cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

osdmap.c (71876B)


      1// SPDX-License-Identifier: GPL-2.0
      2
      3#include <linux/ceph/ceph_debug.h>
      4
      5#include <linux/module.h>
      6#include <linux/slab.h>
      7
      8#include <linux/ceph/libceph.h>
      9#include <linux/ceph/osdmap.h>
     10#include <linux/ceph/decode.h>
     11#include <linux/crush/hash.h>
     12#include <linux/crush/mapper.h>
     13
     14char *ceph_osdmap_state_str(char *str, int len, u32 state)
     15{
     16	if (!len)
     17		return str;
     18
     19	if ((state & CEPH_OSD_EXISTS) && (state & CEPH_OSD_UP))
     20		snprintf(str, len, "exists, up");
     21	else if (state & CEPH_OSD_EXISTS)
     22		snprintf(str, len, "exists");
     23	else if (state & CEPH_OSD_UP)
     24		snprintf(str, len, "up");
     25	else
     26		snprintf(str, len, "doesn't exist");
     27
     28	return str;
     29}
     30
     31/* maps */
     32
     33static int calc_bits_of(unsigned int t)
     34{
     35	int b = 0;
     36	while (t) {
     37		t = t >> 1;
     38		b++;
     39	}
     40	return b;
     41}
     42
     43/*
     44 * the foo_mask is the smallest value 2^n-1 that is >= foo.
     45 */
     46static void calc_pg_masks(struct ceph_pg_pool_info *pi)
     47{
     48	pi->pg_num_mask = (1 << calc_bits_of(pi->pg_num-1)) - 1;
     49	pi->pgp_num_mask = (1 << calc_bits_of(pi->pgp_num-1)) - 1;
     50}
     51
     52/*
     53 * decode crush map
     54 */
     55static int crush_decode_uniform_bucket(void **p, void *end,
     56				       struct crush_bucket_uniform *b)
     57{
     58	dout("crush_decode_uniform_bucket %p to %p\n", *p, end);
     59	ceph_decode_need(p, end, (1+b->h.size) * sizeof(u32), bad);
     60	b->item_weight = ceph_decode_32(p);
     61	return 0;
     62bad:
     63	return -EINVAL;
     64}
     65
     66static int crush_decode_list_bucket(void **p, void *end,
     67				    struct crush_bucket_list *b)
     68{
     69	int j;
     70	dout("crush_decode_list_bucket %p to %p\n", *p, end);
     71	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
     72	if (b->item_weights == NULL)
     73		return -ENOMEM;
     74	b->sum_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
     75	if (b->sum_weights == NULL)
     76		return -ENOMEM;
     77	ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
     78	for (j = 0; j < b->h.size; j++) {
     79		b->item_weights[j] = ceph_decode_32(p);
     80		b->sum_weights[j] = ceph_decode_32(p);
     81	}
     82	return 0;
     83bad:
     84	return -EINVAL;
     85}
     86
     87static int crush_decode_tree_bucket(void **p, void *end,
     88				    struct crush_bucket_tree *b)
     89{
     90	int j;
     91	dout("crush_decode_tree_bucket %p to %p\n", *p, end);
     92	ceph_decode_8_safe(p, end, b->num_nodes, bad);
     93	b->node_weights = kcalloc(b->num_nodes, sizeof(u32), GFP_NOFS);
     94	if (b->node_weights == NULL)
     95		return -ENOMEM;
     96	ceph_decode_need(p, end, b->num_nodes * sizeof(u32), bad);
     97	for (j = 0; j < b->num_nodes; j++)
     98		b->node_weights[j] = ceph_decode_32(p);
     99	return 0;
    100bad:
    101	return -EINVAL;
    102}
    103
    104static int crush_decode_straw_bucket(void **p, void *end,
    105				     struct crush_bucket_straw *b)
    106{
    107	int j;
    108	dout("crush_decode_straw_bucket %p to %p\n", *p, end);
    109	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
    110	if (b->item_weights == NULL)
    111		return -ENOMEM;
    112	b->straws = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
    113	if (b->straws == NULL)
    114		return -ENOMEM;
    115	ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
    116	for (j = 0; j < b->h.size; j++) {
    117		b->item_weights[j] = ceph_decode_32(p);
    118		b->straws[j] = ceph_decode_32(p);
    119	}
    120	return 0;
    121bad:
    122	return -EINVAL;
    123}
    124
    125static int crush_decode_straw2_bucket(void **p, void *end,
    126				      struct crush_bucket_straw2 *b)
    127{
    128	int j;
    129	dout("crush_decode_straw2_bucket %p to %p\n", *p, end);
    130	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
    131	if (b->item_weights == NULL)
    132		return -ENOMEM;
    133	ceph_decode_need(p, end, b->h.size * sizeof(u32), bad);
    134	for (j = 0; j < b->h.size; j++)
    135		b->item_weights[j] = ceph_decode_32(p);
    136	return 0;
    137bad:
    138	return -EINVAL;
    139}
    140
    141struct crush_name_node {
    142	struct rb_node cn_node;
    143	int cn_id;
    144	char cn_name[];
    145};
    146
    147static struct crush_name_node *alloc_crush_name(size_t name_len)
    148{
    149	struct crush_name_node *cn;
    150
    151	cn = kmalloc(sizeof(*cn) + name_len + 1, GFP_NOIO);
    152	if (!cn)
    153		return NULL;
    154
    155	RB_CLEAR_NODE(&cn->cn_node);
    156	return cn;
    157}
    158
    159static void free_crush_name(struct crush_name_node *cn)
    160{
    161	WARN_ON(!RB_EMPTY_NODE(&cn->cn_node));
    162
    163	kfree(cn);
    164}
    165
    166DEFINE_RB_FUNCS(crush_name, struct crush_name_node, cn_id, cn_node)
    167
    168static int decode_crush_names(void **p, void *end, struct rb_root *root)
    169{
    170	u32 n;
    171
    172	ceph_decode_32_safe(p, end, n, e_inval);
    173	while (n--) {
    174		struct crush_name_node *cn;
    175		int id;
    176		u32 name_len;
    177
    178		ceph_decode_32_safe(p, end, id, e_inval);
    179		ceph_decode_32_safe(p, end, name_len, e_inval);
    180		ceph_decode_need(p, end, name_len, e_inval);
    181
    182		cn = alloc_crush_name(name_len);
    183		if (!cn)
    184			return -ENOMEM;
    185
    186		cn->cn_id = id;
    187		memcpy(cn->cn_name, *p, name_len);
    188		cn->cn_name[name_len] = '\0';
    189		*p += name_len;
    190
    191		if (!__insert_crush_name(root, cn)) {
    192			free_crush_name(cn);
    193			return -EEXIST;
    194		}
    195	}
    196
    197	return 0;
    198
    199e_inval:
    200	return -EINVAL;
    201}
    202
    203void clear_crush_names(struct rb_root *root)
    204{
    205	while (!RB_EMPTY_ROOT(root)) {
    206		struct crush_name_node *cn =
    207		    rb_entry(rb_first(root), struct crush_name_node, cn_node);
    208
    209		erase_crush_name(root, cn);
    210		free_crush_name(cn);
    211	}
    212}
    213
    214static struct crush_choose_arg_map *alloc_choose_arg_map(void)
    215{
    216	struct crush_choose_arg_map *arg_map;
    217
    218	arg_map = kzalloc(sizeof(*arg_map), GFP_NOIO);
    219	if (!arg_map)
    220		return NULL;
    221
    222	RB_CLEAR_NODE(&arg_map->node);
    223	return arg_map;
    224}
    225
    226static void free_choose_arg_map(struct crush_choose_arg_map *arg_map)
    227{
    228	if (arg_map) {
    229		int i, j;
    230
    231		WARN_ON(!RB_EMPTY_NODE(&arg_map->node));
    232
    233		for (i = 0; i < arg_map->size; i++) {
    234			struct crush_choose_arg *arg = &arg_map->args[i];
    235
    236			for (j = 0; j < arg->weight_set_size; j++)
    237				kfree(arg->weight_set[j].weights);
    238			kfree(arg->weight_set);
    239			kfree(arg->ids);
    240		}
    241		kfree(arg_map->args);
    242		kfree(arg_map);
    243	}
    244}
    245
    246DEFINE_RB_FUNCS(choose_arg_map, struct crush_choose_arg_map, choose_args_index,
    247		node);
    248
    249void clear_choose_args(struct crush_map *c)
    250{
    251	while (!RB_EMPTY_ROOT(&c->choose_args)) {
    252		struct crush_choose_arg_map *arg_map =
    253		    rb_entry(rb_first(&c->choose_args),
    254			     struct crush_choose_arg_map, node);
    255
    256		erase_choose_arg_map(&c->choose_args, arg_map);
    257		free_choose_arg_map(arg_map);
    258	}
    259}
    260
    261static u32 *decode_array_32_alloc(void **p, void *end, u32 *plen)
    262{
    263	u32 *a = NULL;
    264	u32 len;
    265	int ret;
    266
    267	ceph_decode_32_safe(p, end, len, e_inval);
    268	if (len) {
    269		u32 i;
    270
    271		a = kmalloc_array(len, sizeof(u32), GFP_NOIO);
    272		if (!a) {
    273			ret = -ENOMEM;
    274			goto fail;
    275		}
    276
    277		ceph_decode_need(p, end, len * sizeof(u32), e_inval);
    278		for (i = 0; i < len; i++)
    279			a[i] = ceph_decode_32(p);
    280	}
    281
    282	*plen = len;
    283	return a;
    284
    285e_inval:
    286	ret = -EINVAL;
    287fail:
    288	kfree(a);
    289	return ERR_PTR(ret);
    290}
    291
    292/*
    293 * Assumes @arg is zero-initialized.
    294 */
    295static int decode_choose_arg(void **p, void *end, struct crush_choose_arg *arg)
    296{
    297	int ret;
    298
    299	ceph_decode_32_safe(p, end, arg->weight_set_size, e_inval);
    300	if (arg->weight_set_size) {
    301		u32 i;
    302
    303		arg->weight_set = kmalloc_array(arg->weight_set_size,
    304						sizeof(*arg->weight_set),
    305						GFP_NOIO);
    306		if (!arg->weight_set)
    307			return -ENOMEM;
    308
    309		for (i = 0; i < arg->weight_set_size; i++) {
    310			struct crush_weight_set *w = &arg->weight_set[i];
    311
    312			w->weights = decode_array_32_alloc(p, end, &w->size);
    313			if (IS_ERR(w->weights)) {
    314				ret = PTR_ERR(w->weights);
    315				w->weights = NULL;
    316				return ret;
    317			}
    318		}
    319	}
    320
    321	arg->ids = decode_array_32_alloc(p, end, &arg->ids_size);
    322	if (IS_ERR(arg->ids)) {
    323		ret = PTR_ERR(arg->ids);
    324		arg->ids = NULL;
    325		return ret;
    326	}
    327
    328	return 0;
    329
    330e_inval:
    331	return -EINVAL;
    332}
    333
    334static int decode_choose_args(void **p, void *end, struct crush_map *c)
    335{
    336	struct crush_choose_arg_map *arg_map = NULL;
    337	u32 num_choose_arg_maps, num_buckets;
    338	int ret;
    339
    340	ceph_decode_32_safe(p, end, num_choose_arg_maps, e_inval);
    341	while (num_choose_arg_maps--) {
    342		arg_map = alloc_choose_arg_map();
    343		if (!arg_map) {
    344			ret = -ENOMEM;
    345			goto fail;
    346		}
    347
    348		ceph_decode_64_safe(p, end, arg_map->choose_args_index,
    349				    e_inval);
    350		arg_map->size = c->max_buckets;
    351		arg_map->args = kcalloc(arg_map->size, sizeof(*arg_map->args),
    352					GFP_NOIO);
    353		if (!arg_map->args) {
    354			ret = -ENOMEM;
    355			goto fail;
    356		}
    357
    358		ceph_decode_32_safe(p, end, num_buckets, e_inval);
    359		while (num_buckets--) {
    360			struct crush_choose_arg *arg;
    361			u32 bucket_index;
    362
    363			ceph_decode_32_safe(p, end, bucket_index, e_inval);
    364			if (bucket_index >= arg_map->size)
    365				goto e_inval;
    366
    367			arg = &arg_map->args[bucket_index];
    368			ret = decode_choose_arg(p, end, arg);
    369			if (ret)
    370				goto fail;
    371
    372			if (arg->ids_size &&
    373			    arg->ids_size != c->buckets[bucket_index]->size)
    374				goto e_inval;
    375		}
    376
    377		insert_choose_arg_map(&c->choose_args, arg_map);
    378	}
    379
    380	return 0;
    381
    382e_inval:
    383	ret = -EINVAL;
    384fail:
    385	free_choose_arg_map(arg_map);
    386	return ret;
    387}
    388
    389static void crush_finalize(struct crush_map *c)
    390{
    391	__s32 b;
    392
    393	/* Space for the array of pointers to per-bucket workspace */
    394	c->working_size = sizeof(struct crush_work) +
    395	    c->max_buckets * sizeof(struct crush_work_bucket *);
    396
    397	for (b = 0; b < c->max_buckets; b++) {
    398		if (!c->buckets[b])
    399			continue;
    400
    401		switch (c->buckets[b]->alg) {
    402		default:
    403			/*
    404			 * The base case, permutation variables and
    405			 * the pointer to the permutation array.
    406			 */
    407			c->working_size += sizeof(struct crush_work_bucket);
    408			break;
    409		}
    410		/* Every bucket has a permutation array. */
    411		c->working_size += c->buckets[b]->size * sizeof(__u32);
    412	}
    413}
    414
    415static struct crush_map *crush_decode(void *pbyval, void *end)
    416{
    417	struct crush_map *c;
    418	int err;
    419	int i, j;
    420	void **p = &pbyval;
    421	void *start = pbyval;
    422	u32 magic;
    423
    424	dout("crush_decode %p to %p len %d\n", *p, end, (int)(end - *p));
    425
    426	c = kzalloc(sizeof(*c), GFP_NOFS);
    427	if (c == NULL)
    428		return ERR_PTR(-ENOMEM);
    429
    430	c->type_names = RB_ROOT;
    431	c->names = RB_ROOT;
    432	c->choose_args = RB_ROOT;
    433
    434        /* set tunables to default values */
    435        c->choose_local_tries = 2;
    436        c->choose_local_fallback_tries = 5;
    437        c->choose_total_tries = 19;
    438	c->chooseleaf_descend_once = 0;
    439
    440	ceph_decode_need(p, end, 4*sizeof(u32), bad);
    441	magic = ceph_decode_32(p);
    442	if (magic != CRUSH_MAGIC) {
    443		pr_err("crush_decode magic %x != current %x\n",
    444		       (unsigned int)magic, (unsigned int)CRUSH_MAGIC);
    445		goto bad;
    446	}
    447	c->max_buckets = ceph_decode_32(p);
    448	c->max_rules = ceph_decode_32(p);
    449	c->max_devices = ceph_decode_32(p);
    450
    451	c->buckets = kcalloc(c->max_buckets, sizeof(*c->buckets), GFP_NOFS);
    452	if (c->buckets == NULL)
    453		goto badmem;
    454	c->rules = kcalloc(c->max_rules, sizeof(*c->rules), GFP_NOFS);
    455	if (c->rules == NULL)
    456		goto badmem;
    457
    458	/* buckets */
    459	for (i = 0; i < c->max_buckets; i++) {
    460		int size = 0;
    461		u32 alg;
    462		struct crush_bucket *b;
    463
    464		ceph_decode_32_safe(p, end, alg, bad);
    465		if (alg == 0) {
    466			c->buckets[i] = NULL;
    467			continue;
    468		}
    469		dout("crush_decode bucket %d off %x %p to %p\n",
    470		     i, (int)(*p-start), *p, end);
    471
    472		switch (alg) {
    473		case CRUSH_BUCKET_UNIFORM:
    474			size = sizeof(struct crush_bucket_uniform);
    475			break;
    476		case CRUSH_BUCKET_LIST:
    477			size = sizeof(struct crush_bucket_list);
    478			break;
    479		case CRUSH_BUCKET_TREE:
    480			size = sizeof(struct crush_bucket_tree);
    481			break;
    482		case CRUSH_BUCKET_STRAW:
    483			size = sizeof(struct crush_bucket_straw);
    484			break;
    485		case CRUSH_BUCKET_STRAW2:
    486			size = sizeof(struct crush_bucket_straw2);
    487			break;
    488		default:
    489			goto bad;
    490		}
    491		BUG_ON(size == 0);
    492		b = c->buckets[i] = kzalloc(size, GFP_NOFS);
    493		if (b == NULL)
    494			goto badmem;
    495
    496		ceph_decode_need(p, end, 4*sizeof(u32), bad);
    497		b->id = ceph_decode_32(p);
    498		b->type = ceph_decode_16(p);
    499		b->alg = ceph_decode_8(p);
    500		b->hash = ceph_decode_8(p);
    501		b->weight = ceph_decode_32(p);
    502		b->size = ceph_decode_32(p);
    503
    504		dout("crush_decode bucket size %d off %x %p to %p\n",
    505		     b->size, (int)(*p-start), *p, end);
    506
    507		b->items = kcalloc(b->size, sizeof(__s32), GFP_NOFS);
    508		if (b->items == NULL)
    509			goto badmem;
    510
    511		ceph_decode_need(p, end, b->size*sizeof(u32), bad);
    512		for (j = 0; j < b->size; j++)
    513			b->items[j] = ceph_decode_32(p);
    514
    515		switch (b->alg) {
    516		case CRUSH_BUCKET_UNIFORM:
    517			err = crush_decode_uniform_bucket(p, end,
    518				  (struct crush_bucket_uniform *)b);
    519			if (err < 0)
    520				goto fail;
    521			break;
    522		case CRUSH_BUCKET_LIST:
    523			err = crush_decode_list_bucket(p, end,
    524			       (struct crush_bucket_list *)b);
    525			if (err < 0)
    526				goto fail;
    527			break;
    528		case CRUSH_BUCKET_TREE:
    529			err = crush_decode_tree_bucket(p, end,
    530				(struct crush_bucket_tree *)b);
    531			if (err < 0)
    532				goto fail;
    533			break;
    534		case CRUSH_BUCKET_STRAW:
    535			err = crush_decode_straw_bucket(p, end,
    536				(struct crush_bucket_straw *)b);
    537			if (err < 0)
    538				goto fail;
    539			break;
    540		case CRUSH_BUCKET_STRAW2:
    541			err = crush_decode_straw2_bucket(p, end,
    542				(struct crush_bucket_straw2 *)b);
    543			if (err < 0)
    544				goto fail;
    545			break;
    546		}
    547	}
    548
    549	/* rules */
    550	dout("rule vec is %p\n", c->rules);
    551	for (i = 0; i < c->max_rules; i++) {
    552		u32 yes;
    553		struct crush_rule *r;
    554
    555		ceph_decode_32_safe(p, end, yes, bad);
    556		if (!yes) {
    557			dout("crush_decode NO rule %d off %x %p to %p\n",
    558			     i, (int)(*p-start), *p, end);
    559			c->rules[i] = NULL;
    560			continue;
    561		}
    562
    563		dout("crush_decode rule %d off %x %p to %p\n",
    564		     i, (int)(*p-start), *p, end);
    565
    566		/* len */
    567		ceph_decode_32_safe(p, end, yes, bad);
    568#if BITS_PER_LONG == 32
    569		if (yes > (ULONG_MAX - sizeof(*r))
    570			  / sizeof(struct crush_rule_step))
    571			goto bad;
    572#endif
    573		r = kmalloc(struct_size(r, steps, yes), GFP_NOFS);
    574		c->rules[i] = r;
    575		if (r == NULL)
    576			goto badmem;
    577		dout(" rule %d is at %p\n", i, r);
    578		r->len = yes;
    579		ceph_decode_copy_safe(p, end, &r->mask, 4, bad); /* 4 u8's */
    580		ceph_decode_need(p, end, r->len*3*sizeof(u32), bad);
    581		for (j = 0; j < r->len; j++) {
    582			r->steps[j].op = ceph_decode_32(p);
    583			r->steps[j].arg1 = ceph_decode_32(p);
    584			r->steps[j].arg2 = ceph_decode_32(p);
    585		}
    586	}
    587
    588	err = decode_crush_names(p, end, &c->type_names);
    589	if (err)
    590		goto fail;
    591
    592	err = decode_crush_names(p, end, &c->names);
    593	if (err)
    594		goto fail;
    595
    596	ceph_decode_skip_map(p, end, 32, string, bad); /* rule_name_map */
    597
    598        /* tunables */
    599        ceph_decode_need(p, end, 3*sizeof(u32), done);
    600        c->choose_local_tries = ceph_decode_32(p);
    601        c->choose_local_fallback_tries =  ceph_decode_32(p);
    602        c->choose_total_tries = ceph_decode_32(p);
    603        dout("crush decode tunable choose_local_tries = %d\n",
    604             c->choose_local_tries);
    605        dout("crush decode tunable choose_local_fallback_tries = %d\n",
    606             c->choose_local_fallback_tries);
    607        dout("crush decode tunable choose_total_tries = %d\n",
    608             c->choose_total_tries);
    609
    610	ceph_decode_need(p, end, sizeof(u32), done);
    611	c->chooseleaf_descend_once = ceph_decode_32(p);
    612	dout("crush decode tunable chooseleaf_descend_once = %d\n",
    613	     c->chooseleaf_descend_once);
    614
    615	ceph_decode_need(p, end, sizeof(u8), done);
    616	c->chooseleaf_vary_r = ceph_decode_8(p);
    617	dout("crush decode tunable chooseleaf_vary_r = %d\n",
    618	     c->chooseleaf_vary_r);
    619
    620	/* skip straw_calc_version, allowed_bucket_algs */
    621	ceph_decode_need(p, end, sizeof(u8) + sizeof(u32), done);
    622	*p += sizeof(u8) + sizeof(u32);
    623
    624	ceph_decode_need(p, end, sizeof(u8), done);
    625	c->chooseleaf_stable = ceph_decode_8(p);
    626	dout("crush decode tunable chooseleaf_stable = %d\n",
    627	     c->chooseleaf_stable);
    628
    629	if (*p != end) {
    630		/* class_map */
    631		ceph_decode_skip_map(p, end, 32, 32, bad);
    632		/* class_name */
    633		ceph_decode_skip_map(p, end, 32, string, bad);
    634		/* class_bucket */
    635		ceph_decode_skip_map_of_map(p, end, 32, 32, 32, bad);
    636	}
    637
    638	if (*p != end) {
    639		err = decode_choose_args(p, end, c);
    640		if (err)
    641			goto fail;
    642	}
    643
    644done:
    645	crush_finalize(c);
    646	dout("crush_decode success\n");
    647	return c;
    648
    649badmem:
    650	err = -ENOMEM;
    651fail:
    652	dout("crush_decode fail %d\n", err);
    653	crush_destroy(c);
    654	return ERR_PTR(err);
    655
    656bad:
    657	err = -EINVAL;
    658	goto fail;
    659}
    660
    661int ceph_pg_compare(const struct ceph_pg *lhs, const struct ceph_pg *rhs)
    662{
    663	if (lhs->pool < rhs->pool)
    664		return -1;
    665	if (lhs->pool > rhs->pool)
    666		return 1;
    667	if (lhs->seed < rhs->seed)
    668		return -1;
    669	if (lhs->seed > rhs->seed)
    670		return 1;
    671
    672	return 0;
    673}
    674
    675int ceph_spg_compare(const struct ceph_spg *lhs, const struct ceph_spg *rhs)
    676{
    677	int ret;
    678
    679	ret = ceph_pg_compare(&lhs->pgid, &rhs->pgid);
    680	if (ret)
    681		return ret;
    682
    683	if (lhs->shard < rhs->shard)
    684		return -1;
    685	if (lhs->shard > rhs->shard)
    686		return 1;
    687
    688	return 0;
    689}
    690
    691static struct ceph_pg_mapping *alloc_pg_mapping(size_t payload_len)
    692{
    693	struct ceph_pg_mapping *pg;
    694
    695	pg = kmalloc(sizeof(*pg) + payload_len, GFP_NOIO);
    696	if (!pg)
    697		return NULL;
    698
    699	RB_CLEAR_NODE(&pg->node);
    700	return pg;
    701}
    702
    703static void free_pg_mapping(struct ceph_pg_mapping *pg)
    704{
    705	WARN_ON(!RB_EMPTY_NODE(&pg->node));
    706
    707	kfree(pg);
    708}
    709
    710/*
    711 * rbtree of pg_mapping for handling pg_temp (explicit mapping of pgid
    712 * to a set of osds) and primary_temp (explicit primary setting)
    713 */
    714DEFINE_RB_FUNCS2(pg_mapping, struct ceph_pg_mapping, pgid, ceph_pg_compare,
    715		 RB_BYPTR, const struct ceph_pg *, node)
    716
    717/*
    718 * rbtree of pg pool info
    719 */
    720DEFINE_RB_FUNCS(pg_pool, struct ceph_pg_pool_info, id, node)
    721
    722struct ceph_pg_pool_info *ceph_pg_pool_by_id(struct ceph_osdmap *map, u64 id)
    723{
    724	return lookup_pg_pool(&map->pg_pools, id);
    725}
    726
    727const char *ceph_pg_pool_name_by_id(struct ceph_osdmap *map, u64 id)
    728{
    729	struct ceph_pg_pool_info *pi;
    730
    731	if (id == CEPH_NOPOOL)
    732		return NULL;
    733
    734	if (WARN_ON_ONCE(id > (u64) INT_MAX))
    735		return NULL;
    736
    737	pi = lookup_pg_pool(&map->pg_pools, id);
    738	return pi ? pi->name : NULL;
    739}
    740EXPORT_SYMBOL(ceph_pg_pool_name_by_id);
    741
    742int ceph_pg_poolid_by_name(struct ceph_osdmap *map, const char *name)
    743{
    744	struct rb_node *rbp;
    745
    746	for (rbp = rb_first(&map->pg_pools); rbp; rbp = rb_next(rbp)) {
    747		struct ceph_pg_pool_info *pi =
    748			rb_entry(rbp, struct ceph_pg_pool_info, node);
    749		if (pi->name && strcmp(pi->name, name) == 0)
    750			return pi->id;
    751	}
    752	return -ENOENT;
    753}
    754EXPORT_SYMBOL(ceph_pg_poolid_by_name);
    755
    756u64 ceph_pg_pool_flags(struct ceph_osdmap *map, u64 id)
    757{
    758	struct ceph_pg_pool_info *pi;
    759
    760	pi = lookup_pg_pool(&map->pg_pools, id);
    761	return pi ? pi->flags : 0;
    762}
    763EXPORT_SYMBOL(ceph_pg_pool_flags);
    764
    765static void __remove_pg_pool(struct rb_root *root, struct ceph_pg_pool_info *pi)
    766{
    767	erase_pg_pool(root, pi);
    768	kfree(pi->name);
    769	kfree(pi);
    770}
    771
    772static int decode_pool(void **p, void *end, struct ceph_pg_pool_info *pi)
    773{
    774	u8 ev, cv;
    775	unsigned len, num;
    776	void *pool_end;
    777
    778	ceph_decode_need(p, end, 2 + 4, bad);
    779	ev = ceph_decode_8(p);  /* encoding version */
    780	cv = ceph_decode_8(p); /* compat version */
    781	if (ev < 5) {
    782		pr_warn("got v %d < 5 cv %d of ceph_pg_pool\n", ev, cv);
    783		return -EINVAL;
    784	}
    785	if (cv > 9) {
    786		pr_warn("got v %d cv %d > 9 of ceph_pg_pool\n", ev, cv);
    787		return -EINVAL;
    788	}
    789	len = ceph_decode_32(p);
    790	ceph_decode_need(p, end, len, bad);
    791	pool_end = *p + len;
    792
    793	pi->type = ceph_decode_8(p);
    794	pi->size = ceph_decode_8(p);
    795	pi->crush_ruleset = ceph_decode_8(p);
    796	pi->object_hash = ceph_decode_8(p);
    797
    798	pi->pg_num = ceph_decode_32(p);
    799	pi->pgp_num = ceph_decode_32(p);
    800
    801	*p += 4 + 4;  /* skip lpg* */
    802	*p += 4;      /* skip last_change */
    803	*p += 8 + 4;  /* skip snap_seq, snap_epoch */
    804
    805	/* skip snaps */
    806	num = ceph_decode_32(p);
    807	while (num--) {
    808		*p += 8;  /* snapid key */
    809		*p += 1 + 1; /* versions */
    810		len = ceph_decode_32(p);
    811		*p += len;
    812	}
    813
    814	/* skip removed_snaps */
    815	num = ceph_decode_32(p);
    816	*p += num * (8 + 8);
    817
    818	*p += 8;  /* skip auid */
    819	pi->flags = ceph_decode_64(p);
    820	*p += 4;  /* skip crash_replay_interval */
    821
    822	if (ev >= 7)
    823		pi->min_size = ceph_decode_8(p);
    824	else
    825		pi->min_size = pi->size - pi->size / 2;
    826
    827	if (ev >= 8)
    828		*p += 8 + 8;  /* skip quota_max_* */
    829
    830	if (ev >= 9) {
    831		/* skip tiers */
    832		num = ceph_decode_32(p);
    833		*p += num * 8;
    834
    835		*p += 8;  /* skip tier_of */
    836		*p += 1;  /* skip cache_mode */
    837
    838		pi->read_tier = ceph_decode_64(p);
    839		pi->write_tier = ceph_decode_64(p);
    840	} else {
    841		pi->read_tier = -1;
    842		pi->write_tier = -1;
    843	}
    844
    845	if (ev >= 10) {
    846		/* skip properties */
    847		num = ceph_decode_32(p);
    848		while (num--) {
    849			len = ceph_decode_32(p);
    850			*p += len; /* key */
    851			len = ceph_decode_32(p);
    852			*p += len; /* val */
    853		}
    854	}
    855
    856	if (ev >= 11) {
    857		/* skip hit_set_params */
    858		*p += 1 + 1; /* versions */
    859		len = ceph_decode_32(p);
    860		*p += len;
    861
    862		*p += 4; /* skip hit_set_period */
    863		*p += 4; /* skip hit_set_count */
    864	}
    865
    866	if (ev >= 12)
    867		*p += 4; /* skip stripe_width */
    868
    869	if (ev >= 13) {
    870		*p += 8; /* skip target_max_bytes */
    871		*p += 8; /* skip target_max_objects */
    872		*p += 4; /* skip cache_target_dirty_ratio_micro */
    873		*p += 4; /* skip cache_target_full_ratio_micro */
    874		*p += 4; /* skip cache_min_flush_age */
    875		*p += 4; /* skip cache_min_evict_age */
    876	}
    877
    878	if (ev >=  14) {
    879		/* skip erasure_code_profile */
    880		len = ceph_decode_32(p);
    881		*p += len;
    882	}
    883
    884	/*
    885	 * last_force_op_resend_preluminous, will be overridden if the
    886	 * map was encoded with RESEND_ON_SPLIT
    887	 */
    888	if (ev >= 15)
    889		pi->last_force_request_resend = ceph_decode_32(p);
    890	else
    891		pi->last_force_request_resend = 0;
    892
    893	if (ev >= 16)
    894		*p += 4; /* skip min_read_recency_for_promote */
    895
    896	if (ev >= 17)
    897		*p += 8; /* skip expected_num_objects */
    898
    899	if (ev >= 19)
    900		*p += 4; /* skip cache_target_dirty_high_ratio_micro */
    901
    902	if (ev >= 20)
    903		*p += 4; /* skip min_write_recency_for_promote */
    904
    905	if (ev >= 21)
    906		*p += 1; /* skip use_gmt_hitset */
    907
    908	if (ev >= 22)
    909		*p += 1; /* skip fast_read */
    910
    911	if (ev >= 23) {
    912		*p += 4; /* skip hit_set_grade_decay_rate */
    913		*p += 4; /* skip hit_set_search_last_n */
    914	}
    915
    916	if (ev >= 24) {
    917		/* skip opts */
    918		*p += 1 + 1; /* versions */
    919		len = ceph_decode_32(p);
    920		*p += len;
    921	}
    922
    923	if (ev >= 25)
    924		pi->last_force_request_resend = ceph_decode_32(p);
    925
    926	/* ignore the rest */
    927
    928	*p = pool_end;
    929	calc_pg_masks(pi);
    930	return 0;
    931
    932bad:
    933	return -EINVAL;
    934}
    935
    936static int decode_pool_names(void **p, void *end, struct ceph_osdmap *map)
    937{
    938	struct ceph_pg_pool_info *pi;
    939	u32 num, len;
    940	u64 pool;
    941
    942	ceph_decode_32_safe(p, end, num, bad);
    943	dout(" %d pool names\n", num);
    944	while (num--) {
    945		ceph_decode_64_safe(p, end, pool, bad);
    946		ceph_decode_32_safe(p, end, len, bad);
    947		dout("  pool %llu len %d\n", pool, len);
    948		ceph_decode_need(p, end, len, bad);
    949		pi = lookup_pg_pool(&map->pg_pools, pool);
    950		if (pi) {
    951			char *name = kstrndup(*p, len, GFP_NOFS);
    952
    953			if (!name)
    954				return -ENOMEM;
    955			kfree(pi->name);
    956			pi->name = name;
    957			dout("  name is %s\n", pi->name);
    958		}
    959		*p += len;
    960	}
    961	return 0;
    962
    963bad:
    964	return -EINVAL;
    965}
    966
    967/*
    968 * CRUSH workspaces
    969 *
    970 * workspace_manager framework borrowed from fs/btrfs/compression.c.
    971 * Two simplifications: there is only one type of workspace and there
    972 * is always at least one workspace.
    973 */
    974static struct crush_work *alloc_workspace(const struct crush_map *c)
    975{
    976	struct crush_work *work;
    977	size_t work_size;
    978
    979	WARN_ON(!c->working_size);
    980	work_size = crush_work_size(c, CEPH_PG_MAX_SIZE);
    981	dout("%s work_size %zu bytes\n", __func__, work_size);
    982
    983	work = kvmalloc(work_size, GFP_NOIO);
    984	if (!work)
    985		return NULL;
    986
    987	INIT_LIST_HEAD(&work->item);
    988	crush_init_workspace(c, work);
    989	return work;
    990}
    991
    992static void free_workspace(struct crush_work *work)
    993{
    994	WARN_ON(!list_empty(&work->item));
    995	kvfree(work);
    996}
    997
    998static void init_workspace_manager(struct workspace_manager *wsm)
    999{
   1000	INIT_LIST_HEAD(&wsm->idle_ws);
   1001	spin_lock_init(&wsm->ws_lock);
   1002	atomic_set(&wsm->total_ws, 0);
   1003	wsm->free_ws = 0;
   1004	init_waitqueue_head(&wsm->ws_wait);
   1005}
   1006
   1007static void add_initial_workspace(struct workspace_manager *wsm,
   1008				  struct crush_work *work)
   1009{
   1010	WARN_ON(!list_empty(&wsm->idle_ws));
   1011
   1012	list_add(&work->item, &wsm->idle_ws);
   1013	atomic_set(&wsm->total_ws, 1);
   1014	wsm->free_ws = 1;
   1015}
   1016
   1017static void cleanup_workspace_manager(struct workspace_manager *wsm)
   1018{
   1019	struct crush_work *work;
   1020
   1021	while (!list_empty(&wsm->idle_ws)) {
   1022		work = list_first_entry(&wsm->idle_ws, struct crush_work,
   1023					item);
   1024		list_del_init(&work->item);
   1025		free_workspace(work);
   1026	}
   1027	atomic_set(&wsm->total_ws, 0);
   1028	wsm->free_ws = 0;
   1029}
   1030
   1031/*
   1032 * Finds an available workspace or allocates a new one.  If it's not
   1033 * possible to allocate a new one, waits until there is one.
   1034 */
   1035static struct crush_work *get_workspace(struct workspace_manager *wsm,
   1036					const struct crush_map *c)
   1037{
   1038	struct crush_work *work;
   1039	int cpus = num_online_cpus();
   1040
   1041again:
   1042	spin_lock(&wsm->ws_lock);
   1043	if (!list_empty(&wsm->idle_ws)) {
   1044		work = list_first_entry(&wsm->idle_ws, struct crush_work,
   1045					item);
   1046		list_del_init(&work->item);
   1047		wsm->free_ws--;
   1048		spin_unlock(&wsm->ws_lock);
   1049		return work;
   1050
   1051	}
   1052	if (atomic_read(&wsm->total_ws) > cpus) {
   1053		DEFINE_WAIT(wait);
   1054
   1055		spin_unlock(&wsm->ws_lock);
   1056		prepare_to_wait(&wsm->ws_wait, &wait, TASK_UNINTERRUPTIBLE);
   1057		if (atomic_read(&wsm->total_ws) > cpus && !wsm->free_ws)
   1058			schedule();
   1059		finish_wait(&wsm->ws_wait, &wait);
   1060		goto again;
   1061	}
   1062	atomic_inc(&wsm->total_ws);
   1063	spin_unlock(&wsm->ws_lock);
   1064
   1065	work = alloc_workspace(c);
   1066	if (!work) {
   1067		atomic_dec(&wsm->total_ws);
   1068		wake_up(&wsm->ws_wait);
   1069
   1070		/*
   1071		 * Do not return the error but go back to waiting.  We
   1072		 * have the initial workspace and the CRUSH computation
   1073		 * time is bounded so we will get it eventually.
   1074		 */
   1075		WARN_ON(atomic_read(&wsm->total_ws) < 1);
   1076		goto again;
   1077	}
   1078	return work;
   1079}
   1080
   1081/*
   1082 * Puts a workspace back on the list or frees it if we have enough
   1083 * idle ones sitting around.
   1084 */
   1085static void put_workspace(struct workspace_manager *wsm,
   1086			  struct crush_work *work)
   1087{
   1088	spin_lock(&wsm->ws_lock);
   1089	if (wsm->free_ws <= num_online_cpus()) {
   1090		list_add(&work->item, &wsm->idle_ws);
   1091		wsm->free_ws++;
   1092		spin_unlock(&wsm->ws_lock);
   1093		goto wake;
   1094	}
   1095	spin_unlock(&wsm->ws_lock);
   1096
   1097	free_workspace(work);
   1098	atomic_dec(&wsm->total_ws);
   1099wake:
   1100	if (wq_has_sleeper(&wsm->ws_wait))
   1101		wake_up(&wsm->ws_wait);
   1102}
   1103
   1104/*
   1105 * osd map
   1106 */
   1107struct ceph_osdmap *ceph_osdmap_alloc(void)
   1108{
   1109	struct ceph_osdmap *map;
   1110
   1111	map = kzalloc(sizeof(*map), GFP_NOIO);
   1112	if (!map)
   1113		return NULL;
   1114
   1115	map->pg_pools = RB_ROOT;
   1116	map->pool_max = -1;
   1117	map->pg_temp = RB_ROOT;
   1118	map->primary_temp = RB_ROOT;
   1119	map->pg_upmap = RB_ROOT;
   1120	map->pg_upmap_items = RB_ROOT;
   1121
   1122	init_workspace_manager(&map->crush_wsm);
   1123
   1124	return map;
   1125}
   1126
   1127void ceph_osdmap_destroy(struct ceph_osdmap *map)
   1128{
   1129	dout("osdmap_destroy %p\n", map);
   1130
   1131	if (map->crush)
   1132		crush_destroy(map->crush);
   1133	cleanup_workspace_manager(&map->crush_wsm);
   1134
   1135	while (!RB_EMPTY_ROOT(&map->pg_temp)) {
   1136		struct ceph_pg_mapping *pg =
   1137			rb_entry(rb_first(&map->pg_temp),
   1138				 struct ceph_pg_mapping, node);
   1139		erase_pg_mapping(&map->pg_temp, pg);
   1140		free_pg_mapping(pg);
   1141	}
   1142	while (!RB_EMPTY_ROOT(&map->primary_temp)) {
   1143		struct ceph_pg_mapping *pg =
   1144			rb_entry(rb_first(&map->primary_temp),
   1145				 struct ceph_pg_mapping, node);
   1146		erase_pg_mapping(&map->primary_temp, pg);
   1147		free_pg_mapping(pg);
   1148	}
   1149	while (!RB_EMPTY_ROOT(&map->pg_upmap)) {
   1150		struct ceph_pg_mapping *pg =
   1151			rb_entry(rb_first(&map->pg_upmap),
   1152				 struct ceph_pg_mapping, node);
   1153		rb_erase(&pg->node, &map->pg_upmap);
   1154		kfree(pg);
   1155	}
   1156	while (!RB_EMPTY_ROOT(&map->pg_upmap_items)) {
   1157		struct ceph_pg_mapping *pg =
   1158			rb_entry(rb_first(&map->pg_upmap_items),
   1159				 struct ceph_pg_mapping, node);
   1160		rb_erase(&pg->node, &map->pg_upmap_items);
   1161		kfree(pg);
   1162	}
   1163	while (!RB_EMPTY_ROOT(&map->pg_pools)) {
   1164		struct ceph_pg_pool_info *pi =
   1165			rb_entry(rb_first(&map->pg_pools),
   1166				 struct ceph_pg_pool_info, node);
   1167		__remove_pg_pool(&map->pg_pools, pi);
   1168	}
   1169	kvfree(map->osd_state);
   1170	kvfree(map->osd_weight);
   1171	kvfree(map->osd_addr);
   1172	kvfree(map->osd_primary_affinity);
   1173	kfree(map);
   1174}
   1175
   1176/*
   1177 * Adjust max_osd value, (re)allocate arrays.
   1178 *
   1179 * The new elements are properly initialized.
   1180 */
   1181static int osdmap_set_max_osd(struct ceph_osdmap *map, u32 max)
   1182{
   1183	u32 *state;
   1184	u32 *weight;
   1185	struct ceph_entity_addr *addr;
   1186	u32 to_copy;
   1187	int i;
   1188
   1189	dout("%s old %u new %u\n", __func__, map->max_osd, max);
   1190	if (max == map->max_osd)
   1191		return 0;
   1192
   1193	state = kvmalloc(array_size(max, sizeof(*state)), GFP_NOFS);
   1194	weight = kvmalloc(array_size(max, sizeof(*weight)), GFP_NOFS);
   1195	addr = kvmalloc(array_size(max, sizeof(*addr)), GFP_NOFS);
   1196	if (!state || !weight || !addr) {
   1197		kvfree(state);
   1198		kvfree(weight);
   1199		kvfree(addr);
   1200		return -ENOMEM;
   1201	}
   1202
   1203	to_copy = min(map->max_osd, max);
   1204	if (map->osd_state) {
   1205		memcpy(state, map->osd_state, to_copy * sizeof(*state));
   1206		memcpy(weight, map->osd_weight, to_copy * sizeof(*weight));
   1207		memcpy(addr, map->osd_addr, to_copy * sizeof(*addr));
   1208		kvfree(map->osd_state);
   1209		kvfree(map->osd_weight);
   1210		kvfree(map->osd_addr);
   1211	}
   1212
   1213	map->osd_state = state;
   1214	map->osd_weight = weight;
   1215	map->osd_addr = addr;
   1216	for (i = map->max_osd; i < max; i++) {
   1217		map->osd_state[i] = 0;
   1218		map->osd_weight[i] = CEPH_OSD_OUT;
   1219		memset(map->osd_addr + i, 0, sizeof(*map->osd_addr));
   1220	}
   1221
   1222	if (map->osd_primary_affinity) {
   1223		u32 *affinity;
   1224
   1225		affinity = kvmalloc(array_size(max, sizeof(*affinity)),
   1226					 GFP_NOFS);
   1227		if (!affinity)
   1228			return -ENOMEM;
   1229
   1230		memcpy(affinity, map->osd_primary_affinity,
   1231		       to_copy * sizeof(*affinity));
   1232		kvfree(map->osd_primary_affinity);
   1233
   1234		map->osd_primary_affinity = affinity;
   1235		for (i = map->max_osd; i < max; i++)
   1236			map->osd_primary_affinity[i] =
   1237			    CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
   1238	}
   1239
   1240	map->max_osd = max;
   1241
   1242	return 0;
   1243}
   1244
   1245static int osdmap_set_crush(struct ceph_osdmap *map, struct crush_map *crush)
   1246{
   1247	struct crush_work *work;
   1248
   1249	if (IS_ERR(crush))
   1250		return PTR_ERR(crush);
   1251
   1252	work = alloc_workspace(crush);
   1253	if (!work) {
   1254		crush_destroy(crush);
   1255		return -ENOMEM;
   1256	}
   1257
   1258	if (map->crush)
   1259		crush_destroy(map->crush);
   1260	cleanup_workspace_manager(&map->crush_wsm);
   1261	map->crush = crush;
   1262	add_initial_workspace(&map->crush_wsm, work);
   1263	return 0;
   1264}
   1265
   1266#define OSDMAP_WRAPPER_COMPAT_VER	7
   1267#define OSDMAP_CLIENT_DATA_COMPAT_VER	1
   1268
   1269/*
   1270 * Return 0 or error.  On success, *v is set to 0 for old (v6) osdmaps,
   1271 * to struct_v of the client_data section for new (v7 and above)
   1272 * osdmaps.
   1273 */
   1274static int get_osdmap_client_data_v(void **p, void *end,
   1275				    const char *prefix, u8 *v)
   1276{
   1277	u8 struct_v;
   1278
   1279	ceph_decode_8_safe(p, end, struct_v, e_inval);
   1280	if (struct_v >= 7) {
   1281		u8 struct_compat;
   1282
   1283		ceph_decode_8_safe(p, end, struct_compat, e_inval);
   1284		if (struct_compat > OSDMAP_WRAPPER_COMPAT_VER) {
   1285			pr_warn("got v %d cv %d > %d of %s ceph_osdmap\n",
   1286				struct_v, struct_compat,
   1287				OSDMAP_WRAPPER_COMPAT_VER, prefix);
   1288			return -EINVAL;
   1289		}
   1290		*p += 4; /* ignore wrapper struct_len */
   1291
   1292		ceph_decode_8_safe(p, end, struct_v, e_inval);
   1293		ceph_decode_8_safe(p, end, struct_compat, e_inval);
   1294		if (struct_compat > OSDMAP_CLIENT_DATA_COMPAT_VER) {
   1295			pr_warn("got v %d cv %d > %d of %s ceph_osdmap client data\n",
   1296				struct_v, struct_compat,
   1297				OSDMAP_CLIENT_DATA_COMPAT_VER, prefix);
   1298			return -EINVAL;
   1299		}
   1300		*p += 4; /* ignore client data struct_len */
   1301	} else {
   1302		u16 version;
   1303
   1304		*p -= 1;
   1305		ceph_decode_16_safe(p, end, version, e_inval);
   1306		if (version < 6) {
   1307			pr_warn("got v %d < 6 of %s ceph_osdmap\n",
   1308				version, prefix);
   1309			return -EINVAL;
   1310		}
   1311
   1312		/* old osdmap encoding */
   1313		struct_v = 0;
   1314	}
   1315
   1316	*v = struct_v;
   1317	return 0;
   1318
   1319e_inval:
   1320	return -EINVAL;
   1321}
   1322
   1323static int __decode_pools(void **p, void *end, struct ceph_osdmap *map,
   1324			  bool incremental)
   1325{
   1326	u32 n;
   1327
   1328	ceph_decode_32_safe(p, end, n, e_inval);
   1329	while (n--) {
   1330		struct ceph_pg_pool_info *pi;
   1331		u64 pool;
   1332		int ret;
   1333
   1334		ceph_decode_64_safe(p, end, pool, e_inval);
   1335
   1336		pi = lookup_pg_pool(&map->pg_pools, pool);
   1337		if (!incremental || !pi) {
   1338			pi = kzalloc(sizeof(*pi), GFP_NOFS);
   1339			if (!pi)
   1340				return -ENOMEM;
   1341
   1342			RB_CLEAR_NODE(&pi->node);
   1343			pi->id = pool;
   1344
   1345			if (!__insert_pg_pool(&map->pg_pools, pi)) {
   1346				kfree(pi);
   1347				return -EEXIST;
   1348			}
   1349		}
   1350
   1351		ret = decode_pool(p, end, pi);
   1352		if (ret)
   1353			return ret;
   1354	}
   1355
   1356	return 0;
   1357
   1358e_inval:
   1359	return -EINVAL;
   1360}
   1361
   1362static int decode_pools(void **p, void *end, struct ceph_osdmap *map)
   1363{
   1364	return __decode_pools(p, end, map, false);
   1365}
   1366
   1367static int decode_new_pools(void **p, void *end, struct ceph_osdmap *map)
   1368{
   1369	return __decode_pools(p, end, map, true);
   1370}
   1371
   1372typedef struct ceph_pg_mapping *(*decode_mapping_fn_t)(void **, void *, bool);
   1373
   1374static int decode_pg_mapping(void **p, void *end, struct rb_root *mapping_root,
   1375			     decode_mapping_fn_t fn, bool incremental)
   1376{
   1377	u32 n;
   1378
   1379	WARN_ON(!incremental && !fn);
   1380
   1381	ceph_decode_32_safe(p, end, n, e_inval);
   1382	while (n--) {
   1383		struct ceph_pg_mapping *pg;
   1384		struct ceph_pg pgid;
   1385		int ret;
   1386
   1387		ret = ceph_decode_pgid(p, end, &pgid);
   1388		if (ret)
   1389			return ret;
   1390
   1391		pg = lookup_pg_mapping(mapping_root, &pgid);
   1392		if (pg) {
   1393			WARN_ON(!incremental);
   1394			erase_pg_mapping(mapping_root, pg);
   1395			free_pg_mapping(pg);
   1396		}
   1397
   1398		if (fn) {
   1399			pg = fn(p, end, incremental);
   1400			if (IS_ERR(pg))
   1401				return PTR_ERR(pg);
   1402
   1403			if (pg) {
   1404				pg->pgid = pgid; /* struct */
   1405				insert_pg_mapping(mapping_root, pg);
   1406			}
   1407		}
   1408	}
   1409
   1410	return 0;
   1411
   1412e_inval:
   1413	return -EINVAL;
   1414}
   1415
   1416static struct ceph_pg_mapping *__decode_pg_temp(void **p, void *end,
   1417						bool incremental)
   1418{
   1419	struct ceph_pg_mapping *pg;
   1420	u32 len, i;
   1421
   1422	ceph_decode_32_safe(p, end, len, e_inval);
   1423	if (len == 0 && incremental)
   1424		return NULL;	/* new_pg_temp: [] to remove */
   1425	if (len > (SIZE_MAX - sizeof(*pg)) / sizeof(u32))
   1426		return ERR_PTR(-EINVAL);
   1427
   1428	ceph_decode_need(p, end, len * sizeof(u32), e_inval);
   1429	pg = alloc_pg_mapping(len * sizeof(u32));
   1430	if (!pg)
   1431		return ERR_PTR(-ENOMEM);
   1432
   1433	pg->pg_temp.len = len;
   1434	for (i = 0; i < len; i++)
   1435		pg->pg_temp.osds[i] = ceph_decode_32(p);
   1436
   1437	return pg;
   1438
   1439e_inval:
   1440	return ERR_PTR(-EINVAL);
   1441}
   1442
   1443static int decode_pg_temp(void **p, void *end, struct ceph_osdmap *map)
   1444{
   1445	return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
   1446				 false);
   1447}
   1448
   1449static int decode_new_pg_temp(void **p, void *end, struct ceph_osdmap *map)
   1450{
   1451	return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
   1452				 true);
   1453}
   1454
   1455static struct ceph_pg_mapping *__decode_primary_temp(void **p, void *end,
   1456						     bool incremental)
   1457{
   1458	struct ceph_pg_mapping *pg;
   1459	u32 osd;
   1460
   1461	ceph_decode_32_safe(p, end, osd, e_inval);
   1462	if (osd == (u32)-1 && incremental)
   1463		return NULL;	/* new_primary_temp: -1 to remove */
   1464
   1465	pg = alloc_pg_mapping(0);
   1466	if (!pg)
   1467		return ERR_PTR(-ENOMEM);
   1468
   1469	pg->primary_temp.osd = osd;
   1470	return pg;
   1471
   1472e_inval:
   1473	return ERR_PTR(-EINVAL);
   1474}
   1475
   1476static int decode_primary_temp(void **p, void *end, struct ceph_osdmap *map)
   1477{
   1478	return decode_pg_mapping(p, end, &map->primary_temp,
   1479				 __decode_primary_temp, false);
   1480}
   1481
   1482static int decode_new_primary_temp(void **p, void *end,
   1483				   struct ceph_osdmap *map)
   1484{
   1485	return decode_pg_mapping(p, end, &map->primary_temp,
   1486				 __decode_primary_temp, true);
   1487}
   1488
   1489u32 ceph_get_primary_affinity(struct ceph_osdmap *map, int osd)
   1490{
   1491	BUG_ON(osd >= map->max_osd);
   1492
   1493	if (!map->osd_primary_affinity)
   1494		return CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
   1495
   1496	return map->osd_primary_affinity[osd];
   1497}
   1498
   1499static int set_primary_affinity(struct ceph_osdmap *map, int osd, u32 aff)
   1500{
   1501	BUG_ON(osd >= map->max_osd);
   1502
   1503	if (!map->osd_primary_affinity) {
   1504		int i;
   1505
   1506		map->osd_primary_affinity = kvmalloc(
   1507		    array_size(map->max_osd, sizeof(*map->osd_primary_affinity)),
   1508		    GFP_NOFS);
   1509		if (!map->osd_primary_affinity)
   1510			return -ENOMEM;
   1511
   1512		for (i = 0; i < map->max_osd; i++)
   1513			map->osd_primary_affinity[i] =
   1514			    CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
   1515	}
   1516
   1517	map->osd_primary_affinity[osd] = aff;
   1518
   1519	return 0;
   1520}
   1521
   1522static int decode_primary_affinity(void **p, void *end,
   1523				   struct ceph_osdmap *map)
   1524{
   1525	u32 len, i;
   1526
   1527	ceph_decode_32_safe(p, end, len, e_inval);
   1528	if (len == 0) {
   1529		kvfree(map->osd_primary_affinity);
   1530		map->osd_primary_affinity = NULL;
   1531		return 0;
   1532	}
   1533	if (len != map->max_osd)
   1534		goto e_inval;
   1535
   1536	ceph_decode_need(p, end, map->max_osd*sizeof(u32), e_inval);
   1537
   1538	for (i = 0; i < map->max_osd; i++) {
   1539		int ret;
   1540
   1541		ret = set_primary_affinity(map, i, ceph_decode_32(p));
   1542		if (ret)
   1543			return ret;
   1544	}
   1545
   1546	return 0;
   1547
   1548e_inval:
   1549	return -EINVAL;
   1550}
   1551
   1552static int decode_new_primary_affinity(void **p, void *end,
   1553				       struct ceph_osdmap *map)
   1554{
   1555	u32 n;
   1556
   1557	ceph_decode_32_safe(p, end, n, e_inval);
   1558	while (n--) {
   1559		u32 osd, aff;
   1560		int ret;
   1561
   1562		ceph_decode_32_safe(p, end, osd, e_inval);
   1563		ceph_decode_32_safe(p, end, aff, e_inval);
   1564
   1565		ret = set_primary_affinity(map, osd, aff);
   1566		if (ret)
   1567			return ret;
   1568
   1569		pr_info("osd%d primary-affinity 0x%x\n", osd, aff);
   1570	}
   1571
   1572	return 0;
   1573
   1574e_inval:
   1575	return -EINVAL;
   1576}
   1577
   1578static struct ceph_pg_mapping *__decode_pg_upmap(void **p, void *end,
   1579						 bool __unused)
   1580{
   1581	return __decode_pg_temp(p, end, false);
   1582}
   1583
   1584static int decode_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
   1585{
   1586	return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
   1587				 false);
   1588}
   1589
   1590static int decode_new_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
   1591{
   1592	return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
   1593				 true);
   1594}
   1595
   1596static int decode_old_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
   1597{
   1598	return decode_pg_mapping(p, end, &map->pg_upmap, NULL, true);
   1599}
   1600
   1601static struct ceph_pg_mapping *__decode_pg_upmap_items(void **p, void *end,
   1602						       bool __unused)
   1603{
   1604	struct ceph_pg_mapping *pg;
   1605	u32 len, i;
   1606
   1607	ceph_decode_32_safe(p, end, len, e_inval);
   1608	if (len > (SIZE_MAX - sizeof(*pg)) / (2 * sizeof(u32)))
   1609		return ERR_PTR(-EINVAL);
   1610
   1611	ceph_decode_need(p, end, 2 * len * sizeof(u32), e_inval);
   1612	pg = alloc_pg_mapping(2 * len * sizeof(u32));
   1613	if (!pg)
   1614		return ERR_PTR(-ENOMEM);
   1615
   1616	pg->pg_upmap_items.len = len;
   1617	for (i = 0; i < len; i++) {
   1618		pg->pg_upmap_items.from_to[i][0] = ceph_decode_32(p);
   1619		pg->pg_upmap_items.from_to[i][1] = ceph_decode_32(p);
   1620	}
   1621
   1622	return pg;
   1623
   1624e_inval:
   1625	return ERR_PTR(-EINVAL);
   1626}
   1627
   1628static int decode_pg_upmap_items(void **p, void *end, struct ceph_osdmap *map)
   1629{
   1630	return decode_pg_mapping(p, end, &map->pg_upmap_items,
   1631				 __decode_pg_upmap_items, false);
   1632}
   1633
   1634static int decode_new_pg_upmap_items(void **p, void *end,
   1635				     struct ceph_osdmap *map)
   1636{
   1637	return decode_pg_mapping(p, end, &map->pg_upmap_items,
   1638				 __decode_pg_upmap_items, true);
   1639}
   1640
   1641static int decode_old_pg_upmap_items(void **p, void *end,
   1642				     struct ceph_osdmap *map)
   1643{
   1644	return decode_pg_mapping(p, end, &map->pg_upmap_items, NULL, true);
   1645}
   1646
   1647/*
   1648 * decode a full map.
   1649 */
   1650static int osdmap_decode(void **p, void *end, bool msgr2,
   1651			 struct ceph_osdmap *map)
   1652{
   1653	u8 struct_v;
   1654	u32 epoch = 0;
   1655	void *start = *p;
   1656	u32 max;
   1657	u32 len, i;
   1658	int err;
   1659
   1660	dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
   1661
   1662	err = get_osdmap_client_data_v(p, end, "full", &struct_v);
   1663	if (err)
   1664		goto bad;
   1665
   1666	/* fsid, epoch, created, modified */
   1667	ceph_decode_need(p, end, sizeof(map->fsid) + sizeof(u32) +
   1668			 sizeof(map->created) + sizeof(map->modified), e_inval);
   1669	ceph_decode_copy(p, &map->fsid, sizeof(map->fsid));
   1670	epoch = map->epoch = ceph_decode_32(p);
   1671	ceph_decode_copy(p, &map->created, sizeof(map->created));
   1672	ceph_decode_copy(p, &map->modified, sizeof(map->modified));
   1673
   1674	/* pools */
   1675	err = decode_pools(p, end, map);
   1676	if (err)
   1677		goto bad;
   1678
   1679	/* pool_name */
   1680	err = decode_pool_names(p, end, map);
   1681	if (err)
   1682		goto bad;
   1683
   1684	ceph_decode_32_safe(p, end, map->pool_max, e_inval);
   1685
   1686	ceph_decode_32_safe(p, end, map->flags, e_inval);
   1687
   1688	/* max_osd */
   1689	ceph_decode_32_safe(p, end, max, e_inval);
   1690
   1691	/* (re)alloc osd arrays */
   1692	err = osdmap_set_max_osd(map, max);
   1693	if (err)
   1694		goto bad;
   1695
   1696	/* osd_state, osd_weight, osd_addrs->client_addr */
   1697	ceph_decode_need(p, end, 3*sizeof(u32) +
   1698			 map->max_osd*(struct_v >= 5 ? sizeof(u32) :
   1699						       sizeof(u8)) +
   1700				       sizeof(*map->osd_weight), e_inval);
   1701	if (ceph_decode_32(p) != map->max_osd)
   1702		goto e_inval;
   1703
   1704	if (struct_v >= 5) {
   1705		for (i = 0; i < map->max_osd; i++)
   1706			map->osd_state[i] = ceph_decode_32(p);
   1707	} else {
   1708		for (i = 0; i < map->max_osd; i++)
   1709			map->osd_state[i] = ceph_decode_8(p);
   1710	}
   1711
   1712	if (ceph_decode_32(p) != map->max_osd)
   1713		goto e_inval;
   1714
   1715	for (i = 0; i < map->max_osd; i++)
   1716		map->osd_weight[i] = ceph_decode_32(p);
   1717
   1718	if (ceph_decode_32(p) != map->max_osd)
   1719		goto e_inval;
   1720
   1721	for (i = 0; i < map->max_osd; i++) {
   1722		struct ceph_entity_addr *addr = &map->osd_addr[i];
   1723
   1724		if (struct_v >= 8)
   1725			err = ceph_decode_entity_addrvec(p, end, msgr2, addr);
   1726		else
   1727			err = ceph_decode_entity_addr(p, end, addr);
   1728		if (err)
   1729			goto bad;
   1730
   1731		dout("%s osd%d addr %s\n", __func__, i, ceph_pr_addr(addr));
   1732	}
   1733
   1734	/* pg_temp */
   1735	err = decode_pg_temp(p, end, map);
   1736	if (err)
   1737		goto bad;
   1738
   1739	/* primary_temp */
   1740	if (struct_v >= 1) {
   1741		err = decode_primary_temp(p, end, map);
   1742		if (err)
   1743			goto bad;
   1744	}
   1745
   1746	/* primary_affinity */
   1747	if (struct_v >= 2) {
   1748		err = decode_primary_affinity(p, end, map);
   1749		if (err)
   1750			goto bad;
   1751	} else {
   1752		WARN_ON(map->osd_primary_affinity);
   1753	}
   1754
   1755	/* crush */
   1756	ceph_decode_32_safe(p, end, len, e_inval);
   1757	err = osdmap_set_crush(map, crush_decode(*p, min(*p + len, end)));
   1758	if (err)
   1759		goto bad;
   1760
   1761	*p += len;
   1762	if (struct_v >= 3) {
   1763		/* erasure_code_profiles */
   1764		ceph_decode_skip_map_of_map(p, end, string, string, string,
   1765					    e_inval);
   1766	}
   1767
   1768	if (struct_v >= 4) {
   1769		err = decode_pg_upmap(p, end, map);
   1770		if (err)
   1771			goto bad;
   1772
   1773		err = decode_pg_upmap_items(p, end, map);
   1774		if (err)
   1775			goto bad;
   1776	} else {
   1777		WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap));
   1778		WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap_items));
   1779	}
   1780
   1781	/* ignore the rest */
   1782	*p = end;
   1783
   1784	dout("full osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
   1785	return 0;
   1786
   1787e_inval:
   1788	err = -EINVAL;
   1789bad:
   1790	pr_err("corrupt full osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
   1791	       err, epoch, (int)(*p - start), *p, start, end);
   1792	print_hex_dump(KERN_DEBUG, "osdmap: ",
   1793		       DUMP_PREFIX_OFFSET, 16, 1,
   1794		       start, end - start, true);
   1795	return err;
   1796}
   1797
   1798/*
   1799 * Allocate and decode a full map.
   1800 */
   1801struct ceph_osdmap *ceph_osdmap_decode(void **p, void *end, bool msgr2)
   1802{
   1803	struct ceph_osdmap *map;
   1804	int ret;
   1805
   1806	map = ceph_osdmap_alloc();
   1807	if (!map)
   1808		return ERR_PTR(-ENOMEM);
   1809
   1810	ret = osdmap_decode(p, end, msgr2, map);
   1811	if (ret) {
   1812		ceph_osdmap_destroy(map);
   1813		return ERR_PTR(ret);
   1814	}
   1815
   1816	return map;
   1817}
   1818
   1819/*
   1820 * Encoding order is (new_up_client, new_state, new_weight).  Need to
   1821 * apply in the (new_weight, new_state, new_up_client) order, because
   1822 * an incremental map may look like e.g.
   1823 *
   1824 *     new_up_client: { osd=6, addr=... } # set osd_state and addr
   1825 *     new_state: { osd=6, xorstate=EXISTS } # clear osd_state
   1826 */
   1827static int decode_new_up_state_weight(void **p, void *end, u8 struct_v,
   1828				      bool msgr2, struct ceph_osdmap *map)
   1829{
   1830	void *new_up_client;
   1831	void *new_state;
   1832	void *new_weight_end;
   1833	u32 len;
   1834	int ret;
   1835	int i;
   1836
   1837	new_up_client = *p;
   1838	ceph_decode_32_safe(p, end, len, e_inval);
   1839	for (i = 0; i < len; ++i) {
   1840		struct ceph_entity_addr addr;
   1841
   1842		ceph_decode_skip_32(p, end, e_inval);
   1843		if (struct_v >= 7)
   1844			ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr);
   1845		else
   1846			ret = ceph_decode_entity_addr(p, end, &addr);
   1847		if (ret)
   1848			return ret;
   1849	}
   1850
   1851	new_state = *p;
   1852	ceph_decode_32_safe(p, end, len, e_inval);
   1853	len *= sizeof(u32) + (struct_v >= 5 ? sizeof(u32) : sizeof(u8));
   1854	ceph_decode_need(p, end, len, e_inval);
   1855	*p += len;
   1856
   1857	/* new_weight */
   1858	ceph_decode_32_safe(p, end, len, e_inval);
   1859	while (len--) {
   1860		s32 osd;
   1861		u32 w;
   1862
   1863		ceph_decode_need(p, end, 2*sizeof(u32), e_inval);
   1864		osd = ceph_decode_32(p);
   1865		w = ceph_decode_32(p);
   1866		BUG_ON(osd >= map->max_osd);
   1867		pr_info("osd%d weight 0x%x %s\n", osd, w,
   1868		     w == CEPH_OSD_IN ? "(in)" :
   1869		     (w == CEPH_OSD_OUT ? "(out)" : ""));
   1870		map->osd_weight[osd] = w;
   1871
   1872		/*
   1873		 * If we are marking in, set the EXISTS, and clear the
   1874		 * AUTOOUT and NEW bits.
   1875		 */
   1876		if (w) {
   1877			map->osd_state[osd] |= CEPH_OSD_EXISTS;
   1878			map->osd_state[osd] &= ~(CEPH_OSD_AUTOOUT |
   1879						 CEPH_OSD_NEW);
   1880		}
   1881	}
   1882	new_weight_end = *p;
   1883
   1884	/* new_state (up/down) */
   1885	*p = new_state;
   1886	len = ceph_decode_32(p);
   1887	while (len--) {
   1888		s32 osd;
   1889		u32 xorstate;
   1890
   1891		osd = ceph_decode_32(p);
   1892		if (struct_v >= 5)
   1893			xorstate = ceph_decode_32(p);
   1894		else
   1895			xorstate = ceph_decode_8(p);
   1896		if (xorstate == 0)
   1897			xorstate = CEPH_OSD_UP;
   1898		BUG_ON(osd >= map->max_osd);
   1899		if ((map->osd_state[osd] & CEPH_OSD_UP) &&
   1900		    (xorstate & CEPH_OSD_UP))
   1901			pr_info("osd%d down\n", osd);
   1902		if ((map->osd_state[osd] & CEPH_OSD_EXISTS) &&
   1903		    (xorstate & CEPH_OSD_EXISTS)) {
   1904			pr_info("osd%d does not exist\n", osd);
   1905			ret = set_primary_affinity(map, osd,
   1906						   CEPH_OSD_DEFAULT_PRIMARY_AFFINITY);
   1907			if (ret)
   1908				return ret;
   1909			memset(map->osd_addr + osd, 0, sizeof(*map->osd_addr));
   1910			map->osd_state[osd] = 0;
   1911		} else {
   1912			map->osd_state[osd] ^= xorstate;
   1913		}
   1914	}
   1915
   1916	/* new_up_client */
   1917	*p = new_up_client;
   1918	len = ceph_decode_32(p);
   1919	while (len--) {
   1920		s32 osd;
   1921		struct ceph_entity_addr addr;
   1922
   1923		osd = ceph_decode_32(p);
   1924		BUG_ON(osd >= map->max_osd);
   1925		if (struct_v >= 7)
   1926			ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr);
   1927		else
   1928			ret = ceph_decode_entity_addr(p, end, &addr);
   1929		if (ret)
   1930			return ret;
   1931
   1932		dout("%s osd%d addr %s\n", __func__, osd, ceph_pr_addr(&addr));
   1933
   1934		pr_info("osd%d up\n", osd);
   1935		map->osd_state[osd] |= CEPH_OSD_EXISTS | CEPH_OSD_UP;
   1936		map->osd_addr[osd] = addr;
   1937	}
   1938
   1939	*p = new_weight_end;
   1940	return 0;
   1941
   1942e_inval:
   1943	return -EINVAL;
   1944}
   1945
   1946/*
   1947 * decode and apply an incremental map update.
   1948 */
   1949struct ceph_osdmap *osdmap_apply_incremental(void **p, void *end, bool msgr2,
   1950					     struct ceph_osdmap *map)
   1951{
   1952	struct ceph_fsid fsid;
   1953	u32 epoch = 0;
   1954	struct ceph_timespec modified;
   1955	s32 len;
   1956	u64 pool;
   1957	__s64 new_pool_max;
   1958	__s32 new_flags, max;
   1959	void *start = *p;
   1960	int err;
   1961	u8 struct_v;
   1962
   1963	dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
   1964
   1965	err = get_osdmap_client_data_v(p, end, "inc", &struct_v);
   1966	if (err)
   1967		goto bad;
   1968
   1969	/* fsid, epoch, modified, new_pool_max, new_flags */
   1970	ceph_decode_need(p, end, sizeof(fsid) + sizeof(u32) + sizeof(modified) +
   1971			 sizeof(u64) + sizeof(u32), e_inval);
   1972	ceph_decode_copy(p, &fsid, sizeof(fsid));
   1973	epoch = ceph_decode_32(p);
   1974	BUG_ON(epoch != map->epoch+1);
   1975	ceph_decode_copy(p, &modified, sizeof(modified));
   1976	new_pool_max = ceph_decode_64(p);
   1977	new_flags = ceph_decode_32(p);
   1978
   1979	/* full map? */
   1980	ceph_decode_32_safe(p, end, len, e_inval);
   1981	if (len > 0) {
   1982		dout("apply_incremental full map len %d, %p to %p\n",
   1983		     len, *p, end);
   1984		return ceph_osdmap_decode(p, min(*p+len, end), msgr2);
   1985	}
   1986
   1987	/* new crush? */
   1988	ceph_decode_32_safe(p, end, len, e_inval);
   1989	if (len > 0) {
   1990		err = osdmap_set_crush(map,
   1991				       crush_decode(*p, min(*p + len, end)));
   1992		if (err)
   1993			goto bad;
   1994		*p += len;
   1995	}
   1996
   1997	/* new flags? */
   1998	if (new_flags >= 0)
   1999		map->flags = new_flags;
   2000	if (new_pool_max >= 0)
   2001		map->pool_max = new_pool_max;
   2002
   2003	/* new max? */
   2004	ceph_decode_32_safe(p, end, max, e_inval);
   2005	if (max >= 0) {
   2006		err = osdmap_set_max_osd(map, max);
   2007		if (err)
   2008			goto bad;
   2009	}
   2010
   2011	map->epoch++;
   2012	map->modified = modified;
   2013
   2014	/* new_pools */
   2015	err = decode_new_pools(p, end, map);
   2016	if (err)
   2017		goto bad;
   2018
   2019	/* new_pool_names */
   2020	err = decode_pool_names(p, end, map);
   2021	if (err)
   2022		goto bad;
   2023
   2024	/* old_pool */
   2025	ceph_decode_32_safe(p, end, len, e_inval);
   2026	while (len--) {
   2027		struct ceph_pg_pool_info *pi;
   2028
   2029		ceph_decode_64_safe(p, end, pool, e_inval);
   2030		pi = lookup_pg_pool(&map->pg_pools, pool);
   2031		if (pi)
   2032			__remove_pg_pool(&map->pg_pools, pi);
   2033	}
   2034
   2035	/* new_up_client, new_state, new_weight */
   2036	err = decode_new_up_state_weight(p, end, struct_v, msgr2, map);
   2037	if (err)
   2038		goto bad;
   2039
   2040	/* new_pg_temp */
   2041	err = decode_new_pg_temp(p, end, map);
   2042	if (err)
   2043		goto bad;
   2044
   2045	/* new_primary_temp */
   2046	if (struct_v >= 1) {
   2047		err = decode_new_primary_temp(p, end, map);
   2048		if (err)
   2049			goto bad;
   2050	}
   2051
   2052	/* new_primary_affinity */
   2053	if (struct_v >= 2) {
   2054		err = decode_new_primary_affinity(p, end, map);
   2055		if (err)
   2056			goto bad;
   2057	}
   2058
   2059	if (struct_v >= 3) {
   2060		/* new_erasure_code_profiles */
   2061		ceph_decode_skip_map_of_map(p, end, string, string, string,
   2062					    e_inval);
   2063		/* old_erasure_code_profiles */
   2064		ceph_decode_skip_set(p, end, string, e_inval);
   2065	}
   2066
   2067	if (struct_v >= 4) {
   2068		err = decode_new_pg_upmap(p, end, map);
   2069		if (err)
   2070			goto bad;
   2071
   2072		err = decode_old_pg_upmap(p, end, map);
   2073		if (err)
   2074			goto bad;
   2075
   2076		err = decode_new_pg_upmap_items(p, end, map);
   2077		if (err)
   2078			goto bad;
   2079
   2080		err = decode_old_pg_upmap_items(p, end, map);
   2081		if (err)
   2082			goto bad;
   2083	}
   2084
   2085	/* ignore the rest */
   2086	*p = end;
   2087
   2088	dout("inc osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
   2089	return map;
   2090
   2091e_inval:
   2092	err = -EINVAL;
   2093bad:
   2094	pr_err("corrupt inc osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
   2095	       err, epoch, (int)(*p - start), *p, start, end);
   2096	print_hex_dump(KERN_DEBUG, "osdmap: ",
   2097		       DUMP_PREFIX_OFFSET, 16, 1,
   2098		       start, end - start, true);
   2099	return ERR_PTR(err);
   2100}
   2101
   2102void ceph_oloc_copy(struct ceph_object_locator *dest,
   2103		    const struct ceph_object_locator *src)
   2104{
   2105	ceph_oloc_destroy(dest);
   2106
   2107	dest->pool = src->pool;
   2108	if (src->pool_ns)
   2109		dest->pool_ns = ceph_get_string(src->pool_ns);
   2110	else
   2111		dest->pool_ns = NULL;
   2112}
   2113EXPORT_SYMBOL(ceph_oloc_copy);
   2114
   2115void ceph_oloc_destroy(struct ceph_object_locator *oloc)
   2116{
   2117	ceph_put_string(oloc->pool_ns);
   2118}
   2119EXPORT_SYMBOL(ceph_oloc_destroy);
   2120
   2121void ceph_oid_copy(struct ceph_object_id *dest,
   2122		   const struct ceph_object_id *src)
   2123{
   2124	ceph_oid_destroy(dest);
   2125
   2126	if (src->name != src->inline_name) {
   2127		/* very rare, see ceph_object_id definition */
   2128		dest->name = kmalloc(src->name_len + 1,
   2129				     GFP_NOIO | __GFP_NOFAIL);
   2130	} else {
   2131		dest->name = dest->inline_name;
   2132	}
   2133	memcpy(dest->name, src->name, src->name_len + 1);
   2134	dest->name_len = src->name_len;
   2135}
   2136EXPORT_SYMBOL(ceph_oid_copy);
   2137
   2138static __printf(2, 0)
   2139int oid_printf_vargs(struct ceph_object_id *oid, const char *fmt, va_list ap)
   2140{
   2141	int len;
   2142
   2143	WARN_ON(!ceph_oid_empty(oid));
   2144
   2145	len = vsnprintf(oid->inline_name, sizeof(oid->inline_name), fmt, ap);
   2146	if (len >= sizeof(oid->inline_name))
   2147		return len;
   2148
   2149	oid->name_len = len;
   2150	return 0;
   2151}
   2152
   2153/*
   2154 * If oid doesn't fit into inline buffer, BUG.
   2155 */
   2156void ceph_oid_printf(struct ceph_object_id *oid, const char *fmt, ...)
   2157{
   2158	va_list ap;
   2159
   2160	va_start(ap, fmt);
   2161	BUG_ON(oid_printf_vargs(oid, fmt, ap));
   2162	va_end(ap);
   2163}
   2164EXPORT_SYMBOL(ceph_oid_printf);
   2165
   2166static __printf(3, 0)
   2167int oid_aprintf_vargs(struct ceph_object_id *oid, gfp_t gfp,
   2168		      const char *fmt, va_list ap)
   2169{
   2170	va_list aq;
   2171	int len;
   2172
   2173	va_copy(aq, ap);
   2174	len = oid_printf_vargs(oid, fmt, aq);
   2175	va_end(aq);
   2176
   2177	if (len) {
   2178		char *external_name;
   2179
   2180		external_name = kmalloc(len + 1, gfp);
   2181		if (!external_name)
   2182			return -ENOMEM;
   2183
   2184		oid->name = external_name;
   2185		WARN_ON(vsnprintf(oid->name, len + 1, fmt, ap) != len);
   2186		oid->name_len = len;
   2187	}
   2188
   2189	return 0;
   2190}
   2191
   2192/*
   2193 * If oid doesn't fit into inline buffer, allocate.
   2194 */
   2195int ceph_oid_aprintf(struct ceph_object_id *oid, gfp_t gfp,
   2196		     const char *fmt, ...)
   2197{
   2198	va_list ap;
   2199	int ret;
   2200
   2201	va_start(ap, fmt);
   2202	ret = oid_aprintf_vargs(oid, gfp, fmt, ap);
   2203	va_end(ap);
   2204
   2205	return ret;
   2206}
   2207EXPORT_SYMBOL(ceph_oid_aprintf);
   2208
   2209void ceph_oid_destroy(struct ceph_object_id *oid)
   2210{
   2211	if (oid->name != oid->inline_name)
   2212		kfree(oid->name);
   2213}
   2214EXPORT_SYMBOL(ceph_oid_destroy);
   2215
   2216/*
   2217 * osds only
   2218 */
   2219static bool __osds_equal(const struct ceph_osds *lhs,
   2220			 const struct ceph_osds *rhs)
   2221{
   2222	if (lhs->size == rhs->size &&
   2223	    !memcmp(lhs->osds, rhs->osds, rhs->size * sizeof(rhs->osds[0])))
   2224		return true;
   2225
   2226	return false;
   2227}
   2228
   2229/*
   2230 * osds + primary
   2231 */
   2232static bool osds_equal(const struct ceph_osds *lhs,
   2233		       const struct ceph_osds *rhs)
   2234{
   2235	if (__osds_equal(lhs, rhs) &&
   2236	    lhs->primary == rhs->primary)
   2237		return true;
   2238
   2239	return false;
   2240}
   2241
   2242static bool osds_valid(const struct ceph_osds *set)
   2243{
   2244	/* non-empty set */
   2245	if (set->size > 0 && set->primary >= 0)
   2246		return true;
   2247
   2248	/* empty can_shift_osds set */
   2249	if (!set->size && set->primary == -1)
   2250		return true;
   2251
   2252	/* empty !can_shift_osds set - all NONE */
   2253	if (set->size > 0 && set->primary == -1) {
   2254		int i;
   2255
   2256		for (i = 0; i < set->size; i++) {
   2257			if (set->osds[i] != CRUSH_ITEM_NONE)
   2258				break;
   2259		}
   2260		if (i == set->size)
   2261			return true;
   2262	}
   2263
   2264	return false;
   2265}
   2266
   2267void ceph_osds_copy(struct ceph_osds *dest, const struct ceph_osds *src)
   2268{
   2269	memcpy(dest->osds, src->osds, src->size * sizeof(src->osds[0]));
   2270	dest->size = src->size;
   2271	dest->primary = src->primary;
   2272}
   2273
   2274bool ceph_pg_is_split(const struct ceph_pg *pgid, u32 old_pg_num,
   2275		      u32 new_pg_num)
   2276{
   2277	int old_bits = calc_bits_of(old_pg_num);
   2278	int old_mask = (1 << old_bits) - 1;
   2279	int n;
   2280
   2281	WARN_ON(pgid->seed >= old_pg_num);
   2282	if (new_pg_num <= old_pg_num)
   2283		return false;
   2284
   2285	for (n = 1; ; n++) {
   2286		int next_bit = n << (old_bits - 1);
   2287		u32 s = next_bit | pgid->seed;
   2288
   2289		if (s < old_pg_num || s == pgid->seed)
   2290			continue;
   2291		if (s >= new_pg_num)
   2292			break;
   2293
   2294		s = ceph_stable_mod(s, old_pg_num, old_mask);
   2295		if (s == pgid->seed)
   2296			return true;
   2297	}
   2298
   2299	return false;
   2300}
   2301
   2302bool ceph_is_new_interval(const struct ceph_osds *old_acting,
   2303			  const struct ceph_osds *new_acting,
   2304			  const struct ceph_osds *old_up,
   2305			  const struct ceph_osds *new_up,
   2306			  int old_size,
   2307			  int new_size,
   2308			  int old_min_size,
   2309			  int new_min_size,
   2310			  u32 old_pg_num,
   2311			  u32 new_pg_num,
   2312			  bool old_sort_bitwise,
   2313			  bool new_sort_bitwise,
   2314			  bool old_recovery_deletes,
   2315			  bool new_recovery_deletes,
   2316			  const struct ceph_pg *pgid)
   2317{
   2318	return !osds_equal(old_acting, new_acting) ||
   2319	       !osds_equal(old_up, new_up) ||
   2320	       old_size != new_size ||
   2321	       old_min_size != new_min_size ||
   2322	       ceph_pg_is_split(pgid, old_pg_num, new_pg_num) ||
   2323	       old_sort_bitwise != new_sort_bitwise ||
   2324	       old_recovery_deletes != new_recovery_deletes;
   2325}
   2326
   2327static int calc_pg_rank(int osd, const struct ceph_osds *acting)
   2328{
   2329	int i;
   2330
   2331	for (i = 0; i < acting->size; i++) {
   2332		if (acting->osds[i] == osd)
   2333			return i;
   2334	}
   2335
   2336	return -1;
   2337}
   2338
   2339static bool primary_changed(const struct ceph_osds *old_acting,
   2340			    const struct ceph_osds *new_acting)
   2341{
   2342	if (!old_acting->size && !new_acting->size)
   2343		return false; /* both still empty */
   2344
   2345	if (!old_acting->size ^ !new_acting->size)
   2346		return true; /* was empty, now not, or vice versa */
   2347
   2348	if (old_acting->primary != new_acting->primary)
   2349		return true; /* primary changed */
   2350
   2351	if (calc_pg_rank(old_acting->primary, old_acting) !=
   2352	    calc_pg_rank(new_acting->primary, new_acting))
   2353		return true;
   2354
   2355	return false; /* same primary (tho replicas may have changed) */
   2356}
   2357
   2358bool ceph_osds_changed(const struct ceph_osds *old_acting,
   2359		       const struct ceph_osds *new_acting,
   2360		       bool any_change)
   2361{
   2362	if (primary_changed(old_acting, new_acting))
   2363		return true;
   2364
   2365	if (any_change && !__osds_equal(old_acting, new_acting))
   2366		return true;
   2367
   2368	return false;
   2369}
   2370
   2371/*
   2372 * Map an object into a PG.
   2373 *
   2374 * Should only be called with target_oid and target_oloc (as opposed to
   2375 * base_oid and base_oloc), since tiering isn't taken into account.
   2376 */
   2377void __ceph_object_locator_to_pg(struct ceph_pg_pool_info *pi,
   2378				 const struct ceph_object_id *oid,
   2379				 const struct ceph_object_locator *oloc,
   2380				 struct ceph_pg *raw_pgid)
   2381{
   2382	WARN_ON(pi->id != oloc->pool);
   2383
   2384	if (!oloc->pool_ns) {
   2385		raw_pgid->pool = oloc->pool;
   2386		raw_pgid->seed = ceph_str_hash(pi->object_hash, oid->name,
   2387					     oid->name_len);
   2388		dout("%s %s -> raw_pgid %llu.%x\n", __func__, oid->name,
   2389		     raw_pgid->pool, raw_pgid->seed);
   2390	} else {
   2391		char stack_buf[256];
   2392		char *buf = stack_buf;
   2393		int nsl = oloc->pool_ns->len;
   2394		size_t total = nsl + 1 + oid->name_len;
   2395
   2396		if (total > sizeof(stack_buf))
   2397			buf = kmalloc(total, GFP_NOIO | __GFP_NOFAIL);
   2398		memcpy(buf, oloc->pool_ns->str, nsl);
   2399		buf[nsl] = '\037';
   2400		memcpy(buf + nsl + 1, oid->name, oid->name_len);
   2401		raw_pgid->pool = oloc->pool;
   2402		raw_pgid->seed = ceph_str_hash(pi->object_hash, buf, total);
   2403		if (buf != stack_buf)
   2404			kfree(buf);
   2405		dout("%s %s ns %.*s -> raw_pgid %llu.%x\n", __func__,
   2406		     oid->name, nsl, oloc->pool_ns->str,
   2407		     raw_pgid->pool, raw_pgid->seed);
   2408	}
   2409}
   2410
   2411int ceph_object_locator_to_pg(struct ceph_osdmap *osdmap,
   2412			      const struct ceph_object_id *oid,
   2413			      const struct ceph_object_locator *oloc,
   2414			      struct ceph_pg *raw_pgid)
   2415{
   2416	struct ceph_pg_pool_info *pi;
   2417
   2418	pi = ceph_pg_pool_by_id(osdmap, oloc->pool);
   2419	if (!pi)
   2420		return -ENOENT;
   2421
   2422	__ceph_object_locator_to_pg(pi, oid, oloc, raw_pgid);
   2423	return 0;
   2424}
   2425EXPORT_SYMBOL(ceph_object_locator_to_pg);
   2426
   2427/*
   2428 * Map a raw PG (full precision ps) into an actual PG.
   2429 */
   2430static void raw_pg_to_pg(struct ceph_pg_pool_info *pi,
   2431			 const struct ceph_pg *raw_pgid,
   2432			 struct ceph_pg *pgid)
   2433{
   2434	pgid->pool = raw_pgid->pool;
   2435	pgid->seed = ceph_stable_mod(raw_pgid->seed, pi->pg_num,
   2436				     pi->pg_num_mask);
   2437}
   2438
   2439/*
   2440 * Map a raw PG (full precision ps) into a placement ps (placement
   2441 * seed).  Include pool id in that value so that different pools don't
   2442 * use the same seeds.
   2443 */
   2444static u32 raw_pg_to_pps(struct ceph_pg_pool_info *pi,
   2445			 const struct ceph_pg *raw_pgid)
   2446{
   2447	if (pi->flags & CEPH_POOL_FLAG_HASHPSPOOL) {
   2448		/* hash pool id and seed so that pool PGs do not overlap */
   2449		return crush_hash32_2(CRUSH_HASH_RJENKINS1,
   2450				      ceph_stable_mod(raw_pgid->seed,
   2451						      pi->pgp_num,
   2452						      pi->pgp_num_mask),
   2453				      raw_pgid->pool);
   2454	} else {
   2455		/*
   2456		 * legacy behavior: add ps and pool together.  this is
   2457		 * not a great approach because the PGs from each pool
   2458		 * will overlap on top of each other: 0.5 == 1.4 ==
   2459		 * 2.3 == ...
   2460		 */
   2461		return ceph_stable_mod(raw_pgid->seed, pi->pgp_num,
   2462				       pi->pgp_num_mask) +
   2463		       (unsigned)raw_pgid->pool;
   2464	}
   2465}
   2466
   2467/*
   2468 * Magic value used for a "default" fallback choose_args, used if the
   2469 * crush_choose_arg_map passed to do_crush() does not exist.  If this
   2470 * also doesn't exist, fall back to canonical weights.
   2471 */
   2472#define CEPH_DEFAULT_CHOOSE_ARGS	-1
   2473
   2474static int do_crush(struct ceph_osdmap *map, int ruleno, int x,
   2475		    int *result, int result_max,
   2476		    const __u32 *weight, int weight_max,
   2477		    s64 choose_args_index)
   2478{
   2479	struct crush_choose_arg_map *arg_map;
   2480	struct crush_work *work;
   2481	int r;
   2482
   2483	BUG_ON(result_max > CEPH_PG_MAX_SIZE);
   2484
   2485	arg_map = lookup_choose_arg_map(&map->crush->choose_args,
   2486					choose_args_index);
   2487	if (!arg_map)
   2488		arg_map = lookup_choose_arg_map(&map->crush->choose_args,
   2489						CEPH_DEFAULT_CHOOSE_ARGS);
   2490
   2491	work = get_workspace(&map->crush_wsm, map->crush);
   2492	r = crush_do_rule(map->crush, ruleno, x, result, result_max,
   2493			  weight, weight_max, work,
   2494			  arg_map ? arg_map->args : NULL);
   2495	put_workspace(&map->crush_wsm, work);
   2496	return r;
   2497}
   2498
   2499static void remove_nonexistent_osds(struct ceph_osdmap *osdmap,
   2500				    struct ceph_pg_pool_info *pi,
   2501				    struct ceph_osds *set)
   2502{
   2503	int i;
   2504
   2505	if (ceph_can_shift_osds(pi)) {
   2506		int removed = 0;
   2507
   2508		/* shift left */
   2509		for (i = 0; i < set->size; i++) {
   2510			if (!ceph_osd_exists(osdmap, set->osds[i])) {
   2511				removed++;
   2512				continue;
   2513			}
   2514			if (removed)
   2515				set->osds[i - removed] = set->osds[i];
   2516		}
   2517		set->size -= removed;
   2518	} else {
   2519		/* set dne devices to NONE */
   2520		for (i = 0; i < set->size; i++) {
   2521			if (!ceph_osd_exists(osdmap, set->osds[i]))
   2522				set->osds[i] = CRUSH_ITEM_NONE;
   2523		}
   2524	}
   2525}
   2526
   2527/*
   2528 * Calculate raw set (CRUSH output) for given PG and filter out
   2529 * nonexistent OSDs.  ->primary is undefined for a raw set.
   2530 *
   2531 * Placement seed (CRUSH input) is returned through @ppps.
   2532 */
   2533static void pg_to_raw_osds(struct ceph_osdmap *osdmap,
   2534			   struct ceph_pg_pool_info *pi,
   2535			   const struct ceph_pg *raw_pgid,
   2536			   struct ceph_osds *raw,
   2537			   u32 *ppps)
   2538{
   2539	u32 pps = raw_pg_to_pps(pi, raw_pgid);
   2540	int ruleno;
   2541	int len;
   2542
   2543	ceph_osds_init(raw);
   2544	if (ppps)
   2545		*ppps = pps;
   2546
   2547	ruleno = crush_find_rule(osdmap->crush, pi->crush_ruleset, pi->type,
   2548				 pi->size);
   2549	if (ruleno < 0) {
   2550		pr_err("no crush rule: pool %lld ruleset %d type %d size %d\n",
   2551		       pi->id, pi->crush_ruleset, pi->type, pi->size);
   2552		return;
   2553	}
   2554
   2555	if (pi->size > ARRAY_SIZE(raw->osds)) {
   2556		pr_err_ratelimited("pool %lld ruleset %d type %d too wide: size %d > %zu\n",
   2557		       pi->id, pi->crush_ruleset, pi->type, pi->size,
   2558		       ARRAY_SIZE(raw->osds));
   2559		return;
   2560	}
   2561
   2562	len = do_crush(osdmap, ruleno, pps, raw->osds, pi->size,
   2563		       osdmap->osd_weight, osdmap->max_osd, pi->id);
   2564	if (len < 0) {
   2565		pr_err("error %d from crush rule %d: pool %lld ruleset %d type %d size %d\n",
   2566		       len, ruleno, pi->id, pi->crush_ruleset, pi->type,
   2567		       pi->size);
   2568		return;
   2569	}
   2570
   2571	raw->size = len;
   2572	remove_nonexistent_osds(osdmap, pi, raw);
   2573}
   2574
   2575/* apply pg_upmap[_items] mappings */
   2576static void apply_upmap(struct ceph_osdmap *osdmap,
   2577			const struct ceph_pg *pgid,
   2578			struct ceph_osds *raw)
   2579{
   2580	struct ceph_pg_mapping *pg;
   2581	int i, j;
   2582
   2583	pg = lookup_pg_mapping(&osdmap->pg_upmap, pgid);
   2584	if (pg) {
   2585		/* make sure targets aren't marked out */
   2586		for (i = 0; i < pg->pg_upmap.len; i++) {
   2587			int osd = pg->pg_upmap.osds[i];
   2588
   2589			if (osd != CRUSH_ITEM_NONE &&
   2590			    osd < osdmap->max_osd &&
   2591			    osdmap->osd_weight[osd] == 0) {
   2592				/* reject/ignore explicit mapping */
   2593				return;
   2594			}
   2595		}
   2596		for (i = 0; i < pg->pg_upmap.len; i++)
   2597			raw->osds[i] = pg->pg_upmap.osds[i];
   2598		raw->size = pg->pg_upmap.len;
   2599		/* check and apply pg_upmap_items, if any */
   2600	}
   2601
   2602	pg = lookup_pg_mapping(&osdmap->pg_upmap_items, pgid);
   2603	if (pg) {
   2604		/*
   2605		 * Note: this approach does not allow a bidirectional swap,
   2606		 * e.g., [[1,2],[2,1]] applied to [0,1,2] -> [0,2,1].
   2607		 */
   2608		for (i = 0; i < pg->pg_upmap_items.len; i++) {
   2609			int from = pg->pg_upmap_items.from_to[i][0];
   2610			int to = pg->pg_upmap_items.from_to[i][1];
   2611			int pos = -1;
   2612			bool exists = false;
   2613
   2614			/* make sure replacement doesn't already appear */
   2615			for (j = 0; j < raw->size; j++) {
   2616				int osd = raw->osds[j];
   2617
   2618				if (osd == to) {
   2619					exists = true;
   2620					break;
   2621				}
   2622				/* ignore mapping if target is marked out */
   2623				if (osd == from && pos < 0 &&
   2624				    !(to != CRUSH_ITEM_NONE &&
   2625				      to < osdmap->max_osd &&
   2626				      osdmap->osd_weight[to] == 0)) {
   2627					pos = j;
   2628				}
   2629			}
   2630			if (!exists && pos >= 0)
   2631				raw->osds[pos] = to;
   2632		}
   2633	}
   2634}
   2635
   2636/*
   2637 * Given raw set, calculate up set and up primary.  By definition of an
   2638 * up set, the result won't contain nonexistent or down OSDs.
   2639 *
   2640 * This is done in-place - on return @set is the up set.  If it's
   2641 * empty, ->primary will remain undefined.
   2642 */
   2643static void raw_to_up_osds(struct ceph_osdmap *osdmap,
   2644			   struct ceph_pg_pool_info *pi,
   2645			   struct ceph_osds *set)
   2646{
   2647	int i;
   2648
   2649	/* ->primary is undefined for a raw set */
   2650	BUG_ON(set->primary != -1);
   2651
   2652	if (ceph_can_shift_osds(pi)) {
   2653		int removed = 0;
   2654
   2655		/* shift left */
   2656		for (i = 0; i < set->size; i++) {
   2657			if (ceph_osd_is_down(osdmap, set->osds[i])) {
   2658				removed++;
   2659				continue;
   2660			}
   2661			if (removed)
   2662				set->osds[i - removed] = set->osds[i];
   2663		}
   2664		set->size -= removed;
   2665		if (set->size > 0)
   2666			set->primary = set->osds[0];
   2667	} else {
   2668		/* set down/dne devices to NONE */
   2669		for (i = set->size - 1; i >= 0; i--) {
   2670			if (ceph_osd_is_down(osdmap, set->osds[i]))
   2671				set->osds[i] = CRUSH_ITEM_NONE;
   2672			else
   2673				set->primary = set->osds[i];
   2674		}
   2675	}
   2676}
   2677
   2678static void apply_primary_affinity(struct ceph_osdmap *osdmap,
   2679				   struct ceph_pg_pool_info *pi,
   2680				   u32 pps,
   2681				   struct ceph_osds *up)
   2682{
   2683	int i;
   2684	int pos = -1;
   2685
   2686	/*
   2687	 * Do we have any non-default primary_affinity values for these
   2688	 * osds?
   2689	 */
   2690	if (!osdmap->osd_primary_affinity)
   2691		return;
   2692
   2693	for (i = 0; i < up->size; i++) {
   2694		int osd = up->osds[i];
   2695
   2696		if (osd != CRUSH_ITEM_NONE &&
   2697		    osdmap->osd_primary_affinity[osd] !=
   2698					CEPH_OSD_DEFAULT_PRIMARY_AFFINITY) {
   2699			break;
   2700		}
   2701	}
   2702	if (i == up->size)
   2703		return;
   2704
   2705	/*
   2706	 * Pick the primary.  Feed both the seed (for the pg) and the
   2707	 * osd into the hash/rng so that a proportional fraction of an
   2708	 * osd's pgs get rejected as primary.
   2709	 */
   2710	for (i = 0; i < up->size; i++) {
   2711		int osd = up->osds[i];
   2712		u32 aff;
   2713
   2714		if (osd == CRUSH_ITEM_NONE)
   2715			continue;
   2716
   2717		aff = osdmap->osd_primary_affinity[osd];
   2718		if (aff < CEPH_OSD_MAX_PRIMARY_AFFINITY &&
   2719		    (crush_hash32_2(CRUSH_HASH_RJENKINS1,
   2720				    pps, osd) >> 16) >= aff) {
   2721			/*
   2722			 * We chose not to use this primary.  Note it
   2723			 * anyway as a fallback in case we don't pick
   2724			 * anyone else, but keep looking.
   2725			 */
   2726			if (pos < 0)
   2727				pos = i;
   2728		} else {
   2729			pos = i;
   2730			break;
   2731		}
   2732	}
   2733	if (pos < 0)
   2734		return;
   2735
   2736	up->primary = up->osds[pos];
   2737
   2738	if (ceph_can_shift_osds(pi) && pos > 0) {
   2739		/* move the new primary to the front */
   2740		for (i = pos; i > 0; i--)
   2741			up->osds[i] = up->osds[i - 1];
   2742		up->osds[0] = up->primary;
   2743	}
   2744}
   2745
   2746/*
   2747 * Get pg_temp and primary_temp mappings for given PG.
   2748 *
   2749 * Note that a PG may have none, only pg_temp, only primary_temp or
   2750 * both pg_temp and primary_temp mappings.  This means @temp isn't
   2751 * always a valid OSD set on return: in the "only primary_temp" case,
   2752 * @temp will have its ->primary >= 0 but ->size == 0.
   2753 */
   2754static void get_temp_osds(struct ceph_osdmap *osdmap,
   2755			  struct ceph_pg_pool_info *pi,
   2756			  const struct ceph_pg *pgid,
   2757			  struct ceph_osds *temp)
   2758{
   2759	struct ceph_pg_mapping *pg;
   2760	int i;
   2761
   2762	ceph_osds_init(temp);
   2763
   2764	/* pg_temp? */
   2765	pg = lookup_pg_mapping(&osdmap->pg_temp, pgid);
   2766	if (pg) {
   2767		for (i = 0; i < pg->pg_temp.len; i++) {
   2768			if (ceph_osd_is_down(osdmap, pg->pg_temp.osds[i])) {
   2769				if (ceph_can_shift_osds(pi))
   2770					continue;
   2771
   2772				temp->osds[temp->size++] = CRUSH_ITEM_NONE;
   2773			} else {
   2774				temp->osds[temp->size++] = pg->pg_temp.osds[i];
   2775			}
   2776		}
   2777
   2778		/* apply pg_temp's primary */
   2779		for (i = 0; i < temp->size; i++) {
   2780			if (temp->osds[i] != CRUSH_ITEM_NONE) {
   2781				temp->primary = temp->osds[i];
   2782				break;
   2783			}
   2784		}
   2785	}
   2786
   2787	/* primary_temp? */
   2788	pg = lookup_pg_mapping(&osdmap->primary_temp, pgid);
   2789	if (pg)
   2790		temp->primary = pg->primary_temp.osd;
   2791}
   2792
   2793/*
   2794 * Map a PG to its acting set as well as its up set.
   2795 *
   2796 * Acting set is used for data mapping purposes, while up set can be
   2797 * recorded for detecting interval changes and deciding whether to
   2798 * resend a request.
   2799 */
   2800void ceph_pg_to_up_acting_osds(struct ceph_osdmap *osdmap,
   2801			       struct ceph_pg_pool_info *pi,
   2802			       const struct ceph_pg *raw_pgid,
   2803			       struct ceph_osds *up,
   2804			       struct ceph_osds *acting)
   2805{
   2806	struct ceph_pg pgid;
   2807	u32 pps;
   2808
   2809	WARN_ON(pi->id != raw_pgid->pool);
   2810	raw_pg_to_pg(pi, raw_pgid, &pgid);
   2811
   2812	pg_to_raw_osds(osdmap, pi, raw_pgid, up, &pps);
   2813	apply_upmap(osdmap, &pgid, up);
   2814	raw_to_up_osds(osdmap, pi, up);
   2815	apply_primary_affinity(osdmap, pi, pps, up);
   2816	get_temp_osds(osdmap, pi, &pgid, acting);
   2817	if (!acting->size) {
   2818		memcpy(acting->osds, up->osds, up->size * sizeof(up->osds[0]));
   2819		acting->size = up->size;
   2820		if (acting->primary == -1)
   2821			acting->primary = up->primary;
   2822	}
   2823	WARN_ON(!osds_valid(up) || !osds_valid(acting));
   2824}
   2825
   2826bool ceph_pg_to_primary_shard(struct ceph_osdmap *osdmap,
   2827			      struct ceph_pg_pool_info *pi,
   2828			      const struct ceph_pg *raw_pgid,
   2829			      struct ceph_spg *spgid)
   2830{
   2831	struct ceph_pg pgid;
   2832	struct ceph_osds up, acting;
   2833	int i;
   2834
   2835	WARN_ON(pi->id != raw_pgid->pool);
   2836	raw_pg_to_pg(pi, raw_pgid, &pgid);
   2837
   2838	if (ceph_can_shift_osds(pi)) {
   2839		spgid->pgid = pgid; /* struct */
   2840		spgid->shard = CEPH_SPG_NOSHARD;
   2841		return true;
   2842	}
   2843
   2844	ceph_pg_to_up_acting_osds(osdmap, pi, &pgid, &up, &acting);
   2845	for (i = 0; i < acting.size; i++) {
   2846		if (acting.osds[i] == acting.primary) {
   2847			spgid->pgid = pgid; /* struct */
   2848			spgid->shard = i;
   2849			return true;
   2850		}
   2851	}
   2852
   2853	return false;
   2854}
   2855
   2856/*
   2857 * Return acting primary for given PG, or -1 if none.
   2858 */
   2859int ceph_pg_to_acting_primary(struct ceph_osdmap *osdmap,
   2860			      const struct ceph_pg *raw_pgid)
   2861{
   2862	struct ceph_pg_pool_info *pi;
   2863	struct ceph_osds up, acting;
   2864
   2865	pi = ceph_pg_pool_by_id(osdmap, raw_pgid->pool);
   2866	if (!pi)
   2867		return -1;
   2868
   2869	ceph_pg_to_up_acting_osds(osdmap, pi, raw_pgid, &up, &acting);
   2870	return acting.primary;
   2871}
   2872EXPORT_SYMBOL(ceph_pg_to_acting_primary);
   2873
   2874static struct crush_loc_node *alloc_crush_loc(size_t type_name_len,
   2875					      size_t name_len)
   2876{
   2877	struct crush_loc_node *loc;
   2878
   2879	loc = kmalloc(sizeof(*loc) + type_name_len + name_len + 2, GFP_NOIO);
   2880	if (!loc)
   2881		return NULL;
   2882
   2883	RB_CLEAR_NODE(&loc->cl_node);
   2884	return loc;
   2885}
   2886
   2887static void free_crush_loc(struct crush_loc_node *loc)
   2888{
   2889	WARN_ON(!RB_EMPTY_NODE(&loc->cl_node));
   2890
   2891	kfree(loc);
   2892}
   2893
   2894static int crush_loc_compare(const struct crush_loc *loc1,
   2895			     const struct crush_loc *loc2)
   2896{
   2897	return strcmp(loc1->cl_type_name, loc2->cl_type_name) ?:
   2898	       strcmp(loc1->cl_name, loc2->cl_name);
   2899}
   2900
   2901DEFINE_RB_FUNCS2(crush_loc, struct crush_loc_node, cl_loc, crush_loc_compare,
   2902		 RB_BYPTR, const struct crush_loc *, cl_node)
   2903
   2904/*
   2905 * Parses a set of <bucket type name>':'<bucket name> pairs separated
   2906 * by '|', e.g. "rack:foo1|rack:foo2|datacenter:bar".
   2907 *
   2908 * Note that @crush_location is modified by strsep().
   2909 */
   2910int ceph_parse_crush_location(char *crush_location, struct rb_root *locs)
   2911{
   2912	struct crush_loc_node *loc;
   2913	const char *type_name, *name, *colon;
   2914	size_t type_name_len, name_len;
   2915
   2916	dout("%s '%s'\n", __func__, crush_location);
   2917	while ((type_name = strsep(&crush_location, "|"))) {
   2918		colon = strchr(type_name, ':');
   2919		if (!colon)
   2920			return -EINVAL;
   2921
   2922		type_name_len = colon - type_name;
   2923		if (type_name_len == 0)
   2924			return -EINVAL;
   2925
   2926		name = colon + 1;
   2927		name_len = strlen(name);
   2928		if (name_len == 0)
   2929			return -EINVAL;
   2930
   2931		loc = alloc_crush_loc(type_name_len, name_len);
   2932		if (!loc)
   2933			return -ENOMEM;
   2934
   2935		loc->cl_loc.cl_type_name = loc->cl_data;
   2936		memcpy(loc->cl_loc.cl_type_name, type_name, type_name_len);
   2937		loc->cl_loc.cl_type_name[type_name_len] = '\0';
   2938
   2939		loc->cl_loc.cl_name = loc->cl_data + type_name_len + 1;
   2940		memcpy(loc->cl_loc.cl_name, name, name_len);
   2941		loc->cl_loc.cl_name[name_len] = '\0';
   2942
   2943		if (!__insert_crush_loc(locs, loc)) {
   2944			free_crush_loc(loc);
   2945			return -EEXIST;
   2946		}
   2947
   2948		dout("%s type_name '%s' name '%s'\n", __func__,
   2949		     loc->cl_loc.cl_type_name, loc->cl_loc.cl_name);
   2950	}
   2951
   2952	return 0;
   2953}
   2954
   2955int ceph_compare_crush_locs(struct rb_root *locs1, struct rb_root *locs2)
   2956{
   2957	struct rb_node *n1 = rb_first(locs1);
   2958	struct rb_node *n2 = rb_first(locs2);
   2959	int ret;
   2960
   2961	for ( ; n1 && n2; n1 = rb_next(n1), n2 = rb_next(n2)) {
   2962		struct crush_loc_node *loc1 =
   2963		    rb_entry(n1, struct crush_loc_node, cl_node);
   2964		struct crush_loc_node *loc2 =
   2965		    rb_entry(n2, struct crush_loc_node, cl_node);
   2966
   2967		ret = crush_loc_compare(&loc1->cl_loc, &loc2->cl_loc);
   2968		if (ret)
   2969			return ret;
   2970	}
   2971
   2972	if (!n1 && n2)
   2973		return -1;
   2974	if (n1 && !n2)
   2975		return 1;
   2976	return 0;
   2977}
   2978
   2979void ceph_clear_crush_locs(struct rb_root *locs)
   2980{
   2981	while (!RB_EMPTY_ROOT(locs)) {
   2982		struct crush_loc_node *loc =
   2983		    rb_entry(rb_first(locs), struct crush_loc_node, cl_node);
   2984
   2985		erase_crush_loc(locs, loc);
   2986		free_crush_loc(loc);
   2987	}
   2988}
   2989
   2990/*
   2991 * [a-zA-Z0-9-_.]+
   2992 */
   2993static bool is_valid_crush_name(const char *name)
   2994{
   2995	do {
   2996		if (!('a' <= *name && *name <= 'z') &&
   2997		    !('A' <= *name && *name <= 'Z') &&
   2998		    !('0' <= *name && *name <= '9') &&
   2999		    *name != '-' && *name != '_' && *name != '.')
   3000			return false;
   3001	} while (*++name != '\0');
   3002
   3003	return true;
   3004}
   3005
   3006/*
   3007 * Gets the parent of an item.  Returns its id (<0 because the
   3008 * parent is always a bucket), type id (>0 for the same reason,
   3009 * via @parent_type_id) and location (via @parent_loc).  If no
   3010 * parent, returns 0.
   3011 *
   3012 * Does a linear search, as there are no parent pointers of any
   3013 * kind.  Note that the result is ambiguous for items that occur
   3014 * multiple times in the map.
   3015 */
   3016static int get_immediate_parent(struct crush_map *c, int id,
   3017				u16 *parent_type_id,
   3018				struct crush_loc *parent_loc)
   3019{
   3020	struct crush_bucket *b;
   3021	struct crush_name_node *type_cn, *cn;
   3022	int i, j;
   3023
   3024	for (i = 0; i < c->max_buckets; i++) {
   3025		b = c->buckets[i];
   3026		if (!b)
   3027			continue;
   3028
   3029		/* ignore per-class shadow hierarchy */
   3030		cn = lookup_crush_name(&c->names, b->id);
   3031		if (!cn || !is_valid_crush_name(cn->cn_name))
   3032			continue;
   3033
   3034		for (j = 0; j < b->size; j++) {
   3035			if (b->items[j] != id)
   3036				continue;
   3037
   3038			*parent_type_id = b->type;
   3039			type_cn = lookup_crush_name(&c->type_names, b->type);
   3040			parent_loc->cl_type_name = type_cn->cn_name;
   3041			parent_loc->cl_name = cn->cn_name;
   3042			return b->id;
   3043		}
   3044	}
   3045
   3046	return 0;  /* no parent */
   3047}
   3048
   3049/*
   3050 * Calculates the locality/distance from an item to a client
   3051 * location expressed in terms of CRUSH hierarchy as a set of
   3052 * (bucket type name, bucket name) pairs.  Specifically, looks
   3053 * for the lowest-valued bucket type for which the location of
   3054 * @id matches one of the locations in @locs, so for standard
   3055 * bucket types (host = 1, rack = 3, datacenter = 8, zone = 9)
   3056 * a matching host is closer than a matching rack and a matching
   3057 * data center is closer than a matching zone.
   3058 *
   3059 * Specifying multiple locations (a "multipath" location) such
   3060 * as "rack=foo1 rack=foo2 datacenter=bar" is allowed -- @locs
   3061 * is a multimap.  The locality will be:
   3062 *
   3063 * - 3 for OSDs in racks foo1 and foo2
   3064 * - 8 for OSDs in data center bar
   3065 * - -1 for all other OSDs
   3066 *
   3067 * The lowest possible bucket type is 1, so the best locality
   3068 * for an OSD is 1 (i.e. a matching host).  Locality 0 would be
   3069 * the OSD itself.
   3070 */
   3071int ceph_get_crush_locality(struct ceph_osdmap *osdmap, int id,
   3072			    struct rb_root *locs)
   3073{
   3074	struct crush_loc loc;
   3075	u16 type_id;
   3076
   3077	/*
   3078	 * Instead of repeated get_immediate_parent() calls,
   3079	 * the location of @id could be obtained with a single
   3080	 * depth-first traversal.
   3081	 */
   3082	for (;;) {
   3083		id = get_immediate_parent(osdmap->crush, id, &type_id, &loc);
   3084		if (id >= 0)
   3085			return -1;  /* not local */
   3086
   3087		if (lookup_crush_loc(locs, &loc))
   3088			return type_id;
   3089	}
   3090}