cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

utils.c (11902B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 *	Generic address resultion entity
      4 *
      5 *	Authors:
      6 *	net_random Alan Cox
      7 *	net_ratelimit Andi Kleen
      8 *	in{4,6}_pton YOSHIFUJI Hideaki, Copyright (C)2006 USAGI/WIDE Project
      9 *
     10 *	Created by Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
     11 */
     12
     13#include <linux/module.h>
     14#include <linux/jiffies.h>
     15#include <linux/kernel.h>
     16#include <linux/ctype.h>
     17#include <linux/inet.h>
     18#include <linux/mm.h>
     19#include <linux/net.h>
     20#include <linux/string.h>
     21#include <linux/types.h>
     22#include <linux/percpu.h>
     23#include <linux/init.h>
     24#include <linux/ratelimit.h>
     25#include <linux/socket.h>
     26
     27#include <net/sock.h>
     28#include <net/net_ratelimit.h>
     29#include <net/ipv6.h>
     30
     31#include <asm/byteorder.h>
     32#include <linux/uaccess.h>
     33
     34DEFINE_RATELIMIT_STATE(net_ratelimit_state, 5 * HZ, 10);
     35/*
     36 * All net warning printk()s should be guarded by this function.
     37 */
     38int net_ratelimit(void)
     39{
     40	return __ratelimit(&net_ratelimit_state);
     41}
     42EXPORT_SYMBOL(net_ratelimit);
     43
     44/*
     45 * Convert an ASCII string to binary IP.
     46 * This is outside of net/ipv4/ because various code that uses IP addresses
     47 * is otherwise not dependent on the TCP/IP stack.
     48 */
     49
     50__be32 in_aton(const char *str)
     51{
     52	unsigned int l;
     53	unsigned int val;
     54	int i;
     55
     56	l = 0;
     57	for (i = 0; i < 4; i++)	{
     58		l <<= 8;
     59		if (*str != '\0') {
     60			val = 0;
     61			while (*str != '\0' && *str != '.' && *str != '\n') {
     62				val *= 10;
     63				val += *str - '0';
     64				str++;
     65			}
     66			l |= val;
     67			if (*str != '\0')
     68				str++;
     69		}
     70	}
     71	return htonl(l);
     72}
     73EXPORT_SYMBOL(in_aton);
     74
     75#define IN6PTON_XDIGIT		0x00010000
     76#define IN6PTON_DIGIT		0x00020000
     77#define IN6PTON_COLON_MASK	0x00700000
     78#define IN6PTON_COLON_1		0x00100000	/* single : requested */
     79#define IN6PTON_COLON_2		0x00200000	/* second : requested */
     80#define IN6PTON_COLON_1_2	0x00400000	/* :: requested */
     81#define IN6PTON_DOT		0x00800000	/* . */
     82#define IN6PTON_DELIM		0x10000000
     83#define IN6PTON_NULL		0x20000000	/* first/tail */
     84#define IN6PTON_UNKNOWN		0x40000000
     85
     86static inline int xdigit2bin(char c, int delim)
     87{
     88	int val;
     89
     90	if (c == delim || c == '\0')
     91		return IN6PTON_DELIM;
     92	if (c == ':')
     93		return IN6PTON_COLON_MASK;
     94	if (c == '.')
     95		return IN6PTON_DOT;
     96
     97	val = hex_to_bin(c);
     98	if (val >= 0)
     99		return val | IN6PTON_XDIGIT | (val < 10 ? IN6PTON_DIGIT : 0);
    100
    101	if (delim == -1)
    102		return IN6PTON_DELIM;
    103	return IN6PTON_UNKNOWN;
    104}
    105
    106/**
    107 * in4_pton - convert an IPv4 address from literal to binary representation
    108 * @src: the start of the IPv4 address string
    109 * @srclen: the length of the string, -1 means strlen(src)
    110 * @dst: the binary (u8[4] array) representation of the IPv4 address
    111 * @delim: the delimiter of the IPv4 address in @src, -1 means no delimiter
    112 * @end: A pointer to the end of the parsed string will be placed here
    113 *
    114 * Return one on success, return zero when any error occurs
    115 * and @end will point to the end of the parsed string.
    116 *
    117 */
    118int in4_pton(const char *src, int srclen,
    119	     u8 *dst,
    120	     int delim, const char **end)
    121{
    122	const char *s;
    123	u8 *d;
    124	u8 dbuf[4];
    125	int ret = 0;
    126	int i;
    127	int w = 0;
    128
    129	if (srclen < 0)
    130		srclen = strlen(src);
    131	s = src;
    132	d = dbuf;
    133	i = 0;
    134	while (1) {
    135		int c;
    136		c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
    137		if (!(c & (IN6PTON_DIGIT | IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK))) {
    138			goto out;
    139		}
    140		if (c & (IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
    141			if (w == 0)
    142				goto out;
    143			*d++ = w & 0xff;
    144			w = 0;
    145			i++;
    146			if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
    147				if (i != 4)
    148					goto out;
    149				break;
    150			}
    151			goto cont;
    152		}
    153		w = (w * 10) + c;
    154		if ((w & 0xffff) > 255) {
    155			goto out;
    156		}
    157cont:
    158		if (i >= 4)
    159			goto out;
    160		s++;
    161		srclen--;
    162	}
    163	ret = 1;
    164	memcpy(dst, dbuf, sizeof(dbuf));
    165out:
    166	if (end)
    167		*end = s;
    168	return ret;
    169}
    170EXPORT_SYMBOL(in4_pton);
    171
    172/**
    173 * in6_pton - convert an IPv6 address from literal to binary representation
    174 * @src: the start of the IPv6 address string
    175 * @srclen: the length of the string, -1 means strlen(src)
    176 * @dst: the binary (u8[16] array) representation of the IPv6 address
    177 * @delim: the delimiter of the IPv6 address in @src, -1 means no delimiter
    178 * @end: A pointer to the end of the parsed string will be placed here
    179 *
    180 * Return one on success, return zero when any error occurs
    181 * and @end will point to the end of the parsed string.
    182 *
    183 */
    184int in6_pton(const char *src, int srclen,
    185	     u8 *dst,
    186	     int delim, const char **end)
    187{
    188	const char *s, *tok = NULL;
    189	u8 *d, *dc = NULL;
    190	u8 dbuf[16];
    191	int ret = 0;
    192	int i;
    193	int state = IN6PTON_COLON_1_2 | IN6PTON_XDIGIT | IN6PTON_NULL;
    194	int w = 0;
    195
    196	memset(dbuf, 0, sizeof(dbuf));
    197
    198	s = src;
    199	d = dbuf;
    200	if (srclen < 0)
    201		srclen = strlen(src);
    202
    203	while (1) {
    204		int c;
    205
    206		c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
    207		if (!(c & state))
    208			goto out;
    209		if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
    210			/* process one 16-bit word */
    211			if (!(state & IN6PTON_NULL)) {
    212				*d++ = (w >> 8) & 0xff;
    213				*d++ = w & 0xff;
    214			}
    215			w = 0;
    216			if (c & IN6PTON_DELIM) {
    217				/* We've processed last word */
    218				break;
    219			}
    220			/*
    221			 * COLON_1 => XDIGIT
    222			 * COLON_2 => XDIGIT|DELIM
    223			 * COLON_1_2 => COLON_2
    224			 */
    225			switch (state & IN6PTON_COLON_MASK) {
    226			case IN6PTON_COLON_2:
    227				dc = d;
    228				state = IN6PTON_XDIGIT | IN6PTON_DELIM;
    229				if (dc - dbuf >= sizeof(dbuf))
    230					state |= IN6PTON_NULL;
    231				break;
    232			case IN6PTON_COLON_1|IN6PTON_COLON_1_2:
    233				state = IN6PTON_XDIGIT | IN6PTON_COLON_2;
    234				break;
    235			case IN6PTON_COLON_1:
    236				state = IN6PTON_XDIGIT;
    237				break;
    238			case IN6PTON_COLON_1_2:
    239				state = IN6PTON_COLON_2;
    240				break;
    241			default:
    242				state = 0;
    243			}
    244			tok = s + 1;
    245			goto cont;
    246		}
    247
    248		if (c & IN6PTON_DOT) {
    249			ret = in4_pton(tok ? tok : s, srclen + (int)(s - tok), d, delim, &s);
    250			if (ret > 0) {
    251				d += 4;
    252				break;
    253			}
    254			goto out;
    255		}
    256
    257		w = (w << 4) | (0xff & c);
    258		state = IN6PTON_COLON_1 | IN6PTON_DELIM;
    259		if (!(w & 0xf000)) {
    260			state |= IN6PTON_XDIGIT;
    261		}
    262		if (!dc && d + 2 < dbuf + sizeof(dbuf)) {
    263			state |= IN6PTON_COLON_1_2;
    264			state &= ~IN6PTON_DELIM;
    265		}
    266		if (d + 2 >= dbuf + sizeof(dbuf)) {
    267			state &= ~(IN6PTON_COLON_1|IN6PTON_COLON_1_2);
    268		}
    269cont:
    270		if ((dc && d + 4 < dbuf + sizeof(dbuf)) ||
    271		    d + 4 == dbuf + sizeof(dbuf)) {
    272			state |= IN6PTON_DOT;
    273		}
    274		if (d >= dbuf + sizeof(dbuf)) {
    275			state &= ~(IN6PTON_XDIGIT|IN6PTON_COLON_MASK);
    276		}
    277		s++;
    278		srclen--;
    279	}
    280
    281	i = 15; d--;
    282
    283	if (dc) {
    284		while (d >= dc)
    285			dst[i--] = *d--;
    286		while (i >= dc - dbuf)
    287			dst[i--] = 0;
    288		while (i >= 0)
    289			dst[i--] = *d--;
    290	} else
    291		memcpy(dst, dbuf, sizeof(dbuf));
    292
    293	ret = 1;
    294out:
    295	if (end)
    296		*end = s;
    297	return ret;
    298}
    299EXPORT_SYMBOL(in6_pton);
    300
    301static int inet4_pton(const char *src, u16 port_num,
    302		struct sockaddr_storage *addr)
    303{
    304	struct sockaddr_in *addr4 = (struct sockaddr_in *)addr;
    305	int srclen = strlen(src);
    306
    307	if (srclen > INET_ADDRSTRLEN)
    308		return -EINVAL;
    309
    310	if (in4_pton(src, srclen, (u8 *)&addr4->sin_addr.s_addr,
    311		     '\n', NULL) == 0)
    312		return -EINVAL;
    313
    314	addr4->sin_family = AF_INET;
    315	addr4->sin_port = htons(port_num);
    316
    317	return 0;
    318}
    319
    320static int inet6_pton(struct net *net, const char *src, u16 port_num,
    321		struct sockaddr_storage *addr)
    322{
    323	struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)addr;
    324	const char *scope_delim;
    325	int srclen = strlen(src);
    326
    327	if (srclen > INET6_ADDRSTRLEN)
    328		return -EINVAL;
    329
    330	if (in6_pton(src, srclen, (u8 *)&addr6->sin6_addr.s6_addr,
    331		     '%', &scope_delim) == 0)
    332		return -EINVAL;
    333
    334	if (ipv6_addr_type(&addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL &&
    335	    src + srclen != scope_delim && *scope_delim == '%') {
    336		struct net_device *dev;
    337		char scope_id[16];
    338		size_t scope_len = min_t(size_t, sizeof(scope_id) - 1,
    339					 src + srclen - scope_delim - 1);
    340
    341		memcpy(scope_id, scope_delim + 1, scope_len);
    342		scope_id[scope_len] = '\0';
    343
    344		dev = dev_get_by_name(net, scope_id);
    345		if (dev) {
    346			addr6->sin6_scope_id = dev->ifindex;
    347			dev_put(dev);
    348		} else if (kstrtouint(scope_id, 0, &addr6->sin6_scope_id)) {
    349			return -EINVAL;
    350		}
    351	}
    352
    353	addr6->sin6_family = AF_INET6;
    354	addr6->sin6_port = htons(port_num);
    355
    356	return 0;
    357}
    358
    359/**
    360 * inet_pton_with_scope - convert an IPv4/IPv6 and port to socket address
    361 * @net: net namespace (used for scope handling)
    362 * @af: address family, AF_INET, AF_INET6 or AF_UNSPEC for either
    363 * @src: the start of the address string
    364 * @port: the start of the port string (or NULL for none)
    365 * @addr: output socket address
    366 *
    367 * Return zero on success, return errno when any error occurs.
    368 */
    369int inet_pton_with_scope(struct net *net, __kernel_sa_family_t af,
    370		const char *src, const char *port, struct sockaddr_storage *addr)
    371{
    372	u16 port_num;
    373	int ret = -EINVAL;
    374
    375	if (port) {
    376		if (kstrtou16(port, 0, &port_num))
    377			return -EINVAL;
    378	} else {
    379		port_num = 0;
    380	}
    381
    382	switch (af) {
    383	case AF_INET:
    384		ret = inet4_pton(src, port_num, addr);
    385		break;
    386	case AF_INET6:
    387		ret = inet6_pton(net, src, port_num, addr);
    388		break;
    389	case AF_UNSPEC:
    390		ret = inet4_pton(src, port_num, addr);
    391		if (ret)
    392			ret = inet6_pton(net, src, port_num, addr);
    393		break;
    394	default:
    395		pr_err("unexpected address family %d\n", af);
    396	}
    397
    398	return ret;
    399}
    400EXPORT_SYMBOL(inet_pton_with_scope);
    401
    402bool inet_addr_is_any(struct sockaddr *addr)
    403{
    404	if (addr->sa_family == AF_INET6) {
    405		struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)addr;
    406		const struct sockaddr_in6 in6_any =
    407			{ .sin6_addr = IN6ADDR_ANY_INIT };
    408
    409		if (!memcmp(in6->sin6_addr.s6_addr,
    410			    in6_any.sin6_addr.s6_addr, 16))
    411			return true;
    412	} else if (addr->sa_family == AF_INET) {
    413		struct sockaddr_in *in = (struct sockaddr_in *)addr;
    414
    415		if (in->sin_addr.s_addr == htonl(INADDR_ANY))
    416			return true;
    417	} else {
    418		pr_warn("unexpected address family %u\n", addr->sa_family);
    419	}
    420
    421	return false;
    422}
    423EXPORT_SYMBOL(inet_addr_is_any);
    424
    425void inet_proto_csum_replace4(__sum16 *sum, struct sk_buff *skb,
    426			      __be32 from, __be32 to, bool pseudohdr)
    427{
    428	if (skb->ip_summed != CHECKSUM_PARTIAL) {
    429		csum_replace4(sum, from, to);
    430		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
    431			skb->csum = ~csum_add(csum_sub(~(skb->csum),
    432						       (__force __wsum)from),
    433					      (__force __wsum)to);
    434	} else if (pseudohdr)
    435		*sum = ~csum_fold(csum_add(csum_sub(csum_unfold(*sum),
    436						    (__force __wsum)from),
    437					   (__force __wsum)to));
    438}
    439EXPORT_SYMBOL(inet_proto_csum_replace4);
    440
    441/**
    442 * inet_proto_csum_replace16 - update layer 4 header checksum field
    443 * @sum: Layer 4 header checksum field
    444 * @skb: sk_buff for the packet
    445 * @from: old IPv6 address
    446 * @to: new IPv6 address
    447 * @pseudohdr: True if layer 4 header checksum includes pseudoheader
    448 *
    449 * Update layer 4 header as per the update in IPv6 src/dst address.
    450 *
    451 * There is no need to update skb->csum in this function, because update in two
    452 * fields a.) IPv6 src/dst address and b.) L4 header checksum cancels each other
    453 * for skb->csum calculation. Whereas inet_proto_csum_replace4 function needs to
    454 * update skb->csum, because update in 3 fields a.) IPv4 src/dst address,
    455 * b.) IPv4 Header checksum and c.) L4 header checksum results in same diff as
    456 * L4 Header checksum for skb->csum calculation.
    457 */
    458void inet_proto_csum_replace16(__sum16 *sum, struct sk_buff *skb,
    459			       const __be32 *from, const __be32 *to,
    460			       bool pseudohdr)
    461{
    462	__be32 diff[] = {
    463		~from[0], ~from[1], ~from[2], ~from[3],
    464		to[0], to[1], to[2], to[3],
    465	};
    466	if (skb->ip_summed != CHECKSUM_PARTIAL) {
    467		*sum = csum_fold(csum_partial(diff, sizeof(diff),
    468				 ~csum_unfold(*sum)));
    469	} else if (pseudohdr)
    470		*sum = ~csum_fold(csum_partial(diff, sizeof(diff),
    471				  csum_unfold(*sum)));
    472}
    473EXPORT_SYMBOL(inet_proto_csum_replace16);
    474
    475void inet_proto_csum_replace_by_diff(__sum16 *sum, struct sk_buff *skb,
    476				     __wsum diff, bool pseudohdr)
    477{
    478	if (skb->ip_summed != CHECKSUM_PARTIAL) {
    479		csum_replace_by_diff(sum, diff);
    480		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
    481			skb->csum = ~csum_sub(diff, skb->csum);
    482	} else if (pseudohdr) {
    483		*sum = ~csum_fold(csum_add(diff, csum_unfold(*sum)));
    484	}
    485}
    486EXPORT_SYMBOL(inet_proto_csum_replace_by_diff);