fib_trie.c (74763B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * 4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 5 * & Swedish University of Agricultural Sciences. 6 * 7 * Jens Laas <jens.laas@data.slu.se> Swedish University of 8 * Agricultural Sciences. 9 * 10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 11 * 12 * This work is based on the LPC-trie which is originally described in: 13 * 14 * An experimental study of compression methods for dynamic tries 15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/ 17 * 18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 20 * 21 * Code from fib_hash has been reused which includes the following header: 22 * 23 * INET An implementation of the TCP/IP protocol suite for the LINUX 24 * operating system. INET is implemented using the BSD Socket 25 * interface as the means of communication with the user level. 26 * 27 * IPv4 FIB: lookup engine and maintenance routines. 28 * 29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 30 * 31 * Substantial contributions to this work comes from: 32 * 33 * David S. Miller, <davem@davemloft.net> 34 * Stephen Hemminger <shemminger@osdl.org> 35 * Paul E. McKenney <paulmck@us.ibm.com> 36 * Patrick McHardy <kaber@trash.net> 37 */ 38#include <linux/cache.h> 39#include <linux/uaccess.h> 40#include <linux/bitops.h> 41#include <linux/types.h> 42#include <linux/kernel.h> 43#include <linux/mm.h> 44#include <linux/string.h> 45#include <linux/socket.h> 46#include <linux/sockios.h> 47#include <linux/errno.h> 48#include <linux/in.h> 49#include <linux/inet.h> 50#include <linux/inetdevice.h> 51#include <linux/netdevice.h> 52#include <linux/if_arp.h> 53#include <linux/proc_fs.h> 54#include <linux/rcupdate.h> 55#include <linux/skbuff.h> 56#include <linux/netlink.h> 57#include <linux/init.h> 58#include <linux/list.h> 59#include <linux/slab.h> 60#include <linux/export.h> 61#include <linux/vmalloc.h> 62#include <linux/notifier.h> 63#include <net/net_namespace.h> 64#include <net/inet_dscp.h> 65#include <net/ip.h> 66#include <net/protocol.h> 67#include <net/route.h> 68#include <net/tcp.h> 69#include <net/sock.h> 70#include <net/ip_fib.h> 71#include <net/fib_notifier.h> 72#include <trace/events/fib.h> 73#include "fib_lookup.h" 74 75static int call_fib_entry_notifier(struct notifier_block *nb, 76 enum fib_event_type event_type, u32 dst, 77 int dst_len, struct fib_alias *fa, 78 struct netlink_ext_ack *extack) 79{ 80 struct fib_entry_notifier_info info = { 81 .info.extack = extack, 82 .dst = dst, 83 .dst_len = dst_len, 84 .fi = fa->fa_info, 85 .dscp = fa->fa_dscp, 86 .type = fa->fa_type, 87 .tb_id = fa->tb_id, 88 }; 89 return call_fib4_notifier(nb, event_type, &info.info); 90} 91 92static int call_fib_entry_notifiers(struct net *net, 93 enum fib_event_type event_type, u32 dst, 94 int dst_len, struct fib_alias *fa, 95 struct netlink_ext_ack *extack) 96{ 97 struct fib_entry_notifier_info info = { 98 .info.extack = extack, 99 .dst = dst, 100 .dst_len = dst_len, 101 .fi = fa->fa_info, 102 .dscp = fa->fa_dscp, 103 .type = fa->fa_type, 104 .tb_id = fa->tb_id, 105 }; 106 return call_fib4_notifiers(net, event_type, &info.info); 107} 108 109#define MAX_STAT_DEPTH 32 110 111#define KEYLENGTH (8*sizeof(t_key)) 112#define KEY_MAX ((t_key)~0) 113 114typedef unsigned int t_key; 115 116#define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 117#define IS_TNODE(n) ((n)->bits) 118#define IS_LEAF(n) (!(n)->bits) 119 120struct key_vector { 121 t_key key; 122 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 123 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 124 unsigned char slen; 125 union { 126 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 127 struct hlist_head leaf; 128 /* This array is valid if (pos | bits) > 0 (TNODE) */ 129 struct key_vector __rcu *tnode[0]; 130 }; 131}; 132 133struct tnode { 134 struct rcu_head rcu; 135 t_key empty_children; /* KEYLENGTH bits needed */ 136 t_key full_children; /* KEYLENGTH bits needed */ 137 struct key_vector __rcu *parent; 138 struct key_vector kv[1]; 139#define tn_bits kv[0].bits 140}; 141 142#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 143#define LEAF_SIZE TNODE_SIZE(1) 144 145#ifdef CONFIG_IP_FIB_TRIE_STATS 146struct trie_use_stats { 147 unsigned int gets; 148 unsigned int backtrack; 149 unsigned int semantic_match_passed; 150 unsigned int semantic_match_miss; 151 unsigned int null_node_hit; 152 unsigned int resize_node_skipped; 153}; 154#endif 155 156struct trie_stat { 157 unsigned int totdepth; 158 unsigned int maxdepth; 159 unsigned int tnodes; 160 unsigned int leaves; 161 unsigned int nullpointers; 162 unsigned int prefixes; 163 unsigned int nodesizes[MAX_STAT_DEPTH]; 164}; 165 166struct trie { 167 struct key_vector kv[1]; 168#ifdef CONFIG_IP_FIB_TRIE_STATS 169 struct trie_use_stats __percpu *stats; 170#endif 171}; 172 173static struct key_vector *resize(struct trie *t, struct key_vector *tn); 174static unsigned int tnode_free_size; 175 176/* 177 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be 178 * especially useful before resizing the root node with PREEMPT_NONE configs; 179 * the value was obtained experimentally, aiming to avoid visible slowdown. 180 */ 181unsigned int sysctl_fib_sync_mem = 512 * 1024; 182unsigned int sysctl_fib_sync_mem_min = 64 * 1024; 183unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024; 184 185static struct kmem_cache *fn_alias_kmem __ro_after_init; 186static struct kmem_cache *trie_leaf_kmem __ro_after_init; 187 188static inline struct tnode *tn_info(struct key_vector *kv) 189{ 190 return container_of(kv, struct tnode, kv[0]); 191} 192 193/* caller must hold RTNL */ 194#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 195#define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 196 197/* caller must hold RCU read lock or RTNL */ 198#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 199#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 200 201/* wrapper for rcu_assign_pointer */ 202static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 203{ 204 if (n) 205 rcu_assign_pointer(tn_info(n)->parent, tp); 206} 207 208#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 209 210/* This provides us with the number of children in this node, in the case of a 211 * leaf this will return 0 meaning none of the children are accessible. 212 */ 213static inline unsigned long child_length(const struct key_vector *tn) 214{ 215 return (1ul << tn->bits) & ~(1ul); 216} 217 218#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 219 220static inline unsigned long get_index(t_key key, struct key_vector *kv) 221{ 222 unsigned long index = key ^ kv->key; 223 224 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 225 return 0; 226 227 return index >> kv->pos; 228} 229 230/* To understand this stuff, an understanding of keys and all their bits is 231 * necessary. Every node in the trie has a key associated with it, but not 232 * all of the bits in that key are significant. 233 * 234 * Consider a node 'n' and its parent 'tp'. 235 * 236 * If n is a leaf, every bit in its key is significant. Its presence is 237 * necessitated by path compression, since during a tree traversal (when 238 * searching for a leaf - unless we are doing an insertion) we will completely 239 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 240 * a potentially successful search, that we have indeed been walking the 241 * correct key path. 242 * 243 * Note that we can never "miss" the correct key in the tree if present by 244 * following the wrong path. Path compression ensures that segments of the key 245 * that are the same for all keys with a given prefix are skipped, but the 246 * skipped part *is* identical for each node in the subtrie below the skipped 247 * bit! trie_insert() in this implementation takes care of that. 248 * 249 * if n is an internal node - a 'tnode' here, the various parts of its key 250 * have many different meanings. 251 * 252 * Example: 253 * _________________________________________________________________ 254 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 255 * ----------------------------------------------------------------- 256 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 257 * 258 * _________________________________________________________________ 259 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 260 * ----------------------------------------------------------------- 261 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 262 * 263 * tp->pos = 22 264 * tp->bits = 3 265 * n->pos = 13 266 * n->bits = 4 267 * 268 * First, let's just ignore the bits that come before the parent tp, that is 269 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 270 * point we do not use them for anything. 271 * 272 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 273 * index into the parent's child array. That is, they will be used to find 274 * 'n' among tp's children. 275 * 276 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits 277 * for the node n. 278 * 279 * All the bits we have seen so far are significant to the node n. The rest 280 * of the bits are really not needed or indeed known in n->key. 281 * 282 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 283 * n's child array, and will of course be different for each child. 284 * 285 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown 286 * at this point. 287 */ 288 289static const int halve_threshold = 25; 290static const int inflate_threshold = 50; 291static const int halve_threshold_root = 15; 292static const int inflate_threshold_root = 30; 293 294static void __alias_free_mem(struct rcu_head *head) 295{ 296 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 297 kmem_cache_free(fn_alias_kmem, fa); 298} 299 300static inline void alias_free_mem_rcu(struct fib_alias *fa) 301{ 302 call_rcu(&fa->rcu, __alias_free_mem); 303} 304 305#define TNODE_VMALLOC_MAX \ 306 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 307 308static void __node_free_rcu(struct rcu_head *head) 309{ 310 struct tnode *n = container_of(head, struct tnode, rcu); 311 312 if (!n->tn_bits) 313 kmem_cache_free(trie_leaf_kmem, n); 314 else 315 kvfree(n); 316} 317 318#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 319 320static struct tnode *tnode_alloc(int bits) 321{ 322 size_t size; 323 324 /* verify bits is within bounds */ 325 if (bits > TNODE_VMALLOC_MAX) 326 return NULL; 327 328 /* determine size and verify it is non-zero and didn't overflow */ 329 size = TNODE_SIZE(1ul << bits); 330 331 if (size <= PAGE_SIZE) 332 return kzalloc(size, GFP_KERNEL); 333 else 334 return vzalloc(size); 335} 336 337static inline void empty_child_inc(struct key_vector *n) 338{ 339 tn_info(n)->empty_children++; 340 341 if (!tn_info(n)->empty_children) 342 tn_info(n)->full_children++; 343} 344 345static inline void empty_child_dec(struct key_vector *n) 346{ 347 if (!tn_info(n)->empty_children) 348 tn_info(n)->full_children--; 349 350 tn_info(n)->empty_children--; 351} 352 353static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 354{ 355 struct key_vector *l; 356 struct tnode *kv; 357 358 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 359 if (!kv) 360 return NULL; 361 362 /* initialize key vector */ 363 l = kv->kv; 364 l->key = key; 365 l->pos = 0; 366 l->bits = 0; 367 l->slen = fa->fa_slen; 368 369 /* link leaf to fib alias */ 370 INIT_HLIST_HEAD(&l->leaf); 371 hlist_add_head(&fa->fa_list, &l->leaf); 372 373 return l; 374} 375 376static struct key_vector *tnode_new(t_key key, int pos, int bits) 377{ 378 unsigned int shift = pos + bits; 379 struct key_vector *tn; 380 struct tnode *tnode; 381 382 /* verify bits and pos their msb bits clear and values are valid */ 383 BUG_ON(!bits || (shift > KEYLENGTH)); 384 385 tnode = tnode_alloc(bits); 386 if (!tnode) 387 return NULL; 388 389 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 390 sizeof(struct key_vector *) << bits); 391 392 if (bits == KEYLENGTH) 393 tnode->full_children = 1; 394 else 395 tnode->empty_children = 1ul << bits; 396 397 tn = tnode->kv; 398 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 399 tn->pos = pos; 400 tn->bits = bits; 401 tn->slen = pos; 402 403 return tn; 404} 405 406/* Check whether a tnode 'n' is "full", i.e. it is an internal node 407 * and no bits are skipped. See discussion in dyntree paper p. 6 408 */ 409static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 410{ 411 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 412} 413 414/* Add a child at position i overwriting the old value. 415 * Update the value of full_children and empty_children. 416 */ 417static void put_child(struct key_vector *tn, unsigned long i, 418 struct key_vector *n) 419{ 420 struct key_vector *chi = get_child(tn, i); 421 int isfull, wasfull; 422 423 BUG_ON(i >= child_length(tn)); 424 425 /* update emptyChildren, overflow into fullChildren */ 426 if (!n && chi) 427 empty_child_inc(tn); 428 if (n && !chi) 429 empty_child_dec(tn); 430 431 /* update fullChildren */ 432 wasfull = tnode_full(tn, chi); 433 isfull = tnode_full(tn, n); 434 435 if (wasfull && !isfull) 436 tn_info(tn)->full_children--; 437 else if (!wasfull && isfull) 438 tn_info(tn)->full_children++; 439 440 if (n && (tn->slen < n->slen)) 441 tn->slen = n->slen; 442 443 rcu_assign_pointer(tn->tnode[i], n); 444} 445 446static void update_children(struct key_vector *tn) 447{ 448 unsigned long i; 449 450 /* update all of the child parent pointers */ 451 for (i = child_length(tn); i;) { 452 struct key_vector *inode = get_child(tn, --i); 453 454 if (!inode) 455 continue; 456 457 /* Either update the children of a tnode that 458 * already belongs to us or update the child 459 * to point to ourselves. 460 */ 461 if (node_parent(inode) == tn) 462 update_children(inode); 463 else 464 node_set_parent(inode, tn); 465 } 466} 467 468static inline void put_child_root(struct key_vector *tp, t_key key, 469 struct key_vector *n) 470{ 471 if (IS_TRIE(tp)) 472 rcu_assign_pointer(tp->tnode[0], n); 473 else 474 put_child(tp, get_index(key, tp), n); 475} 476 477static inline void tnode_free_init(struct key_vector *tn) 478{ 479 tn_info(tn)->rcu.next = NULL; 480} 481 482static inline void tnode_free_append(struct key_vector *tn, 483 struct key_vector *n) 484{ 485 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 486 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 487} 488 489static void tnode_free(struct key_vector *tn) 490{ 491 struct callback_head *head = &tn_info(tn)->rcu; 492 493 while (head) { 494 head = head->next; 495 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 496 node_free(tn); 497 498 tn = container_of(head, struct tnode, rcu)->kv; 499 } 500 501 if (tnode_free_size >= sysctl_fib_sync_mem) { 502 tnode_free_size = 0; 503 synchronize_rcu(); 504 } 505} 506 507static struct key_vector *replace(struct trie *t, 508 struct key_vector *oldtnode, 509 struct key_vector *tn) 510{ 511 struct key_vector *tp = node_parent(oldtnode); 512 unsigned long i; 513 514 /* setup the parent pointer out of and back into this node */ 515 NODE_INIT_PARENT(tn, tp); 516 put_child_root(tp, tn->key, tn); 517 518 /* update all of the child parent pointers */ 519 update_children(tn); 520 521 /* all pointers should be clean so we are done */ 522 tnode_free(oldtnode); 523 524 /* resize children now that oldtnode is freed */ 525 for (i = child_length(tn); i;) { 526 struct key_vector *inode = get_child(tn, --i); 527 528 /* resize child node */ 529 if (tnode_full(tn, inode)) 530 tn = resize(t, inode); 531 } 532 533 return tp; 534} 535 536static struct key_vector *inflate(struct trie *t, 537 struct key_vector *oldtnode) 538{ 539 struct key_vector *tn; 540 unsigned long i; 541 t_key m; 542 543 pr_debug("In inflate\n"); 544 545 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 546 if (!tn) 547 goto notnode; 548 549 /* prepare oldtnode to be freed */ 550 tnode_free_init(oldtnode); 551 552 /* Assemble all of the pointers in our cluster, in this case that 553 * represents all of the pointers out of our allocated nodes that 554 * point to existing tnodes and the links between our allocated 555 * nodes. 556 */ 557 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 558 struct key_vector *inode = get_child(oldtnode, --i); 559 struct key_vector *node0, *node1; 560 unsigned long j, k; 561 562 /* An empty child */ 563 if (!inode) 564 continue; 565 566 /* A leaf or an internal node with skipped bits */ 567 if (!tnode_full(oldtnode, inode)) { 568 put_child(tn, get_index(inode->key, tn), inode); 569 continue; 570 } 571 572 /* drop the node in the old tnode free list */ 573 tnode_free_append(oldtnode, inode); 574 575 /* An internal node with two children */ 576 if (inode->bits == 1) { 577 put_child(tn, 2 * i + 1, get_child(inode, 1)); 578 put_child(tn, 2 * i, get_child(inode, 0)); 579 continue; 580 } 581 582 /* We will replace this node 'inode' with two new 583 * ones, 'node0' and 'node1', each with half of the 584 * original children. The two new nodes will have 585 * a position one bit further down the key and this 586 * means that the "significant" part of their keys 587 * (see the discussion near the top of this file) 588 * will differ by one bit, which will be "0" in 589 * node0's key and "1" in node1's key. Since we are 590 * moving the key position by one step, the bit that 591 * we are moving away from - the bit at position 592 * (tn->pos) - is the one that will differ between 593 * node0 and node1. So... we synthesize that bit in the 594 * two new keys. 595 */ 596 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 597 if (!node1) 598 goto nomem; 599 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 600 601 tnode_free_append(tn, node1); 602 if (!node0) 603 goto nomem; 604 tnode_free_append(tn, node0); 605 606 /* populate child pointers in new nodes */ 607 for (k = child_length(inode), j = k / 2; j;) { 608 put_child(node1, --j, get_child(inode, --k)); 609 put_child(node0, j, get_child(inode, j)); 610 put_child(node1, --j, get_child(inode, --k)); 611 put_child(node0, j, get_child(inode, j)); 612 } 613 614 /* link new nodes to parent */ 615 NODE_INIT_PARENT(node1, tn); 616 NODE_INIT_PARENT(node0, tn); 617 618 /* link parent to nodes */ 619 put_child(tn, 2 * i + 1, node1); 620 put_child(tn, 2 * i, node0); 621 } 622 623 /* setup the parent pointers into and out of this node */ 624 return replace(t, oldtnode, tn); 625nomem: 626 /* all pointers should be clean so we are done */ 627 tnode_free(tn); 628notnode: 629 return NULL; 630} 631 632static struct key_vector *halve(struct trie *t, 633 struct key_vector *oldtnode) 634{ 635 struct key_vector *tn; 636 unsigned long i; 637 638 pr_debug("In halve\n"); 639 640 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 641 if (!tn) 642 goto notnode; 643 644 /* prepare oldtnode to be freed */ 645 tnode_free_init(oldtnode); 646 647 /* Assemble all of the pointers in our cluster, in this case that 648 * represents all of the pointers out of our allocated nodes that 649 * point to existing tnodes and the links between our allocated 650 * nodes. 651 */ 652 for (i = child_length(oldtnode); i;) { 653 struct key_vector *node1 = get_child(oldtnode, --i); 654 struct key_vector *node0 = get_child(oldtnode, --i); 655 struct key_vector *inode; 656 657 /* At least one of the children is empty */ 658 if (!node1 || !node0) { 659 put_child(tn, i / 2, node1 ? : node0); 660 continue; 661 } 662 663 /* Two nonempty children */ 664 inode = tnode_new(node0->key, oldtnode->pos, 1); 665 if (!inode) 666 goto nomem; 667 tnode_free_append(tn, inode); 668 669 /* initialize pointers out of node */ 670 put_child(inode, 1, node1); 671 put_child(inode, 0, node0); 672 NODE_INIT_PARENT(inode, tn); 673 674 /* link parent to node */ 675 put_child(tn, i / 2, inode); 676 } 677 678 /* setup the parent pointers into and out of this node */ 679 return replace(t, oldtnode, tn); 680nomem: 681 /* all pointers should be clean so we are done */ 682 tnode_free(tn); 683notnode: 684 return NULL; 685} 686 687static struct key_vector *collapse(struct trie *t, 688 struct key_vector *oldtnode) 689{ 690 struct key_vector *n, *tp; 691 unsigned long i; 692 693 /* scan the tnode looking for that one child that might still exist */ 694 for (n = NULL, i = child_length(oldtnode); !n && i;) 695 n = get_child(oldtnode, --i); 696 697 /* compress one level */ 698 tp = node_parent(oldtnode); 699 put_child_root(tp, oldtnode->key, n); 700 node_set_parent(n, tp); 701 702 /* drop dead node */ 703 node_free(oldtnode); 704 705 return tp; 706} 707 708static unsigned char update_suffix(struct key_vector *tn) 709{ 710 unsigned char slen = tn->pos; 711 unsigned long stride, i; 712 unsigned char slen_max; 713 714 /* only vector 0 can have a suffix length greater than or equal to 715 * tn->pos + tn->bits, the second highest node will have a suffix 716 * length at most of tn->pos + tn->bits - 1 717 */ 718 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); 719 720 /* search though the list of children looking for nodes that might 721 * have a suffix greater than the one we currently have. This is 722 * why we start with a stride of 2 since a stride of 1 would 723 * represent the nodes with suffix length equal to tn->pos 724 */ 725 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 726 struct key_vector *n = get_child(tn, i); 727 728 if (!n || (n->slen <= slen)) 729 continue; 730 731 /* update stride and slen based on new value */ 732 stride <<= (n->slen - slen); 733 slen = n->slen; 734 i &= ~(stride - 1); 735 736 /* stop searching if we have hit the maximum possible value */ 737 if (slen >= slen_max) 738 break; 739 } 740 741 tn->slen = slen; 742 743 return slen; 744} 745 746/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 747 * the Helsinki University of Technology and Matti Tikkanen of Nokia 748 * Telecommunications, page 6: 749 * "A node is doubled if the ratio of non-empty children to all 750 * children in the *doubled* node is at least 'high'." 751 * 752 * 'high' in this instance is the variable 'inflate_threshold'. It 753 * is expressed as a percentage, so we multiply it with 754 * child_length() and instead of multiplying by 2 (since the 755 * child array will be doubled by inflate()) and multiplying 756 * the left-hand side by 100 (to handle the percentage thing) we 757 * multiply the left-hand side by 50. 758 * 759 * The left-hand side may look a bit weird: child_length(tn) 760 * - tn->empty_children is of course the number of non-null children 761 * in the current node. tn->full_children is the number of "full" 762 * children, that is non-null tnodes with a skip value of 0. 763 * All of those will be doubled in the resulting inflated tnode, so 764 * we just count them one extra time here. 765 * 766 * A clearer way to write this would be: 767 * 768 * to_be_doubled = tn->full_children; 769 * not_to_be_doubled = child_length(tn) - tn->empty_children - 770 * tn->full_children; 771 * 772 * new_child_length = child_length(tn) * 2; 773 * 774 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 775 * new_child_length; 776 * if (new_fill_factor >= inflate_threshold) 777 * 778 * ...and so on, tho it would mess up the while () loop. 779 * 780 * anyway, 781 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 782 * inflate_threshold 783 * 784 * avoid a division: 785 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 786 * inflate_threshold * new_child_length 787 * 788 * expand not_to_be_doubled and to_be_doubled, and shorten: 789 * 100 * (child_length(tn) - tn->empty_children + 790 * tn->full_children) >= inflate_threshold * new_child_length 791 * 792 * expand new_child_length: 793 * 100 * (child_length(tn) - tn->empty_children + 794 * tn->full_children) >= 795 * inflate_threshold * child_length(tn) * 2 796 * 797 * shorten again: 798 * 50 * (tn->full_children + child_length(tn) - 799 * tn->empty_children) >= inflate_threshold * 800 * child_length(tn) 801 * 802 */ 803static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 804{ 805 unsigned long used = child_length(tn); 806 unsigned long threshold = used; 807 808 /* Keep root node larger */ 809 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 810 used -= tn_info(tn)->empty_children; 811 used += tn_info(tn)->full_children; 812 813 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 814 815 return (used > 1) && tn->pos && ((50 * used) >= threshold); 816} 817 818static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 819{ 820 unsigned long used = child_length(tn); 821 unsigned long threshold = used; 822 823 /* Keep root node larger */ 824 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 825 used -= tn_info(tn)->empty_children; 826 827 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 828 829 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 830} 831 832static inline bool should_collapse(struct key_vector *tn) 833{ 834 unsigned long used = child_length(tn); 835 836 used -= tn_info(tn)->empty_children; 837 838 /* account for bits == KEYLENGTH case */ 839 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 840 used -= KEY_MAX; 841 842 /* One child or none, time to drop us from the trie */ 843 return used < 2; 844} 845 846#define MAX_WORK 10 847static struct key_vector *resize(struct trie *t, struct key_vector *tn) 848{ 849#ifdef CONFIG_IP_FIB_TRIE_STATS 850 struct trie_use_stats __percpu *stats = t->stats; 851#endif 852 struct key_vector *tp = node_parent(tn); 853 unsigned long cindex = get_index(tn->key, tp); 854 int max_work = MAX_WORK; 855 856 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 857 tn, inflate_threshold, halve_threshold); 858 859 /* track the tnode via the pointer from the parent instead of 860 * doing it ourselves. This way we can let RCU fully do its 861 * thing without us interfering 862 */ 863 BUG_ON(tn != get_child(tp, cindex)); 864 865 /* Double as long as the resulting node has a number of 866 * nonempty nodes that are above the threshold. 867 */ 868 while (should_inflate(tp, tn) && max_work) { 869 tp = inflate(t, tn); 870 if (!tp) { 871#ifdef CONFIG_IP_FIB_TRIE_STATS 872 this_cpu_inc(stats->resize_node_skipped); 873#endif 874 break; 875 } 876 877 max_work--; 878 tn = get_child(tp, cindex); 879 } 880 881 /* update parent in case inflate failed */ 882 tp = node_parent(tn); 883 884 /* Return if at least one inflate is run */ 885 if (max_work != MAX_WORK) 886 return tp; 887 888 /* Halve as long as the number of empty children in this 889 * node is above threshold. 890 */ 891 while (should_halve(tp, tn) && max_work) { 892 tp = halve(t, tn); 893 if (!tp) { 894#ifdef CONFIG_IP_FIB_TRIE_STATS 895 this_cpu_inc(stats->resize_node_skipped); 896#endif 897 break; 898 } 899 900 max_work--; 901 tn = get_child(tp, cindex); 902 } 903 904 /* Only one child remains */ 905 if (should_collapse(tn)) 906 return collapse(t, tn); 907 908 /* update parent in case halve failed */ 909 return node_parent(tn); 910} 911 912static void node_pull_suffix(struct key_vector *tn, unsigned char slen) 913{ 914 unsigned char node_slen = tn->slen; 915 916 while ((node_slen > tn->pos) && (node_slen > slen)) { 917 slen = update_suffix(tn); 918 if (node_slen == slen) 919 break; 920 921 tn = node_parent(tn); 922 node_slen = tn->slen; 923 } 924} 925 926static void node_push_suffix(struct key_vector *tn, unsigned char slen) 927{ 928 while (tn->slen < slen) { 929 tn->slen = slen; 930 tn = node_parent(tn); 931 } 932} 933 934/* rcu_read_lock needs to be hold by caller from readside */ 935static struct key_vector *fib_find_node(struct trie *t, 936 struct key_vector **tp, u32 key) 937{ 938 struct key_vector *pn, *n = t->kv; 939 unsigned long index = 0; 940 941 do { 942 pn = n; 943 n = get_child_rcu(n, index); 944 945 if (!n) 946 break; 947 948 index = get_cindex(key, n); 949 950 /* This bit of code is a bit tricky but it combines multiple 951 * checks into a single check. The prefix consists of the 952 * prefix plus zeros for the bits in the cindex. The index 953 * is the difference between the key and this value. From 954 * this we can actually derive several pieces of data. 955 * if (index >= (1ul << bits)) 956 * we have a mismatch in skip bits and failed 957 * else 958 * we know the value is cindex 959 * 960 * This check is safe even if bits == KEYLENGTH due to the 961 * fact that we can only allocate a node with 32 bits if a 962 * long is greater than 32 bits. 963 */ 964 if (index >= (1ul << n->bits)) { 965 n = NULL; 966 break; 967 } 968 969 /* keep searching until we find a perfect match leaf or NULL */ 970 } while (IS_TNODE(n)); 971 972 *tp = pn; 973 974 return n; 975} 976 977/* Return the first fib alias matching DSCP with 978 * priority less than or equal to PRIO. 979 * If 'find_first' is set, return the first matching 980 * fib alias, regardless of DSCP and priority. 981 */ 982static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 983 dscp_t dscp, u32 prio, u32 tb_id, 984 bool find_first) 985{ 986 struct fib_alias *fa; 987 988 if (!fah) 989 return NULL; 990 991 hlist_for_each_entry(fa, fah, fa_list) { 992 /* Avoid Sparse warning when using dscp_t in inequalities */ 993 u8 __fa_dscp = inet_dscp_to_dsfield(fa->fa_dscp); 994 u8 __dscp = inet_dscp_to_dsfield(dscp); 995 996 if (fa->fa_slen < slen) 997 continue; 998 if (fa->fa_slen != slen) 999 break; 1000 if (fa->tb_id > tb_id) 1001 continue; 1002 if (fa->tb_id != tb_id) 1003 break; 1004 if (find_first) 1005 return fa; 1006 if (__fa_dscp > __dscp) 1007 continue; 1008 if (fa->fa_info->fib_priority >= prio || __fa_dscp < __dscp) 1009 return fa; 1010 } 1011 1012 return NULL; 1013} 1014 1015static struct fib_alias * 1016fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri) 1017{ 1018 u8 slen = KEYLENGTH - fri->dst_len; 1019 struct key_vector *l, *tp; 1020 struct fib_table *tb; 1021 struct fib_alias *fa; 1022 struct trie *t; 1023 1024 tb = fib_get_table(net, fri->tb_id); 1025 if (!tb) 1026 return NULL; 1027 1028 t = (struct trie *)tb->tb_data; 1029 l = fib_find_node(t, &tp, be32_to_cpu(fri->dst)); 1030 if (!l) 1031 return NULL; 1032 1033 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1034 if (fa->fa_slen == slen && fa->tb_id == fri->tb_id && 1035 fa->fa_dscp == fri->dscp && fa->fa_info == fri->fi && 1036 fa->fa_type == fri->type) 1037 return fa; 1038 } 1039 1040 return NULL; 1041} 1042 1043void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri) 1044{ 1045 struct fib_alias *fa_match; 1046 struct sk_buff *skb; 1047 int err; 1048 1049 rcu_read_lock(); 1050 1051 fa_match = fib_find_matching_alias(net, fri); 1052 if (!fa_match) 1053 goto out; 1054 1055 /* These are paired with the WRITE_ONCE() happening in this function. 1056 * The reason is that we are only protected by RCU at this point. 1057 */ 1058 if (READ_ONCE(fa_match->offload) == fri->offload && 1059 READ_ONCE(fa_match->trap) == fri->trap && 1060 READ_ONCE(fa_match->offload_failed) == fri->offload_failed) 1061 goto out; 1062 1063 WRITE_ONCE(fa_match->offload, fri->offload); 1064 WRITE_ONCE(fa_match->trap, fri->trap); 1065 1066 /* 2 means send notifications only if offload_failed was changed. */ 1067 if (net->ipv4.sysctl_fib_notify_on_flag_change == 2 && 1068 READ_ONCE(fa_match->offload_failed) == fri->offload_failed) 1069 goto out; 1070 1071 WRITE_ONCE(fa_match->offload_failed, fri->offload_failed); 1072 1073 if (!net->ipv4.sysctl_fib_notify_on_flag_change) 1074 goto out; 1075 1076 skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC); 1077 if (!skb) { 1078 err = -ENOBUFS; 1079 goto errout; 1080 } 1081 1082 err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0); 1083 if (err < 0) { 1084 /* -EMSGSIZE implies BUG in fib_nlmsg_size() */ 1085 WARN_ON(err == -EMSGSIZE); 1086 kfree_skb(skb); 1087 goto errout; 1088 } 1089 1090 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC); 1091 goto out; 1092 1093errout: 1094 rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err); 1095out: 1096 rcu_read_unlock(); 1097} 1098EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set); 1099 1100static void trie_rebalance(struct trie *t, struct key_vector *tn) 1101{ 1102 while (!IS_TRIE(tn)) 1103 tn = resize(t, tn); 1104} 1105 1106static int fib_insert_node(struct trie *t, struct key_vector *tp, 1107 struct fib_alias *new, t_key key) 1108{ 1109 struct key_vector *n, *l; 1110 1111 l = leaf_new(key, new); 1112 if (!l) 1113 goto noleaf; 1114 1115 /* retrieve child from parent node */ 1116 n = get_child(tp, get_index(key, tp)); 1117 1118 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 1119 * 1120 * Add a new tnode here 1121 * first tnode need some special handling 1122 * leaves us in position for handling as case 3 1123 */ 1124 if (n) { 1125 struct key_vector *tn; 1126 1127 tn = tnode_new(key, __fls(key ^ n->key), 1); 1128 if (!tn) 1129 goto notnode; 1130 1131 /* initialize routes out of node */ 1132 NODE_INIT_PARENT(tn, tp); 1133 put_child(tn, get_index(key, tn) ^ 1, n); 1134 1135 /* start adding routes into the node */ 1136 put_child_root(tp, key, tn); 1137 node_set_parent(n, tn); 1138 1139 /* parent now has a NULL spot where the leaf can go */ 1140 tp = tn; 1141 } 1142 1143 /* Case 3: n is NULL, and will just insert a new leaf */ 1144 node_push_suffix(tp, new->fa_slen); 1145 NODE_INIT_PARENT(l, tp); 1146 put_child_root(tp, key, l); 1147 trie_rebalance(t, tp); 1148 1149 return 0; 1150notnode: 1151 node_free(l); 1152noleaf: 1153 return -ENOMEM; 1154} 1155 1156static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1157 struct key_vector *l, struct fib_alias *new, 1158 struct fib_alias *fa, t_key key) 1159{ 1160 if (!l) 1161 return fib_insert_node(t, tp, new, key); 1162 1163 if (fa) { 1164 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1165 } else { 1166 struct fib_alias *last; 1167 1168 hlist_for_each_entry(last, &l->leaf, fa_list) { 1169 if (new->fa_slen < last->fa_slen) 1170 break; 1171 if ((new->fa_slen == last->fa_slen) && 1172 (new->tb_id > last->tb_id)) 1173 break; 1174 fa = last; 1175 } 1176 1177 if (fa) 1178 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1179 else 1180 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1181 } 1182 1183 /* if we added to the tail node then we need to update slen */ 1184 if (l->slen < new->fa_slen) { 1185 l->slen = new->fa_slen; 1186 node_push_suffix(tp, new->fa_slen); 1187 } 1188 1189 return 0; 1190} 1191 1192static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack) 1193{ 1194 if (plen > KEYLENGTH) { 1195 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 1196 return false; 1197 } 1198 1199 if ((plen < KEYLENGTH) && (key << plen)) { 1200 NL_SET_ERR_MSG(extack, 1201 "Invalid prefix for given prefix length"); 1202 return false; 1203 } 1204 1205 return true; 1206} 1207 1208static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1209 struct key_vector *l, struct fib_alias *old); 1210 1211/* Caller must hold RTNL. */ 1212int fib_table_insert(struct net *net, struct fib_table *tb, 1213 struct fib_config *cfg, struct netlink_ext_ack *extack) 1214{ 1215 struct trie *t = (struct trie *)tb->tb_data; 1216 struct fib_alias *fa, *new_fa; 1217 struct key_vector *l, *tp; 1218 u16 nlflags = NLM_F_EXCL; 1219 struct fib_info *fi; 1220 u8 plen = cfg->fc_dst_len; 1221 u8 slen = KEYLENGTH - plen; 1222 dscp_t dscp; 1223 u32 key; 1224 int err; 1225 1226 key = ntohl(cfg->fc_dst); 1227 1228 if (!fib_valid_key_len(key, plen, extack)) 1229 return -EINVAL; 1230 1231 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1232 1233 fi = fib_create_info(cfg, extack); 1234 if (IS_ERR(fi)) { 1235 err = PTR_ERR(fi); 1236 goto err; 1237 } 1238 1239 dscp = cfg->fc_dscp; 1240 l = fib_find_node(t, &tp, key); 1241 fa = l ? fib_find_alias(&l->leaf, slen, dscp, fi->fib_priority, 1242 tb->tb_id, false) : NULL; 1243 1244 /* Now fa, if non-NULL, points to the first fib alias 1245 * with the same keys [prefix,dscp,priority], if such key already 1246 * exists or to the node before which we will insert new one. 1247 * 1248 * If fa is NULL, we will need to allocate a new one and 1249 * insert to the tail of the section matching the suffix length 1250 * of the new alias. 1251 */ 1252 1253 if (fa && fa->fa_dscp == dscp && 1254 fa->fa_info->fib_priority == fi->fib_priority) { 1255 struct fib_alias *fa_first, *fa_match; 1256 1257 err = -EEXIST; 1258 if (cfg->fc_nlflags & NLM_F_EXCL) 1259 goto out; 1260 1261 nlflags &= ~NLM_F_EXCL; 1262 1263 /* We have 2 goals: 1264 * 1. Find exact match for type, scope, fib_info to avoid 1265 * duplicate routes 1266 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1267 */ 1268 fa_match = NULL; 1269 fa_first = fa; 1270 hlist_for_each_entry_from(fa, fa_list) { 1271 if ((fa->fa_slen != slen) || 1272 (fa->tb_id != tb->tb_id) || 1273 (fa->fa_dscp != dscp)) 1274 break; 1275 if (fa->fa_info->fib_priority != fi->fib_priority) 1276 break; 1277 if (fa->fa_type == cfg->fc_type && 1278 fa->fa_info == fi) { 1279 fa_match = fa; 1280 break; 1281 } 1282 } 1283 1284 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1285 struct fib_info *fi_drop; 1286 u8 state; 1287 1288 nlflags |= NLM_F_REPLACE; 1289 fa = fa_first; 1290 if (fa_match) { 1291 if (fa == fa_match) 1292 err = 0; 1293 goto out; 1294 } 1295 err = -ENOBUFS; 1296 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1297 if (!new_fa) 1298 goto out; 1299 1300 fi_drop = fa->fa_info; 1301 new_fa->fa_dscp = fa->fa_dscp; 1302 new_fa->fa_info = fi; 1303 new_fa->fa_type = cfg->fc_type; 1304 state = fa->fa_state; 1305 new_fa->fa_state = state & ~FA_S_ACCESSED; 1306 new_fa->fa_slen = fa->fa_slen; 1307 new_fa->tb_id = tb->tb_id; 1308 new_fa->fa_default = -1; 1309 new_fa->offload = 0; 1310 new_fa->trap = 0; 1311 new_fa->offload_failed = 0; 1312 1313 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1314 1315 if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0, 1316 tb->tb_id, true) == new_fa) { 1317 enum fib_event_type fib_event; 1318 1319 fib_event = FIB_EVENT_ENTRY_REPLACE; 1320 err = call_fib_entry_notifiers(net, fib_event, 1321 key, plen, 1322 new_fa, extack); 1323 if (err) { 1324 hlist_replace_rcu(&new_fa->fa_list, 1325 &fa->fa_list); 1326 goto out_free_new_fa; 1327 } 1328 } 1329 1330 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1331 tb->tb_id, &cfg->fc_nlinfo, nlflags); 1332 1333 alias_free_mem_rcu(fa); 1334 1335 fib_release_info(fi_drop); 1336 if (state & FA_S_ACCESSED) 1337 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1338 1339 goto succeeded; 1340 } 1341 /* Error if we find a perfect match which 1342 * uses the same scope, type, and nexthop 1343 * information. 1344 */ 1345 if (fa_match) 1346 goto out; 1347 1348 if (cfg->fc_nlflags & NLM_F_APPEND) 1349 nlflags |= NLM_F_APPEND; 1350 else 1351 fa = fa_first; 1352 } 1353 err = -ENOENT; 1354 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1355 goto out; 1356 1357 nlflags |= NLM_F_CREATE; 1358 err = -ENOBUFS; 1359 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1360 if (!new_fa) 1361 goto out; 1362 1363 new_fa->fa_info = fi; 1364 new_fa->fa_dscp = dscp; 1365 new_fa->fa_type = cfg->fc_type; 1366 new_fa->fa_state = 0; 1367 new_fa->fa_slen = slen; 1368 new_fa->tb_id = tb->tb_id; 1369 new_fa->fa_default = -1; 1370 new_fa->offload = 0; 1371 new_fa->trap = 0; 1372 new_fa->offload_failed = 0; 1373 1374 /* Insert new entry to the list. */ 1375 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1376 if (err) 1377 goto out_free_new_fa; 1378 1379 /* The alias was already inserted, so the node must exist. */ 1380 l = l ? l : fib_find_node(t, &tp, key); 1381 if (WARN_ON_ONCE(!l)) 1382 goto out_free_new_fa; 1383 1384 if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) == 1385 new_fa) { 1386 enum fib_event_type fib_event; 1387 1388 fib_event = FIB_EVENT_ENTRY_REPLACE; 1389 err = call_fib_entry_notifiers(net, fib_event, key, plen, 1390 new_fa, extack); 1391 if (err) 1392 goto out_remove_new_fa; 1393 } 1394 1395 if (!plen) 1396 tb->tb_num_default++; 1397 1398 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1399 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1400 &cfg->fc_nlinfo, nlflags); 1401succeeded: 1402 return 0; 1403 1404out_remove_new_fa: 1405 fib_remove_alias(t, tp, l, new_fa); 1406out_free_new_fa: 1407 kmem_cache_free(fn_alias_kmem, new_fa); 1408out: 1409 fib_release_info(fi); 1410err: 1411 return err; 1412} 1413 1414static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1415{ 1416 t_key prefix = n->key; 1417 1418 return (key ^ prefix) & (prefix | -prefix); 1419} 1420 1421bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags, 1422 const struct flowi4 *flp) 1423{ 1424 if (nhc->nhc_flags & RTNH_F_DEAD) 1425 return false; 1426 1427 if (ip_ignore_linkdown(nhc->nhc_dev) && 1428 nhc->nhc_flags & RTNH_F_LINKDOWN && 1429 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1430 return false; 1431 1432 if (flp->flowi4_oif && flp->flowi4_oif != nhc->nhc_oif) 1433 return false; 1434 1435 return true; 1436} 1437 1438/* should be called with rcu_read_lock */ 1439int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1440 struct fib_result *res, int fib_flags) 1441{ 1442 struct trie *t = (struct trie *) tb->tb_data; 1443#ifdef CONFIG_IP_FIB_TRIE_STATS 1444 struct trie_use_stats __percpu *stats = t->stats; 1445#endif 1446 const t_key key = ntohl(flp->daddr); 1447 struct key_vector *n, *pn; 1448 struct fib_alias *fa; 1449 unsigned long index; 1450 t_key cindex; 1451 1452 pn = t->kv; 1453 cindex = 0; 1454 1455 n = get_child_rcu(pn, cindex); 1456 if (!n) { 1457 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN); 1458 return -EAGAIN; 1459 } 1460 1461#ifdef CONFIG_IP_FIB_TRIE_STATS 1462 this_cpu_inc(stats->gets); 1463#endif 1464 1465 /* Step 1: Travel to the longest prefix match in the trie */ 1466 for (;;) { 1467 index = get_cindex(key, n); 1468 1469 /* This bit of code is a bit tricky but it combines multiple 1470 * checks into a single check. The prefix consists of the 1471 * prefix plus zeros for the "bits" in the prefix. The index 1472 * is the difference between the key and this value. From 1473 * this we can actually derive several pieces of data. 1474 * if (index >= (1ul << bits)) 1475 * we have a mismatch in skip bits and failed 1476 * else 1477 * we know the value is cindex 1478 * 1479 * This check is safe even if bits == KEYLENGTH due to the 1480 * fact that we can only allocate a node with 32 bits if a 1481 * long is greater than 32 bits. 1482 */ 1483 if (index >= (1ul << n->bits)) 1484 break; 1485 1486 /* we have found a leaf. Prefixes have already been compared */ 1487 if (IS_LEAF(n)) 1488 goto found; 1489 1490 /* only record pn and cindex if we are going to be chopping 1491 * bits later. Otherwise we are just wasting cycles. 1492 */ 1493 if (n->slen > n->pos) { 1494 pn = n; 1495 cindex = index; 1496 } 1497 1498 n = get_child_rcu(n, index); 1499 if (unlikely(!n)) 1500 goto backtrace; 1501 } 1502 1503 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1504 for (;;) { 1505 /* record the pointer where our next node pointer is stored */ 1506 struct key_vector __rcu **cptr = n->tnode; 1507 1508 /* This test verifies that none of the bits that differ 1509 * between the key and the prefix exist in the region of 1510 * the lsb and higher in the prefix. 1511 */ 1512 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1513 goto backtrace; 1514 1515 /* exit out and process leaf */ 1516 if (unlikely(IS_LEAF(n))) 1517 break; 1518 1519 /* Don't bother recording parent info. Since we are in 1520 * prefix match mode we will have to come back to wherever 1521 * we started this traversal anyway 1522 */ 1523 1524 while ((n = rcu_dereference(*cptr)) == NULL) { 1525backtrace: 1526#ifdef CONFIG_IP_FIB_TRIE_STATS 1527 if (!n) 1528 this_cpu_inc(stats->null_node_hit); 1529#endif 1530 /* If we are at cindex 0 there are no more bits for 1531 * us to strip at this level so we must ascend back 1532 * up one level to see if there are any more bits to 1533 * be stripped there. 1534 */ 1535 while (!cindex) { 1536 t_key pkey = pn->key; 1537 1538 /* If we don't have a parent then there is 1539 * nothing for us to do as we do not have any 1540 * further nodes to parse. 1541 */ 1542 if (IS_TRIE(pn)) { 1543 trace_fib_table_lookup(tb->tb_id, flp, 1544 NULL, -EAGAIN); 1545 return -EAGAIN; 1546 } 1547#ifdef CONFIG_IP_FIB_TRIE_STATS 1548 this_cpu_inc(stats->backtrack); 1549#endif 1550 /* Get Child's index */ 1551 pn = node_parent_rcu(pn); 1552 cindex = get_index(pkey, pn); 1553 } 1554 1555 /* strip the least significant bit from the cindex */ 1556 cindex &= cindex - 1; 1557 1558 /* grab pointer for next child node */ 1559 cptr = &pn->tnode[cindex]; 1560 } 1561 } 1562 1563found: 1564 /* this line carries forward the xor from earlier in the function */ 1565 index = key ^ n->key; 1566 1567 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1568 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1569 struct fib_info *fi = fa->fa_info; 1570 struct fib_nh_common *nhc; 1571 int nhsel, err; 1572 1573 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { 1574 if (index >= (1ul << fa->fa_slen)) 1575 continue; 1576 } 1577 if (fa->fa_dscp && 1578 inet_dscp_to_dsfield(fa->fa_dscp) != flp->flowi4_tos) 1579 continue; 1580 if (fi->fib_dead) 1581 continue; 1582 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1583 continue; 1584 fib_alias_accessed(fa); 1585 err = fib_props[fa->fa_type].error; 1586 if (unlikely(err < 0)) { 1587out_reject: 1588#ifdef CONFIG_IP_FIB_TRIE_STATS 1589 this_cpu_inc(stats->semantic_match_passed); 1590#endif 1591 trace_fib_table_lookup(tb->tb_id, flp, NULL, err); 1592 return err; 1593 } 1594 if (fi->fib_flags & RTNH_F_DEAD) 1595 continue; 1596 1597 if (unlikely(fi->nh)) { 1598 if (nexthop_is_blackhole(fi->nh)) { 1599 err = fib_props[RTN_BLACKHOLE].error; 1600 goto out_reject; 1601 } 1602 1603 nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp, 1604 &nhsel); 1605 if (nhc) 1606 goto set_result; 1607 goto miss; 1608 } 1609 1610 for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) { 1611 nhc = fib_info_nhc(fi, nhsel); 1612 1613 if (!fib_lookup_good_nhc(nhc, fib_flags, flp)) 1614 continue; 1615set_result: 1616 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1617 refcount_inc(&fi->fib_clntref); 1618 1619 res->prefix = htonl(n->key); 1620 res->prefixlen = KEYLENGTH - fa->fa_slen; 1621 res->nh_sel = nhsel; 1622 res->nhc = nhc; 1623 res->type = fa->fa_type; 1624 res->scope = fi->fib_scope; 1625 res->fi = fi; 1626 res->table = tb; 1627 res->fa_head = &n->leaf; 1628#ifdef CONFIG_IP_FIB_TRIE_STATS 1629 this_cpu_inc(stats->semantic_match_passed); 1630#endif 1631 trace_fib_table_lookup(tb->tb_id, flp, nhc, err); 1632 1633 return err; 1634 } 1635 } 1636miss: 1637#ifdef CONFIG_IP_FIB_TRIE_STATS 1638 this_cpu_inc(stats->semantic_match_miss); 1639#endif 1640 goto backtrace; 1641} 1642EXPORT_SYMBOL_GPL(fib_table_lookup); 1643 1644static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1645 struct key_vector *l, struct fib_alias *old) 1646{ 1647 /* record the location of the previous list_info entry */ 1648 struct hlist_node **pprev = old->fa_list.pprev; 1649 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1650 1651 /* remove the fib_alias from the list */ 1652 hlist_del_rcu(&old->fa_list); 1653 1654 /* if we emptied the list this leaf will be freed and we can sort 1655 * out parent suffix lengths as a part of trie_rebalance 1656 */ 1657 if (hlist_empty(&l->leaf)) { 1658 if (tp->slen == l->slen) 1659 node_pull_suffix(tp, tp->pos); 1660 put_child_root(tp, l->key, NULL); 1661 node_free(l); 1662 trie_rebalance(t, tp); 1663 return; 1664 } 1665 1666 /* only access fa if it is pointing at the last valid hlist_node */ 1667 if (*pprev) 1668 return; 1669 1670 /* update the trie with the latest suffix length */ 1671 l->slen = fa->fa_slen; 1672 node_pull_suffix(tp, fa->fa_slen); 1673} 1674 1675static void fib_notify_alias_delete(struct net *net, u32 key, 1676 struct hlist_head *fah, 1677 struct fib_alias *fa_to_delete, 1678 struct netlink_ext_ack *extack) 1679{ 1680 struct fib_alias *fa_next, *fa_to_notify; 1681 u32 tb_id = fa_to_delete->tb_id; 1682 u8 slen = fa_to_delete->fa_slen; 1683 enum fib_event_type fib_event; 1684 1685 /* Do not notify if we do not care about the route. */ 1686 if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete) 1687 return; 1688 1689 /* Determine if the route should be replaced by the next route in the 1690 * list. 1691 */ 1692 fa_next = hlist_entry_safe(fa_to_delete->fa_list.next, 1693 struct fib_alias, fa_list); 1694 if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) { 1695 fib_event = FIB_EVENT_ENTRY_REPLACE; 1696 fa_to_notify = fa_next; 1697 } else { 1698 fib_event = FIB_EVENT_ENTRY_DEL; 1699 fa_to_notify = fa_to_delete; 1700 } 1701 call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen, 1702 fa_to_notify, extack); 1703} 1704 1705/* Caller must hold RTNL. */ 1706int fib_table_delete(struct net *net, struct fib_table *tb, 1707 struct fib_config *cfg, struct netlink_ext_ack *extack) 1708{ 1709 struct trie *t = (struct trie *) tb->tb_data; 1710 struct fib_alias *fa, *fa_to_delete; 1711 struct key_vector *l, *tp; 1712 u8 plen = cfg->fc_dst_len; 1713 u8 slen = KEYLENGTH - plen; 1714 dscp_t dscp; 1715 u32 key; 1716 1717 key = ntohl(cfg->fc_dst); 1718 1719 if (!fib_valid_key_len(key, plen, extack)) 1720 return -EINVAL; 1721 1722 l = fib_find_node(t, &tp, key); 1723 if (!l) 1724 return -ESRCH; 1725 1726 dscp = cfg->fc_dscp; 1727 fa = fib_find_alias(&l->leaf, slen, dscp, 0, tb->tb_id, false); 1728 if (!fa) 1729 return -ESRCH; 1730 1731 pr_debug("Deleting %08x/%d dsfield=0x%02x t=%p\n", key, plen, 1732 inet_dscp_to_dsfield(dscp), t); 1733 1734 fa_to_delete = NULL; 1735 hlist_for_each_entry_from(fa, fa_list) { 1736 struct fib_info *fi = fa->fa_info; 1737 1738 if ((fa->fa_slen != slen) || 1739 (fa->tb_id != tb->tb_id) || 1740 (fa->fa_dscp != dscp)) 1741 break; 1742 1743 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1744 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1745 fa->fa_info->fib_scope == cfg->fc_scope) && 1746 (!cfg->fc_prefsrc || 1747 fi->fib_prefsrc == cfg->fc_prefsrc) && 1748 (!cfg->fc_protocol || 1749 fi->fib_protocol == cfg->fc_protocol) && 1750 fib_nh_match(net, cfg, fi, extack) == 0 && 1751 fib_metrics_match(cfg, fi)) { 1752 fa_to_delete = fa; 1753 break; 1754 } 1755 } 1756 1757 if (!fa_to_delete) 1758 return -ESRCH; 1759 1760 fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack); 1761 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1762 &cfg->fc_nlinfo, 0); 1763 1764 if (!plen) 1765 tb->tb_num_default--; 1766 1767 fib_remove_alias(t, tp, l, fa_to_delete); 1768 1769 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1770 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1771 1772 fib_release_info(fa_to_delete->fa_info); 1773 alias_free_mem_rcu(fa_to_delete); 1774 return 0; 1775} 1776 1777/* Scan for the next leaf starting at the provided key value */ 1778static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1779{ 1780 struct key_vector *pn, *n = *tn; 1781 unsigned long cindex; 1782 1783 /* this loop is meant to try and find the key in the trie */ 1784 do { 1785 /* record parent and next child index */ 1786 pn = n; 1787 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1788 1789 if (cindex >> pn->bits) 1790 break; 1791 1792 /* descend into the next child */ 1793 n = get_child_rcu(pn, cindex++); 1794 if (!n) 1795 break; 1796 1797 /* guarantee forward progress on the keys */ 1798 if (IS_LEAF(n) && (n->key >= key)) 1799 goto found; 1800 } while (IS_TNODE(n)); 1801 1802 /* this loop will search for the next leaf with a greater key */ 1803 while (!IS_TRIE(pn)) { 1804 /* if we exhausted the parent node we will need to climb */ 1805 if (cindex >= (1ul << pn->bits)) { 1806 t_key pkey = pn->key; 1807 1808 pn = node_parent_rcu(pn); 1809 cindex = get_index(pkey, pn) + 1; 1810 continue; 1811 } 1812 1813 /* grab the next available node */ 1814 n = get_child_rcu(pn, cindex++); 1815 if (!n) 1816 continue; 1817 1818 /* no need to compare keys since we bumped the index */ 1819 if (IS_LEAF(n)) 1820 goto found; 1821 1822 /* Rescan start scanning in new node */ 1823 pn = n; 1824 cindex = 0; 1825 } 1826 1827 *tn = pn; 1828 return NULL; /* Root of trie */ 1829found: 1830 /* if we are at the limit for keys just return NULL for the tnode */ 1831 *tn = pn; 1832 return n; 1833} 1834 1835static void fib_trie_free(struct fib_table *tb) 1836{ 1837 struct trie *t = (struct trie *)tb->tb_data; 1838 struct key_vector *pn = t->kv; 1839 unsigned long cindex = 1; 1840 struct hlist_node *tmp; 1841 struct fib_alias *fa; 1842 1843 /* walk trie in reverse order and free everything */ 1844 for (;;) { 1845 struct key_vector *n; 1846 1847 if (!(cindex--)) { 1848 t_key pkey = pn->key; 1849 1850 if (IS_TRIE(pn)) 1851 break; 1852 1853 n = pn; 1854 pn = node_parent(pn); 1855 1856 /* drop emptied tnode */ 1857 put_child_root(pn, n->key, NULL); 1858 node_free(n); 1859 1860 cindex = get_index(pkey, pn); 1861 1862 continue; 1863 } 1864 1865 /* grab the next available node */ 1866 n = get_child(pn, cindex); 1867 if (!n) 1868 continue; 1869 1870 if (IS_TNODE(n)) { 1871 /* record pn and cindex for leaf walking */ 1872 pn = n; 1873 cindex = 1ul << n->bits; 1874 1875 continue; 1876 } 1877 1878 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1879 hlist_del_rcu(&fa->fa_list); 1880 alias_free_mem_rcu(fa); 1881 } 1882 1883 put_child_root(pn, n->key, NULL); 1884 node_free(n); 1885 } 1886 1887#ifdef CONFIG_IP_FIB_TRIE_STATS 1888 free_percpu(t->stats); 1889#endif 1890 kfree(tb); 1891} 1892 1893struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1894{ 1895 struct trie *ot = (struct trie *)oldtb->tb_data; 1896 struct key_vector *l, *tp = ot->kv; 1897 struct fib_table *local_tb; 1898 struct fib_alias *fa; 1899 struct trie *lt; 1900 t_key key = 0; 1901 1902 if (oldtb->tb_data == oldtb->__data) 1903 return oldtb; 1904 1905 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1906 if (!local_tb) 1907 return NULL; 1908 1909 lt = (struct trie *)local_tb->tb_data; 1910 1911 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1912 struct key_vector *local_l = NULL, *local_tp; 1913 1914 hlist_for_each_entry(fa, &l->leaf, fa_list) { 1915 struct fib_alias *new_fa; 1916 1917 if (local_tb->tb_id != fa->tb_id) 1918 continue; 1919 1920 /* clone fa for new local table */ 1921 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1922 if (!new_fa) 1923 goto out; 1924 1925 memcpy(new_fa, fa, sizeof(*fa)); 1926 1927 /* insert clone into table */ 1928 if (!local_l) 1929 local_l = fib_find_node(lt, &local_tp, l->key); 1930 1931 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1932 NULL, l->key)) { 1933 kmem_cache_free(fn_alias_kmem, new_fa); 1934 goto out; 1935 } 1936 } 1937 1938 /* stop loop if key wrapped back to 0 */ 1939 key = l->key + 1; 1940 if (key < l->key) 1941 break; 1942 } 1943 1944 return local_tb; 1945out: 1946 fib_trie_free(local_tb); 1947 1948 return NULL; 1949} 1950 1951/* Caller must hold RTNL */ 1952void fib_table_flush_external(struct fib_table *tb) 1953{ 1954 struct trie *t = (struct trie *)tb->tb_data; 1955 struct key_vector *pn = t->kv; 1956 unsigned long cindex = 1; 1957 struct hlist_node *tmp; 1958 struct fib_alias *fa; 1959 1960 /* walk trie in reverse order */ 1961 for (;;) { 1962 unsigned char slen = 0; 1963 struct key_vector *n; 1964 1965 if (!(cindex--)) { 1966 t_key pkey = pn->key; 1967 1968 /* cannot resize the trie vector */ 1969 if (IS_TRIE(pn)) 1970 break; 1971 1972 /* update the suffix to address pulled leaves */ 1973 if (pn->slen > pn->pos) 1974 update_suffix(pn); 1975 1976 /* resize completed node */ 1977 pn = resize(t, pn); 1978 cindex = get_index(pkey, pn); 1979 1980 continue; 1981 } 1982 1983 /* grab the next available node */ 1984 n = get_child(pn, cindex); 1985 if (!n) 1986 continue; 1987 1988 if (IS_TNODE(n)) { 1989 /* record pn and cindex for leaf walking */ 1990 pn = n; 1991 cindex = 1ul << n->bits; 1992 1993 continue; 1994 } 1995 1996 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1997 /* if alias was cloned to local then we just 1998 * need to remove the local copy from main 1999 */ 2000 if (tb->tb_id != fa->tb_id) { 2001 hlist_del_rcu(&fa->fa_list); 2002 alias_free_mem_rcu(fa); 2003 continue; 2004 } 2005 2006 /* record local slen */ 2007 slen = fa->fa_slen; 2008 } 2009 2010 /* update leaf slen */ 2011 n->slen = slen; 2012 2013 if (hlist_empty(&n->leaf)) { 2014 put_child_root(pn, n->key, NULL); 2015 node_free(n); 2016 } 2017 } 2018} 2019 2020/* Caller must hold RTNL. */ 2021int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all) 2022{ 2023 struct trie *t = (struct trie *)tb->tb_data; 2024 struct key_vector *pn = t->kv; 2025 unsigned long cindex = 1; 2026 struct hlist_node *tmp; 2027 struct fib_alias *fa; 2028 int found = 0; 2029 2030 /* walk trie in reverse order */ 2031 for (;;) { 2032 unsigned char slen = 0; 2033 struct key_vector *n; 2034 2035 if (!(cindex--)) { 2036 t_key pkey = pn->key; 2037 2038 /* cannot resize the trie vector */ 2039 if (IS_TRIE(pn)) 2040 break; 2041 2042 /* update the suffix to address pulled leaves */ 2043 if (pn->slen > pn->pos) 2044 update_suffix(pn); 2045 2046 /* resize completed node */ 2047 pn = resize(t, pn); 2048 cindex = get_index(pkey, pn); 2049 2050 continue; 2051 } 2052 2053 /* grab the next available node */ 2054 n = get_child(pn, cindex); 2055 if (!n) 2056 continue; 2057 2058 if (IS_TNODE(n)) { 2059 /* record pn and cindex for leaf walking */ 2060 pn = n; 2061 cindex = 1ul << n->bits; 2062 2063 continue; 2064 } 2065 2066 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 2067 struct fib_info *fi = fa->fa_info; 2068 2069 if (!fi || tb->tb_id != fa->tb_id || 2070 (!(fi->fib_flags & RTNH_F_DEAD) && 2071 !fib_props[fa->fa_type].error)) { 2072 slen = fa->fa_slen; 2073 continue; 2074 } 2075 2076 /* Do not flush error routes if network namespace is 2077 * not being dismantled 2078 */ 2079 if (!flush_all && fib_props[fa->fa_type].error) { 2080 slen = fa->fa_slen; 2081 continue; 2082 } 2083 2084 fib_notify_alias_delete(net, n->key, &n->leaf, fa, 2085 NULL); 2086 hlist_del_rcu(&fa->fa_list); 2087 fib_release_info(fa->fa_info); 2088 alias_free_mem_rcu(fa); 2089 found++; 2090 } 2091 2092 /* update leaf slen */ 2093 n->slen = slen; 2094 2095 if (hlist_empty(&n->leaf)) { 2096 put_child_root(pn, n->key, NULL); 2097 node_free(n); 2098 } 2099 } 2100 2101 pr_debug("trie_flush found=%d\n", found); 2102 return found; 2103} 2104 2105/* derived from fib_trie_free */ 2106static void __fib_info_notify_update(struct net *net, struct fib_table *tb, 2107 struct nl_info *info) 2108{ 2109 struct trie *t = (struct trie *)tb->tb_data; 2110 struct key_vector *pn = t->kv; 2111 unsigned long cindex = 1; 2112 struct fib_alias *fa; 2113 2114 for (;;) { 2115 struct key_vector *n; 2116 2117 if (!(cindex--)) { 2118 t_key pkey = pn->key; 2119 2120 if (IS_TRIE(pn)) 2121 break; 2122 2123 pn = node_parent(pn); 2124 cindex = get_index(pkey, pn); 2125 continue; 2126 } 2127 2128 /* grab the next available node */ 2129 n = get_child(pn, cindex); 2130 if (!n) 2131 continue; 2132 2133 if (IS_TNODE(n)) { 2134 /* record pn and cindex for leaf walking */ 2135 pn = n; 2136 cindex = 1ul << n->bits; 2137 2138 continue; 2139 } 2140 2141 hlist_for_each_entry(fa, &n->leaf, fa_list) { 2142 struct fib_info *fi = fa->fa_info; 2143 2144 if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id) 2145 continue; 2146 2147 rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa, 2148 KEYLENGTH - fa->fa_slen, tb->tb_id, 2149 info, NLM_F_REPLACE); 2150 } 2151 } 2152} 2153 2154void fib_info_notify_update(struct net *net, struct nl_info *info) 2155{ 2156 unsigned int h; 2157 2158 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2159 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2160 struct fib_table *tb; 2161 2162 hlist_for_each_entry_rcu(tb, head, tb_hlist, 2163 lockdep_rtnl_is_held()) 2164 __fib_info_notify_update(net, tb, info); 2165 } 2166} 2167 2168static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb, 2169 struct notifier_block *nb, 2170 struct netlink_ext_ack *extack) 2171{ 2172 struct fib_alias *fa; 2173 int last_slen = -1; 2174 int err; 2175 2176 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2177 struct fib_info *fi = fa->fa_info; 2178 2179 if (!fi) 2180 continue; 2181 2182 /* local and main table can share the same trie, 2183 * so don't notify twice for the same entry. 2184 */ 2185 if (tb->tb_id != fa->tb_id) 2186 continue; 2187 2188 if (fa->fa_slen == last_slen) 2189 continue; 2190 2191 last_slen = fa->fa_slen; 2192 err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE, 2193 l->key, KEYLENGTH - fa->fa_slen, 2194 fa, extack); 2195 if (err) 2196 return err; 2197 } 2198 return 0; 2199} 2200 2201static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb, 2202 struct netlink_ext_ack *extack) 2203{ 2204 struct trie *t = (struct trie *)tb->tb_data; 2205 struct key_vector *l, *tp = t->kv; 2206 t_key key = 0; 2207 int err; 2208 2209 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2210 err = fib_leaf_notify(l, tb, nb, extack); 2211 if (err) 2212 return err; 2213 2214 key = l->key + 1; 2215 /* stop in case of wrap around */ 2216 if (key < l->key) 2217 break; 2218 } 2219 return 0; 2220} 2221 2222int fib_notify(struct net *net, struct notifier_block *nb, 2223 struct netlink_ext_ack *extack) 2224{ 2225 unsigned int h; 2226 int err; 2227 2228 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2229 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2230 struct fib_table *tb; 2231 2232 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2233 err = fib_table_notify(tb, nb, extack); 2234 if (err) 2235 return err; 2236 } 2237 } 2238 return 0; 2239} 2240 2241static void __trie_free_rcu(struct rcu_head *head) 2242{ 2243 struct fib_table *tb = container_of(head, struct fib_table, rcu); 2244#ifdef CONFIG_IP_FIB_TRIE_STATS 2245 struct trie *t = (struct trie *)tb->tb_data; 2246 2247 if (tb->tb_data == tb->__data) 2248 free_percpu(t->stats); 2249#endif /* CONFIG_IP_FIB_TRIE_STATS */ 2250 kfree(tb); 2251} 2252 2253void fib_free_table(struct fib_table *tb) 2254{ 2255 call_rcu(&tb->rcu, __trie_free_rcu); 2256} 2257 2258static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 2259 struct sk_buff *skb, struct netlink_callback *cb, 2260 struct fib_dump_filter *filter) 2261{ 2262 unsigned int flags = NLM_F_MULTI; 2263 __be32 xkey = htonl(l->key); 2264 int i, s_i, i_fa, s_fa, err; 2265 struct fib_alias *fa; 2266 2267 if (filter->filter_set || 2268 !filter->dump_exceptions || !filter->dump_routes) 2269 flags |= NLM_F_DUMP_FILTERED; 2270 2271 s_i = cb->args[4]; 2272 s_fa = cb->args[5]; 2273 i = 0; 2274 2275 /* rcu_read_lock is hold by caller */ 2276 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2277 struct fib_info *fi = fa->fa_info; 2278 2279 if (i < s_i) 2280 goto next; 2281 2282 i_fa = 0; 2283 2284 if (tb->tb_id != fa->tb_id) 2285 goto next; 2286 2287 if (filter->filter_set) { 2288 if (filter->rt_type && fa->fa_type != filter->rt_type) 2289 goto next; 2290 2291 if ((filter->protocol && 2292 fi->fib_protocol != filter->protocol)) 2293 goto next; 2294 2295 if (filter->dev && 2296 !fib_info_nh_uses_dev(fi, filter->dev)) 2297 goto next; 2298 } 2299 2300 if (filter->dump_routes) { 2301 if (!s_fa) { 2302 struct fib_rt_info fri; 2303 2304 fri.fi = fi; 2305 fri.tb_id = tb->tb_id; 2306 fri.dst = xkey; 2307 fri.dst_len = KEYLENGTH - fa->fa_slen; 2308 fri.dscp = fa->fa_dscp; 2309 fri.type = fa->fa_type; 2310 fri.offload = READ_ONCE(fa->offload); 2311 fri.trap = READ_ONCE(fa->trap); 2312 fri.offload_failed = READ_ONCE(fa->offload_failed); 2313 err = fib_dump_info(skb, 2314 NETLINK_CB(cb->skb).portid, 2315 cb->nlh->nlmsg_seq, 2316 RTM_NEWROUTE, &fri, flags); 2317 if (err < 0) 2318 goto stop; 2319 } 2320 2321 i_fa++; 2322 } 2323 2324 if (filter->dump_exceptions) { 2325 err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi, 2326 &i_fa, s_fa, flags); 2327 if (err < 0) 2328 goto stop; 2329 } 2330 2331next: 2332 i++; 2333 } 2334 2335 cb->args[4] = i; 2336 return skb->len; 2337 2338stop: 2339 cb->args[4] = i; 2340 cb->args[5] = i_fa; 2341 return err; 2342} 2343 2344/* rcu_read_lock needs to be hold by caller from readside */ 2345int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 2346 struct netlink_callback *cb, struct fib_dump_filter *filter) 2347{ 2348 struct trie *t = (struct trie *)tb->tb_data; 2349 struct key_vector *l, *tp = t->kv; 2350 /* Dump starting at last key. 2351 * Note: 0.0.0.0/0 (ie default) is first key. 2352 */ 2353 int count = cb->args[2]; 2354 t_key key = cb->args[3]; 2355 2356 /* First time here, count and key are both always 0. Count > 0 2357 * and key == 0 means the dump has wrapped around and we are done. 2358 */ 2359 if (count && !key) 2360 return skb->len; 2361 2362 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2363 int err; 2364 2365 err = fn_trie_dump_leaf(l, tb, skb, cb, filter); 2366 if (err < 0) { 2367 cb->args[3] = key; 2368 cb->args[2] = count; 2369 return err; 2370 } 2371 2372 ++count; 2373 key = l->key + 1; 2374 2375 memset(&cb->args[4], 0, 2376 sizeof(cb->args) - 4*sizeof(cb->args[0])); 2377 2378 /* stop loop if key wrapped back to 0 */ 2379 if (key < l->key) 2380 break; 2381 } 2382 2383 cb->args[3] = key; 2384 cb->args[2] = count; 2385 2386 return skb->len; 2387} 2388 2389void __init fib_trie_init(void) 2390{ 2391 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 2392 sizeof(struct fib_alias), 2393 0, SLAB_PANIC | SLAB_ACCOUNT, NULL); 2394 2395 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 2396 LEAF_SIZE, 2397 0, SLAB_PANIC | SLAB_ACCOUNT, NULL); 2398} 2399 2400struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 2401{ 2402 struct fib_table *tb; 2403 struct trie *t; 2404 size_t sz = sizeof(*tb); 2405 2406 if (!alias) 2407 sz += sizeof(struct trie); 2408 2409 tb = kzalloc(sz, GFP_KERNEL); 2410 if (!tb) 2411 return NULL; 2412 2413 tb->tb_id = id; 2414 tb->tb_num_default = 0; 2415 tb->tb_data = (alias ? alias->__data : tb->__data); 2416 2417 if (alias) 2418 return tb; 2419 2420 t = (struct trie *) tb->tb_data; 2421 t->kv[0].pos = KEYLENGTH; 2422 t->kv[0].slen = KEYLENGTH; 2423#ifdef CONFIG_IP_FIB_TRIE_STATS 2424 t->stats = alloc_percpu(struct trie_use_stats); 2425 if (!t->stats) { 2426 kfree(tb); 2427 tb = NULL; 2428 } 2429#endif 2430 2431 return tb; 2432} 2433 2434#ifdef CONFIG_PROC_FS 2435/* Depth first Trie walk iterator */ 2436struct fib_trie_iter { 2437 struct seq_net_private p; 2438 struct fib_table *tb; 2439 struct key_vector *tnode; 2440 unsigned int index; 2441 unsigned int depth; 2442}; 2443 2444static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2445{ 2446 unsigned long cindex = iter->index; 2447 struct key_vector *pn = iter->tnode; 2448 t_key pkey; 2449 2450 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2451 iter->tnode, iter->index, iter->depth); 2452 2453 while (!IS_TRIE(pn)) { 2454 while (cindex < child_length(pn)) { 2455 struct key_vector *n = get_child_rcu(pn, cindex++); 2456 2457 if (!n) 2458 continue; 2459 2460 if (IS_LEAF(n)) { 2461 iter->tnode = pn; 2462 iter->index = cindex; 2463 } else { 2464 /* push down one level */ 2465 iter->tnode = n; 2466 iter->index = 0; 2467 ++iter->depth; 2468 } 2469 2470 return n; 2471 } 2472 2473 /* Current node exhausted, pop back up */ 2474 pkey = pn->key; 2475 pn = node_parent_rcu(pn); 2476 cindex = get_index(pkey, pn) + 1; 2477 --iter->depth; 2478 } 2479 2480 /* record root node so further searches know we are done */ 2481 iter->tnode = pn; 2482 iter->index = 0; 2483 2484 return NULL; 2485} 2486 2487static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2488 struct trie *t) 2489{ 2490 struct key_vector *n, *pn; 2491 2492 if (!t) 2493 return NULL; 2494 2495 pn = t->kv; 2496 n = rcu_dereference(pn->tnode[0]); 2497 if (!n) 2498 return NULL; 2499 2500 if (IS_TNODE(n)) { 2501 iter->tnode = n; 2502 iter->index = 0; 2503 iter->depth = 1; 2504 } else { 2505 iter->tnode = pn; 2506 iter->index = 0; 2507 iter->depth = 0; 2508 } 2509 2510 return n; 2511} 2512 2513static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2514{ 2515 struct key_vector *n; 2516 struct fib_trie_iter iter; 2517 2518 memset(s, 0, sizeof(*s)); 2519 2520 rcu_read_lock(); 2521 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2522 if (IS_LEAF(n)) { 2523 struct fib_alias *fa; 2524 2525 s->leaves++; 2526 s->totdepth += iter.depth; 2527 if (iter.depth > s->maxdepth) 2528 s->maxdepth = iter.depth; 2529 2530 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2531 ++s->prefixes; 2532 } else { 2533 s->tnodes++; 2534 if (n->bits < MAX_STAT_DEPTH) 2535 s->nodesizes[n->bits]++; 2536 s->nullpointers += tn_info(n)->empty_children; 2537 } 2538 } 2539 rcu_read_unlock(); 2540} 2541 2542/* 2543 * This outputs /proc/net/fib_triestats 2544 */ 2545static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2546{ 2547 unsigned int i, max, pointers, bytes, avdepth; 2548 2549 if (stat->leaves) 2550 avdepth = stat->totdepth*100 / stat->leaves; 2551 else 2552 avdepth = 0; 2553 2554 seq_printf(seq, "\tAver depth: %u.%02d\n", 2555 avdepth / 100, avdepth % 100); 2556 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2557 2558 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2559 bytes = LEAF_SIZE * stat->leaves; 2560 2561 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2562 bytes += sizeof(struct fib_alias) * stat->prefixes; 2563 2564 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2565 bytes += TNODE_SIZE(0) * stat->tnodes; 2566 2567 max = MAX_STAT_DEPTH; 2568 while (max > 0 && stat->nodesizes[max-1] == 0) 2569 max--; 2570 2571 pointers = 0; 2572 for (i = 1; i < max; i++) 2573 if (stat->nodesizes[i] != 0) { 2574 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2575 pointers += (1<<i) * stat->nodesizes[i]; 2576 } 2577 seq_putc(seq, '\n'); 2578 seq_printf(seq, "\tPointers: %u\n", pointers); 2579 2580 bytes += sizeof(struct key_vector *) * pointers; 2581 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2582 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2583} 2584 2585#ifdef CONFIG_IP_FIB_TRIE_STATS 2586static void trie_show_usage(struct seq_file *seq, 2587 const struct trie_use_stats __percpu *stats) 2588{ 2589 struct trie_use_stats s = { 0 }; 2590 int cpu; 2591 2592 /* loop through all of the CPUs and gather up the stats */ 2593 for_each_possible_cpu(cpu) { 2594 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2595 2596 s.gets += pcpu->gets; 2597 s.backtrack += pcpu->backtrack; 2598 s.semantic_match_passed += pcpu->semantic_match_passed; 2599 s.semantic_match_miss += pcpu->semantic_match_miss; 2600 s.null_node_hit += pcpu->null_node_hit; 2601 s.resize_node_skipped += pcpu->resize_node_skipped; 2602 } 2603 2604 seq_printf(seq, "\nCounters:\n---------\n"); 2605 seq_printf(seq, "gets = %u\n", s.gets); 2606 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2607 seq_printf(seq, "semantic match passed = %u\n", 2608 s.semantic_match_passed); 2609 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2610 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2611 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2612} 2613#endif /* CONFIG_IP_FIB_TRIE_STATS */ 2614 2615static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2616{ 2617 if (tb->tb_id == RT_TABLE_LOCAL) 2618 seq_puts(seq, "Local:\n"); 2619 else if (tb->tb_id == RT_TABLE_MAIN) 2620 seq_puts(seq, "Main:\n"); 2621 else 2622 seq_printf(seq, "Id %d:\n", tb->tb_id); 2623} 2624 2625 2626static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2627{ 2628 struct net *net = seq->private; 2629 unsigned int h; 2630 2631 seq_printf(seq, 2632 "Basic info: size of leaf:" 2633 " %zd bytes, size of tnode: %zd bytes.\n", 2634 LEAF_SIZE, TNODE_SIZE(0)); 2635 2636 rcu_read_lock(); 2637 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2638 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2639 struct fib_table *tb; 2640 2641 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2642 struct trie *t = (struct trie *) tb->tb_data; 2643 struct trie_stat stat; 2644 2645 if (!t) 2646 continue; 2647 2648 fib_table_print(seq, tb); 2649 2650 trie_collect_stats(t, &stat); 2651 trie_show_stats(seq, &stat); 2652#ifdef CONFIG_IP_FIB_TRIE_STATS 2653 trie_show_usage(seq, t->stats); 2654#endif 2655 } 2656 cond_resched_rcu(); 2657 } 2658 rcu_read_unlock(); 2659 2660 return 0; 2661} 2662 2663static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2664{ 2665 struct fib_trie_iter *iter = seq->private; 2666 struct net *net = seq_file_net(seq); 2667 loff_t idx = 0; 2668 unsigned int h; 2669 2670 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2671 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2672 struct fib_table *tb; 2673 2674 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2675 struct key_vector *n; 2676 2677 for (n = fib_trie_get_first(iter, 2678 (struct trie *) tb->tb_data); 2679 n; n = fib_trie_get_next(iter)) 2680 if (pos == idx++) { 2681 iter->tb = tb; 2682 return n; 2683 } 2684 } 2685 } 2686 2687 return NULL; 2688} 2689 2690static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2691 __acquires(RCU) 2692{ 2693 rcu_read_lock(); 2694 return fib_trie_get_idx(seq, *pos); 2695} 2696 2697static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2698{ 2699 struct fib_trie_iter *iter = seq->private; 2700 struct net *net = seq_file_net(seq); 2701 struct fib_table *tb = iter->tb; 2702 struct hlist_node *tb_node; 2703 unsigned int h; 2704 struct key_vector *n; 2705 2706 ++*pos; 2707 /* next node in same table */ 2708 n = fib_trie_get_next(iter); 2709 if (n) 2710 return n; 2711 2712 /* walk rest of this hash chain */ 2713 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2714 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2715 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2716 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2717 if (n) 2718 goto found; 2719 } 2720 2721 /* new hash chain */ 2722 while (++h < FIB_TABLE_HASHSZ) { 2723 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2724 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2725 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2726 if (n) 2727 goto found; 2728 } 2729 } 2730 return NULL; 2731 2732found: 2733 iter->tb = tb; 2734 return n; 2735} 2736 2737static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2738 __releases(RCU) 2739{ 2740 rcu_read_unlock(); 2741} 2742 2743static void seq_indent(struct seq_file *seq, int n) 2744{ 2745 while (n-- > 0) 2746 seq_puts(seq, " "); 2747} 2748 2749static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2750{ 2751 switch (s) { 2752 case RT_SCOPE_UNIVERSE: return "universe"; 2753 case RT_SCOPE_SITE: return "site"; 2754 case RT_SCOPE_LINK: return "link"; 2755 case RT_SCOPE_HOST: return "host"; 2756 case RT_SCOPE_NOWHERE: return "nowhere"; 2757 default: 2758 snprintf(buf, len, "scope=%d", s); 2759 return buf; 2760 } 2761} 2762 2763static const char *const rtn_type_names[__RTN_MAX] = { 2764 [RTN_UNSPEC] = "UNSPEC", 2765 [RTN_UNICAST] = "UNICAST", 2766 [RTN_LOCAL] = "LOCAL", 2767 [RTN_BROADCAST] = "BROADCAST", 2768 [RTN_ANYCAST] = "ANYCAST", 2769 [RTN_MULTICAST] = "MULTICAST", 2770 [RTN_BLACKHOLE] = "BLACKHOLE", 2771 [RTN_UNREACHABLE] = "UNREACHABLE", 2772 [RTN_PROHIBIT] = "PROHIBIT", 2773 [RTN_THROW] = "THROW", 2774 [RTN_NAT] = "NAT", 2775 [RTN_XRESOLVE] = "XRESOLVE", 2776}; 2777 2778static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2779{ 2780 if (t < __RTN_MAX && rtn_type_names[t]) 2781 return rtn_type_names[t]; 2782 snprintf(buf, len, "type %u", t); 2783 return buf; 2784} 2785 2786/* Pretty print the trie */ 2787static int fib_trie_seq_show(struct seq_file *seq, void *v) 2788{ 2789 const struct fib_trie_iter *iter = seq->private; 2790 struct key_vector *n = v; 2791 2792 if (IS_TRIE(node_parent_rcu(n))) 2793 fib_table_print(seq, iter->tb); 2794 2795 if (IS_TNODE(n)) { 2796 __be32 prf = htonl(n->key); 2797 2798 seq_indent(seq, iter->depth-1); 2799 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2800 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2801 tn_info(n)->full_children, 2802 tn_info(n)->empty_children); 2803 } else { 2804 __be32 val = htonl(n->key); 2805 struct fib_alias *fa; 2806 2807 seq_indent(seq, iter->depth); 2808 seq_printf(seq, " |-- %pI4\n", &val); 2809 2810 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2811 char buf1[32], buf2[32]; 2812 2813 seq_indent(seq, iter->depth + 1); 2814 seq_printf(seq, " /%zu %s %s", 2815 KEYLENGTH - fa->fa_slen, 2816 rtn_scope(buf1, sizeof(buf1), 2817 fa->fa_info->fib_scope), 2818 rtn_type(buf2, sizeof(buf2), 2819 fa->fa_type)); 2820 if (fa->fa_dscp) 2821 seq_printf(seq, " tos=%d", 2822 inet_dscp_to_dsfield(fa->fa_dscp)); 2823 seq_putc(seq, '\n'); 2824 } 2825 } 2826 2827 return 0; 2828} 2829 2830static const struct seq_operations fib_trie_seq_ops = { 2831 .start = fib_trie_seq_start, 2832 .next = fib_trie_seq_next, 2833 .stop = fib_trie_seq_stop, 2834 .show = fib_trie_seq_show, 2835}; 2836 2837struct fib_route_iter { 2838 struct seq_net_private p; 2839 struct fib_table *main_tb; 2840 struct key_vector *tnode; 2841 loff_t pos; 2842 t_key key; 2843}; 2844 2845static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2846 loff_t pos) 2847{ 2848 struct key_vector *l, **tp = &iter->tnode; 2849 t_key key; 2850 2851 /* use cached location of previously found key */ 2852 if (iter->pos > 0 && pos >= iter->pos) { 2853 key = iter->key; 2854 } else { 2855 iter->pos = 1; 2856 key = 0; 2857 } 2858 2859 pos -= iter->pos; 2860 2861 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { 2862 key = l->key + 1; 2863 iter->pos++; 2864 l = NULL; 2865 2866 /* handle unlikely case of a key wrap */ 2867 if (!key) 2868 break; 2869 } 2870 2871 if (l) 2872 iter->key = l->key; /* remember it */ 2873 else 2874 iter->pos = 0; /* forget it */ 2875 2876 return l; 2877} 2878 2879static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2880 __acquires(RCU) 2881{ 2882 struct fib_route_iter *iter = seq->private; 2883 struct fib_table *tb; 2884 struct trie *t; 2885 2886 rcu_read_lock(); 2887 2888 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2889 if (!tb) 2890 return NULL; 2891 2892 iter->main_tb = tb; 2893 t = (struct trie *)tb->tb_data; 2894 iter->tnode = t->kv; 2895 2896 if (*pos != 0) 2897 return fib_route_get_idx(iter, *pos); 2898 2899 iter->pos = 0; 2900 iter->key = KEY_MAX; 2901 2902 return SEQ_START_TOKEN; 2903} 2904 2905static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2906{ 2907 struct fib_route_iter *iter = seq->private; 2908 struct key_vector *l = NULL; 2909 t_key key = iter->key + 1; 2910 2911 ++*pos; 2912 2913 /* only allow key of 0 for start of sequence */ 2914 if ((v == SEQ_START_TOKEN) || key) 2915 l = leaf_walk_rcu(&iter->tnode, key); 2916 2917 if (l) { 2918 iter->key = l->key; 2919 iter->pos++; 2920 } else { 2921 iter->pos = 0; 2922 } 2923 2924 return l; 2925} 2926 2927static void fib_route_seq_stop(struct seq_file *seq, void *v) 2928 __releases(RCU) 2929{ 2930 rcu_read_unlock(); 2931} 2932 2933static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi) 2934{ 2935 unsigned int flags = 0; 2936 2937 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2938 flags = RTF_REJECT; 2939 if (fi) { 2940 const struct fib_nh_common *nhc = fib_info_nhc(fi, 0); 2941 2942 if (nhc->nhc_gw.ipv4) 2943 flags |= RTF_GATEWAY; 2944 } 2945 if (mask == htonl(0xFFFFFFFF)) 2946 flags |= RTF_HOST; 2947 flags |= RTF_UP; 2948 return flags; 2949} 2950 2951/* 2952 * This outputs /proc/net/route. 2953 * The format of the file is not supposed to be changed 2954 * and needs to be same as fib_hash output to avoid breaking 2955 * legacy utilities 2956 */ 2957static int fib_route_seq_show(struct seq_file *seq, void *v) 2958{ 2959 struct fib_route_iter *iter = seq->private; 2960 struct fib_table *tb = iter->main_tb; 2961 struct fib_alias *fa; 2962 struct key_vector *l = v; 2963 __be32 prefix; 2964 2965 if (v == SEQ_START_TOKEN) { 2966 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2967 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2968 "\tWindow\tIRTT"); 2969 return 0; 2970 } 2971 2972 prefix = htonl(l->key); 2973 2974 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2975 struct fib_info *fi = fa->fa_info; 2976 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2977 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2978 2979 if ((fa->fa_type == RTN_BROADCAST) || 2980 (fa->fa_type == RTN_MULTICAST)) 2981 continue; 2982 2983 if (fa->tb_id != tb->tb_id) 2984 continue; 2985 2986 seq_setwidth(seq, 127); 2987 2988 if (fi) { 2989 struct fib_nh_common *nhc = fib_info_nhc(fi, 0); 2990 __be32 gw = 0; 2991 2992 if (nhc->nhc_gw_family == AF_INET) 2993 gw = nhc->nhc_gw.ipv4; 2994 2995 seq_printf(seq, 2996 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2997 "%d\t%08X\t%d\t%u\t%u", 2998 nhc->nhc_dev ? nhc->nhc_dev->name : "*", 2999 prefix, gw, flags, 0, 0, 3000 fi->fib_priority, 3001 mask, 3002 (fi->fib_advmss ? 3003 fi->fib_advmss + 40 : 0), 3004 fi->fib_window, 3005 fi->fib_rtt >> 3); 3006 } else { 3007 seq_printf(seq, 3008 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 3009 "%d\t%08X\t%d\t%u\t%u", 3010 prefix, 0, flags, 0, 0, 0, 3011 mask, 0, 0, 0); 3012 } 3013 seq_pad(seq, '\n'); 3014 } 3015 3016 return 0; 3017} 3018 3019static const struct seq_operations fib_route_seq_ops = { 3020 .start = fib_route_seq_start, 3021 .next = fib_route_seq_next, 3022 .stop = fib_route_seq_stop, 3023 .show = fib_route_seq_show, 3024}; 3025 3026int __net_init fib_proc_init(struct net *net) 3027{ 3028 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops, 3029 sizeof(struct fib_trie_iter))) 3030 goto out1; 3031 3032 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net, 3033 fib_triestat_seq_show, NULL)) 3034 goto out2; 3035 3036 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops, 3037 sizeof(struct fib_route_iter))) 3038 goto out3; 3039 3040 return 0; 3041 3042out3: 3043 remove_proc_entry("fib_triestat", net->proc_net); 3044out2: 3045 remove_proc_entry("fib_trie", net->proc_net); 3046out1: 3047 return -ENOMEM; 3048} 3049 3050void __net_exit fib_proc_exit(struct net *net) 3051{ 3052 remove_proc_entry("fib_trie", net->proc_net); 3053 remove_proc_entry("fib_triestat", net->proc_net); 3054 remove_proc_entry("route", net->proc_net); 3055} 3056 3057#endif /* CONFIG_PROC_FS */