cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

flow_dissector.c (51324B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2#include <linux/kernel.h>
      3#include <linux/skbuff.h>
      4#include <linux/export.h>
      5#include <linux/ip.h>
      6#include <linux/ipv6.h>
      7#include <linux/if_vlan.h>
      8#include <linux/filter.h>
      9#include <net/dsa.h>
     10#include <net/dst_metadata.h>
     11#include <net/ip.h>
     12#include <net/ipv6.h>
     13#include <net/gre.h>
     14#include <net/pptp.h>
     15#include <net/tipc.h>
     16#include <linux/igmp.h>
     17#include <linux/icmp.h>
     18#include <linux/sctp.h>
     19#include <linux/dccp.h>
     20#include <linux/if_tunnel.h>
     21#include <linux/if_pppox.h>
     22#include <linux/ppp_defs.h>
     23#include <linux/stddef.h>
     24#include <linux/if_ether.h>
     25#include <linux/if_hsr.h>
     26#include <linux/mpls.h>
     27#include <linux/tcp.h>
     28#include <linux/ptp_classify.h>
     29#include <net/flow_dissector.h>
     30#include <scsi/fc/fc_fcoe.h>
     31#include <uapi/linux/batadv_packet.h>
     32#include <linux/bpf.h>
     33#if IS_ENABLED(CONFIG_NF_CONNTRACK)
     34#include <net/netfilter/nf_conntrack_core.h>
     35#include <net/netfilter/nf_conntrack_labels.h>
     36#endif
     37#include <linux/bpf-netns.h>
     38
     39static void dissector_set_key(struct flow_dissector *flow_dissector,
     40			      enum flow_dissector_key_id key_id)
     41{
     42	flow_dissector->used_keys |= (1 << key_id);
     43}
     44
     45void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
     46			     const struct flow_dissector_key *key,
     47			     unsigned int key_count)
     48{
     49	unsigned int i;
     50
     51	memset(flow_dissector, 0, sizeof(*flow_dissector));
     52
     53	for (i = 0; i < key_count; i++, key++) {
     54		/* User should make sure that every key target offset is within
     55		 * boundaries of unsigned short.
     56		 */
     57		BUG_ON(key->offset > USHRT_MAX);
     58		BUG_ON(dissector_uses_key(flow_dissector,
     59					  key->key_id));
     60
     61		dissector_set_key(flow_dissector, key->key_id);
     62		flow_dissector->offset[key->key_id] = key->offset;
     63	}
     64
     65	/* Ensure that the dissector always includes control and basic key.
     66	 * That way we are able to avoid handling lack of these in fast path.
     67	 */
     68	BUG_ON(!dissector_uses_key(flow_dissector,
     69				   FLOW_DISSECTOR_KEY_CONTROL));
     70	BUG_ON(!dissector_uses_key(flow_dissector,
     71				   FLOW_DISSECTOR_KEY_BASIC));
     72}
     73EXPORT_SYMBOL(skb_flow_dissector_init);
     74
     75#ifdef CONFIG_BPF_SYSCALL
     76int flow_dissector_bpf_prog_attach_check(struct net *net,
     77					 struct bpf_prog *prog)
     78{
     79	enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
     80
     81	if (net == &init_net) {
     82		/* BPF flow dissector in the root namespace overrides
     83		 * any per-net-namespace one. When attaching to root,
     84		 * make sure we don't have any BPF program attached
     85		 * to the non-root namespaces.
     86		 */
     87		struct net *ns;
     88
     89		for_each_net(ns) {
     90			if (ns == &init_net)
     91				continue;
     92			if (rcu_access_pointer(ns->bpf.run_array[type]))
     93				return -EEXIST;
     94		}
     95	} else {
     96		/* Make sure root flow dissector is not attached
     97		 * when attaching to the non-root namespace.
     98		 */
     99		if (rcu_access_pointer(init_net.bpf.run_array[type]))
    100			return -EEXIST;
    101	}
    102
    103	return 0;
    104}
    105#endif /* CONFIG_BPF_SYSCALL */
    106
    107/**
    108 * __skb_flow_get_ports - extract the upper layer ports and return them
    109 * @skb: sk_buff to extract the ports from
    110 * @thoff: transport header offset
    111 * @ip_proto: protocol for which to get port offset
    112 * @data: raw buffer pointer to the packet, if NULL use skb->data
    113 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
    114 *
    115 * The function will try to retrieve the ports at offset thoff + poff where poff
    116 * is the protocol port offset returned from proto_ports_offset
    117 */
    118__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
    119			    const void *data, int hlen)
    120{
    121	int poff = proto_ports_offset(ip_proto);
    122
    123	if (!data) {
    124		data = skb->data;
    125		hlen = skb_headlen(skb);
    126	}
    127
    128	if (poff >= 0) {
    129		__be32 *ports, _ports;
    130
    131		ports = __skb_header_pointer(skb, thoff + poff,
    132					     sizeof(_ports), data, hlen, &_ports);
    133		if (ports)
    134			return *ports;
    135	}
    136
    137	return 0;
    138}
    139EXPORT_SYMBOL(__skb_flow_get_ports);
    140
    141static bool icmp_has_id(u8 type)
    142{
    143	switch (type) {
    144	case ICMP_ECHO:
    145	case ICMP_ECHOREPLY:
    146	case ICMP_TIMESTAMP:
    147	case ICMP_TIMESTAMPREPLY:
    148	case ICMPV6_ECHO_REQUEST:
    149	case ICMPV6_ECHO_REPLY:
    150		return true;
    151	}
    152
    153	return false;
    154}
    155
    156/**
    157 * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields
    158 * @skb: sk_buff to extract from
    159 * @key_icmp: struct flow_dissector_key_icmp to fill
    160 * @data: raw buffer pointer to the packet
    161 * @thoff: offset to extract at
    162 * @hlen: packet header length
    163 */
    164void skb_flow_get_icmp_tci(const struct sk_buff *skb,
    165			   struct flow_dissector_key_icmp *key_icmp,
    166			   const void *data, int thoff, int hlen)
    167{
    168	struct icmphdr *ih, _ih;
    169
    170	ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih);
    171	if (!ih)
    172		return;
    173
    174	key_icmp->type = ih->type;
    175	key_icmp->code = ih->code;
    176
    177	/* As we use 0 to signal that the Id field is not present,
    178	 * avoid confusion with packets without such field
    179	 */
    180	if (icmp_has_id(ih->type))
    181		key_icmp->id = ih->un.echo.id ? ntohs(ih->un.echo.id) : 1;
    182	else
    183		key_icmp->id = 0;
    184}
    185EXPORT_SYMBOL(skb_flow_get_icmp_tci);
    186
    187/* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet
    188 * using skb_flow_get_icmp_tci().
    189 */
    190static void __skb_flow_dissect_icmp(const struct sk_buff *skb,
    191				    struct flow_dissector *flow_dissector,
    192				    void *target_container, const void *data,
    193				    int thoff, int hlen)
    194{
    195	struct flow_dissector_key_icmp *key_icmp;
    196
    197	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP))
    198		return;
    199
    200	key_icmp = skb_flow_dissector_target(flow_dissector,
    201					     FLOW_DISSECTOR_KEY_ICMP,
    202					     target_container);
    203
    204	skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen);
    205}
    206
    207void skb_flow_dissect_meta(const struct sk_buff *skb,
    208			   struct flow_dissector *flow_dissector,
    209			   void *target_container)
    210{
    211	struct flow_dissector_key_meta *meta;
    212
    213	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META))
    214		return;
    215
    216	meta = skb_flow_dissector_target(flow_dissector,
    217					 FLOW_DISSECTOR_KEY_META,
    218					 target_container);
    219	meta->ingress_ifindex = skb->skb_iif;
    220}
    221EXPORT_SYMBOL(skb_flow_dissect_meta);
    222
    223static void
    224skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
    225				   struct flow_dissector *flow_dissector,
    226				   void *target_container)
    227{
    228	struct flow_dissector_key_control *ctrl;
    229
    230	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
    231		return;
    232
    233	ctrl = skb_flow_dissector_target(flow_dissector,
    234					 FLOW_DISSECTOR_KEY_ENC_CONTROL,
    235					 target_container);
    236	ctrl->addr_type = type;
    237}
    238
    239void
    240skb_flow_dissect_ct(const struct sk_buff *skb,
    241		    struct flow_dissector *flow_dissector,
    242		    void *target_container, u16 *ctinfo_map,
    243		    size_t mapsize, bool post_ct, u16 zone)
    244{
    245#if IS_ENABLED(CONFIG_NF_CONNTRACK)
    246	struct flow_dissector_key_ct *key;
    247	enum ip_conntrack_info ctinfo;
    248	struct nf_conn_labels *cl;
    249	struct nf_conn *ct;
    250
    251	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT))
    252		return;
    253
    254	ct = nf_ct_get(skb, &ctinfo);
    255	if (!ct && !post_ct)
    256		return;
    257
    258	key = skb_flow_dissector_target(flow_dissector,
    259					FLOW_DISSECTOR_KEY_CT,
    260					target_container);
    261
    262	if (!ct) {
    263		key->ct_state = TCA_FLOWER_KEY_CT_FLAGS_TRACKED |
    264				TCA_FLOWER_KEY_CT_FLAGS_INVALID;
    265		key->ct_zone = zone;
    266		return;
    267	}
    268
    269	if (ctinfo < mapsize)
    270		key->ct_state = ctinfo_map[ctinfo];
    271#if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)
    272	key->ct_zone = ct->zone.id;
    273#endif
    274#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
    275	key->ct_mark = ct->mark;
    276#endif
    277
    278	cl = nf_ct_labels_find(ct);
    279	if (cl)
    280		memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels));
    281#endif /* CONFIG_NF_CONNTRACK */
    282}
    283EXPORT_SYMBOL(skb_flow_dissect_ct);
    284
    285void
    286skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
    287			     struct flow_dissector *flow_dissector,
    288			     void *target_container)
    289{
    290	struct ip_tunnel_info *info;
    291	struct ip_tunnel_key *key;
    292
    293	/* A quick check to see if there might be something to do. */
    294	if (!dissector_uses_key(flow_dissector,
    295				FLOW_DISSECTOR_KEY_ENC_KEYID) &&
    296	    !dissector_uses_key(flow_dissector,
    297				FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
    298	    !dissector_uses_key(flow_dissector,
    299				FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
    300	    !dissector_uses_key(flow_dissector,
    301				FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
    302	    !dissector_uses_key(flow_dissector,
    303				FLOW_DISSECTOR_KEY_ENC_PORTS) &&
    304	    !dissector_uses_key(flow_dissector,
    305				FLOW_DISSECTOR_KEY_ENC_IP) &&
    306	    !dissector_uses_key(flow_dissector,
    307				FLOW_DISSECTOR_KEY_ENC_OPTS))
    308		return;
    309
    310	info = skb_tunnel_info(skb);
    311	if (!info)
    312		return;
    313
    314	key = &info->key;
    315
    316	switch (ip_tunnel_info_af(info)) {
    317	case AF_INET:
    318		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
    319						   flow_dissector,
    320						   target_container);
    321		if (dissector_uses_key(flow_dissector,
    322				       FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
    323			struct flow_dissector_key_ipv4_addrs *ipv4;
    324
    325			ipv4 = skb_flow_dissector_target(flow_dissector,
    326							 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
    327							 target_container);
    328			ipv4->src = key->u.ipv4.src;
    329			ipv4->dst = key->u.ipv4.dst;
    330		}
    331		break;
    332	case AF_INET6:
    333		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
    334						   flow_dissector,
    335						   target_container);
    336		if (dissector_uses_key(flow_dissector,
    337				       FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
    338			struct flow_dissector_key_ipv6_addrs *ipv6;
    339
    340			ipv6 = skb_flow_dissector_target(flow_dissector,
    341							 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
    342							 target_container);
    343			ipv6->src = key->u.ipv6.src;
    344			ipv6->dst = key->u.ipv6.dst;
    345		}
    346		break;
    347	}
    348
    349	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
    350		struct flow_dissector_key_keyid *keyid;
    351
    352		keyid = skb_flow_dissector_target(flow_dissector,
    353						  FLOW_DISSECTOR_KEY_ENC_KEYID,
    354						  target_container);
    355		keyid->keyid = tunnel_id_to_key32(key->tun_id);
    356	}
    357
    358	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
    359		struct flow_dissector_key_ports *tp;
    360
    361		tp = skb_flow_dissector_target(flow_dissector,
    362					       FLOW_DISSECTOR_KEY_ENC_PORTS,
    363					       target_container);
    364		tp->src = key->tp_src;
    365		tp->dst = key->tp_dst;
    366	}
    367
    368	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
    369		struct flow_dissector_key_ip *ip;
    370
    371		ip = skb_flow_dissector_target(flow_dissector,
    372					       FLOW_DISSECTOR_KEY_ENC_IP,
    373					       target_container);
    374		ip->tos = key->tos;
    375		ip->ttl = key->ttl;
    376	}
    377
    378	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
    379		struct flow_dissector_key_enc_opts *enc_opt;
    380
    381		enc_opt = skb_flow_dissector_target(flow_dissector,
    382						    FLOW_DISSECTOR_KEY_ENC_OPTS,
    383						    target_container);
    384
    385		if (info->options_len) {
    386			enc_opt->len = info->options_len;
    387			ip_tunnel_info_opts_get(enc_opt->data, info);
    388			enc_opt->dst_opt_type = info->key.tun_flags &
    389						TUNNEL_OPTIONS_PRESENT;
    390		}
    391	}
    392}
    393EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
    394
    395void skb_flow_dissect_hash(const struct sk_buff *skb,
    396			   struct flow_dissector *flow_dissector,
    397			   void *target_container)
    398{
    399	struct flow_dissector_key_hash *key;
    400
    401	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_HASH))
    402		return;
    403
    404	key = skb_flow_dissector_target(flow_dissector,
    405					FLOW_DISSECTOR_KEY_HASH,
    406					target_container);
    407
    408	key->hash = skb_get_hash_raw(skb);
    409}
    410EXPORT_SYMBOL(skb_flow_dissect_hash);
    411
    412static enum flow_dissect_ret
    413__skb_flow_dissect_mpls(const struct sk_buff *skb,
    414			struct flow_dissector *flow_dissector,
    415			void *target_container, const void *data, int nhoff,
    416			int hlen, int lse_index, bool *entropy_label)
    417{
    418	struct mpls_label *hdr, _hdr;
    419	u32 entry, label, bos;
    420
    421	if (!dissector_uses_key(flow_dissector,
    422				FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
    423	    !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
    424		return FLOW_DISSECT_RET_OUT_GOOD;
    425
    426	if (lse_index >= FLOW_DIS_MPLS_MAX)
    427		return FLOW_DISSECT_RET_OUT_GOOD;
    428
    429	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
    430				   hlen, &_hdr);
    431	if (!hdr)
    432		return FLOW_DISSECT_RET_OUT_BAD;
    433
    434	entry = ntohl(hdr->entry);
    435	label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
    436	bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT;
    437
    438	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
    439		struct flow_dissector_key_mpls *key_mpls;
    440		struct flow_dissector_mpls_lse *lse;
    441
    442		key_mpls = skb_flow_dissector_target(flow_dissector,
    443						     FLOW_DISSECTOR_KEY_MPLS,
    444						     target_container);
    445		lse = &key_mpls->ls[lse_index];
    446
    447		lse->mpls_ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
    448		lse->mpls_bos = bos;
    449		lse->mpls_tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT;
    450		lse->mpls_label = label;
    451		dissector_set_mpls_lse(key_mpls, lse_index);
    452	}
    453
    454	if (*entropy_label &&
    455	    dissector_uses_key(flow_dissector,
    456			       FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
    457		struct flow_dissector_key_keyid *key_keyid;
    458
    459		key_keyid = skb_flow_dissector_target(flow_dissector,
    460						      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
    461						      target_container);
    462		key_keyid->keyid = cpu_to_be32(label);
    463	}
    464
    465	*entropy_label = label == MPLS_LABEL_ENTROPY;
    466
    467	return bos ? FLOW_DISSECT_RET_OUT_GOOD : FLOW_DISSECT_RET_PROTO_AGAIN;
    468}
    469
    470static enum flow_dissect_ret
    471__skb_flow_dissect_arp(const struct sk_buff *skb,
    472		       struct flow_dissector *flow_dissector,
    473		       void *target_container, const void *data,
    474		       int nhoff, int hlen)
    475{
    476	struct flow_dissector_key_arp *key_arp;
    477	struct {
    478		unsigned char ar_sha[ETH_ALEN];
    479		unsigned char ar_sip[4];
    480		unsigned char ar_tha[ETH_ALEN];
    481		unsigned char ar_tip[4];
    482	} *arp_eth, _arp_eth;
    483	const struct arphdr *arp;
    484	struct arphdr _arp;
    485
    486	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
    487		return FLOW_DISSECT_RET_OUT_GOOD;
    488
    489	arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
    490				   hlen, &_arp);
    491	if (!arp)
    492		return FLOW_DISSECT_RET_OUT_BAD;
    493
    494	if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
    495	    arp->ar_pro != htons(ETH_P_IP) ||
    496	    arp->ar_hln != ETH_ALEN ||
    497	    arp->ar_pln != 4 ||
    498	    (arp->ar_op != htons(ARPOP_REPLY) &&
    499	     arp->ar_op != htons(ARPOP_REQUEST)))
    500		return FLOW_DISSECT_RET_OUT_BAD;
    501
    502	arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
    503				       sizeof(_arp_eth), data,
    504				       hlen, &_arp_eth);
    505	if (!arp_eth)
    506		return FLOW_DISSECT_RET_OUT_BAD;
    507
    508	key_arp = skb_flow_dissector_target(flow_dissector,
    509					    FLOW_DISSECTOR_KEY_ARP,
    510					    target_container);
    511
    512	memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
    513	memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
    514
    515	/* Only store the lower byte of the opcode;
    516	 * this covers ARPOP_REPLY and ARPOP_REQUEST.
    517	 */
    518	key_arp->op = ntohs(arp->ar_op) & 0xff;
    519
    520	ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
    521	ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
    522
    523	return FLOW_DISSECT_RET_OUT_GOOD;
    524}
    525
    526static enum flow_dissect_ret
    527__skb_flow_dissect_gre(const struct sk_buff *skb,
    528		       struct flow_dissector_key_control *key_control,
    529		       struct flow_dissector *flow_dissector,
    530		       void *target_container, const void *data,
    531		       __be16 *p_proto, int *p_nhoff, int *p_hlen,
    532		       unsigned int flags)
    533{
    534	struct flow_dissector_key_keyid *key_keyid;
    535	struct gre_base_hdr *hdr, _hdr;
    536	int offset = 0;
    537	u16 gre_ver;
    538
    539	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
    540				   data, *p_hlen, &_hdr);
    541	if (!hdr)
    542		return FLOW_DISSECT_RET_OUT_BAD;
    543
    544	/* Only look inside GRE without routing */
    545	if (hdr->flags & GRE_ROUTING)
    546		return FLOW_DISSECT_RET_OUT_GOOD;
    547
    548	/* Only look inside GRE for version 0 and 1 */
    549	gre_ver = ntohs(hdr->flags & GRE_VERSION);
    550	if (gre_ver > 1)
    551		return FLOW_DISSECT_RET_OUT_GOOD;
    552
    553	*p_proto = hdr->protocol;
    554	if (gre_ver) {
    555		/* Version1 must be PPTP, and check the flags */
    556		if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
    557			return FLOW_DISSECT_RET_OUT_GOOD;
    558	}
    559
    560	offset += sizeof(struct gre_base_hdr);
    561
    562	if (hdr->flags & GRE_CSUM)
    563		offset += sizeof_field(struct gre_full_hdr, csum) +
    564			  sizeof_field(struct gre_full_hdr, reserved1);
    565
    566	if (hdr->flags & GRE_KEY) {
    567		const __be32 *keyid;
    568		__be32 _keyid;
    569
    570		keyid = __skb_header_pointer(skb, *p_nhoff + offset,
    571					     sizeof(_keyid),
    572					     data, *p_hlen, &_keyid);
    573		if (!keyid)
    574			return FLOW_DISSECT_RET_OUT_BAD;
    575
    576		if (dissector_uses_key(flow_dissector,
    577				       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
    578			key_keyid = skb_flow_dissector_target(flow_dissector,
    579							      FLOW_DISSECTOR_KEY_GRE_KEYID,
    580							      target_container);
    581			if (gre_ver == 0)
    582				key_keyid->keyid = *keyid;
    583			else
    584				key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
    585		}
    586		offset += sizeof_field(struct gre_full_hdr, key);
    587	}
    588
    589	if (hdr->flags & GRE_SEQ)
    590		offset += sizeof_field(struct pptp_gre_header, seq);
    591
    592	if (gre_ver == 0) {
    593		if (*p_proto == htons(ETH_P_TEB)) {
    594			const struct ethhdr *eth;
    595			struct ethhdr _eth;
    596
    597			eth = __skb_header_pointer(skb, *p_nhoff + offset,
    598						   sizeof(_eth),
    599						   data, *p_hlen, &_eth);
    600			if (!eth)
    601				return FLOW_DISSECT_RET_OUT_BAD;
    602			*p_proto = eth->h_proto;
    603			offset += sizeof(*eth);
    604
    605			/* Cap headers that we access via pointers at the
    606			 * end of the Ethernet header as our maximum alignment
    607			 * at that point is only 2 bytes.
    608			 */
    609			if (NET_IP_ALIGN)
    610				*p_hlen = *p_nhoff + offset;
    611		}
    612	} else { /* version 1, must be PPTP */
    613		u8 _ppp_hdr[PPP_HDRLEN];
    614		u8 *ppp_hdr;
    615
    616		if (hdr->flags & GRE_ACK)
    617			offset += sizeof_field(struct pptp_gre_header, ack);
    618
    619		ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
    620					       sizeof(_ppp_hdr),
    621					       data, *p_hlen, _ppp_hdr);
    622		if (!ppp_hdr)
    623			return FLOW_DISSECT_RET_OUT_BAD;
    624
    625		switch (PPP_PROTOCOL(ppp_hdr)) {
    626		case PPP_IP:
    627			*p_proto = htons(ETH_P_IP);
    628			break;
    629		case PPP_IPV6:
    630			*p_proto = htons(ETH_P_IPV6);
    631			break;
    632		default:
    633			/* Could probably catch some more like MPLS */
    634			break;
    635		}
    636
    637		offset += PPP_HDRLEN;
    638	}
    639
    640	*p_nhoff += offset;
    641	key_control->flags |= FLOW_DIS_ENCAPSULATION;
    642	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
    643		return FLOW_DISSECT_RET_OUT_GOOD;
    644
    645	return FLOW_DISSECT_RET_PROTO_AGAIN;
    646}
    647
    648/**
    649 * __skb_flow_dissect_batadv() - dissect batman-adv header
    650 * @skb: sk_buff to with the batman-adv header
    651 * @key_control: flow dissectors control key
    652 * @data: raw buffer pointer to the packet, if NULL use skb->data
    653 * @p_proto: pointer used to update the protocol to process next
    654 * @p_nhoff: pointer used to update inner network header offset
    655 * @hlen: packet header length
    656 * @flags: any combination of FLOW_DISSECTOR_F_*
    657 *
    658 * ETH_P_BATMAN packets are tried to be dissected. Only
    659 * &struct batadv_unicast packets are actually processed because they contain an
    660 * inner ethernet header and are usually followed by actual network header. This
    661 * allows the flow dissector to continue processing the packet.
    662 *
    663 * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
    664 *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
    665 *  otherwise FLOW_DISSECT_RET_OUT_BAD
    666 */
    667static enum flow_dissect_ret
    668__skb_flow_dissect_batadv(const struct sk_buff *skb,
    669			  struct flow_dissector_key_control *key_control,
    670			  const void *data, __be16 *p_proto, int *p_nhoff,
    671			  int hlen, unsigned int flags)
    672{
    673	struct {
    674		struct batadv_unicast_packet batadv_unicast;
    675		struct ethhdr eth;
    676	} *hdr, _hdr;
    677
    678	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
    679				   &_hdr);
    680	if (!hdr)
    681		return FLOW_DISSECT_RET_OUT_BAD;
    682
    683	if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
    684		return FLOW_DISSECT_RET_OUT_BAD;
    685
    686	if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
    687		return FLOW_DISSECT_RET_OUT_BAD;
    688
    689	*p_proto = hdr->eth.h_proto;
    690	*p_nhoff += sizeof(*hdr);
    691
    692	key_control->flags |= FLOW_DIS_ENCAPSULATION;
    693	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
    694		return FLOW_DISSECT_RET_OUT_GOOD;
    695
    696	return FLOW_DISSECT_RET_PROTO_AGAIN;
    697}
    698
    699static void
    700__skb_flow_dissect_tcp(const struct sk_buff *skb,
    701		       struct flow_dissector *flow_dissector,
    702		       void *target_container, const void *data,
    703		       int thoff, int hlen)
    704{
    705	struct flow_dissector_key_tcp *key_tcp;
    706	struct tcphdr *th, _th;
    707
    708	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
    709		return;
    710
    711	th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
    712	if (!th)
    713		return;
    714
    715	if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
    716		return;
    717
    718	key_tcp = skb_flow_dissector_target(flow_dissector,
    719					    FLOW_DISSECTOR_KEY_TCP,
    720					    target_container);
    721	key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
    722}
    723
    724static void
    725__skb_flow_dissect_ports(const struct sk_buff *skb,
    726			 struct flow_dissector *flow_dissector,
    727			 void *target_container, const void *data,
    728			 int nhoff, u8 ip_proto, int hlen)
    729{
    730	enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX;
    731	struct flow_dissector_key_ports *key_ports;
    732
    733	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
    734		dissector_ports = FLOW_DISSECTOR_KEY_PORTS;
    735	else if (dissector_uses_key(flow_dissector,
    736				    FLOW_DISSECTOR_KEY_PORTS_RANGE))
    737		dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE;
    738
    739	if (dissector_ports == FLOW_DISSECTOR_KEY_MAX)
    740		return;
    741
    742	key_ports = skb_flow_dissector_target(flow_dissector,
    743					      dissector_ports,
    744					      target_container);
    745	key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
    746						data, hlen);
    747}
    748
    749static void
    750__skb_flow_dissect_ipv4(const struct sk_buff *skb,
    751			struct flow_dissector *flow_dissector,
    752			void *target_container, const void *data,
    753			const struct iphdr *iph)
    754{
    755	struct flow_dissector_key_ip *key_ip;
    756
    757	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
    758		return;
    759
    760	key_ip = skb_flow_dissector_target(flow_dissector,
    761					   FLOW_DISSECTOR_KEY_IP,
    762					   target_container);
    763	key_ip->tos = iph->tos;
    764	key_ip->ttl = iph->ttl;
    765}
    766
    767static void
    768__skb_flow_dissect_ipv6(const struct sk_buff *skb,
    769			struct flow_dissector *flow_dissector,
    770			void *target_container, const void *data,
    771			const struct ipv6hdr *iph)
    772{
    773	struct flow_dissector_key_ip *key_ip;
    774
    775	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
    776		return;
    777
    778	key_ip = skb_flow_dissector_target(flow_dissector,
    779					   FLOW_DISSECTOR_KEY_IP,
    780					   target_container);
    781	key_ip->tos = ipv6_get_dsfield(iph);
    782	key_ip->ttl = iph->hop_limit;
    783}
    784
    785/* Maximum number of protocol headers that can be parsed in
    786 * __skb_flow_dissect
    787 */
    788#define MAX_FLOW_DISSECT_HDRS	15
    789
    790static bool skb_flow_dissect_allowed(int *num_hdrs)
    791{
    792	++*num_hdrs;
    793
    794	return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
    795}
    796
    797static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
    798				     struct flow_dissector *flow_dissector,
    799				     void *target_container)
    800{
    801	struct flow_dissector_key_ports *key_ports = NULL;
    802	struct flow_dissector_key_control *key_control;
    803	struct flow_dissector_key_basic *key_basic;
    804	struct flow_dissector_key_addrs *key_addrs;
    805	struct flow_dissector_key_tags *key_tags;
    806
    807	key_control = skb_flow_dissector_target(flow_dissector,
    808						FLOW_DISSECTOR_KEY_CONTROL,
    809						target_container);
    810	key_control->thoff = flow_keys->thoff;
    811	if (flow_keys->is_frag)
    812		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
    813	if (flow_keys->is_first_frag)
    814		key_control->flags |= FLOW_DIS_FIRST_FRAG;
    815	if (flow_keys->is_encap)
    816		key_control->flags |= FLOW_DIS_ENCAPSULATION;
    817
    818	key_basic = skb_flow_dissector_target(flow_dissector,
    819					      FLOW_DISSECTOR_KEY_BASIC,
    820					      target_container);
    821	key_basic->n_proto = flow_keys->n_proto;
    822	key_basic->ip_proto = flow_keys->ip_proto;
    823
    824	if (flow_keys->addr_proto == ETH_P_IP &&
    825	    dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
    826		key_addrs = skb_flow_dissector_target(flow_dissector,
    827						      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
    828						      target_container);
    829		key_addrs->v4addrs.src = flow_keys->ipv4_src;
    830		key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
    831		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
    832	} else if (flow_keys->addr_proto == ETH_P_IPV6 &&
    833		   dissector_uses_key(flow_dissector,
    834				      FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
    835		key_addrs = skb_flow_dissector_target(flow_dissector,
    836						      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
    837						      target_container);
    838		memcpy(&key_addrs->v6addrs.src, &flow_keys->ipv6_src,
    839		       sizeof(key_addrs->v6addrs.src));
    840		memcpy(&key_addrs->v6addrs.dst, &flow_keys->ipv6_dst,
    841		       sizeof(key_addrs->v6addrs.dst));
    842		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
    843	}
    844
    845	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
    846		key_ports = skb_flow_dissector_target(flow_dissector,
    847						      FLOW_DISSECTOR_KEY_PORTS,
    848						      target_container);
    849	else if (dissector_uses_key(flow_dissector,
    850				    FLOW_DISSECTOR_KEY_PORTS_RANGE))
    851		key_ports = skb_flow_dissector_target(flow_dissector,
    852						      FLOW_DISSECTOR_KEY_PORTS_RANGE,
    853						      target_container);
    854
    855	if (key_ports) {
    856		key_ports->src = flow_keys->sport;
    857		key_ports->dst = flow_keys->dport;
    858	}
    859
    860	if (dissector_uses_key(flow_dissector,
    861			       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
    862		key_tags = skb_flow_dissector_target(flow_dissector,
    863						     FLOW_DISSECTOR_KEY_FLOW_LABEL,
    864						     target_container);
    865		key_tags->flow_label = ntohl(flow_keys->flow_label);
    866	}
    867}
    868
    869bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
    870		      __be16 proto, int nhoff, int hlen, unsigned int flags)
    871{
    872	struct bpf_flow_keys *flow_keys = ctx->flow_keys;
    873	u32 result;
    874
    875	/* Pass parameters to the BPF program */
    876	memset(flow_keys, 0, sizeof(*flow_keys));
    877	flow_keys->n_proto = proto;
    878	flow_keys->nhoff = nhoff;
    879	flow_keys->thoff = flow_keys->nhoff;
    880
    881	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG !=
    882		     (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG);
    883	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL !=
    884		     (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
    885	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP !=
    886		     (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP);
    887	flow_keys->flags = flags;
    888
    889	result = bpf_prog_run_pin_on_cpu(prog, ctx);
    890
    891	flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
    892	flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
    893				   flow_keys->nhoff, hlen);
    894
    895	return result == BPF_OK;
    896}
    897
    898/**
    899 * __skb_flow_dissect - extract the flow_keys struct and return it
    900 * @net: associated network namespace, derived from @skb if NULL
    901 * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
    902 * @flow_dissector: list of keys to dissect
    903 * @target_container: target structure to put dissected values into
    904 * @data: raw buffer pointer to the packet, if NULL use skb->data
    905 * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
    906 * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
    907 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
    908 * @flags: flags that control the dissection process, e.g.
    909 *         FLOW_DISSECTOR_F_STOP_AT_ENCAP.
    910 *
    911 * The function will try to retrieve individual keys into target specified
    912 * by flow_dissector from either the skbuff or a raw buffer specified by the
    913 * rest parameters.
    914 *
    915 * Caller must take care of zeroing target container memory.
    916 */
    917bool __skb_flow_dissect(const struct net *net,
    918			const struct sk_buff *skb,
    919			struct flow_dissector *flow_dissector,
    920			void *target_container, const void *data,
    921			__be16 proto, int nhoff, int hlen, unsigned int flags)
    922{
    923	struct flow_dissector_key_control *key_control;
    924	struct flow_dissector_key_basic *key_basic;
    925	struct flow_dissector_key_addrs *key_addrs;
    926	struct flow_dissector_key_tags *key_tags;
    927	struct flow_dissector_key_vlan *key_vlan;
    928	enum flow_dissect_ret fdret;
    929	enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
    930	bool mpls_el = false;
    931	int mpls_lse = 0;
    932	int num_hdrs = 0;
    933	u8 ip_proto = 0;
    934	bool ret;
    935
    936	if (!data) {
    937		data = skb->data;
    938		proto = skb_vlan_tag_present(skb) ?
    939			 skb->vlan_proto : skb->protocol;
    940		nhoff = skb_network_offset(skb);
    941		hlen = skb_headlen(skb);
    942#if IS_ENABLED(CONFIG_NET_DSA)
    943		if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) &&
    944			     proto == htons(ETH_P_XDSA))) {
    945			const struct dsa_device_ops *ops;
    946			int offset = 0;
    947
    948			ops = skb->dev->dsa_ptr->tag_ops;
    949			/* Only DSA header taggers break flow dissection */
    950			if (ops->needed_headroom) {
    951				if (ops->flow_dissect)
    952					ops->flow_dissect(skb, &proto, &offset);
    953				else
    954					dsa_tag_generic_flow_dissect(skb,
    955								     &proto,
    956								     &offset);
    957				hlen -= offset;
    958				nhoff += offset;
    959			}
    960		}
    961#endif
    962	}
    963
    964	/* It is ensured by skb_flow_dissector_init() that control key will
    965	 * be always present.
    966	 */
    967	key_control = skb_flow_dissector_target(flow_dissector,
    968						FLOW_DISSECTOR_KEY_CONTROL,
    969						target_container);
    970
    971	/* It is ensured by skb_flow_dissector_init() that basic key will
    972	 * be always present.
    973	 */
    974	key_basic = skb_flow_dissector_target(flow_dissector,
    975					      FLOW_DISSECTOR_KEY_BASIC,
    976					      target_container);
    977
    978	if (skb) {
    979		if (!net) {
    980			if (skb->dev)
    981				net = dev_net(skb->dev);
    982			else if (skb->sk)
    983				net = sock_net(skb->sk);
    984		}
    985	}
    986
    987	WARN_ON_ONCE(!net);
    988	if (net) {
    989		enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
    990		struct bpf_prog_array *run_array;
    991
    992		rcu_read_lock();
    993		run_array = rcu_dereference(init_net.bpf.run_array[type]);
    994		if (!run_array)
    995			run_array = rcu_dereference(net->bpf.run_array[type]);
    996
    997		if (run_array) {
    998			struct bpf_flow_keys flow_keys;
    999			struct bpf_flow_dissector ctx = {
   1000				.flow_keys = &flow_keys,
   1001				.data = data,
   1002				.data_end = data + hlen,
   1003			};
   1004			__be16 n_proto = proto;
   1005			struct bpf_prog *prog;
   1006
   1007			if (skb) {
   1008				ctx.skb = skb;
   1009				/* we can't use 'proto' in the skb case
   1010				 * because it might be set to skb->vlan_proto
   1011				 * which has been pulled from the data
   1012				 */
   1013				n_proto = skb->protocol;
   1014			}
   1015
   1016			prog = READ_ONCE(run_array->items[0].prog);
   1017			ret = bpf_flow_dissect(prog, &ctx, n_proto, nhoff,
   1018					       hlen, flags);
   1019			__skb_flow_bpf_to_target(&flow_keys, flow_dissector,
   1020						 target_container);
   1021			rcu_read_unlock();
   1022			return ret;
   1023		}
   1024		rcu_read_unlock();
   1025	}
   1026
   1027	if (dissector_uses_key(flow_dissector,
   1028			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
   1029		struct ethhdr *eth = eth_hdr(skb);
   1030		struct flow_dissector_key_eth_addrs *key_eth_addrs;
   1031
   1032		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
   1033							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
   1034							  target_container);
   1035		memcpy(key_eth_addrs, eth, sizeof(*key_eth_addrs));
   1036	}
   1037
   1038	if (dissector_uses_key(flow_dissector,
   1039			       FLOW_DISSECTOR_KEY_NUM_OF_VLANS)) {
   1040		struct flow_dissector_key_num_of_vlans *key_num_of_vlans;
   1041
   1042		key_num_of_vlans = skb_flow_dissector_target(flow_dissector,
   1043							     FLOW_DISSECTOR_KEY_NUM_OF_VLANS,
   1044							     target_container);
   1045		key_num_of_vlans->num_of_vlans = 0;
   1046	}
   1047
   1048proto_again:
   1049	fdret = FLOW_DISSECT_RET_CONTINUE;
   1050
   1051	switch (proto) {
   1052	case htons(ETH_P_IP): {
   1053		const struct iphdr *iph;
   1054		struct iphdr _iph;
   1055
   1056		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
   1057		if (!iph || iph->ihl < 5) {
   1058			fdret = FLOW_DISSECT_RET_OUT_BAD;
   1059			break;
   1060		}
   1061
   1062		nhoff += iph->ihl * 4;
   1063
   1064		ip_proto = iph->protocol;
   1065
   1066		if (dissector_uses_key(flow_dissector,
   1067				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
   1068			key_addrs = skb_flow_dissector_target(flow_dissector,
   1069							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
   1070							      target_container);
   1071
   1072			memcpy(&key_addrs->v4addrs.src, &iph->saddr,
   1073			       sizeof(key_addrs->v4addrs.src));
   1074			memcpy(&key_addrs->v4addrs.dst, &iph->daddr,
   1075			       sizeof(key_addrs->v4addrs.dst));
   1076			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
   1077		}
   1078
   1079		__skb_flow_dissect_ipv4(skb, flow_dissector,
   1080					target_container, data, iph);
   1081
   1082		if (ip_is_fragment(iph)) {
   1083			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
   1084
   1085			if (iph->frag_off & htons(IP_OFFSET)) {
   1086				fdret = FLOW_DISSECT_RET_OUT_GOOD;
   1087				break;
   1088			} else {
   1089				key_control->flags |= FLOW_DIS_FIRST_FRAG;
   1090				if (!(flags &
   1091				      FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
   1092					fdret = FLOW_DISSECT_RET_OUT_GOOD;
   1093					break;
   1094				}
   1095			}
   1096		}
   1097
   1098		break;
   1099	}
   1100	case htons(ETH_P_IPV6): {
   1101		const struct ipv6hdr *iph;
   1102		struct ipv6hdr _iph;
   1103
   1104		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
   1105		if (!iph) {
   1106			fdret = FLOW_DISSECT_RET_OUT_BAD;
   1107			break;
   1108		}
   1109
   1110		ip_proto = iph->nexthdr;
   1111		nhoff += sizeof(struct ipv6hdr);
   1112
   1113		if (dissector_uses_key(flow_dissector,
   1114				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
   1115			key_addrs = skb_flow_dissector_target(flow_dissector,
   1116							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
   1117							      target_container);
   1118
   1119			memcpy(&key_addrs->v6addrs.src, &iph->saddr,
   1120			       sizeof(key_addrs->v6addrs.src));
   1121			memcpy(&key_addrs->v6addrs.dst, &iph->daddr,
   1122			       sizeof(key_addrs->v6addrs.dst));
   1123			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
   1124		}
   1125
   1126		if ((dissector_uses_key(flow_dissector,
   1127					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
   1128		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
   1129		    ip6_flowlabel(iph)) {
   1130			__be32 flow_label = ip6_flowlabel(iph);
   1131
   1132			if (dissector_uses_key(flow_dissector,
   1133					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
   1134				key_tags = skb_flow_dissector_target(flow_dissector,
   1135								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
   1136								     target_container);
   1137				key_tags->flow_label = ntohl(flow_label);
   1138			}
   1139			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
   1140				fdret = FLOW_DISSECT_RET_OUT_GOOD;
   1141				break;
   1142			}
   1143		}
   1144
   1145		__skb_flow_dissect_ipv6(skb, flow_dissector,
   1146					target_container, data, iph);
   1147
   1148		break;
   1149	}
   1150	case htons(ETH_P_8021AD):
   1151	case htons(ETH_P_8021Q): {
   1152		const struct vlan_hdr *vlan = NULL;
   1153		struct vlan_hdr _vlan;
   1154		__be16 saved_vlan_tpid = proto;
   1155
   1156		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
   1157		    skb && skb_vlan_tag_present(skb)) {
   1158			proto = skb->protocol;
   1159		} else {
   1160			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
   1161						    data, hlen, &_vlan);
   1162			if (!vlan) {
   1163				fdret = FLOW_DISSECT_RET_OUT_BAD;
   1164				break;
   1165			}
   1166
   1167			proto = vlan->h_vlan_encapsulated_proto;
   1168			nhoff += sizeof(*vlan);
   1169		}
   1170
   1171		if (dissector_uses_key(flow_dissector,
   1172				       FLOW_DISSECTOR_KEY_NUM_OF_VLANS)) {
   1173			struct flow_dissector_key_num_of_vlans *key_nvs;
   1174
   1175			key_nvs = skb_flow_dissector_target(flow_dissector,
   1176							    FLOW_DISSECTOR_KEY_NUM_OF_VLANS,
   1177							    target_container);
   1178			key_nvs->num_of_vlans++;
   1179		}
   1180
   1181		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
   1182			dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
   1183		} else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
   1184			dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
   1185		} else {
   1186			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
   1187			break;
   1188		}
   1189
   1190		if (dissector_uses_key(flow_dissector, dissector_vlan)) {
   1191			key_vlan = skb_flow_dissector_target(flow_dissector,
   1192							     dissector_vlan,
   1193							     target_container);
   1194
   1195			if (!vlan) {
   1196				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
   1197				key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
   1198			} else {
   1199				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
   1200					VLAN_VID_MASK;
   1201				key_vlan->vlan_priority =
   1202					(ntohs(vlan->h_vlan_TCI) &
   1203					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
   1204			}
   1205			key_vlan->vlan_tpid = saved_vlan_tpid;
   1206			key_vlan->vlan_eth_type = proto;
   1207		}
   1208
   1209		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
   1210		break;
   1211	}
   1212	case htons(ETH_P_PPP_SES): {
   1213		struct {
   1214			struct pppoe_hdr hdr;
   1215			__be16 proto;
   1216		} *hdr, _hdr;
   1217		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
   1218		if (!hdr) {
   1219			fdret = FLOW_DISSECT_RET_OUT_BAD;
   1220			break;
   1221		}
   1222
   1223		nhoff += PPPOE_SES_HLEN;
   1224		switch (hdr->proto) {
   1225		case htons(PPP_IP):
   1226			proto = htons(ETH_P_IP);
   1227			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
   1228			break;
   1229		case htons(PPP_IPV6):
   1230			proto = htons(ETH_P_IPV6);
   1231			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
   1232			break;
   1233		default:
   1234			fdret = FLOW_DISSECT_RET_OUT_BAD;
   1235			break;
   1236		}
   1237		break;
   1238	}
   1239	case htons(ETH_P_TIPC): {
   1240		struct tipc_basic_hdr *hdr, _hdr;
   1241
   1242		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
   1243					   data, hlen, &_hdr);
   1244		if (!hdr) {
   1245			fdret = FLOW_DISSECT_RET_OUT_BAD;
   1246			break;
   1247		}
   1248
   1249		if (dissector_uses_key(flow_dissector,
   1250				       FLOW_DISSECTOR_KEY_TIPC)) {
   1251			key_addrs = skb_flow_dissector_target(flow_dissector,
   1252							      FLOW_DISSECTOR_KEY_TIPC,
   1253							      target_container);
   1254			key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
   1255			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
   1256		}
   1257		fdret = FLOW_DISSECT_RET_OUT_GOOD;
   1258		break;
   1259	}
   1260
   1261	case htons(ETH_P_MPLS_UC):
   1262	case htons(ETH_P_MPLS_MC):
   1263		fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
   1264						target_container, data,
   1265						nhoff, hlen, mpls_lse,
   1266						&mpls_el);
   1267		nhoff += sizeof(struct mpls_label);
   1268		mpls_lse++;
   1269		break;
   1270	case htons(ETH_P_FCOE):
   1271		if ((hlen - nhoff) < FCOE_HEADER_LEN) {
   1272			fdret = FLOW_DISSECT_RET_OUT_BAD;
   1273			break;
   1274		}
   1275
   1276		nhoff += FCOE_HEADER_LEN;
   1277		fdret = FLOW_DISSECT_RET_OUT_GOOD;
   1278		break;
   1279
   1280	case htons(ETH_P_ARP):
   1281	case htons(ETH_P_RARP):
   1282		fdret = __skb_flow_dissect_arp(skb, flow_dissector,
   1283					       target_container, data,
   1284					       nhoff, hlen);
   1285		break;
   1286
   1287	case htons(ETH_P_BATMAN):
   1288		fdret = __skb_flow_dissect_batadv(skb, key_control, data,
   1289						  &proto, &nhoff, hlen, flags);
   1290		break;
   1291
   1292	case htons(ETH_P_1588): {
   1293		struct ptp_header *hdr, _hdr;
   1294
   1295		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
   1296					   hlen, &_hdr);
   1297		if (!hdr) {
   1298			fdret = FLOW_DISSECT_RET_OUT_BAD;
   1299			break;
   1300		}
   1301
   1302		nhoff += ntohs(hdr->message_length);
   1303		fdret = FLOW_DISSECT_RET_OUT_GOOD;
   1304		break;
   1305	}
   1306
   1307	case htons(ETH_P_PRP):
   1308	case htons(ETH_P_HSR): {
   1309		struct hsr_tag *hdr, _hdr;
   1310
   1311		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen,
   1312					   &_hdr);
   1313		if (!hdr) {
   1314			fdret = FLOW_DISSECT_RET_OUT_BAD;
   1315			break;
   1316		}
   1317
   1318		proto = hdr->encap_proto;
   1319		nhoff += HSR_HLEN;
   1320		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
   1321		break;
   1322	}
   1323
   1324	default:
   1325		fdret = FLOW_DISSECT_RET_OUT_BAD;
   1326		break;
   1327	}
   1328
   1329	/* Process result of proto processing */
   1330	switch (fdret) {
   1331	case FLOW_DISSECT_RET_OUT_GOOD:
   1332		goto out_good;
   1333	case FLOW_DISSECT_RET_PROTO_AGAIN:
   1334		if (skb_flow_dissect_allowed(&num_hdrs))
   1335			goto proto_again;
   1336		goto out_good;
   1337	case FLOW_DISSECT_RET_CONTINUE:
   1338	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
   1339		break;
   1340	case FLOW_DISSECT_RET_OUT_BAD:
   1341	default:
   1342		goto out_bad;
   1343	}
   1344
   1345ip_proto_again:
   1346	fdret = FLOW_DISSECT_RET_CONTINUE;
   1347
   1348	switch (ip_proto) {
   1349	case IPPROTO_GRE:
   1350		if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) {
   1351			fdret = FLOW_DISSECT_RET_OUT_GOOD;
   1352			break;
   1353		}
   1354
   1355		fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
   1356					       target_container, data,
   1357					       &proto, &nhoff, &hlen, flags);
   1358		break;
   1359
   1360	case NEXTHDR_HOP:
   1361	case NEXTHDR_ROUTING:
   1362	case NEXTHDR_DEST: {
   1363		u8 _opthdr[2], *opthdr;
   1364
   1365		if (proto != htons(ETH_P_IPV6))
   1366			break;
   1367
   1368		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
   1369					      data, hlen, &_opthdr);
   1370		if (!opthdr) {
   1371			fdret = FLOW_DISSECT_RET_OUT_BAD;
   1372			break;
   1373		}
   1374
   1375		ip_proto = opthdr[0];
   1376		nhoff += (opthdr[1] + 1) << 3;
   1377
   1378		fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
   1379		break;
   1380	}
   1381	case NEXTHDR_FRAGMENT: {
   1382		struct frag_hdr _fh, *fh;
   1383
   1384		if (proto != htons(ETH_P_IPV6))
   1385			break;
   1386
   1387		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
   1388					  data, hlen, &_fh);
   1389
   1390		if (!fh) {
   1391			fdret = FLOW_DISSECT_RET_OUT_BAD;
   1392			break;
   1393		}
   1394
   1395		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
   1396
   1397		nhoff += sizeof(_fh);
   1398		ip_proto = fh->nexthdr;
   1399
   1400		if (!(fh->frag_off & htons(IP6_OFFSET))) {
   1401			key_control->flags |= FLOW_DIS_FIRST_FRAG;
   1402			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
   1403				fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
   1404				break;
   1405			}
   1406		}
   1407
   1408		fdret = FLOW_DISSECT_RET_OUT_GOOD;
   1409		break;
   1410	}
   1411	case IPPROTO_IPIP:
   1412		if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) {
   1413			fdret = FLOW_DISSECT_RET_OUT_GOOD;
   1414			break;
   1415		}
   1416
   1417		proto = htons(ETH_P_IP);
   1418
   1419		key_control->flags |= FLOW_DIS_ENCAPSULATION;
   1420		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
   1421			fdret = FLOW_DISSECT_RET_OUT_GOOD;
   1422			break;
   1423		}
   1424
   1425		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
   1426		break;
   1427
   1428	case IPPROTO_IPV6:
   1429		if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) {
   1430			fdret = FLOW_DISSECT_RET_OUT_GOOD;
   1431			break;
   1432		}
   1433
   1434		proto = htons(ETH_P_IPV6);
   1435
   1436		key_control->flags |= FLOW_DIS_ENCAPSULATION;
   1437		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
   1438			fdret = FLOW_DISSECT_RET_OUT_GOOD;
   1439			break;
   1440		}
   1441
   1442		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
   1443		break;
   1444
   1445
   1446	case IPPROTO_MPLS:
   1447		proto = htons(ETH_P_MPLS_UC);
   1448		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
   1449		break;
   1450
   1451	case IPPROTO_TCP:
   1452		__skb_flow_dissect_tcp(skb, flow_dissector, target_container,
   1453				       data, nhoff, hlen);
   1454		break;
   1455
   1456	case IPPROTO_ICMP:
   1457	case IPPROTO_ICMPV6:
   1458		__skb_flow_dissect_icmp(skb, flow_dissector, target_container,
   1459					data, nhoff, hlen);
   1460		break;
   1461
   1462	default:
   1463		break;
   1464	}
   1465
   1466	if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT))
   1467		__skb_flow_dissect_ports(skb, flow_dissector, target_container,
   1468					 data, nhoff, ip_proto, hlen);
   1469
   1470	/* Process result of IP proto processing */
   1471	switch (fdret) {
   1472	case FLOW_DISSECT_RET_PROTO_AGAIN:
   1473		if (skb_flow_dissect_allowed(&num_hdrs))
   1474			goto proto_again;
   1475		break;
   1476	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
   1477		if (skb_flow_dissect_allowed(&num_hdrs))
   1478			goto ip_proto_again;
   1479		break;
   1480	case FLOW_DISSECT_RET_OUT_GOOD:
   1481	case FLOW_DISSECT_RET_CONTINUE:
   1482		break;
   1483	case FLOW_DISSECT_RET_OUT_BAD:
   1484	default:
   1485		goto out_bad;
   1486	}
   1487
   1488out_good:
   1489	ret = true;
   1490
   1491out:
   1492	key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
   1493	key_basic->n_proto = proto;
   1494	key_basic->ip_proto = ip_proto;
   1495
   1496	return ret;
   1497
   1498out_bad:
   1499	ret = false;
   1500	goto out;
   1501}
   1502EXPORT_SYMBOL(__skb_flow_dissect);
   1503
   1504static siphash_aligned_key_t hashrnd;
   1505static __always_inline void __flow_hash_secret_init(void)
   1506{
   1507	net_get_random_once(&hashrnd, sizeof(hashrnd));
   1508}
   1509
   1510static const void *flow_keys_hash_start(const struct flow_keys *flow)
   1511{
   1512	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
   1513	return &flow->FLOW_KEYS_HASH_START_FIELD;
   1514}
   1515
   1516static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
   1517{
   1518	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
   1519
   1520	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
   1521
   1522	switch (flow->control.addr_type) {
   1523	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
   1524		diff -= sizeof(flow->addrs.v4addrs);
   1525		break;
   1526	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
   1527		diff -= sizeof(flow->addrs.v6addrs);
   1528		break;
   1529	case FLOW_DISSECTOR_KEY_TIPC:
   1530		diff -= sizeof(flow->addrs.tipckey);
   1531		break;
   1532	}
   1533	return sizeof(*flow) - diff;
   1534}
   1535
   1536__be32 flow_get_u32_src(const struct flow_keys *flow)
   1537{
   1538	switch (flow->control.addr_type) {
   1539	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
   1540		return flow->addrs.v4addrs.src;
   1541	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
   1542		return (__force __be32)ipv6_addr_hash(
   1543			&flow->addrs.v6addrs.src);
   1544	case FLOW_DISSECTOR_KEY_TIPC:
   1545		return flow->addrs.tipckey.key;
   1546	default:
   1547		return 0;
   1548	}
   1549}
   1550EXPORT_SYMBOL(flow_get_u32_src);
   1551
   1552__be32 flow_get_u32_dst(const struct flow_keys *flow)
   1553{
   1554	switch (flow->control.addr_type) {
   1555	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
   1556		return flow->addrs.v4addrs.dst;
   1557	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
   1558		return (__force __be32)ipv6_addr_hash(
   1559			&flow->addrs.v6addrs.dst);
   1560	default:
   1561		return 0;
   1562	}
   1563}
   1564EXPORT_SYMBOL(flow_get_u32_dst);
   1565
   1566/* Sort the source and destination IP and the ports,
   1567 * to have consistent hash within the two directions
   1568 */
   1569static inline void __flow_hash_consistentify(struct flow_keys *keys)
   1570{
   1571	int addr_diff, i;
   1572
   1573	switch (keys->control.addr_type) {
   1574	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
   1575		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
   1576			    (__force u32)keys->addrs.v4addrs.src;
   1577		if (addr_diff < 0)
   1578			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
   1579
   1580		if ((__force u16)keys->ports.dst <
   1581		    (__force u16)keys->ports.src) {
   1582			swap(keys->ports.src, keys->ports.dst);
   1583		}
   1584		break;
   1585	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
   1586		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
   1587				   &keys->addrs.v6addrs.src,
   1588				   sizeof(keys->addrs.v6addrs.dst));
   1589		if (addr_diff < 0) {
   1590			for (i = 0; i < 4; i++)
   1591				swap(keys->addrs.v6addrs.src.s6_addr32[i],
   1592				     keys->addrs.v6addrs.dst.s6_addr32[i]);
   1593		}
   1594		if ((__force u16)keys->ports.dst <
   1595		    (__force u16)keys->ports.src) {
   1596			swap(keys->ports.src, keys->ports.dst);
   1597		}
   1598		break;
   1599	}
   1600}
   1601
   1602static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
   1603					const siphash_key_t *keyval)
   1604{
   1605	u32 hash;
   1606
   1607	__flow_hash_consistentify(keys);
   1608
   1609	hash = siphash(flow_keys_hash_start(keys),
   1610		       flow_keys_hash_length(keys), keyval);
   1611	if (!hash)
   1612		hash = 1;
   1613
   1614	return hash;
   1615}
   1616
   1617u32 flow_hash_from_keys(struct flow_keys *keys)
   1618{
   1619	__flow_hash_secret_init();
   1620	return __flow_hash_from_keys(keys, &hashrnd);
   1621}
   1622EXPORT_SYMBOL(flow_hash_from_keys);
   1623
   1624static inline u32 ___skb_get_hash(const struct sk_buff *skb,
   1625				  struct flow_keys *keys,
   1626				  const siphash_key_t *keyval)
   1627{
   1628	skb_flow_dissect_flow_keys(skb, keys,
   1629				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
   1630
   1631	return __flow_hash_from_keys(keys, keyval);
   1632}
   1633
   1634struct _flow_keys_digest_data {
   1635	__be16	n_proto;
   1636	u8	ip_proto;
   1637	u8	padding;
   1638	__be32	ports;
   1639	__be32	src;
   1640	__be32	dst;
   1641};
   1642
   1643void make_flow_keys_digest(struct flow_keys_digest *digest,
   1644			   const struct flow_keys *flow)
   1645{
   1646	struct _flow_keys_digest_data *data =
   1647	    (struct _flow_keys_digest_data *)digest;
   1648
   1649	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
   1650
   1651	memset(digest, 0, sizeof(*digest));
   1652
   1653	data->n_proto = flow->basic.n_proto;
   1654	data->ip_proto = flow->basic.ip_proto;
   1655	data->ports = flow->ports.ports;
   1656	data->src = flow->addrs.v4addrs.src;
   1657	data->dst = flow->addrs.v4addrs.dst;
   1658}
   1659EXPORT_SYMBOL(make_flow_keys_digest);
   1660
   1661static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
   1662
   1663u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
   1664{
   1665	struct flow_keys keys;
   1666
   1667	__flow_hash_secret_init();
   1668
   1669	memset(&keys, 0, sizeof(keys));
   1670	__skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
   1671			   &keys, NULL, 0, 0, 0,
   1672			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
   1673
   1674	return __flow_hash_from_keys(&keys, &hashrnd);
   1675}
   1676EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
   1677
   1678/**
   1679 * __skb_get_hash: calculate a flow hash
   1680 * @skb: sk_buff to calculate flow hash from
   1681 *
   1682 * This function calculates a flow hash based on src/dst addresses
   1683 * and src/dst port numbers.  Sets hash in skb to non-zero hash value
   1684 * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
   1685 * if hash is a canonical 4-tuple hash over transport ports.
   1686 */
   1687void __skb_get_hash(struct sk_buff *skb)
   1688{
   1689	struct flow_keys keys;
   1690	u32 hash;
   1691
   1692	__flow_hash_secret_init();
   1693
   1694	hash = ___skb_get_hash(skb, &keys, &hashrnd);
   1695
   1696	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
   1697}
   1698EXPORT_SYMBOL(__skb_get_hash);
   1699
   1700__u32 skb_get_hash_perturb(const struct sk_buff *skb,
   1701			   const siphash_key_t *perturb)
   1702{
   1703	struct flow_keys keys;
   1704
   1705	return ___skb_get_hash(skb, &keys, perturb);
   1706}
   1707EXPORT_SYMBOL(skb_get_hash_perturb);
   1708
   1709u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
   1710		   const struct flow_keys_basic *keys, int hlen)
   1711{
   1712	u32 poff = keys->control.thoff;
   1713
   1714	/* skip L4 headers for fragments after the first */
   1715	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
   1716	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
   1717		return poff;
   1718
   1719	switch (keys->basic.ip_proto) {
   1720	case IPPROTO_TCP: {
   1721		/* access doff as u8 to avoid unaligned access */
   1722		const u8 *doff;
   1723		u8 _doff;
   1724
   1725		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
   1726					    data, hlen, &_doff);
   1727		if (!doff)
   1728			return poff;
   1729
   1730		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
   1731		break;
   1732	}
   1733	case IPPROTO_UDP:
   1734	case IPPROTO_UDPLITE:
   1735		poff += sizeof(struct udphdr);
   1736		break;
   1737	/* For the rest, we do not really care about header
   1738	 * extensions at this point for now.
   1739	 */
   1740	case IPPROTO_ICMP:
   1741		poff += sizeof(struct icmphdr);
   1742		break;
   1743	case IPPROTO_ICMPV6:
   1744		poff += sizeof(struct icmp6hdr);
   1745		break;
   1746	case IPPROTO_IGMP:
   1747		poff += sizeof(struct igmphdr);
   1748		break;
   1749	case IPPROTO_DCCP:
   1750		poff += sizeof(struct dccp_hdr);
   1751		break;
   1752	case IPPROTO_SCTP:
   1753		poff += sizeof(struct sctphdr);
   1754		break;
   1755	}
   1756
   1757	return poff;
   1758}
   1759
   1760/**
   1761 * skb_get_poff - get the offset to the payload
   1762 * @skb: sk_buff to get the payload offset from
   1763 *
   1764 * The function will get the offset to the payload as far as it could
   1765 * be dissected.  The main user is currently BPF, so that we can dynamically
   1766 * truncate packets without needing to push actual payload to the user
   1767 * space and can analyze headers only, instead.
   1768 */
   1769u32 skb_get_poff(const struct sk_buff *skb)
   1770{
   1771	struct flow_keys_basic keys;
   1772
   1773	if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
   1774					      NULL, 0, 0, 0, 0))
   1775		return 0;
   1776
   1777	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
   1778}
   1779
   1780__u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
   1781{
   1782	memset(keys, 0, sizeof(*keys));
   1783
   1784	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
   1785	    sizeof(keys->addrs.v6addrs.src));
   1786	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
   1787	    sizeof(keys->addrs.v6addrs.dst));
   1788	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
   1789	keys->ports.src = fl6->fl6_sport;
   1790	keys->ports.dst = fl6->fl6_dport;
   1791	keys->keyid.keyid = fl6->fl6_gre_key;
   1792	keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
   1793	keys->basic.ip_proto = fl6->flowi6_proto;
   1794
   1795	return flow_hash_from_keys(keys);
   1796}
   1797EXPORT_SYMBOL(__get_hash_from_flowi6);
   1798
   1799static const struct flow_dissector_key flow_keys_dissector_keys[] = {
   1800	{
   1801		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
   1802		.offset = offsetof(struct flow_keys, control),
   1803	},
   1804	{
   1805		.key_id = FLOW_DISSECTOR_KEY_BASIC,
   1806		.offset = offsetof(struct flow_keys, basic),
   1807	},
   1808	{
   1809		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
   1810		.offset = offsetof(struct flow_keys, addrs.v4addrs),
   1811	},
   1812	{
   1813		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
   1814		.offset = offsetof(struct flow_keys, addrs.v6addrs),
   1815	},
   1816	{
   1817		.key_id = FLOW_DISSECTOR_KEY_TIPC,
   1818		.offset = offsetof(struct flow_keys, addrs.tipckey),
   1819	},
   1820	{
   1821		.key_id = FLOW_DISSECTOR_KEY_PORTS,
   1822		.offset = offsetof(struct flow_keys, ports),
   1823	},
   1824	{
   1825		.key_id = FLOW_DISSECTOR_KEY_VLAN,
   1826		.offset = offsetof(struct flow_keys, vlan),
   1827	},
   1828	{
   1829		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
   1830		.offset = offsetof(struct flow_keys, tags),
   1831	},
   1832	{
   1833		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
   1834		.offset = offsetof(struct flow_keys, keyid),
   1835	},
   1836};
   1837
   1838static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
   1839	{
   1840		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
   1841		.offset = offsetof(struct flow_keys, control),
   1842	},
   1843	{
   1844		.key_id = FLOW_DISSECTOR_KEY_BASIC,
   1845		.offset = offsetof(struct flow_keys, basic),
   1846	},
   1847	{
   1848		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
   1849		.offset = offsetof(struct flow_keys, addrs.v4addrs),
   1850	},
   1851	{
   1852		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
   1853		.offset = offsetof(struct flow_keys, addrs.v6addrs),
   1854	},
   1855	{
   1856		.key_id = FLOW_DISSECTOR_KEY_PORTS,
   1857		.offset = offsetof(struct flow_keys, ports),
   1858	},
   1859};
   1860
   1861static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
   1862	{
   1863		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
   1864		.offset = offsetof(struct flow_keys, control),
   1865	},
   1866	{
   1867		.key_id = FLOW_DISSECTOR_KEY_BASIC,
   1868		.offset = offsetof(struct flow_keys, basic),
   1869	},
   1870};
   1871
   1872struct flow_dissector flow_keys_dissector __read_mostly;
   1873EXPORT_SYMBOL(flow_keys_dissector);
   1874
   1875struct flow_dissector flow_keys_basic_dissector __read_mostly;
   1876EXPORT_SYMBOL(flow_keys_basic_dissector);
   1877
   1878static int __init init_default_flow_dissectors(void)
   1879{
   1880	skb_flow_dissector_init(&flow_keys_dissector,
   1881				flow_keys_dissector_keys,
   1882				ARRAY_SIZE(flow_keys_dissector_keys));
   1883	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
   1884				flow_keys_dissector_symmetric_keys,
   1885				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
   1886	skb_flow_dissector_init(&flow_keys_basic_dissector,
   1887				flow_keys_basic_dissector_keys,
   1888				ARRAY_SIZE(flow_keys_basic_dissector_keys));
   1889	return 0;
   1890}
   1891core_initcall(init_default_flow_dissectors);