cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

packet_history.c (12880B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 *  Copyright (c) 2007   The University of Aberdeen, Scotland, UK
      4 *  Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
      5 *
      6 *  An implementation of the DCCP protocol
      7 *
      8 *  This code has been developed by the University of Waikato WAND
      9 *  research group. For further information please see https://www.wand.net.nz/
     10 *  or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz
     11 *
     12 *  This code also uses code from Lulea University, rereleased as GPL by its
     13 *  authors:
     14 *  Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
     15 *
     16 *  Changes to meet Linux coding standards, to make it meet latest ccid3 draft
     17 *  and to make it work as a loadable module in the DCCP stack written by
     18 *  Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
     19 *
     20 *  Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
     21 */
     22
     23#include <linux/string.h>
     24#include <linux/slab.h>
     25#include "packet_history.h"
     26#include "../../dccp.h"
     27
     28/*
     29 * Transmitter History Routines
     30 */
     31static struct kmem_cache *tfrc_tx_hist_slab;
     32
     33int __init tfrc_tx_packet_history_init(void)
     34{
     35	tfrc_tx_hist_slab = kmem_cache_create("tfrc_tx_hist",
     36					      sizeof(struct tfrc_tx_hist_entry),
     37					      0, SLAB_HWCACHE_ALIGN, NULL);
     38	return tfrc_tx_hist_slab == NULL ? -ENOBUFS : 0;
     39}
     40
     41void tfrc_tx_packet_history_exit(void)
     42{
     43	if (tfrc_tx_hist_slab != NULL) {
     44		kmem_cache_destroy(tfrc_tx_hist_slab);
     45		tfrc_tx_hist_slab = NULL;
     46	}
     47}
     48
     49int tfrc_tx_hist_add(struct tfrc_tx_hist_entry **headp, u64 seqno)
     50{
     51	struct tfrc_tx_hist_entry *entry = kmem_cache_alloc(tfrc_tx_hist_slab, gfp_any());
     52
     53	if (entry == NULL)
     54		return -ENOBUFS;
     55	entry->seqno = seqno;
     56	entry->stamp = ktime_get_real();
     57	entry->next  = *headp;
     58	*headp	     = entry;
     59	return 0;
     60}
     61
     62void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry **headp)
     63{
     64	struct tfrc_tx_hist_entry *head = *headp;
     65
     66	while (head != NULL) {
     67		struct tfrc_tx_hist_entry *next = head->next;
     68
     69		kmem_cache_free(tfrc_tx_hist_slab, head);
     70		head = next;
     71	}
     72
     73	*headp = NULL;
     74}
     75
     76/*
     77 *	Receiver History Routines
     78 */
     79static struct kmem_cache *tfrc_rx_hist_slab;
     80
     81int __init tfrc_rx_packet_history_init(void)
     82{
     83	tfrc_rx_hist_slab = kmem_cache_create("tfrc_rxh_cache",
     84					      sizeof(struct tfrc_rx_hist_entry),
     85					      0, SLAB_HWCACHE_ALIGN, NULL);
     86	return tfrc_rx_hist_slab == NULL ? -ENOBUFS : 0;
     87}
     88
     89void tfrc_rx_packet_history_exit(void)
     90{
     91	if (tfrc_rx_hist_slab != NULL) {
     92		kmem_cache_destroy(tfrc_rx_hist_slab);
     93		tfrc_rx_hist_slab = NULL;
     94	}
     95}
     96
     97static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry *entry,
     98					       const struct sk_buff *skb,
     99					       const u64 ndp)
    100{
    101	const struct dccp_hdr *dh = dccp_hdr(skb);
    102
    103	entry->tfrchrx_seqno = DCCP_SKB_CB(skb)->dccpd_seq;
    104	entry->tfrchrx_ccval = dh->dccph_ccval;
    105	entry->tfrchrx_type  = dh->dccph_type;
    106	entry->tfrchrx_ndp   = ndp;
    107	entry->tfrchrx_tstamp = ktime_get_real();
    108}
    109
    110void tfrc_rx_hist_add_packet(struct tfrc_rx_hist *h,
    111			     const struct sk_buff *skb,
    112			     const u64 ndp)
    113{
    114	struct tfrc_rx_hist_entry *entry = tfrc_rx_hist_last_rcv(h);
    115
    116	tfrc_rx_hist_entry_from_skb(entry, skb, ndp);
    117}
    118
    119/* has the packet contained in skb been seen before? */
    120int tfrc_rx_hist_duplicate(struct tfrc_rx_hist *h, struct sk_buff *skb)
    121{
    122	const u64 seq = DCCP_SKB_CB(skb)->dccpd_seq;
    123	int i;
    124
    125	if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, seq) <= 0)
    126		return 1;
    127
    128	for (i = 1; i <= h->loss_count; i++)
    129		if (tfrc_rx_hist_entry(h, i)->tfrchrx_seqno == seq)
    130			return 1;
    131
    132	return 0;
    133}
    134
    135static void tfrc_rx_hist_swap(struct tfrc_rx_hist *h, const u8 a, const u8 b)
    136{
    137	const u8 idx_a = tfrc_rx_hist_index(h, a),
    138		 idx_b = tfrc_rx_hist_index(h, b);
    139
    140	swap(h->ring[idx_a], h->ring[idx_b]);
    141}
    142
    143/*
    144 * Private helper functions for loss detection.
    145 *
    146 * In the descriptions, `Si' refers to the sequence number of entry number i,
    147 * whose NDP count is `Ni' (lower case is used for variables).
    148 * Note: All __xxx_loss functions expect that a test against duplicates has been
    149 *       performed already: the seqno of the skb must not be less than the seqno
    150 *       of loss_prev; and it must not equal that of any valid history entry.
    151 */
    152static void __do_track_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u64 n1)
    153{
    154	u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
    155	    s1 = DCCP_SKB_CB(skb)->dccpd_seq;
    156
    157	if (!dccp_loss_free(s0, s1, n1)) {	/* gap between S0 and S1 */
    158		h->loss_count = 1;
    159		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n1);
    160	}
    161}
    162
    163static void __one_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n2)
    164{
    165	u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
    166	    s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
    167	    s2 = DCCP_SKB_CB(skb)->dccpd_seq;
    168
    169	if (likely(dccp_delta_seqno(s1, s2) > 0)) {	/* S1  <  S2 */
    170		h->loss_count = 2;
    171		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n2);
    172		return;
    173	}
    174
    175	/* S0  <  S2  <  S1 */
    176
    177	if (dccp_loss_free(s0, s2, n2)) {
    178		u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
    179
    180		if (dccp_loss_free(s2, s1, n1)) {
    181			/* hole is filled: S0, S2, and S1 are consecutive */
    182			h->loss_count = 0;
    183			h->loss_start = tfrc_rx_hist_index(h, 1);
    184		} else
    185			/* gap between S2 and S1: just update loss_prev */
    186			tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n2);
    187
    188	} else {	/* gap between S0 and S2 */
    189		/*
    190		 * Reorder history to insert S2 between S0 and S1
    191		 */
    192		tfrc_rx_hist_swap(h, 0, 3);
    193		h->loss_start = tfrc_rx_hist_index(h, 3);
    194		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n2);
    195		h->loss_count = 2;
    196	}
    197}
    198
    199/* return 1 if a new loss event has been identified */
    200static int __two_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n3)
    201{
    202	u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
    203	    s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
    204	    s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
    205	    s3 = DCCP_SKB_CB(skb)->dccpd_seq;
    206
    207	if (likely(dccp_delta_seqno(s2, s3) > 0)) {	/* S2  <  S3 */
    208		h->loss_count = 3;
    209		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 3), skb, n3);
    210		return 1;
    211	}
    212
    213	/* S3  <  S2 */
    214
    215	if (dccp_delta_seqno(s1, s3) > 0) {		/* S1  <  S3  <  S2 */
    216		/*
    217		 * Reorder history to insert S3 between S1 and S2
    218		 */
    219		tfrc_rx_hist_swap(h, 2, 3);
    220		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n3);
    221		h->loss_count = 3;
    222		return 1;
    223	}
    224
    225	/* S0  <  S3  <  S1 */
    226
    227	if (dccp_loss_free(s0, s3, n3)) {
    228		u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
    229
    230		if (dccp_loss_free(s3, s1, n1)) {
    231			/* hole between S0 and S1 filled by S3 */
    232			u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp;
    233
    234			if (dccp_loss_free(s1, s2, n2)) {
    235				/* entire hole filled by S0, S3, S1, S2 */
    236				h->loss_start = tfrc_rx_hist_index(h, 2);
    237				h->loss_count = 0;
    238			} else {
    239				/* gap remains between S1 and S2 */
    240				h->loss_start = tfrc_rx_hist_index(h, 1);
    241				h->loss_count = 1;
    242			}
    243
    244		} else /* gap exists between S3 and S1, loss_count stays at 2 */
    245			tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n3);
    246
    247		return 0;
    248	}
    249
    250	/*
    251	 * The remaining case:  S0  <  S3  <  S1  <  S2;  gap between S0 and S3
    252	 * Reorder history to insert S3 between S0 and S1.
    253	 */
    254	tfrc_rx_hist_swap(h, 0, 3);
    255	h->loss_start = tfrc_rx_hist_index(h, 3);
    256	tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n3);
    257	h->loss_count = 3;
    258
    259	return 1;
    260}
    261
    262/* recycle RX history records to continue loss detection if necessary */
    263static void __three_after_loss(struct tfrc_rx_hist *h)
    264{
    265	/*
    266	 * At this stage we know already that there is a gap between S0 and S1
    267	 * (since S0 was the highest sequence number received before detecting
    268	 * the loss). To recycle the loss record, it is	thus only necessary to
    269	 * check for other possible gaps between S1/S2 and between S2/S3.
    270	 */
    271	u64 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
    272	    s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
    273	    s3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_seqno;
    274	u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp,
    275	    n3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_ndp;
    276
    277	if (dccp_loss_free(s1, s2, n2)) {
    278
    279		if (dccp_loss_free(s2, s3, n3)) {
    280			/* no gap between S2 and S3: entire hole is filled */
    281			h->loss_start = tfrc_rx_hist_index(h, 3);
    282			h->loss_count = 0;
    283		} else {
    284			/* gap between S2 and S3 */
    285			h->loss_start = tfrc_rx_hist_index(h, 2);
    286			h->loss_count = 1;
    287		}
    288
    289	} else {	/* gap between S1 and S2 */
    290		h->loss_start = tfrc_rx_hist_index(h, 1);
    291		h->loss_count = 2;
    292	}
    293}
    294
    295/**
    296 *  tfrc_rx_handle_loss  -  Loss detection and further processing
    297 *  @h:		    The non-empty RX history object
    298 *  @lh:	    Loss Intervals database to update
    299 *  @skb:	    Currently received packet
    300 *  @ndp:	    The NDP count belonging to @skb
    301 *  @calc_first_li: Caller-dependent computation of first loss interval in @lh
    302 *  @sk:	    Used by @calc_first_li (see tfrc_lh_interval_add)
    303 *
    304 *  Chooses action according to pending loss, updates LI database when a new
    305 *  loss was detected, and does required post-processing. Returns 1 when caller
    306 *  should send feedback, 0 otherwise.
    307 *  Since it also takes care of reordering during loss detection and updates the
    308 *  records accordingly, the caller should not perform any more RX history
    309 *  operations when loss_count is greater than 0 after calling this function.
    310 */
    311int tfrc_rx_handle_loss(struct tfrc_rx_hist *h,
    312			struct tfrc_loss_hist *lh,
    313			struct sk_buff *skb, const u64 ndp,
    314			u32 (*calc_first_li)(struct sock *), struct sock *sk)
    315{
    316	int is_new_loss = 0;
    317
    318	if (h->loss_count == 0) {
    319		__do_track_loss(h, skb, ndp);
    320	} else if (h->loss_count == 1) {
    321		__one_after_loss(h, skb, ndp);
    322	} else if (h->loss_count != 2) {
    323		DCCP_BUG("invalid loss_count %d", h->loss_count);
    324	} else if (__two_after_loss(h, skb, ndp)) {
    325		/*
    326		 * Update Loss Interval database and recycle RX records
    327		 */
    328		is_new_loss = tfrc_lh_interval_add(lh, h, calc_first_li, sk);
    329		__three_after_loss(h);
    330	}
    331	return is_new_loss;
    332}
    333
    334int tfrc_rx_hist_alloc(struct tfrc_rx_hist *h)
    335{
    336	int i;
    337
    338	for (i = 0; i <= TFRC_NDUPACK; i++) {
    339		h->ring[i] = kmem_cache_alloc(tfrc_rx_hist_slab, GFP_ATOMIC);
    340		if (h->ring[i] == NULL)
    341			goto out_free;
    342	}
    343
    344	h->loss_count = h->loss_start = 0;
    345	return 0;
    346
    347out_free:
    348	while (i-- != 0) {
    349		kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
    350		h->ring[i] = NULL;
    351	}
    352	return -ENOBUFS;
    353}
    354
    355void tfrc_rx_hist_purge(struct tfrc_rx_hist *h)
    356{
    357	int i;
    358
    359	for (i = 0; i <= TFRC_NDUPACK; ++i)
    360		if (h->ring[i] != NULL) {
    361			kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
    362			h->ring[i] = NULL;
    363		}
    364}
    365
    366/**
    367 * tfrc_rx_hist_rtt_last_s - reference entry to compute RTT samples against
    368 * @h:	The non-empty RX history object
    369 */
    370static inline struct tfrc_rx_hist_entry *
    371			tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist *h)
    372{
    373	return h->ring[0];
    374}
    375
    376/**
    377 * tfrc_rx_hist_rtt_prev_s - previously suitable (wrt rtt_last_s) RTT-sampling entry
    378 * @h:	The non-empty RX history object
    379 */
    380static inline struct tfrc_rx_hist_entry *
    381			tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist *h)
    382{
    383	return h->ring[h->rtt_sample_prev];
    384}
    385
    386/**
    387 * tfrc_rx_hist_sample_rtt  -  Sample RTT from timestamp / CCVal
    388 * @h: receive histogram
    389 * @skb: packet containing timestamp.
    390 *
    391 * Based on ideas presented in RFC 4342, 8.1. Returns 0 if it was not able
    392 * to compute a sample with given data - calling function should check this.
    393 */
    394u32 tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist *h, const struct sk_buff *skb)
    395{
    396	u32 sample = 0,
    397	    delta_v = SUB16(dccp_hdr(skb)->dccph_ccval,
    398			    tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
    399
    400	if (delta_v < 1 || delta_v > 4) {	/* unsuitable CCVal delta */
    401		if (h->rtt_sample_prev == 2) {	/* previous candidate stored */
    402			sample = SUB16(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
    403				       tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
    404			if (sample)
    405				sample = 4 / sample *
    406				         ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_tstamp,
    407							tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp);
    408			else    /*
    409				 * FIXME: This condition is in principle not
    410				 * possible but occurs when CCID is used for
    411				 * two-way data traffic. I have tried to trace
    412				 * it, but the cause does not seem to be here.
    413				 */
    414				DCCP_BUG("please report to dccp@vger.kernel.org"
    415					 " => prev = %u, last = %u",
    416					 tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
    417					 tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
    418		} else if (delta_v < 1) {
    419			h->rtt_sample_prev = 1;
    420			goto keep_ref_for_next_time;
    421		}
    422
    423	} else if (delta_v == 4) /* optimal match */
    424		sample = ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp));
    425	else {			 /* suboptimal match */
    426		h->rtt_sample_prev = 2;
    427		goto keep_ref_for_next_time;
    428	}
    429
    430	if (unlikely(sample > DCCP_SANE_RTT_MAX)) {
    431		DCCP_WARN("RTT sample %u too large, using max\n", sample);
    432		sample = DCCP_SANE_RTT_MAX;
    433	}
    434
    435	h->rtt_sample_prev = 0;	       /* use current entry as next reference */
    436keep_ref_for_next_time:
    437
    438	return sample;
    439}