		 * We now come to the last (full or partial) object on this
    996		 * page, which must point to the first object on the next
    997		 * page (if present)
    998		 */
    999		next_page = get_next_page(page);
   1000		if (next_page) {
   1001			link->next = freeobj++ << OBJ_TAG_BITS;
   1002		} else {
   1003			/*
   1004			 * Reset OBJ_TAG_BITS bit to last link to tell
   1005			 * whether it's allocated object or not.
   1006			 */
   1007			link->next = -1UL << OBJ_TAG_BITS;
   1008		}
   1009		kunmap_atomic(vaddr);
   1010		page = next_page;
   1011		off %= PAGE_SIZE;
   1012	}
   1013
   1014	set_freeobj(zspage, 0);
   1015}
   1016
   1017static void create_page_chain(struct size_class *class, struct zspage *zspage,
   1018				struct page *pages[])
   1019{
   1020	int i;
   1021	struct page *page;
   1022	struct page *prev_page = NULL;
   1023	int nr_pages = class->pages_per_zspage;
   1024
   1025	/*
   1026	 * Allocate individual pages and link them together as:
   1027	 * 1. all pages are linked together using page->index
   1028	 * 2. each sub-page point to zspage using page->private
   1029	 *
   1030	 * we set PG_private to identify the first page (i.e. no other sub-page
   1031	 * has this flag set).
   1032	 */
   1033	for (i = 0; i < nr_pages; i++) {
   1034		page = pages[i];
   1035		set_page_private(page, (unsigned long)zspage);
   1036		page->index = 0;
   1037		if (i == 0) {
   1038			zspage->first_page = page;
   1039			SetPagePrivate(page);
   1040			if (unlikely(class->objs_per_zspage == 1 &&
   1041					class->pages_per_zspage == 1))
   1042				SetZsHugePage(zspage);
   1043		} else {
   1044			prev_page->index = (unsigned long)page;
   1045		}
   1046		prev_page = page;
   1047	}
   1048}
   1049
   1050/*
   1051 * Allocate a zspage for the given size class
   1052 */
   1053static struct zspage *alloc_zspage(struct zs_pool *pool,
   1054					struct size_class *class,
   1055					gfp_t gfp)
   1056{
   1057	int i;
   1058	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
   1059	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
   1060
   1061	if (!zspage)
   1062		return NULL;
   1063
   1064	zspage->magic = ZSPAGE_MAGIC;
   1065	migrate_lock_init(zspage);
   1066
   1067	for (i = 0; i < class->pages_per_zspage; i++) {
   1068		struct page *page;
   1069
   1070		page = alloc_page(gfp);
   1071		if (!page) {
   1072			while (--i >= 0) {
   1073				dec_zone_page_state(pages[i], NR_ZSPAGES);
   1074				__free_page(pages[i]);
   1075			}
   1076			cache_free_zspage(pool, zspage);
   1077			return NULL;
   1078		}
   1079
   1080		inc_zone_page_state(page, NR_ZSPAGES);
   1081		pages[i] = page;
   1082	}
   1083
   1084	create_page_chain(class, zspage, pages);
   1085	init_zspage(class, zspage);
   1086
   1087	return zspage;
   1088}
   1089
   1090static struct zspage *find_get_zspage(struct size_class *class)
   1091{
   1092	int i;
   1093	struct zspage *zspage;
   1094
   1095	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
   1096		zspage = list_first_entry_or_null(&class->fullness_list[i],
   1097				struct zspage, list);
   1098		if (zspage)
   1099			break;
   1100	}
   1101
   1102	return zspage;
   1103}
   1104
   1105static inline int __zs_cpu_up(struct mapping_area *area)
   1106{
   1107	/*
   1108	 * Make sure we don't leak memory if a cpu UP notification
   1109	 * and zs_init() race and both call zs_cpu_up() on the same cpu
   1110	 */
   1111	if (area->vm_buf)
   1112		return 0;
   1113	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
   1114	if (!area->vm_buf)
   1115		return -ENOMEM;
   1116	return 0;
   1117}
   1118
   1119static inline void __zs_cpu_down(struct mapping_area *area)
   1120{
   1121	kfree(area->vm_buf);
   1122	area->vm_buf = NULL;
   1123}
   1124
   1125static void *__zs_map_object(struct mapping_area *area,
   1126			struct page *pages[2], int off, int size)
   1127{
   1128	int sizes[2];
   1129	void *addr;
   1130	char *buf = area->vm_buf;
   1131
   1132	/* disable page faults to match kmap_atomic() return conditions */
   1133	pagefault_disable();
   1134
   1135	/* no read fastpath */
   1136	if (area->vm_mm == ZS_MM_WO)
   1137		goto out;
   1138
   1139	sizes[0] = PAGE_SIZE - off;
   1140	sizes[1] = size - sizes[0];
   1141
   1142	/* copy object to per-cpu buffer */
   1143	addr = kmap_atomic(pages[0]);
   1144	memcpy(buf, addr + off, sizes[0]);
   1145	kunmap_atomic(addr);
   1146	addr = kmap_atomic(pages[1]);
   1147	memcpy(buf + sizes[0], addr, sizes[1]);
   1148	kunmap_atomic(addr);
   1149out:
   1150	return area->vm_buf;
   1151}
   1152
   1153static void __zs_unmap_object(struct mapping_area *area,
   1154			struct page *pages[2], int off, int size)
   1155{
   1156	int sizes[2];
   1157	void *addr;
   1158	char *buf;
   1159
   1160	/* no write fastpath */
   1161	if (area->vm_mm == ZS_MM_RO)
   1162		goto out;
   1163
   1164	buf = area->vm_buf;
   1165	buf = buf + ZS_HANDLE_SIZE;
   1166	size -= ZS_HANDLE_SIZE;
   1167	off += ZS_HANDLE_SIZE;
   1168
   1169	sizes[0] = PAGE_SIZE - off;
   1170	sizes[1] = size - sizes[0];
   1171
   1172	/* copy per-cpu buffer to object */
   1173	addr = kmap_atomic(pages[0]);
   1174	memcpy(addr + off, buf, sizes[0]);
   1175	kunmap_atomic(addr);
   1176	addr = kmap_atomic(pages[1]);
   1177	memcpy(addr, buf + sizes[0], sizes[1]);
   1178	kunmap_atomic(addr);
   1179
   1180out:
   1181	/* enable page faults to match kunmap_atomic() return conditions */
   1182	pagefault_enable();
   1183}
   1184
   1185static int zs_cpu_prepare(unsigned int cpu)
   1186{
   1187	struct mapping_area *area;
   1188
   1189	area = &per_cpu(zs_map_area, cpu);
   1190	return __zs_cpu_up(area);
   1191}
   1192
   1193static int zs_cpu_dead(unsigned int cpu)
   1194{
   1195	struct mapping_area *area;
   1196
   1197	area = &per_cpu(zs_map_area, cpu);
   1198	__zs_cpu_down(area);
   1199	return 0;
   1200}
   1201
   1202static bool can_merge(struct size_class *prev, int pages_per_zspage,
   1203					int objs_per_zspage)
   1204{
   1205	if (prev->pages_per_zspage == pages_per_zspage &&
   1206		prev->objs_per_zspage == objs_per_zspage)
   1207		return true;
   1208
   1209	return false;
   1210}
   1211
   1212static bool zspage_full(struct size_class *class, struct zspage *zspage)
   1213{
   1214	return get_zspage_inuse(zspage) == class->objs_per_zspage;
   1215}
   1216
   1217unsigned long zs_get_total_pages(struct zs_pool *pool)
   1218{
   1219	return atomic_long_read(&pool->pages_allocated);
   1220}
   1221EXPORT_SYMBOL_GPL(zs_get_total_pages);
   1222
   1223/**
   1224 * zs_map_object - get address of allocated object from handle.
   1225 * @pool: pool from which the object was allocated
   1226 * @handle: handle returned from zs_malloc
   1227 * @mm: mapping mode to use
   1228 *
   1229 * Before using an object allocated from zs_malloc, it must be mapped using
   1230 * this function. When done with the object, it must be unmapped using
   1231 * zs_unmap_object.
   1232 *
   1233 * Only one object can be mapped per cpu at a time. There is no protection
   1234 * against nested mappings.
   1235 *
   1236 * This function returns with preemption and page faults disabled.
   1237 */
   1238void *zs_map_object(struct zs_pool *pool, unsigned long handle,
   1239			enum zs_mapmode mm)
   1240{
   1241	struct zspage *zspage;
   1242	struct page *page;
   1243	unsigned long obj, off;
   1244	unsigned int obj_idx;
   1245
   1246	struct size_class *class;
   1247	struct mapping_area *area;
   1248	struct page *pages[2];
   1249	void *ret;
   1250
   1251	/*
   1252	 * Because we use per-cpu mapping areas shared among the
   1253	 * pools/users, we can't allow mapping in interrupt context
   1254	 * because it can corrupt another users mappings.
   1255	 */
   1256	BUG_ON(in_interrupt());
   1257
   1258	/* It guarantees it can get zspage from handle safely */
   1259	read_lock(&pool->migrate_lock);
   1260	obj = handle_to_obj(handle);
   1261	obj_to_location(obj, &page, &obj_idx);
   1262	zspage = get_zspage(page);
   1263
   1264	/*
   1265	 * migration cannot move any zpages in this zspage. Here, class->lock
   1266	 * is too heavy since callers would take some time until they calls
   1267	 * zs_unmap_object API so delegate the locking from class to zspage
   1268	 * which is smaller granularity.
   1269	 */
   1270	migrate_read_lock(zspage);
   1271	read_unlock(&pool->migrate_lock);
   1272
   1273	class = zspage_class(pool, zspage);
   1274	off = (class->size * obj_idx) & ~PAGE_MASK;
   1275
   1276	local_lock(&zs_map_area.lock);
   1277	area = this_cpu_ptr(&zs_map_area);
   1278	area->vm_mm = mm;
   1279	if (off + class->size <= PAGE_SIZE) {
   1280		/* this object is contained entirely within a page */
   1281		area->vm_addr = kmap_atomic(page);
   1282		ret = area->vm_addr + off;
   1283		goto out;
   1284	}
   1285
   1286	/* this object spans two pages */
   1287	pages[0] = page;
   1288	pages[1] = get_next_page(page);
   1289	BUG_ON(!pages[1]);
   1290
   1291	ret = __zs_map_object(area, pages, off, class->size);
   1292out:
   1293	if (likely(!ZsHugePage(zspage)))
   1294		ret += ZS_HANDLE_SIZE;
   1295
   1296	return ret;
   1297}
   1298EXPORT_SYMBOL_GPL(zs_map_object);
   1299
   1300void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
   1301{
   1302	struct zspage *zspage;
   1303	struct page *page;
   1304	unsigned long obj, off;
   1305	unsigned int obj_idx;
   1306
   1307	struct size_class *class;
   1308	struct mapping_area *area;
   1309
   1310	obj = handle_to_obj(handle);
   1311	obj_to_location(obj, &page, &obj_idx);
   1312	zspage = get_zspage(page);
   1313	class = zspage_class(pool, zspage);
   1314	off = (class->size * obj_idx) & ~PAGE_MASK;
   1315
   1316	area = this_cpu_ptr(&zs_map_area);
   1317	if (off + class->size <= PAGE_SIZE)
   1318		kunmap_atomic(area->vm_addr);
   1319	else {
   1320		struct page *pages[2];
   1321
   1322		pages[0] = page;
   1323		pages[1] = get_next_page(page);
   1324		BUG_ON(!pages[1]);
   1325
   1326		__zs_unmap_object(area, pages, off, class->size);
   1327	}
   1328	local_unlock(&zs_map_area.lock);
   1329
   1330	migrate_read_unlock(zspage);
   1331}
   1332EXPORT_SYMBOL_GPL(zs_unmap_object);
   1333
   1334/**
   1335 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
   1336 *                        zsmalloc &size_class.
   1337 * @pool: zsmalloc pool to use
   1338 *
   1339 * The function returns the size of the first huge class - any object of equal
   1340 * or bigger size will be stored in zspage consisting of a single physical
   1341 * page.
   1342 *
   1343 * Context: Any context.
   1344 *
   1345 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
   1346 */
   1347size_t zs_huge_class_size(struct zs_pool *pool)
   1348{
   1349	return huge_class_size;
   1350}
   1351EXPORT_SYMBOL_GPL(zs_huge_class_size);
   1352
   1353static unsigned long obj_malloc(struct zs_pool *pool,
   1354				struct zspage *zspage, unsigned long handle)
   1355{
   1356	int i, nr_page, offset;
   1357	unsigned long obj;
   1358	struct link_free *link;
   1359	struct size_class *class;
   1360
   1361	struct page *m_page;
   1362	unsigned long m_offset;
   1363	void *vaddr;
   1364
   1365	class = pool->size_class[zspage->class];
   1366	handle |= OBJ_ALLOCATED_TAG;
   1367	obj = get_freeobj(zspage);
   1368
   1369	offset = obj * class->size;
   1370	nr_page = offset >> PAGE_SHIFT;
   1371	m_offset = offset & ~PAGE_MASK;
   1372	m_page = get_first_page(zspage);
   1373
   1374	for (i = 0; i < nr_page; i++)
   1375		m_page = get_next_page(m_page);
   1376
   1377	vaddr = kmap_atomic(m_page);
   1378	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
   1379	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
   1380	if (likely(!ZsHugePage(zspage)))
   1381		/* record handle in the header of allocated chunk */
   1382		link->handle = handle;
   1383	else
   1384		/* record handle to page->index */
   1385		zspage->first_page->index = handle;
   1386
   1387	kunmap_atomic(vaddr);
   1388	mod_zspage_inuse(zspage, 1);
   1389
   1390	obj = location_to_obj(m_page, obj);
   1391
   1392	return obj;
   1393}
   1394
   1395
   1396/**
   1397 * zs_malloc - Allocate block of given size from pool.
   1398 * @pool: pool to allocate from
   1399 * @size: size of block to allocate
   1400 * @gfp: gfp flags when allocating object
   1401 *
   1402 * On success, handle to the allocated object is returned,
   1403 * otherwise 0.
   1404 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
   1405 */
   1406unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
   1407{
   1408	unsigned long handle, obj;
   1409	struct size_class *class;
   1410	enum fullness_group newfg;
   1411	struct zspage *zspage;
   1412
   1413	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
   1414		return 0;
   1415
   1416	handle = cache_alloc_handle(pool, gfp);
   1417	if (!handle)
   1418		return 0;
   1419
   1420	/* extra space in chunk to keep the handle */
   1421	size += ZS_HANDLE_SIZE;
   1422	class = pool->size_class[get_size_class_index(size)];
   1423
   1424	/* class->lock effectively protects the zpage migration */
   1425	spin_lock(&class->lock);
   1426	zspage = find_get_zspage(class);
   1427	if (likely(zspage)) {
   1428		obj = obj_malloc(pool, zspage, handle);
   1429		/* Now move the zspage to another fullness group, if required */
   1430		fix_fullness_group(class, zspage);
   1431		record_obj(handle, obj);
   1432		class_stat_inc(class, OBJ_USED, 1);
   1433		spin_unlock(&class->lock);
   1434
   1435		return handle;
   1436	}
   1437
   1438	spin_unlock(&class->lock);
   1439
   1440	zspage = alloc_zspage(pool, class, gfp);
   1441	if (!zspage) {
   1442		cache_free_handle(pool, handle);
   1443		return 0;
   1444	}
   1445
   1446	spin_lock(&class->lock);
   1447	obj = obj_malloc(pool, zspage, handle);
   1448	newfg = get_fullness_group(class, zspage);
   1449	insert_zspage(class, zspage, newfg);
   1450	set_zspage_mapping(zspage, class->index, newfg);
   1451	record_obj(handle, obj);
   1452	atomic_long_add(class->pages_per_zspage,
   1453				&pool->pages_allocated);
   1454	class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
   1455	class_stat_inc(class, OBJ_USED, 1);
   1456
   1457	/* We completely set up zspage so mark them as movable */
   1458	SetZsPageMovable(pool, zspage);
   1459	spin_unlock(&class->lock);
   1460
   1461	return handle;
   1462}
   1463EXPORT_SYMBOL_GPL(zs_malloc);
   1464
   1465static void obj_free(int class_size, unsigned long obj)
   1466{
   1467	struct link_free *link;
   1468	struct zspage *zspage;
   1469	struct page *f_page;
   1470	unsigned long f_offset;
   1471	unsigned int f_objidx;
   1472	void *vaddr;
   1473
   1474	obj_to_location(obj, &f_page, &f_objidx);
   1475	f_offset = (class_size * f_objidx) & ~PAGE_MASK;
   1476	zspage = get_zspage(f_page);
   1477
   1478	vaddr = kmap_atomic(f_page);
   1479
   1480	/* Insert this object in containing zspage's freelist */
   1481	link = (struct link_free *)(vaddr + f_offset);
   1482	if (likely(!ZsHugePage(zspage)))
   1483		link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
   1484	else
   1485		f_page->index = 0;
   1486	kunmap_atomic(vaddr);
   1487	set_freeobj(zspage, f_objidx);
   1488	mod_zspage_inuse(zspage, -1);
   1489}
   1490
   1491void zs_free(struct zs_pool *pool, unsigned long handle)
   1492{
   1493	struct zspage *zspage;
   1494	struct page *f_page;
   1495	unsigned long obj;
   1496	struct size_class *class;
   1497	enum fullness_group fullness;
   1498
   1499	if (unlikely(!handle))
   1500		return;
   1501
   1502	/*
   1503	 * The pool->migrate_lock protects the race with zpage's migration
   1504	 * so it's safe to get the page from handle.
   1505	 */
   1506	read_lock(&pool->migrate_lock);
   1507	obj = handle_to_obj(handle);
   1508	obj_to_page(obj, &f_page);
   1509	zspage = get_zspage(f_page);
   1510	class = zspage_class(pool, zspage);
   1511	spin_lock(&class->lock);
   1512	read_unlock(&pool->migrate_lock);
   1513
   1514	obj_free(class->size, obj);
   1515	class_stat_dec(class, OBJ_USED, 1);
   1516	fullness = fix_fullness_group(class, zspage);
   1517	if (fullness != ZS_EMPTY)
   1518		goto out;
   1519
   1520	free_zspage(pool, class, zspage);
   1521out:
   1522	spin_unlock(&class->lock);
   1523	cache_free_handle(pool, handle);
   1524}
   1525EXPORT_SYMBOL_GPL(zs_free);
   1526
   1527static void zs_object_copy(struct size_class *class, unsigned long dst,
   1528				unsigned long src)
   1529{
   1530	struct page *s_page, *d_page;
   1531	unsigned int s_objidx, d_objidx;
   1532	unsigned long s_off, d_off;
   1533	void *s_addr, *d_addr;
   1534	int s_size, d_size, size;
   1535	int written = 0;
   1536
   1537	s_size = d_size = class->size;
   1538
   1539	obj_to_location(src, &s_page, &s_objidx);
   1540	obj_to_location(dst, &d_page, &d_objidx);
   1541
   1542	s_off = (class->size * s_objidx) & ~PAGE_MASK;
   1543	d_off = (class->size * d_objidx) & ~PAGE_MASK;
   1544
   1545	if (s_off + class->size > PAGE_SIZE)
   1546		s_size = PAGE_SIZE - s_off;
   1547
   1548	if (d_off + class->size > PAGE_SIZE)
   1549		d_size = PAGE_SIZE - d_off;
   1550
   1551	s_addr = kmap_atomic(s_page);
   1552	d_addr = kmap_atomic(d_page);
   1553
   1554	while (1) {
   1555		size = min(s_size, d_size);
   1556		memcpy(d_addr + d_off, s_addr + s_off, size);
   1557		written += size;
   1558
   1559		if (written == class->size)
   1560			break;
   1561
   1562		s_off += size;
   1563		s_size -= size;
   1564		d_off += size;
   1565		d_size -= size;
   1566
   1567		if (s_off >= PAGE_SIZE) {
   1568			kunmap_atomic(d_addr);
   1569			kunmap_atomic(s_addr);
   1570			s_page = get_next_page(s_page);
   1571			s_addr = kmap_atomic(s_page);
   1572			d_addr = kmap_atomic(d_page);
   1573			s_size = class->size - written;
   1574			s_off = 0;
   1575		}
   1576
   1577		if (d_off >= PAGE_SIZE) {
   1578			kunmap_atomic(d_addr);
   1579			d_page = get_next_page(d_page);
   1580			d_addr = kmap_atomic(d_page);
   1581			d_size = class->size - written;
   1582			d_off = 0;
   1583		}
   1584	}
   1585
   1586	kunmap_atomic(d_addr);
   1587	kunmap_atomic(s_addr);
   1588}
   1589
   1590/*
   1591 * Find alloced object in zspage from index object and
   1592 * return handle.
   1593 */
   1594static unsigned long find_alloced_obj(struct size_class *class,
   1595					struct page *page, int *obj_idx)
   1596{
   1597	int offset = 0;
   1598	int index = *obj_idx;
   1599	unsigned long handle = 0;
   1600	void *addr = kmap_atomic(page);
   1601
   1602	offset = get_first_obj_offset(page);
   1603	offset += class->size * index;
   1604
   1605	while (offset < PAGE_SIZE) {
   1606		if (obj_allocated(page, addr + offset, &handle))
   1607			break;
   1608
   1609		offset += class->size;
   1610		index++;
   1611	}
   1612
   1613	kunmap_atomic(addr);
   1614
   1615	*obj_idx = index;
   1616
   1617	return handle;
   1618}
   1619
   1620struct zs_compact_control {
   1621	/* Source spage for migration which could be a subpage of zspage */
   1622	struct page *s_page;
   1623	/* Destination page for migration which should be a first page
   1624	 * of zspage. */
   1625	struct page *d_page;
   1626	 /* Starting object index within @s_page which used for live object
   1627	  * in the subpage. */
   1628	int obj_idx;
   1629};
   1630
   1631static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
   1632				struct zs_compact_control *cc)
   1633{
   1634	unsigned long used_obj, free_obj;
   1635	unsigned long handle;
   1636	struct page *s_page = cc->s_page;
   1637	struct page *d_page = cc->d_page;
   1638	int obj_idx = cc->obj_idx;
   1639	int ret = 0;
   1640
   1641	while (1) {
   1642		handle = find_alloced_obj(class, s_page, &obj_idx);
   1643		if (!handle) {
   1644			s_page = get_next_page(s_page);
   1645			if (!s_page)
   1646				break;
   1647			obj_idx = 0;
   1648			continue;
   1649		}
   1650
   1651		/* Stop if there is no more space */
   1652		if (zspage_full(class, get_zspage(d_page))) {
   1653			ret = -ENOMEM;
   1654			break;
   1655		}
   1656
   1657		used_obj = handle_to_obj(handle);
   1658		free_obj = obj_malloc(pool, get_zspage(d_page), handle);
   1659		zs_object_copy(class, free_obj, used_obj);
   1660		obj_idx++;
   1661		record_obj(handle, free_obj);
   1662		obj_free(class->size, used_obj);
   1663	}
   1664
   1665	/* Remember last position in this iteration */
   1666	cc->s_page = s_page;
   1667	cc->obj_idx = obj_idx;
   1668
   1669	return ret;
   1670}
   1671
   1672static struct zspage *isolate_zspage(struct size_class *class, bool source)
   1673{
   1674	int i;
   1675	struct zspage *zspage;
   1676	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
   1677
   1678	if (!source) {
   1679		fg[0] = ZS_ALMOST_FULL;
   1680		fg[1] = ZS_ALMOST_EMPTY;
   1681	}
   1682
   1683	for (i = 0; i < 2; i++) {
   1684		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
   1685							struct zspage, list);
   1686		if (zspage) {
   1687			remove_zspage(class, zspage, fg[i]);
   1688			return zspage;
   1689		}
   1690	}
   1691
   1692	return zspage;
   1693}
   1694
   1695/*
   1696 * putback_zspage - add @zspage into right class's fullness list
   1697 * @class: destination class
   1698 * @zspage: target page
   1699 *
   1700 * Return @zspage's fullness_group
   1701 */
   1702static enum fullness_group putback_zspage(struct size_class *class,
   1703			struct zspage *zspage)
   1704{
   1705	enum fullness_group fullness;
   1706
   1707	fullness = get_fullness_group(class, zspage);
   1708	insert_zspage(class, zspage, fullness);
   1709	set_zspage_mapping(zspage, class->index, fullness);
   1710
   1711	return fullness;
   1712}
   1713
   1714#ifdef CONFIG_COMPACTION
   1715/*
   1716 * To prevent zspage destroy during migration, zspage freeing should
   1717 * hold locks of all pages in the zspage.
   1718 */
   1719static void lock_zspage(struct zspage *zspage)
   1720{
   1721	struct page *curr_page, *page;
   1722
   1723	/*
   1724	 * Pages we haven't locked yet can be migrated off the list while we're
   1725	 * trying to lock them, so we need to be careful and only attempt to
   1726	 * lock each page under migrate_read_lock(). Otherwise, the page we lock
   1727	 * may no longer belong to the zspage. This means that we may wait for
   1728	 * the wrong page to unlock, so we must take a reference to the page
   1729	 * prior to waiting for it to unlock outside migrate_read_lock().
   1730	 */
   1731	while (1) {
   1732		migrate_read_lock(zspage);
   1733		page = get_first_page(zspage);
   1734		if (trylock_page(page))
   1735			break;
   1736		get_page(page);
   1737		migrate_read_unlock(zspage);
   1738		wait_on_page_locked(page);
   1739		put_page(page);
   1740	}
   1741
   1742	curr_page = page;
   1743	while ((page = get_next_page(curr_page))) {
   1744		if (trylock_page(page)) {
   1745			curr_page = page;
   1746		} else {
   1747			get_page(page);
   1748			migrate_read_unlock(zspage);
   1749			wait_on_page_locked(page);
   1750			put_page(page);
   1751			migrate_read_lock(zspage);
   1752		}
   1753	}
   1754	migrate_read_unlock(zspage);
   1755}
   1756
   1757static int zs_init_fs_context(struct fs_context *fc)
   1758{
   1759	return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
   1760}
   1761
   1762static struct file_system_type zsmalloc_fs = {
   1763	.name		= "zsmalloc",
   1764	.init_fs_context = zs_init_fs_context,
   1765	.kill_sb	= kill_anon_super,
   1766};
   1767
   1768static int zsmalloc_mount(void)
   1769{
   1770	int ret = 0;
   1771
   1772	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
   1773	if (IS_ERR(zsmalloc_mnt))
   1774		ret = PTR_ERR(zsmalloc_mnt);
   1775
   1776	return ret;
   1777}
   1778
   1779static void zsmalloc_unmount(void)
   1780{
   1781	kern_unmount(zsmalloc_mnt);
   1782}
   1783
   1784static void migrate_lock_init(struct zspage *zspage)
   1785{
   1786	rwlock_init(&zspage->lock);
   1787}
   1788
   1789static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
   1790{
   1791	read_lock(&zspage->lock);
   1792}
   1793
   1794static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
   1795{
   1796	read_unlock(&zspage->lock);
   1797}
   1798
   1799static void migrate_write_lock(struct zspage *zspage)
   1800{
   1801	write_lock(&zspage->lock);
   1802}
   1803
   1804static void migrate_write_lock_nested(struct zspage *zspage)
   1805{
   1806	write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
   1807}
   1808
   1809static void migrate_write_unlock(struct zspage *zspage)
   1810{
   1811	write_unlock(&zspage->lock);
   1812}
   1813
   1814/* Number of isolated subpage for *page migration* in this zspage */
   1815static void inc_zspage_isolation(struct zspage *zspage)
   1816{
   1817	zspage->isolated++;
   1818}
   1819
   1820static void dec_zspage_isolation(struct zspage *zspage)
   1821{
   1822	VM_BUG_ON(zspage->isolated == 0);
   1823	zspage->isolated--;
   1824}
   1825
   1826static void replace_sub_page(struct size_class *class, struct zspage *zspage,
   1827				struct page *newpage, struct page *oldpage)
   1828{
   1829	struct page *page;
   1830	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
   1831	int idx = 0;
   1832
   1833	page = get_first_page(zspage);
   1834	do {
   1835		if (page == oldpage)
   1836			pages[idx] = newpage;
   1837		else
   1838			pages[idx] = page;
   1839		idx++;
   1840	} while ((page = get_next_page(page)) != NULL);
   1841
   1842	create_page_chain(class, zspage, pages);
   1843	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
   1844	if (unlikely(ZsHugePage(zspage)))
   1845		newpage->index = oldpage->index;
   1846	__SetPageMovable(newpage, page_mapping(oldpage));
   1847}
   1848
   1849static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
   1850{
   1851	struct zspage *zspage;
   1852
   1853	/*
   1854	 * Page is locked so zspage couldn't be destroyed. For detail, look at
   1855	 * lock_zspage in free_zspage.
   1856	 */
   1857	VM_BUG_ON_PAGE(!PageMovable(page), page);
   1858	VM_BUG_ON_PAGE(PageIsolated(page), page);
   1859
   1860	zspage = get_zspage(page);
   1861	migrate_write_lock(zspage);
   1862	inc_zspage_isolation(zspage);
   1863	migrate_write_unlock(zspage);
   1864
   1865	return true;
   1866}
   1867
   1868static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
   1869		struct page *page, enum migrate_mode mode)
   1870{
   1871	struct zs_pool *pool;
   1872	struct size_class *class;
   1873	struct zspage *zspage;
   1874	struct page *dummy;
   1875	void *s_addr, *d_addr, *addr;
   1876	int offset;
   1877	unsigned long handle;
   1878	unsigned long old_obj, new_obj;
   1879	unsigned int obj_idx;
   1880
   1881	/*
   1882	 * We cannot support the _NO_COPY case here, because copy needs to
   1883	 * happen under the zs lock, which does not work with
   1884	 * MIGRATE_SYNC_NO_COPY workflow.
   1885	 */
   1886	if (mode == MIGRATE_SYNC_NO_COPY)
   1887		return -EINVAL;
   1888
   1889	VM_BUG_ON_PAGE(!PageMovable(page), page);
   1890	VM_BUG_ON_PAGE(!PageIsolated(page), page);
   1891
   1892	pool = mapping->private_data;
   1893
   1894	/*
   1895	 * The pool migrate_lock protects the race between zpage migration
   1896	 * and zs_free.
   1897	 */
   1898	write_lock(&pool->migrate_lock);
   1899	zspage = get_zspage(page);
   1900	class = zspage_class(pool, zspage);
   1901
   1902	/*
   1903	 * the class lock protects zpage alloc/free in the zspage.
   1904	 */
   1905	spin_lock(&class->lock);
   1906	/* the migrate_write_lock protects zpage access via zs_map_object */
   1907	migrate_write_lock(zspage);
   1908
   1909	offset = get_first_obj_offset(page);
   1910	s_addr = kmap_atomic(page);
   1911
   1912	/*
   1913	 * Here, any user cannot access all objects in the zspage so let's move.
   1914	 */
   1915	d_addr = kmap_atomic(newpage);
   1916	memcpy(d_addr, s_addr, PAGE_SIZE);
   1917	kunmap_atomic(d_addr);
   1918
   1919	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
   1920					addr += class->size) {
   1921		if (obj_allocated(page, addr, &handle)) {
   1922
   1923			old_obj = handle_to_obj(handle);
   1924			obj_to_location(old_obj, &dummy, &obj_idx);
   1925			new_obj = (unsigned long)location_to_obj(newpage,
   1926								obj_idx);
   1927			record_obj(handle, new_obj);
   1928		}
   1929	}
   1930	kunmap_atomic(s_addr);
   1931
   1932	replace_sub_page(class, zspage, newpage, page);
   1933	/*
   1934	 * Since we complete the data copy and set up new zspage structure,
   1935	 * it's okay to release migration_lock.
   1936	 */
   1937	write_unlock(&pool->migrate_lock);
   1938	spin_unlock(&class->lock);
   1939	dec_zspage_isolation(zspage);
   1940	migrate_write_unlock(zspage);
   1941
   1942	get_page(newpage);
   1943	if (page_zone(newpage) != page_zone(page)) {
   1944		dec_zone_page_state(page, NR_ZSPAGES);
   1945		inc_zone_page_state(newpage, NR_ZSPAGES);
   1946	}
   1947
   1948	reset_page(page);
   1949	put_page(page);
   1950
   1951	return MIGRATEPAGE_SUCCESS;
   1952}
   1953
   1954static void zs_page_putback(struct page *page)
   1955{
   1956	struct zspage *zspage;
   1957
   1958	VM_BUG_ON_PAGE(!PageMovable(page), page);
   1959	VM_BUG_ON_PAGE(!PageIsolated(page), page);
   1960
   1961	zspage = get_zspage(page);
   1962	migrate_write_lock(zspage);
   1963	dec_zspage_isolation(zspage);
   1964	migrate_write_unlock(zspage);
   1965}
   1966
   1967static const struct address_space_operations zsmalloc_aops = {
   1968	.isolate_page = zs_page_isolate,
   1969	.migratepage = zs_page_migrate,
   1970	.putback_page = zs_page_putback,
   1971};
   1972
   1973static int zs_register_migration(struct zs_pool *pool)
   1974{
   1975	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
   1976	if (IS_ERR(pool->inode)) {
   1977		pool->inode = NULL;
   1978		return 1;
   1979	}
   1980
   1981	pool->inode->i_mapping->private_data = pool;
   1982	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
   1983	return 0;
   1984}
   1985
   1986static void zs_unregister_migration(struct zs_pool *pool)
   1987{
   1988	flush_work(&pool->free_work);
   1989	iput(pool->inode);
   1990}
   1991
   1992/*
   1993 * Caller should hold page_lock of all pages in the zspage
   1994 * In here, we cannot use zspage meta data.
   1995 */
   1996static void async_free_zspage(struct work_struct *work)
   1997{
   1998	int i;
   1999	struct size_class *class;
   2000	unsigned int class_idx;
   2001	enum fullness_group fullness;
   2002	struct zspage *zspage, *tmp;
   2003	LIST_HEAD(free_pages);
   2004	struct zs_pool *pool = container_of(work, struct zs_pool,
   2005					free_work);
   2006
   2007	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
   2008		class = pool->size_class[i];
   2009		if (class->index != i)
   2010			continue;
   2011
   2012		spin_lock(&class->lock);
   2013		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
   2014		spin_unlock(&class->lock);
   2015	}
   2016
   2017	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
   2018		list_del(&zspage->list);
   2019		lock_zspage(zspage);
   2020
   2021		get_zspage_mapping(zspage, &class_idx, &fullness);
   2022		VM_BUG_ON(fullness != ZS_EMPTY);
   2023		class = pool->size_class[class_idx];
   2024		spin_lock(&class->lock);
   2025		__free_zspage(pool, class, zspage);
   2026		spin_unlock(&class->lock);
   2027	}
   2028};
   2029
   2030static void kick_deferred_free(struct zs_pool *pool)
   2031{
   2032	schedule_work(&pool->free_work);
   2033}
   2034
   2035static void init_deferred_free(struct zs_pool *pool)
   2036{
   2037	INIT_WORK(&pool->free_work, async_free_zspage);
   2038}
   2039
   2040static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
   2041{
   2042	struct page *page = get_first_page(zspage);
   2043
   2044	do {
   2045		WARN_ON(!trylock_page(page));
   2046		__SetPageMovable(page, pool->inode->i_mapping);
   2047		unlock_page(page);
   2048	} while ((page = get_next_page(page)) != NULL);
   2049}
   2050#endif
   2051
   2052/*
   2053 *
   2054 * Based on the number of unused allocated objects calculate
   2055 * and return the number of pages that we can free.
   2056 */
   2057static unsigned long zs_can_compact(struct size_class *class)
   2058{
   2059	unsigned long obj_wasted;
   2060	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
   2061	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
   2062
   2063	if (obj_allocated <= obj_used)
   2064		return 0;
   2065
   2066	obj_wasted = obj_allocated - obj_used;
   2067	obj_wasted /= class->objs_per_zspage;
   2068
   2069	return obj_wasted * class->pages_per_zspage;
   2070}
   2071
   2072static unsigned long __zs_compact(struct zs_pool *pool,
   2073				  struct size_class *class)
   2074{
   2075	struct zs_compact_control cc;
   2076	struct zspage *src_zspage;
   2077	struct zspage *dst_zspage = NULL;
   2078	unsigned long pages_freed = 0;
   2079
   2080	/* protect the race between zpage migration and zs_free */
   2081	write_lock(&pool->migrate_lock);
   2082	/* protect zpage allocation/free */
   2083	spin_lock(&class->lock);
   2084	while ((src_zspage = isolate_zspage(class, true))) {
   2085		/* protect someone accessing the zspage(i.e., zs_map_object) */
   2086		migrate_write_lock(src_zspage);
   2087
   2088		if (!zs_can_compact(class))
   2089			break;
   2090
   2091		cc.obj_idx = 0;
   2092		cc.s_page = get_first_page(src_zspage);
   2093
   2094		while ((dst_zspage = isolate_zspage(class, false))) {
   2095			migrate_write_lock_nested(dst_zspage);
   2096
   2097			cc.d_page = get_first_page(dst_zspage);
   2098			/*
   2099			 * If there is no more space in dst_page, resched
   2100			 * and see if anyone had allocated another zspage.
   2101			 */
   2102			if (!migrate_zspage(pool, class, &cc))
   2103				break;
   2104
   2105			putback_zspage(class, dst_zspage);
   2106			migrate_write_unlock(dst_zspage);
   2107			dst_zspage = NULL;
   2108			if (rwlock_is_contended(&pool->migrate_lock))
   2109				break;
   2110		}
   2111
   2112		/* Stop if we couldn't find slot */
   2113		if (dst_zspage == NULL)
   2114			break;
   2115
   2116		putback_zspage(class, dst_zspage);
   2117		migrate_write_unlock(dst_zspage);
   2118
   2119		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
   2120			migrate_write_unlock(src_zspage);
   2121			free_zspage(pool, class, src_zspage);
   2122			pages_freed += class->pages_per_zspage;
   2123		} else
   2124			migrate_write_unlock(src_zspage);
   2125		spin_unlock(&class->lock);
   2126		write_unlock(&pool->migrate_lock);
   2127		cond_resched();
   2128		write_lock(&pool->migrate_lock);
   2129		spin_lock(&class->lock);
   2130	}
   2131
   2132	if (src_zspage) {
   2133		putback_zspage(class, src_zspage);
   2134		migrate_write_unlock(src_zspage);
   2135	}
   2136
   2137	spin_unlock(&class->lock);
   2138	write_unlock(&pool->migrate_lock);
   2139
   2140	return pages_freed;
   2141}
   2142
   2143unsigned long zs_compact(struct zs_pool *pool)
   2144{
   2145	int i;
   2146	struct size_class *class;
   2147	unsigned long pages_freed = 0;
   2148
   2149	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
   2150		class = pool->size_class[i];
   2151		if (!class)
   2152			continue;
   2153		if (class->index != i)
   2154			continue;
   2155		pages_freed += __zs_compact(pool, class);
   2156	}
   2157	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
   2158
   2159	return pages_freed;
   2160}
   2161EXPORT_SYMBOL_GPL(zs_compact);
   2162
   2163void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
   2164{
   2165	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
   2166}
   2167EXPORT_SYMBOL_GPL(zs_pool_stats);
   2168
   2169static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
   2170		struct shrink_control *sc)
   2171{
   2172	unsigned long pages_freed;
   2173	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
   2174			shrinker);
   2175
   2176	/*
   2177	 * Compact classes and calculate compaction delta.
   2178	 * Can run concurrently with a manually triggered
   2179	 * (by user) compaction.
   2180	 */
   2181	pages_freed = zs_compact(pool);
   2182
   2183	return pages_freed ? pages_freed : SHRINK_STOP;
   2184}
   2185
   2186static unsigned long zs_shrinker_count(struct shrinker *shrinker,
   2187		struct shrink_control *sc)
   2188{
   2189	int i;
   2190	struct size_class *class;
   2191	unsigned long pages_to_free = 0;
   2192	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
   2193			shrinker);
   2194
   2195	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
   2196		class = pool->size_class[i];
   2197		if (!class)
   2198			continue;
   2199		if (class->index != i)
   2200			continue;
   2201
   2202		pages_to_free += zs_can_compact(class);
   2203	}
   2204
   2205	return pages_to_free;
   2206}
   2207
   2208static void zs_unregister_shrinker(struct zs_pool *pool)
   2209{
   2210	unregister_shrinker(&pool->shrinker);
   2211}
   2212
   2213static int zs_register_shrinker(struct zs_pool *pool)
   2214{
   2215	pool->shrinker.scan_objects = zs_shrinker_scan;
   2216	pool->shrinker.count_objects = zs_shrinker_count;
   2217	pool->shrinker.batch = 0;
   2218	pool->shrinker.seeks = DEFAULT_SEEKS;
   2219
   2220	return register_shrinker(&pool->shrinker);
   2221}
   2222
   2223/**
   2224 * zs_create_pool - Creates an allocation pool to work from.
   2225 * @name: pool name to be created
   2226 *
   2227 * This function must be called before anything when using
   2228 * the zsmalloc allocator.
   2229 *
   2230 * On success, a pointer to the newly created pool is returned,
   2231 * otherwise NULL.
   2232 */
   2233struct zs_pool *zs_create_pool(const char *name)
   2234{
   2235	int i;
   2236	struct zs_pool *pool;
   2237	struct size_class *prev_class = NULL;
   2238
   2239	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
   2240	if (!pool)
   2241		return NULL;
   2242
   2243	init_deferred_free(pool);
   2244	rwlock_init(&pool->migrate_lock);
   2245
   2246	pool->name = kstrdup(name, GFP_KERNEL);
   2247	if (!pool->name)
   2248		goto err;
   2249
   2250	if (create_cache(pool))
   2251		goto err;
   2252
   2253	/*
   2254	 * Iterate reversely, because, size of size_class that we want to use
   2255	 * for merging should be larger or equal to current size.
   2256	 */
   2257	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
   2258		int size;
   2259		int pages_per_zspage;
   2260		int objs_per_zspage;
   2261		struct size_class *class;
   2262		int fullness = 0;
   2263
   2264		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
   2265		if (size > ZS_MAX_ALLOC_SIZE)
   2266			size = ZS_MAX_ALLOC_SIZE;
   2267		pages_per_zspage = get_pages_per_zspage(size);
   2268		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
   2269
   2270		/*
   2271		 * We iterate from biggest down to smallest classes,
   2272		 * so huge_class_size holds the size of the first huge
   2273		 * class. Any object bigger than or equal to that will
   2274		 * endup in the huge class.
   2275		 */
   2276		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
   2277				!huge_class_size) {
   2278			huge_class_size = size;
   2279			/*
   2280			 * The object uses ZS_HANDLE_SIZE bytes to store the
   2281			 * handle. We need to subtract it, because zs_malloc()
   2282			 * unconditionally adds handle size before it performs
   2283			 * size class search - so object may be smaller than
   2284			 * huge class size, yet it still can end up in the huge
   2285			 * class because it grows by ZS_HANDLE_SIZE extra bytes
   2286			 * right before class lookup.
   2287			 */
   2288			huge_class_size -= (ZS_HANDLE_SIZE - 1);
   2289		}
   2290
   2291		/*
   2292		 * size_class is used for normal zsmalloc operation such
   2293		 * as alloc/free for that size. Although it is natural that we
   2294		 * have one size_class for each size, there is a chance that we
   2295		 * can get more memory utilization if we use one size_class for
   2296		 * many different sizes whose size_class have same
   2297		 * characteristics. So, we makes size_class point to
   2298		 * previous size_class if possible.
   2299		 */
   2300		if (prev_class) {
   2301			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
   2302				pool->size_class[i] = prev_class;
   2303				continue;
   2304			}
   2305		}
   2306
   2307		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
   2308		if (!class)
   2309			goto err;
   2310
   2311		class->size = size;
   2312		class->index = i;
   2313		class->pages_per_zspage = pages_per_zspage;
   2314		class->objs_per_zspage = objs_per_zspage;
   2315		spin_lock_init(&class->lock);
   2316		pool->size_class[i] = class;
   2317		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
   2318							fullness++)
   2319			INIT_LIST_HEAD(&class->fullness_list[fullness]);
   2320
   2321		prev_class = class;
   2322	}
   2323
   2324	/* debug only, don't abort if it fails */
   2325	zs_pool_stat_create(pool, name);
   2326
   2327	if (zs_register_migration(pool))
   2328		goto err;
   2329
   2330	/*
   2331	 * Not critical since shrinker is only used to trigger internal
   2332	 * defragmentation of the pool which is pretty optional thing.  If
   2333	 * registration fails we still can use the pool normally and user can
   2334	 * trigger compaction manually. Thus, ignore return code.
   2335	 */
   2336	zs_register_shrinker(pool);
   2337
   2338	return pool;
   2339
   2340err:
   2341	zs_destroy_pool(pool);
   2342	return NULL;
   2343}
   2344EXPORT_SYMBOL_GPL(zs_create_pool);
   2345
   2346void zs_destroy_pool(struct zs_pool *pool)
   2347{
   2348	int i;
   2349
   2350	zs_unregister_shrinker(pool);
   2351	zs_unregister_migration(pool);
   2352	zs_pool_stat_destroy(pool);
   2353
   2354	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
   2355		int fg;
   2356		struct size_class *class = pool->size_class[i];
   2357
   2358		if (!class)
   2359			continue;
   2360
   2361		if (class->index != i)
   2362			continue;
   2363
   2364		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
   2365			if (!list_empty(&class->fullness_list[fg])) {
   2366				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
   2367					class->size, fg);
   2368			}
   2369		}
   2370		kfree(class);
   2371	}
   2372
   2373	destroy_cache(pool);
   2374	kfree(pool->name);
   2375	kfree(pool);
   2376}
   2377EXPORT_SYMBOL_GPL(zs_destroy_pool);
   2378
   2379static int __init zs_init(void)
   2380{
   2381	int ret;
   2382
   2383	ret = zsmalloc_mount();
   2384	if (ret)
   2385		goto out;
   2386
   2387	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
   2388				zs_cpu_prepare, zs_cpu_dead);
   2389	if (ret)
   2390		goto hp_setup_fail;
   2391
   2392#ifdef CONFIG_ZPOOL
   2393	zpool_register_driver(&zs_zpool_driver);
   2394#endif
   2395
   2396	zs_stat_init();
   2397
   2398	return 0;
   2399
   2400hp_setup_fail:
   2401	zsmalloc_unmount();
   2402out:
   2403	return ret;
   2404}
   2405
   2406static void __exit zs_exit(void)
   2407{
   2408#ifdef CONFIG_ZPOOL
   2409	zpool_unregister_driver(&zs_zpool_driver);
   2410#endif
   2411	zsmalloc_unmount();
   2412	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
   2413
   2414	zs_stat_exit();
   2415}
   2416
   2417module_init(zs_init);
   2418module_exit(zs_exit);
   2419
   2420MODULE_LICENSE("Dual BSD/GPL");
   2421MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");