cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fib_trie.c (74763B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 *
      4 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
      5 *     & Swedish University of Agricultural Sciences.
      6 *
      7 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
      8 *     Agricultural Sciences.
      9 *
     10 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
     11 *
     12 * This work is based on the LPC-trie which is originally described in:
     13 *
     14 * An experimental study of compression methods for dynamic tries
     15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
     16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/
     17 *
     18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
     19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
     20 *
     21 * Code from fib_hash has been reused which includes the following header:
     22 *
     23 * INET		An implementation of the TCP/IP protocol suite for the LINUX
     24 *		operating system.  INET is implemented using the  BSD Socket
     25 *		interface as the means of communication with the user level.
     26 *
     27 *		IPv4 FIB: lookup engine and maintenance routines.
     28 *
     29 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
     30 *
     31 * Substantial contributions to this work comes from:
     32 *
     33 *		David S. Miller, <davem@davemloft.net>
     34 *		Stephen Hemminger <shemminger@osdl.org>
     35 *		Paul E. McKenney <paulmck@us.ibm.com>
     36 *		Patrick McHardy <kaber@trash.net>
     37 */
     38#include <linux/cache.h>
     39#include <linux/uaccess.h>
     40#include <linux/bitops.h>
     41#include <linux/types.h>
     42#include <linux/kernel.h>
     43#include <linux/mm.h>
     44#include <linux/string.h>
     45#include <linux/socket.h>
     46#include <linux/sockios.h>
     47#include <linux/errno.h>
     48#include <linux/in.h>
     49#include <linux/inet.h>
     50#include <linux/inetdevice.h>
     51#include <linux/netdevice.h>
     52#include <linux/if_arp.h>
     53#include <linux/proc_fs.h>
     54#include <linux/rcupdate.h>
     55#include <linux/skbuff.h>
     56#include <linux/netlink.h>
     57#include <linux/init.h>
     58#include <linux/list.h>
     59#include <linux/slab.h>
     60#include <linux/export.h>
     61#include <linux/vmalloc.h>
     62#include <linux/notifier.h>
     63#include <net/net_namespace.h>
     64#include <net/inet_dscp.h>
     65#include <net/ip.h>
     66#include <net/protocol.h>
     67#include <net/route.h>
     68#include <net/tcp.h>
     69#include <net/sock.h>
     70#include <net/ip_fib.h>
     71#include <net/fib_notifier.h>
     72#include <trace/events/fib.h>
     73#include "fib_lookup.h"
     74
     75static int call_fib_entry_notifier(struct notifier_block *nb,
     76				   enum fib_event_type event_type, u32 dst,
     77				   int dst_len, struct fib_alias *fa,
     78				   struct netlink_ext_ack *extack)
     79{
     80	struct fib_entry_notifier_info info = {
     81		.info.extack = extack,
     82		.dst = dst,
     83		.dst_len = dst_len,
     84		.fi = fa->fa_info,
     85		.dscp = fa->fa_dscp,
     86		.type = fa->fa_type,
     87		.tb_id = fa->tb_id,
     88	};
     89	return call_fib4_notifier(nb, event_type, &info.info);
     90}
     91
     92static int call_fib_entry_notifiers(struct net *net,
     93				    enum fib_event_type event_type, u32 dst,
     94				    int dst_len, struct fib_alias *fa,
     95				    struct netlink_ext_ack *extack)
     96{
     97	struct fib_entry_notifier_info info = {
     98		.info.extack = extack,
     99		.dst = dst,
    100		.dst_len = dst_len,
    101		.fi = fa->fa_info,
    102		.dscp = fa->fa_dscp,
    103		.type = fa->fa_type,
    104		.tb_id = fa->tb_id,
    105	};
    106	return call_fib4_notifiers(net, event_type, &info.info);
    107}
    108
    109#define MAX_STAT_DEPTH 32
    110
    111#define KEYLENGTH	(8*sizeof(t_key))
    112#define KEY_MAX		((t_key)~0)
    113
    114typedef unsigned int t_key;
    115
    116#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
    117#define IS_TNODE(n)	((n)->bits)
    118#define IS_LEAF(n)	(!(n)->bits)
    119
    120struct key_vector {
    121	t_key key;
    122	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
    123	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
    124	unsigned char slen;
    125	union {
    126		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
    127		struct hlist_head leaf;
    128		/* This array is valid if (pos | bits) > 0 (TNODE) */
    129		struct key_vector __rcu *tnode[0];
    130	};
    131};
    132
    133struct tnode {
    134	struct rcu_head rcu;
    135	t_key empty_children;		/* KEYLENGTH bits needed */
    136	t_key full_children;		/* KEYLENGTH bits needed */
    137	struct key_vector __rcu *parent;
    138	struct key_vector kv[1];
    139#define tn_bits kv[0].bits
    140};
    141
    142#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
    143#define LEAF_SIZE	TNODE_SIZE(1)
    144
    145#ifdef CONFIG_IP_FIB_TRIE_STATS
    146struct trie_use_stats {
    147	unsigned int gets;
    148	unsigned int backtrack;
    149	unsigned int semantic_match_passed;
    150	unsigned int semantic_match_miss;
    151	unsigned int null_node_hit;
    152	unsigned int resize_node_skipped;
    153};
    154#endif
    155
    156struct trie_stat {
    157	unsigned int totdepth;
    158	unsigned int maxdepth;
    159	unsigned int tnodes;
    160	unsigned int leaves;
    161	unsigned int nullpointers;
    162	unsigned int prefixes;
    163	unsigned int nodesizes[MAX_STAT_DEPTH];
    164};
    165
    166struct trie {
    167	struct key_vector kv[1];
    168#ifdef CONFIG_IP_FIB_TRIE_STATS
    169	struct trie_use_stats __percpu *stats;
    170#endif
    171};
    172
    173static struct key_vector *resize(struct trie *t, struct key_vector *tn);
    174static unsigned int tnode_free_size;
    175
    176/*
    177 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
    178 * especially useful before resizing the root node with PREEMPT_NONE configs;
    179 * the value was obtained experimentally, aiming to avoid visible slowdown.
    180 */
    181unsigned int sysctl_fib_sync_mem = 512 * 1024;
    182unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
    183unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
    184
    185static struct kmem_cache *fn_alias_kmem __ro_after_init;
    186static struct kmem_cache *trie_leaf_kmem __ro_after_init;
    187
    188static inline struct tnode *tn_info(struct key_vector *kv)
    189{
    190	return container_of(kv, struct tnode, kv[0]);
    191}
    192
    193/* caller must hold RTNL */
    194#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
    195#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
    196
    197/* caller must hold RCU read lock or RTNL */
    198#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
    199#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
    200
    201/* wrapper for rcu_assign_pointer */
    202static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
    203{
    204	if (n)
    205		rcu_assign_pointer(tn_info(n)->parent, tp);
    206}
    207
    208#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
    209
    210/* This provides us with the number of children in this node, in the case of a
    211 * leaf this will return 0 meaning none of the children are accessible.
    212 */
    213static inline unsigned long child_length(const struct key_vector *tn)
    214{
    215	return (1ul << tn->bits) & ~(1ul);
    216}
    217
    218#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
    219
    220static inline unsigned long get_index(t_key key, struct key_vector *kv)
    221{
    222	unsigned long index = key ^ kv->key;
    223
    224	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
    225		return 0;
    226
    227	return index >> kv->pos;
    228}
    229
    230/* To understand this stuff, an understanding of keys and all their bits is
    231 * necessary. Every node in the trie has a key associated with it, but not
    232 * all of the bits in that key are significant.
    233 *
    234 * Consider a node 'n' and its parent 'tp'.
    235 *
    236 * If n is a leaf, every bit in its key is significant. Its presence is
    237 * necessitated by path compression, since during a tree traversal (when
    238 * searching for a leaf - unless we are doing an insertion) we will completely
    239 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
    240 * a potentially successful search, that we have indeed been walking the
    241 * correct key path.
    242 *
    243 * Note that we can never "miss" the correct key in the tree if present by
    244 * following the wrong path. Path compression ensures that segments of the key
    245 * that are the same for all keys with a given prefix are skipped, but the
    246 * skipped part *is* identical for each node in the subtrie below the skipped
    247 * bit! trie_insert() in this implementation takes care of that.
    248 *
    249 * if n is an internal node - a 'tnode' here, the various parts of its key
    250 * have many different meanings.
    251 *
    252 * Example:
    253 * _________________________________________________________________
    254 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
    255 * -----------------------------------------------------------------
    256 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
    257 *
    258 * _________________________________________________________________
    259 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
    260 * -----------------------------------------------------------------
    261 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
    262 *
    263 * tp->pos = 22
    264 * tp->bits = 3
    265 * n->pos = 13
    266 * n->bits = 4
    267 *
    268 * First, let's just ignore the bits that come before the parent tp, that is
    269 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
    270 * point we do not use them for anything.
    271 *
    272 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
    273 * index into the parent's child array. That is, they will be used to find
    274 * 'n' among tp's children.
    275 *
    276 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
    277 * for the node n.
    278 *
    279 * All the bits we have seen so far are significant to the node n. The rest
    280 * of the bits are really not needed or indeed known in n->key.
    281 *
    282 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
    283 * n's child array, and will of course be different for each child.
    284 *
    285 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
    286 * at this point.
    287 */
    288
    289static const int halve_threshold = 25;
    290static const int inflate_threshold = 50;
    291static const int halve_threshold_root = 15;
    292static const int inflate_threshold_root = 30;
    293
    294static void __alias_free_mem(struct rcu_head *head)
    295{
    296	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
    297	kmem_cache_free(fn_alias_kmem, fa);
    298}
    299
    300static inline void alias_free_mem_rcu(struct fib_alias *fa)
    301{
    302	call_rcu(&fa->rcu, __alias_free_mem);
    303}
    304
    305#define TNODE_VMALLOC_MAX \
    306	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
    307
    308static void __node_free_rcu(struct rcu_head *head)
    309{
    310	struct tnode *n = container_of(head, struct tnode, rcu);
    311
    312	if (!n->tn_bits)
    313		kmem_cache_free(trie_leaf_kmem, n);
    314	else
    315		kvfree(n);
    316}
    317
    318#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
    319
    320static struct tnode *tnode_alloc(int bits)
    321{
    322	size_t size;
    323
    324	/* verify bits is within bounds */
    325	if (bits > TNODE_VMALLOC_MAX)
    326		return NULL;
    327
    328	/* determine size and verify it is non-zero and didn't overflow */
    329	size = TNODE_SIZE(1ul << bits);
    330
    331	if (size <= PAGE_SIZE)
    332		return kzalloc(size, GFP_KERNEL);
    333	else
    334		return vzalloc(size);
    335}
    336
    337static inline void empty_child_inc(struct key_vector *n)
    338{
    339	tn_info(n)->empty_children++;
    340
    341	if (!tn_info(n)->empty_children)
    342		tn_info(n)->full_children++;
    343}
    344
    345static inline void empty_child_dec(struct key_vector *n)
    346{
    347	if (!tn_info(n)->empty_children)
    348		tn_info(n)->full_children--;
    349
    350	tn_info(n)->empty_children--;
    351}
    352
    353static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
    354{
    355	struct key_vector *l;
    356	struct tnode *kv;
    357
    358	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
    359	if (!kv)
    360		return NULL;
    361
    362	/* initialize key vector */
    363	l = kv->kv;
    364	l->key = key;
    365	l->pos = 0;
    366	l->bits = 0;
    367	l->slen = fa->fa_slen;
    368
    369	/* link leaf to fib alias */
    370	INIT_HLIST_HEAD(&l->leaf);
    371	hlist_add_head(&fa->fa_list, &l->leaf);
    372
    373	return l;
    374}
    375
    376static struct key_vector *tnode_new(t_key key, int pos, int bits)
    377{
    378	unsigned int shift = pos + bits;
    379	struct key_vector *tn;
    380	struct tnode *tnode;
    381
    382	/* verify bits and pos their msb bits clear and values are valid */
    383	BUG_ON(!bits || (shift > KEYLENGTH));
    384
    385	tnode = tnode_alloc(bits);
    386	if (!tnode)
    387		return NULL;
    388
    389	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
    390		 sizeof(struct key_vector *) << bits);
    391
    392	if (bits == KEYLENGTH)
    393		tnode->full_children = 1;
    394	else
    395		tnode->empty_children = 1ul << bits;
    396
    397	tn = tnode->kv;
    398	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
    399	tn->pos = pos;
    400	tn->bits = bits;
    401	tn->slen = pos;
    402
    403	return tn;
    404}
    405
    406/* Check whether a tnode 'n' is "full", i.e. it is an internal node
    407 * and no bits are skipped. See discussion in dyntree paper p. 6
    408 */
    409static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
    410{
    411	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
    412}
    413
    414/* Add a child at position i overwriting the old value.
    415 * Update the value of full_children and empty_children.
    416 */
    417static void put_child(struct key_vector *tn, unsigned long i,
    418		      struct key_vector *n)
    419{
    420	struct key_vector *chi = get_child(tn, i);
    421	int isfull, wasfull;
    422
    423	BUG_ON(i >= child_length(tn));
    424
    425	/* update emptyChildren, overflow into fullChildren */
    426	if (!n && chi)
    427		empty_child_inc(tn);
    428	if (n && !chi)
    429		empty_child_dec(tn);
    430
    431	/* update fullChildren */
    432	wasfull = tnode_full(tn, chi);
    433	isfull = tnode_full(tn, n);
    434
    435	if (wasfull && !isfull)
    436		tn_info(tn)->full_children--;
    437	else if (!wasfull && isfull)
    438		tn_info(tn)->full_children++;
    439
    440	if (n && (tn->slen < n->slen))
    441		tn->slen = n->slen;
    442
    443	rcu_assign_pointer(tn->tnode[i], n);
    444}
    445
    446static void update_children(struct key_vector *tn)
    447{
    448	unsigned long i;
    449
    450	/* update all of the child parent pointers */
    451	for (i = child_length(tn); i;) {
    452		struct key_vector *inode = get_child(tn, --i);
    453
    454		if (!inode)
    455			continue;
    456
    457		/* Either update the children of a tnode that
    458		 * already belongs to us or update the child
    459		 * to point to ourselves.
    460		 */
    461		if (node_parent(inode) == tn)
    462			update_children(inode);
    463		else
    464			node_set_parent(inode, tn);
    465	}
    466}
    467
    468static inline void put_child_root(struct key_vector *tp, t_key key,
    469				  struct key_vector *n)
    470{
    471	if (IS_TRIE(tp))
    472		rcu_assign_pointer(tp->tnode[0], n);
    473	else
    474		put_child(tp, get_index(key, tp), n);
    475}
    476
    477static inline void tnode_free_init(struct key_vector *tn)
    478{
    479	tn_info(tn)->rcu.next = NULL;
    480}
    481
    482static inline void tnode_free_append(struct key_vector *tn,
    483				     struct key_vector *n)
    484{
    485	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
    486	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
    487}
    488
    489static void tnode_free(struct key_vector *tn)
    490{
    491	struct callback_head *head = &tn_info(tn)->rcu;
    492
    493	while (head) {
    494		head = head->next;
    495		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
    496		node_free(tn);
    497
    498		tn = container_of(head, struct tnode, rcu)->kv;
    499	}
    500
    501	if (tnode_free_size >= sysctl_fib_sync_mem) {
    502		tnode_free_size = 0;
    503		synchronize_rcu();
    504	}
    505}
    506
    507static struct key_vector *replace(struct trie *t,
    508				  struct key_vector *oldtnode,
    509				  struct key_vector *tn)
    510{
    511	struct key_vector *tp = node_parent(oldtnode);
    512	unsigned long i;
    513
    514	/* setup the parent pointer out of and back into this node */
    515	NODE_INIT_PARENT(tn, tp);
    516	put_child_root(tp, tn->key, tn);
    517
    518	/* update all of the child parent pointers */
    519	update_children(tn);
    520
    521	/* all pointers should be clean so we are done */
    522	tnode_free(oldtnode);
    523
    524	/* resize children now that oldtnode is freed */
    525	for (i = child_length(tn); i;) {
    526		struct key_vector *inode = get_child(tn, --i);
    527
    528		/* resize child node */
    529		if (tnode_full(tn, inode))
    530			tn = resize(t, inode);
    531	}
    532
    533	return tp;
    534}
    535
    536static struct key_vector *inflate(struct trie *t,
    537				  struct key_vector *oldtnode)
    538{
    539	struct key_vector *tn;
    540	unsigned long i;
    541	t_key m;
    542
    543	pr_debug("In inflate\n");
    544
    545	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
    546	if (!tn)
    547		goto notnode;
    548
    549	/* prepare oldtnode to be freed */
    550	tnode_free_init(oldtnode);
    551
    552	/* Assemble all of the pointers in our cluster, in this case that
    553	 * represents all of the pointers out of our allocated nodes that
    554	 * point to existing tnodes and the links between our allocated
    555	 * nodes.
    556	 */
    557	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
    558		struct key_vector *inode = get_child(oldtnode, --i);
    559		struct key_vector *node0, *node1;
    560		unsigned long j, k;
    561
    562		/* An empty child */
    563		if (!inode)
    564			continue;
    565
    566		/* A leaf or an internal node with skipped bits */
    567		if (!tnode_full(oldtnode, inode)) {
    568			put_child(tn, get_index(inode->key, tn), inode);
    569			continue;
    570		}
    571
    572		/* drop the node in the old tnode free list */
    573		tnode_free_append(oldtnode, inode);
    574
    575		/* An internal node with two children */
    576		if (inode->bits == 1) {
    577			put_child(tn, 2 * i + 1, get_child(inode, 1));
    578			put_child(tn, 2 * i, get_child(inode, 0));
    579			continue;
    580		}
    581
    582		/* We will replace this node 'inode' with two new
    583		 * ones, 'node0' and 'node1', each with half of the
    584		 * original children. The two new nodes will have
    585		 * a position one bit further down the key and this
    586		 * means that the "significant" part of their keys
    587		 * (see the discussion near the top of this file)
    588		 * will differ by one bit, which will be "0" in
    589		 * node0's key and "1" in node1's key. Since we are
    590		 * moving the key position by one step, the bit that
    591		 * we are moving away from - the bit at position
    592		 * (tn->pos) - is the one that will differ between
    593		 * node0 and node1. So... we synthesize that bit in the
    594		 * two new keys.
    595		 */
    596		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
    597		if (!node1)
    598			goto nomem;
    599		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
    600
    601		tnode_free_append(tn, node1);
    602		if (!node0)
    603			goto nomem;
    604		tnode_free_append(tn, node0);
    605
    606		/* populate child pointers in new nodes */
    607		for (k = child_length(inode), j = k / 2; j;) {
    608			put_child(node1, --j, get_child(inode, --k));
    609			put_child(node0, j, get_child(inode, j));
    610			put_child(node1, --j, get_child(inode, --k));
    611			put_child(node0, j, get_child(inode, j));
    612		}
    613
    614		/* link new nodes to parent */
    615		NODE_INIT_PARENT(node1, tn);
    616		NODE_INIT_PARENT(node0, tn);
    617
    618		/* link parent to nodes */
    619		put_child(tn, 2 * i + 1, node1);
    620		put_child(tn, 2 * i, node0);
    621	}
    622
    623	/* setup the parent pointers into and out of this node */
    624	return replace(t, oldtnode, tn);
    625nomem:
    626	/* all pointers should be clean so we are done */
    627	tnode_free(tn);
    628notnode:
    629	return NULL;
    630}
    631
    632static struct key_vector *halve(struct trie *t,
    633				struct key_vector *oldtnode)
    634{
    635	struct key_vector *tn;
    636	unsigned long i;
    637
    638	pr_debug("In halve\n");
    639
    640	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
    641	if (!tn)
    642		goto notnode;
    643
    644	/* prepare oldtnode to be freed */
    645	tnode_free_init(oldtnode);
    646
    647	/* Assemble all of the pointers in our cluster, in this case that
    648	 * represents all of the pointers out of our allocated nodes that
    649	 * point to existing tnodes and the links between our allocated
    650	 * nodes.
    651	 */
    652	for (i = child_length(oldtnode); i;) {
    653		struct key_vector *node1 = get_child(oldtnode, --i);
    654		struct key_vector *node0 = get_child(oldtnode, --i);
    655		struct key_vector *inode;
    656
    657		/* At least one of the children is empty */
    658		if (!node1 || !node0) {
    659			put_child(tn, i / 2, node1 ? : node0);
    660			continue;
    661		}
    662
    663		/* Two nonempty children */
    664		inode = tnode_new(node0->key, oldtnode->pos, 1);
    665		if (!inode)
    666			goto nomem;
    667		tnode_free_append(tn, inode);
    668
    669		/* initialize pointers out of node */
    670		put_child(inode, 1, node1);
    671		put_child(inode, 0, node0);
    672		NODE_INIT_PARENT(inode, tn);
    673
    674		/* link parent to node */
    675		put_child(tn, i / 2, inode);
    676	}
    677
    678	/* setup the parent pointers into and out of this node */
    679	return replace(t, oldtnode, tn);
    680nomem:
    681	/* all pointers should be clean so we are done */
    682	tnode_free(tn);
    683notnode:
    684	return NULL;
    685}
    686
    687static struct key_vector *collapse(struct trie *t,
    688				   struct key_vector *oldtnode)
    689{
    690	struct key_vector *n, *tp;
    691	unsigned long i;
    692
    693	/* scan the tnode looking for that one child that might still exist */
    694	for (n = NULL, i = child_length(oldtnode); !n && i;)
    695		n = get_child(oldtnode, --i);
    696
    697	/* compress one level */
    698	tp = node_parent(oldtnode);
    699	put_child_root(tp, oldtnode->key, n);
    700	node_set_parent(n, tp);
    701
    702	/* drop dead node */
    703	node_free(oldtnode);
    704
    705	return tp;
    706}
    707
    708static unsigned char update_suffix(struct key_vector *tn)
    709{
    710	unsigned char slen = tn->pos;
    711	unsigned long stride, i;
    712	unsigned char slen_max;
    713
    714	/* only vector 0 can have a suffix length greater than or equal to
    715	 * tn->pos + tn->bits, the second highest node will have a suffix
    716	 * length at most of tn->pos + tn->bits - 1
    717	 */
    718	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
    719
    720	/* search though the list of children looking for nodes that might
    721	 * have a suffix greater than the one we currently have.  This is
    722	 * why we start with a stride of 2 since a stride of 1 would
    723	 * represent the nodes with suffix length equal to tn->pos
    724	 */
    725	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
    726		struct key_vector *n = get_child(tn, i);
    727
    728		if (!n || (n->slen <= slen))
    729			continue;
    730
    731		/* update stride and slen based on new value */
    732		stride <<= (n->slen - slen);
    733		slen = n->slen;
    734		i &= ~(stride - 1);
    735
    736		/* stop searching if we have hit the maximum possible value */
    737		if (slen >= slen_max)
    738			break;
    739	}
    740
    741	tn->slen = slen;
    742
    743	return slen;
    744}
    745
    746/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
    747 * the Helsinki University of Technology and Matti Tikkanen of Nokia
    748 * Telecommunications, page 6:
    749 * "A node is doubled if the ratio of non-empty children to all
    750 * children in the *doubled* node is at least 'high'."
    751 *
    752 * 'high' in this instance is the variable 'inflate_threshold'. It
    753 * is expressed as a percentage, so we multiply it with
    754 * child_length() and instead of multiplying by 2 (since the
    755 * child array will be doubled by inflate()) and multiplying
    756 * the left-hand side by 100 (to handle the percentage thing) we
    757 * multiply the left-hand side by 50.
    758 *
    759 * The left-hand side may look a bit weird: child_length(tn)
    760 * - tn->empty_children is of course the number of non-null children
    761 * in the current node. tn->full_children is the number of "full"
    762 * children, that is non-null tnodes with a skip value of 0.
    763 * All of those will be doubled in the resulting inflated tnode, so
    764 * we just count them one extra time here.
    765 *
    766 * A clearer way to write this would be:
    767 *
    768 * to_be_doubled = tn->full_children;
    769 * not_to_be_doubled = child_length(tn) - tn->empty_children -
    770 *     tn->full_children;
    771 *
    772 * new_child_length = child_length(tn) * 2;
    773 *
    774 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
    775 *      new_child_length;
    776 * if (new_fill_factor >= inflate_threshold)
    777 *
    778 * ...and so on, tho it would mess up the while () loop.
    779 *
    780 * anyway,
    781 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
    782 *      inflate_threshold
    783 *
    784 * avoid a division:
    785 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
    786 *      inflate_threshold * new_child_length
    787 *
    788 * expand not_to_be_doubled and to_be_doubled, and shorten:
    789 * 100 * (child_length(tn) - tn->empty_children +
    790 *    tn->full_children) >= inflate_threshold * new_child_length
    791 *
    792 * expand new_child_length:
    793 * 100 * (child_length(tn) - tn->empty_children +
    794 *    tn->full_children) >=
    795 *      inflate_threshold * child_length(tn) * 2
    796 *
    797 * shorten again:
    798 * 50 * (tn->full_children + child_length(tn) -
    799 *    tn->empty_children) >= inflate_threshold *
    800 *    child_length(tn)
    801 *
    802 */
    803static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
    804{
    805	unsigned long used = child_length(tn);
    806	unsigned long threshold = used;
    807
    808	/* Keep root node larger */
    809	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
    810	used -= tn_info(tn)->empty_children;
    811	used += tn_info(tn)->full_children;
    812
    813	/* if bits == KEYLENGTH then pos = 0, and will fail below */
    814
    815	return (used > 1) && tn->pos && ((50 * used) >= threshold);
    816}
    817
    818static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
    819{
    820	unsigned long used = child_length(tn);
    821	unsigned long threshold = used;
    822
    823	/* Keep root node larger */
    824	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
    825	used -= tn_info(tn)->empty_children;
    826
    827	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
    828
    829	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
    830}
    831
    832static inline bool should_collapse(struct key_vector *tn)
    833{
    834	unsigned long used = child_length(tn);
    835
    836	used -= tn_info(tn)->empty_children;
    837
    838	/* account for bits == KEYLENGTH case */
    839	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
    840		used -= KEY_MAX;
    841
    842	/* One child or none, time to drop us from the trie */
    843	return used < 2;
    844}
    845
    846#define MAX_WORK 10
    847static struct key_vector *resize(struct trie *t, struct key_vector *tn)
    848{
    849#ifdef CONFIG_IP_FIB_TRIE_STATS
    850	struct trie_use_stats __percpu *stats = t->stats;
    851#endif
    852	struct key_vector *tp = node_parent(tn);
    853	unsigned long cindex = get_index(tn->key, tp);
    854	int max_work = MAX_WORK;
    855
    856	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
    857		 tn, inflate_threshold, halve_threshold);
    858
    859	/* track the tnode via the pointer from the parent instead of
    860	 * doing it ourselves.  This way we can let RCU fully do its
    861	 * thing without us interfering
    862	 */
    863	BUG_ON(tn != get_child(tp, cindex));
    864
    865	/* Double as long as the resulting node has a number of
    866	 * nonempty nodes that are above the threshold.
    867	 */
    868	while (should_inflate(tp, tn) && max_work) {
    869		tp = inflate(t, tn);
    870		if (!tp) {
    871#ifdef CONFIG_IP_FIB_TRIE_STATS
    872			this_cpu_inc(stats->resize_node_skipped);
    873#endif
    874			break;
    875		}
    876
    877		max_work--;
    878		tn = get_child(tp, cindex);
    879	}
    880
    881	/* update parent in case inflate failed */
    882	tp = node_parent(tn);
    883
    884	/* Return if at least one inflate is run */
    885	if (max_work != MAX_WORK)
    886		return tp;
    887
    888	/* Halve as long as the number of empty children in this
    889	 * node is above threshold.
    890	 */
    891	while (should_halve(tp, tn) && max_work) {
    892		tp = halve(t, tn);
    893		if (!tp) {
    894#ifdef CONFIG_IP_FIB_TRIE_STATS
    895			this_cpu_inc(stats->resize_node_skipped);
    896#endif
    897			break;
    898		}
    899
    900		max_work--;
    901		tn = get_child(tp, cindex);
    902	}
    903
    904	/* Only one child remains */
    905	if (should_collapse(tn))
    906		return collapse(t, tn);
    907
    908	/* update parent in case halve failed */
    909	return node_parent(tn);
    910}
    911
    912static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
    913{
    914	unsigned char node_slen = tn->slen;
    915
    916	while ((node_slen > tn->pos) && (node_slen > slen)) {
    917		slen = update_suffix(tn);
    918		if (node_slen == slen)
    919			break;
    920
    921		tn = node_parent(tn);
    922		node_slen = tn->slen;
    923	}
    924}
    925
    926static void node_push_suffix(struct key_vector *tn, unsigned char slen)
    927{
    928	while (tn->slen < slen) {
    929		tn->slen = slen;
    930		tn = node_parent(tn);
    931	}
    932}
    933
    934/* rcu_read_lock needs to be hold by caller from readside */
    935static struct key_vector *fib_find_node(struct trie *t,
    936					struct key_vector **tp, u32 key)
    937{
    938	struct key_vector *pn, *n = t->kv;
    939	unsigned long index = 0;
    940
    941	do {
    942		pn = n;
    943		n = get_child_rcu(n, index);
    944
    945		if (!n)
    946			break;
    947
    948		index = get_cindex(key, n);
    949
    950		/* This bit of code is a bit tricky but it combines multiple
    951		 * checks into a single check.  The prefix consists of the
    952		 * prefix plus zeros for the bits in the cindex. The index
    953		 * is the difference between the key and this value.  From
    954		 * this we can actually derive several pieces of data.
    955		 *   if (index >= (1ul << bits))
    956		 *     we have a mismatch in skip bits and failed
    957		 *   else
    958		 *     we know the value is cindex
    959		 *
    960		 * This check is safe even if bits == KEYLENGTH due to the
    961		 * fact that we can only allocate a node with 32 bits if a
    962		 * long is greater than 32 bits.
    963		 */
    964		if (index >= (1ul << n->bits)) {
    965			n = NULL;
    966			break;
    967		}
    968
    969		/* keep searching until we find a perfect match leaf or NULL */
    970	} while (IS_TNODE(n));
    971
    972	*tp = pn;
    973
    974	return n;
    975}
    976
    977/* Return the first fib alias matching DSCP with
    978 * priority less than or equal to PRIO.
    979 * If 'find_first' is set, return the first matching
    980 * fib alias, regardless of DSCP and priority.
    981 */
    982static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
    983					dscp_t dscp, u32 prio, u32 tb_id,
    984					bool find_first)
    985{
    986	struct fib_alias *fa;
    987
    988	if (!fah)
    989		return NULL;
    990
    991	hlist_for_each_entry(fa, fah, fa_list) {
    992		/* Avoid Sparse warning when using dscp_t in inequalities */
    993		u8 __fa_dscp = inet_dscp_to_dsfield(fa->fa_dscp);
    994		u8 __dscp = inet_dscp_to_dsfield(dscp);
    995
    996		if (fa->fa_slen < slen)
    997			continue;
    998		if (fa->fa_slen != slen)
    999			break;
   1000		if (fa->tb_id > tb_id)
   1001			continue;
   1002		if (fa->tb_id != tb_id)
   1003			break;
   1004		if (find_first)
   1005			return fa;
   1006		if (__fa_dscp > __dscp)
   1007			continue;
   1008		if (fa->fa_info->fib_priority >= prio || __fa_dscp < __dscp)
   1009			return fa;
   1010	}
   1011
   1012	return NULL;
   1013}
   1014
   1015static struct fib_alias *
   1016fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
   1017{
   1018	u8 slen = KEYLENGTH - fri->dst_len;
   1019	struct key_vector *l, *tp;
   1020	struct fib_table *tb;
   1021	struct fib_alias *fa;
   1022	struct trie *t;
   1023
   1024	tb = fib_get_table(net, fri->tb_id);
   1025	if (!tb)
   1026		return NULL;
   1027
   1028	t = (struct trie *)tb->tb_data;
   1029	l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
   1030	if (!l)
   1031		return NULL;
   1032
   1033	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
   1034		if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
   1035		    fa->fa_dscp == fri->dscp && fa->fa_info == fri->fi &&
   1036		    fa->fa_type == fri->type)
   1037			return fa;
   1038	}
   1039
   1040	return NULL;
   1041}
   1042
   1043void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
   1044{
   1045	struct fib_alias *fa_match;
   1046	struct sk_buff *skb;
   1047	int err;
   1048
   1049	rcu_read_lock();
   1050
   1051	fa_match = fib_find_matching_alias(net, fri);
   1052	if (!fa_match)
   1053		goto out;
   1054
   1055	/* These are paired with the WRITE_ONCE() happening in this function.
   1056	 * The reason is that we are only protected by RCU at this point.
   1057	 */
   1058	if (READ_ONCE(fa_match->offload) == fri->offload &&
   1059	    READ_ONCE(fa_match->trap) == fri->trap &&
   1060	    READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
   1061		goto out;
   1062
   1063	WRITE_ONCE(fa_match->offload, fri->offload);
   1064	WRITE_ONCE(fa_match->trap, fri->trap);
   1065
   1066	/* 2 means send notifications only if offload_failed was changed. */
   1067	if (net->ipv4.sysctl_fib_notify_on_flag_change == 2 &&
   1068	    READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
   1069		goto out;
   1070
   1071	WRITE_ONCE(fa_match->offload_failed, fri->offload_failed);
   1072
   1073	if (!net->ipv4.sysctl_fib_notify_on_flag_change)
   1074		goto out;
   1075
   1076	skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
   1077	if (!skb) {
   1078		err = -ENOBUFS;
   1079		goto errout;
   1080	}
   1081
   1082	err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
   1083	if (err < 0) {
   1084		/* -EMSGSIZE implies BUG in fib_nlmsg_size() */
   1085		WARN_ON(err == -EMSGSIZE);
   1086		kfree_skb(skb);
   1087		goto errout;
   1088	}
   1089
   1090	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
   1091	goto out;
   1092
   1093errout:
   1094	rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
   1095out:
   1096	rcu_read_unlock();
   1097}
   1098EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
   1099
   1100static void trie_rebalance(struct trie *t, struct key_vector *tn)
   1101{
   1102	while (!IS_TRIE(tn))
   1103		tn = resize(t, tn);
   1104}
   1105
   1106static int fib_insert_node(struct trie *t, struct key_vector *tp,
   1107			   struct fib_alias *new, t_key key)
   1108{
   1109	struct key_vector *n, *l;
   1110
   1111	l = leaf_new(key, new);
   1112	if (!l)
   1113		goto noleaf;
   1114
   1115	/* retrieve child from parent node */
   1116	n = get_child(tp, get_index(key, tp));
   1117
   1118	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
   1119	 *
   1120	 *  Add a new tnode here
   1121	 *  first tnode need some special handling
   1122	 *  leaves us in position for handling as case 3
   1123	 */
   1124	if (n) {
   1125		struct key_vector *tn;
   1126
   1127		tn = tnode_new(key, __fls(key ^ n->key), 1);
   1128		if (!tn)
   1129			goto notnode;
   1130
   1131		/* initialize routes out of node */
   1132		NODE_INIT_PARENT(tn, tp);
   1133		put_child(tn, get_index(key, tn) ^ 1, n);
   1134
   1135		/* start adding routes into the node */
   1136		put_child_root(tp, key, tn);
   1137		node_set_parent(n, tn);
   1138
   1139		/* parent now has a NULL spot where the leaf can go */
   1140		tp = tn;
   1141	}
   1142
   1143	/* Case 3: n is NULL, and will just insert a new leaf */
   1144	node_push_suffix(tp, new->fa_slen);
   1145	NODE_INIT_PARENT(l, tp);
   1146	put_child_root(tp, key, l);
   1147	trie_rebalance(t, tp);
   1148
   1149	return 0;
   1150notnode:
   1151	node_free(l);
   1152noleaf:
   1153	return -ENOMEM;
   1154}
   1155
   1156static int fib_insert_alias(struct trie *t, struct key_vector *tp,
   1157			    struct key_vector *l, struct fib_alias *new,
   1158			    struct fib_alias *fa, t_key key)
   1159{
   1160	if (!l)
   1161		return fib_insert_node(t, tp, new, key);
   1162
   1163	if (fa) {
   1164		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
   1165	} else {
   1166		struct fib_alias *last;
   1167
   1168		hlist_for_each_entry(last, &l->leaf, fa_list) {
   1169			if (new->fa_slen < last->fa_slen)
   1170				break;
   1171			if ((new->fa_slen == last->fa_slen) &&
   1172			    (new->tb_id > last->tb_id))
   1173				break;
   1174			fa = last;
   1175		}
   1176
   1177		if (fa)
   1178			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
   1179		else
   1180			hlist_add_head_rcu(&new->fa_list, &l->leaf);
   1181	}
   1182
   1183	/* if we added to the tail node then we need to update slen */
   1184	if (l->slen < new->fa_slen) {
   1185		l->slen = new->fa_slen;
   1186		node_push_suffix(tp, new->fa_slen);
   1187	}
   1188
   1189	return 0;
   1190}
   1191
   1192static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
   1193{
   1194	if (plen > KEYLENGTH) {
   1195		NL_SET_ERR_MSG(extack, "Invalid prefix length");
   1196		return false;
   1197	}
   1198
   1199	if ((plen < KEYLENGTH) && (key << plen)) {
   1200		NL_SET_ERR_MSG(extack,
   1201			       "Invalid prefix for given prefix length");
   1202		return false;
   1203	}
   1204
   1205	return true;
   1206}
   1207
   1208static void fib_remove_alias(struct trie *t, struct key_vector *tp,
   1209			     struct key_vector *l, struct fib_alias *old);
   1210
   1211/* Caller must hold RTNL. */
   1212int fib_table_insert(struct net *net, struct fib_table *tb,
   1213		     struct fib_config *cfg, struct netlink_ext_ack *extack)
   1214{
   1215	struct trie *t = (struct trie *)tb->tb_data;
   1216	struct fib_alias *fa, *new_fa;
   1217	struct key_vector *l, *tp;
   1218	u16 nlflags = NLM_F_EXCL;
   1219	struct fib_info *fi;
   1220	u8 plen = cfg->fc_dst_len;
   1221	u8 slen = KEYLENGTH - plen;
   1222	dscp_t dscp;
   1223	u32 key;
   1224	int err;
   1225
   1226	key = ntohl(cfg->fc_dst);
   1227
   1228	if (!fib_valid_key_len(key, plen, extack))
   1229		return -EINVAL;
   1230
   1231	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
   1232
   1233	fi = fib_create_info(cfg, extack);
   1234	if (IS_ERR(fi)) {
   1235		err = PTR_ERR(fi);
   1236		goto err;
   1237	}
   1238
   1239	dscp = cfg->fc_dscp;
   1240	l = fib_find_node(t, &tp, key);
   1241	fa = l ? fib_find_alias(&l->leaf, slen, dscp, fi->fib_priority,
   1242				tb->tb_id, false) : NULL;
   1243
   1244	/* Now fa, if non-NULL, points to the first fib alias
   1245	 * with the same keys [prefix,dscp,priority], if such key already
   1246	 * exists or to the node before which we will insert new one.
   1247	 *
   1248	 * If fa is NULL, we will need to allocate a new one and
   1249	 * insert to the tail of the section matching the suffix length
   1250	 * of the new alias.
   1251	 */
   1252
   1253	if (fa && fa->fa_dscp == dscp &&
   1254	    fa->fa_info->fib_priority == fi->fib_priority) {
   1255		struct fib_alias *fa_first, *fa_match;
   1256
   1257		err = -EEXIST;
   1258		if (cfg->fc_nlflags & NLM_F_EXCL)
   1259			goto out;
   1260
   1261		nlflags &= ~NLM_F_EXCL;
   1262
   1263		/* We have 2 goals:
   1264		 * 1. Find exact match for type, scope, fib_info to avoid
   1265		 * duplicate routes
   1266		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
   1267		 */
   1268		fa_match = NULL;
   1269		fa_first = fa;
   1270		hlist_for_each_entry_from(fa, fa_list) {
   1271			if ((fa->fa_slen != slen) ||
   1272			    (fa->tb_id != tb->tb_id) ||
   1273			    (fa->fa_dscp != dscp))
   1274				break;
   1275			if (fa->fa_info->fib_priority != fi->fib_priority)
   1276				break;
   1277			if (fa->fa_type == cfg->fc_type &&
   1278			    fa->fa_info == fi) {
   1279				fa_match = fa;
   1280				break;
   1281			}
   1282		}
   1283
   1284		if (cfg->fc_nlflags & NLM_F_REPLACE) {
   1285			struct fib_info *fi_drop;
   1286			u8 state;
   1287
   1288			nlflags |= NLM_F_REPLACE;
   1289			fa = fa_first;
   1290			if (fa_match) {
   1291				if (fa == fa_match)
   1292					err = 0;
   1293				goto out;
   1294			}
   1295			err = -ENOBUFS;
   1296			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
   1297			if (!new_fa)
   1298				goto out;
   1299
   1300			fi_drop = fa->fa_info;
   1301			new_fa->fa_dscp = fa->fa_dscp;
   1302			new_fa->fa_info = fi;
   1303			new_fa->fa_type = cfg->fc_type;
   1304			state = fa->fa_state;
   1305			new_fa->fa_state = state & ~FA_S_ACCESSED;
   1306			new_fa->fa_slen = fa->fa_slen;
   1307			new_fa->tb_id = tb->tb_id;
   1308			new_fa->fa_default = -1;
   1309			new_fa->offload = 0;
   1310			new_fa->trap = 0;
   1311			new_fa->offload_failed = 0;
   1312
   1313			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
   1314
   1315			if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
   1316					   tb->tb_id, true) == new_fa) {
   1317				enum fib_event_type fib_event;
   1318
   1319				fib_event = FIB_EVENT_ENTRY_REPLACE;
   1320				err = call_fib_entry_notifiers(net, fib_event,
   1321							       key, plen,
   1322							       new_fa, extack);
   1323				if (err) {
   1324					hlist_replace_rcu(&new_fa->fa_list,
   1325							  &fa->fa_list);
   1326					goto out_free_new_fa;
   1327				}
   1328			}
   1329
   1330			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
   1331				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
   1332
   1333			alias_free_mem_rcu(fa);
   1334
   1335			fib_release_info(fi_drop);
   1336			if (state & FA_S_ACCESSED)
   1337				rt_cache_flush(cfg->fc_nlinfo.nl_net);
   1338
   1339			goto succeeded;
   1340		}
   1341		/* Error if we find a perfect match which
   1342		 * uses the same scope, type, and nexthop
   1343		 * information.
   1344		 */
   1345		if (fa_match)
   1346			goto out;
   1347
   1348		if (cfg->fc_nlflags & NLM_F_APPEND)
   1349			nlflags |= NLM_F_APPEND;
   1350		else
   1351			fa = fa_first;
   1352	}
   1353	err = -ENOENT;
   1354	if (!(cfg->fc_nlflags & NLM_F_CREATE))
   1355		goto out;
   1356
   1357	nlflags |= NLM_F_CREATE;
   1358	err = -ENOBUFS;
   1359	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
   1360	if (!new_fa)
   1361		goto out;
   1362
   1363	new_fa->fa_info = fi;
   1364	new_fa->fa_dscp = dscp;
   1365	new_fa->fa_type = cfg->fc_type;
   1366	new_fa->fa_state = 0;
   1367	new_fa->fa_slen = slen;
   1368	new_fa->tb_id = tb->tb_id;
   1369	new_fa->fa_default = -1;
   1370	new_fa->offload = 0;
   1371	new_fa->trap = 0;
   1372	new_fa->offload_failed = 0;
   1373
   1374	/* Insert new entry to the list. */
   1375	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
   1376	if (err)
   1377		goto out_free_new_fa;
   1378
   1379	/* The alias was already inserted, so the node must exist. */
   1380	l = l ? l : fib_find_node(t, &tp, key);
   1381	if (WARN_ON_ONCE(!l))
   1382		goto out_free_new_fa;
   1383
   1384	if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
   1385	    new_fa) {
   1386		enum fib_event_type fib_event;
   1387
   1388		fib_event = FIB_EVENT_ENTRY_REPLACE;
   1389		err = call_fib_entry_notifiers(net, fib_event, key, plen,
   1390					       new_fa, extack);
   1391		if (err)
   1392			goto out_remove_new_fa;
   1393	}
   1394
   1395	if (!plen)
   1396		tb->tb_num_default++;
   1397
   1398	rt_cache_flush(cfg->fc_nlinfo.nl_net);
   1399	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
   1400		  &cfg->fc_nlinfo, nlflags);
   1401succeeded:
   1402	return 0;
   1403
   1404out_remove_new_fa:
   1405	fib_remove_alias(t, tp, l, new_fa);
   1406out_free_new_fa:
   1407	kmem_cache_free(fn_alias_kmem, new_fa);
   1408out:
   1409	fib_release_info(fi);
   1410err:
   1411	return err;
   1412}
   1413
   1414static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
   1415{
   1416	t_key prefix = n->key;
   1417
   1418	return (key ^ prefix) & (prefix | -prefix);
   1419}
   1420
   1421bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
   1422			 const struct flowi4 *flp)
   1423{
   1424	if (nhc->nhc_flags & RTNH_F_DEAD)
   1425		return false;
   1426
   1427	if (ip_ignore_linkdown(nhc->nhc_dev) &&
   1428	    nhc->nhc_flags & RTNH_F_LINKDOWN &&
   1429	    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
   1430		return false;
   1431
   1432	if (flp->flowi4_oif && flp->flowi4_oif != nhc->nhc_oif)
   1433		return false;
   1434
   1435	return true;
   1436}
   1437
   1438/* should be called with rcu_read_lock */
   1439int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
   1440		     struct fib_result *res, int fib_flags)
   1441{
   1442	struct trie *t = (struct trie *) tb->tb_data;
   1443#ifdef CONFIG_IP_FIB_TRIE_STATS
   1444	struct trie_use_stats __percpu *stats = t->stats;
   1445#endif
   1446	const t_key key = ntohl(flp->daddr);
   1447	struct key_vector *n, *pn;
   1448	struct fib_alias *fa;
   1449	unsigned long index;
   1450	t_key cindex;
   1451
   1452	pn = t->kv;
   1453	cindex = 0;
   1454
   1455	n = get_child_rcu(pn, cindex);
   1456	if (!n) {
   1457		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
   1458		return -EAGAIN;
   1459	}
   1460
   1461#ifdef CONFIG_IP_FIB_TRIE_STATS
   1462	this_cpu_inc(stats->gets);
   1463#endif
   1464
   1465	/* Step 1: Travel to the longest prefix match in the trie */
   1466	for (;;) {
   1467		index = get_cindex(key, n);
   1468
   1469		/* This bit of code is a bit tricky but it combines multiple
   1470		 * checks into a single check.  The prefix consists of the
   1471		 * prefix plus zeros for the "bits" in the prefix. The index
   1472		 * is the difference between the key and this value.  From
   1473		 * this we can actually derive several pieces of data.
   1474		 *   if (index >= (1ul << bits))
   1475		 *     we have a mismatch in skip bits and failed
   1476		 *   else
   1477		 *     we know the value is cindex
   1478		 *
   1479		 * This check is safe even if bits == KEYLENGTH due to the
   1480		 * fact that we can only allocate a node with 32 bits if a
   1481		 * long is greater than 32 bits.
   1482		 */
   1483		if (index >= (1ul << n->bits))
   1484			break;
   1485
   1486		/* we have found a leaf. Prefixes have already been compared */
   1487		if (IS_LEAF(n))
   1488			goto found;
   1489
   1490		/* only record pn and cindex if we are going to be chopping
   1491		 * bits later.  Otherwise we are just wasting cycles.
   1492		 */
   1493		if (n->slen > n->pos) {
   1494			pn = n;
   1495			cindex = index;
   1496		}
   1497
   1498		n = get_child_rcu(n, index);
   1499		if (unlikely(!n))
   1500			goto backtrace;
   1501	}
   1502
   1503	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
   1504	for (;;) {
   1505		/* record the pointer where our next node pointer is stored */
   1506		struct key_vector __rcu **cptr = n->tnode;
   1507
   1508		/* This test verifies that none of the bits that differ
   1509		 * between the key and the prefix exist in the region of
   1510		 * the lsb and higher in the prefix.
   1511		 */
   1512		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
   1513			goto backtrace;
   1514
   1515		/* exit out and process leaf */
   1516		if (unlikely(IS_LEAF(n)))
   1517			break;
   1518
   1519		/* Don't bother recording parent info.  Since we are in
   1520		 * prefix match mode we will have to come back to wherever
   1521		 * we started this traversal anyway
   1522		 */
   1523
   1524		while ((n = rcu_dereference(*cptr)) == NULL) {
   1525backtrace:
   1526#ifdef CONFIG_IP_FIB_TRIE_STATS
   1527			if (!n)
   1528				this_cpu_inc(stats->null_node_hit);
   1529#endif
   1530			/* If we are at cindex 0 there are no more bits for
   1531			 * us to strip at this level so we must ascend back
   1532			 * up one level to see if there are any more bits to
   1533			 * be stripped there.
   1534			 */
   1535			while (!cindex) {
   1536				t_key pkey = pn->key;
   1537
   1538				/* If we don't have a parent then there is
   1539				 * nothing for us to do as we do not have any
   1540				 * further nodes to parse.
   1541				 */
   1542				if (IS_TRIE(pn)) {
   1543					trace_fib_table_lookup(tb->tb_id, flp,
   1544							       NULL, -EAGAIN);
   1545					return -EAGAIN;
   1546				}
   1547#ifdef CONFIG_IP_FIB_TRIE_STATS
   1548				this_cpu_inc(stats->backtrack);
   1549#endif
   1550				/* Get Child's index */
   1551				pn = node_parent_rcu(pn);
   1552				cindex = get_index(pkey, pn);
   1553			}
   1554
   1555			/* strip the least significant bit from the cindex */
   1556			cindex &= cindex - 1;
   1557
   1558			/* grab pointer for next child node */
   1559			cptr = &pn->tnode[cindex];
   1560		}
   1561	}
   1562
   1563found:
   1564	/* this line carries forward the xor from earlier in the function */
   1565	index = key ^ n->key;
   1566
   1567	/* Step 3: Process the leaf, if that fails fall back to backtracing */
   1568	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
   1569		struct fib_info *fi = fa->fa_info;
   1570		struct fib_nh_common *nhc;
   1571		int nhsel, err;
   1572
   1573		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
   1574			if (index >= (1ul << fa->fa_slen))
   1575				continue;
   1576		}
   1577		if (fa->fa_dscp &&
   1578		    inet_dscp_to_dsfield(fa->fa_dscp) != flp->flowi4_tos)
   1579			continue;
   1580		if (fi->fib_dead)
   1581			continue;
   1582		if (fa->fa_info->fib_scope < flp->flowi4_scope)
   1583			continue;
   1584		fib_alias_accessed(fa);
   1585		err = fib_props[fa->fa_type].error;
   1586		if (unlikely(err < 0)) {
   1587out_reject:
   1588#ifdef CONFIG_IP_FIB_TRIE_STATS
   1589			this_cpu_inc(stats->semantic_match_passed);
   1590#endif
   1591			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
   1592			return err;
   1593		}
   1594		if (fi->fib_flags & RTNH_F_DEAD)
   1595			continue;
   1596
   1597		if (unlikely(fi->nh)) {
   1598			if (nexthop_is_blackhole(fi->nh)) {
   1599				err = fib_props[RTN_BLACKHOLE].error;
   1600				goto out_reject;
   1601			}
   1602
   1603			nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
   1604						     &nhsel);
   1605			if (nhc)
   1606				goto set_result;
   1607			goto miss;
   1608		}
   1609
   1610		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
   1611			nhc = fib_info_nhc(fi, nhsel);
   1612
   1613			if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
   1614				continue;
   1615set_result:
   1616			if (!(fib_flags & FIB_LOOKUP_NOREF))
   1617				refcount_inc(&fi->fib_clntref);
   1618
   1619			res->prefix = htonl(n->key);
   1620			res->prefixlen = KEYLENGTH - fa->fa_slen;
   1621			res->nh_sel = nhsel;
   1622			res->nhc = nhc;
   1623			res->type = fa->fa_type;
   1624			res->scope = fi->fib_scope;
   1625			res->fi = fi;
   1626			res->table = tb;
   1627			res->fa_head = &n->leaf;
   1628#ifdef CONFIG_IP_FIB_TRIE_STATS
   1629			this_cpu_inc(stats->semantic_match_passed);
   1630#endif
   1631			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
   1632
   1633			return err;
   1634		}
   1635	}
   1636miss:
   1637#ifdef CONFIG_IP_FIB_TRIE_STATS
   1638	this_cpu_inc(stats->semantic_match_miss);
   1639#endif
   1640	goto backtrace;
   1641}
   1642EXPORT_SYMBOL_GPL(fib_table_lookup);
   1643
   1644static void fib_remove_alias(struct trie *t, struct key_vector *tp,
   1645			     struct key_vector *l, struct fib_alias *old)
   1646{
   1647	/* record the location of the previous list_info entry */
   1648	struct hlist_node **pprev = old->fa_list.pprev;
   1649	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
   1650
   1651	/* remove the fib_alias from the list */
   1652	hlist_del_rcu(&old->fa_list);
   1653
   1654	/* if we emptied the list this leaf will be freed and we can sort
   1655	 * out parent suffix lengths as a part of trie_rebalance
   1656	 */
   1657	if (hlist_empty(&l->leaf)) {
   1658		if (tp->slen == l->slen)
   1659			node_pull_suffix(tp, tp->pos);
   1660		put_child_root(tp, l->key, NULL);
   1661		node_free(l);
   1662		trie_rebalance(t, tp);
   1663		return;
   1664	}
   1665
   1666	/* only access fa if it is pointing at the last valid hlist_node */
   1667	if (*pprev)
   1668		return;
   1669
   1670	/* update the trie with the latest suffix length */
   1671	l->slen = fa->fa_slen;
   1672	node_pull_suffix(tp, fa->fa_slen);
   1673}
   1674
   1675static void fib_notify_alias_delete(struct net *net, u32 key,
   1676				    struct hlist_head *fah,
   1677				    struct fib_alias *fa_to_delete,
   1678				    struct netlink_ext_ack *extack)
   1679{
   1680	struct fib_alias *fa_next, *fa_to_notify;
   1681	u32 tb_id = fa_to_delete->tb_id;
   1682	u8 slen = fa_to_delete->fa_slen;
   1683	enum fib_event_type fib_event;
   1684
   1685	/* Do not notify if we do not care about the route. */
   1686	if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
   1687		return;
   1688
   1689	/* Determine if the route should be replaced by the next route in the
   1690	 * list.
   1691	 */
   1692	fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
   1693				   struct fib_alias, fa_list);
   1694	if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
   1695		fib_event = FIB_EVENT_ENTRY_REPLACE;
   1696		fa_to_notify = fa_next;
   1697	} else {
   1698		fib_event = FIB_EVENT_ENTRY_DEL;
   1699		fa_to_notify = fa_to_delete;
   1700	}
   1701	call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
   1702				 fa_to_notify, extack);
   1703}
   1704
   1705/* Caller must hold RTNL. */
   1706int fib_table_delete(struct net *net, struct fib_table *tb,
   1707		     struct fib_config *cfg, struct netlink_ext_ack *extack)
   1708{
   1709	struct trie *t = (struct trie *) tb->tb_data;
   1710	struct fib_alias *fa, *fa_to_delete;
   1711	struct key_vector *l, *tp;
   1712	u8 plen = cfg->fc_dst_len;
   1713	u8 slen = KEYLENGTH - plen;
   1714	dscp_t dscp;
   1715	u32 key;
   1716
   1717	key = ntohl(cfg->fc_dst);
   1718
   1719	if (!fib_valid_key_len(key, plen, extack))
   1720		return -EINVAL;
   1721
   1722	l = fib_find_node(t, &tp, key);
   1723	if (!l)
   1724		return -ESRCH;
   1725
   1726	dscp = cfg->fc_dscp;
   1727	fa = fib_find_alias(&l->leaf, slen, dscp, 0, tb->tb_id, false);
   1728	if (!fa)
   1729		return -ESRCH;
   1730
   1731	pr_debug("Deleting %08x/%d dsfield=0x%02x t=%p\n", key, plen,
   1732		 inet_dscp_to_dsfield(dscp), t);
   1733
   1734	fa_to_delete = NULL;
   1735	hlist_for_each_entry_from(fa, fa_list) {
   1736		struct fib_info *fi = fa->fa_info;
   1737
   1738		if ((fa->fa_slen != slen) ||
   1739		    (fa->tb_id != tb->tb_id) ||
   1740		    (fa->fa_dscp != dscp))
   1741			break;
   1742
   1743		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
   1744		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
   1745		     fa->fa_info->fib_scope == cfg->fc_scope) &&
   1746		    (!cfg->fc_prefsrc ||
   1747		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
   1748		    (!cfg->fc_protocol ||
   1749		     fi->fib_protocol == cfg->fc_protocol) &&
   1750		    fib_nh_match(net, cfg, fi, extack) == 0 &&
   1751		    fib_metrics_match(cfg, fi)) {
   1752			fa_to_delete = fa;
   1753			break;
   1754		}
   1755	}
   1756
   1757	if (!fa_to_delete)
   1758		return -ESRCH;
   1759
   1760	fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
   1761	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
   1762		  &cfg->fc_nlinfo, 0);
   1763
   1764	if (!plen)
   1765		tb->tb_num_default--;
   1766
   1767	fib_remove_alias(t, tp, l, fa_to_delete);
   1768
   1769	if (fa_to_delete->fa_state & FA_S_ACCESSED)
   1770		rt_cache_flush(cfg->fc_nlinfo.nl_net);
   1771
   1772	fib_release_info(fa_to_delete->fa_info);
   1773	alias_free_mem_rcu(fa_to_delete);
   1774	return 0;
   1775}
   1776
   1777/* Scan for the next leaf starting at the provided key value */
   1778static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
   1779{
   1780	struct key_vector *pn, *n = *tn;
   1781	unsigned long cindex;
   1782
   1783	/* this loop is meant to try and find the key in the trie */
   1784	do {
   1785		/* record parent and next child index */
   1786		pn = n;
   1787		cindex = (key > pn->key) ? get_index(key, pn) : 0;
   1788
   1789		if (cindex >> pn->bits)
   1790			break;
   1791
   1792		/* descend into the next child */
   1793		n = get_child_rcu(pn, cindex++);
   1794		if (!n)
   1795			break;
   1796
   1797		/* guarantee forward progress on the keys */
   1798		if (IS_LEAF(n) && (n->key >= key))
   1799			goto found;
   1800	} while (IS_TNODE(n));
   1801
   1802	/* this loop will search for the next leaf with a greater key */
   1803	while (!IS_TRIE(pn)) {
   1804		/* if we exhausted the parent node we will need to climb */
   1805		if (cindex >= (1ul << pn->bits)) {
   1806			t_key pkey = pn->key;
   1807
   1808			pn = node_parent_rcu(pn);
   1809			cindex = get_index(pkey, pn) + 1;
   1810			continue;
   1811		}
   1812
   1813		/* grab the next available node */
   1814		n = get_child_rcu(pn, cindex++);
   1815		if (!n)
   1816			continue;
   1817
   1818		/* no need to compare keys since we bumped the index */
   1819		if (IS_LEAF(n))
   1820			goto found;
   1821
   1822		/* Rescan start scanning in new node */
   1823		pn = n;
   1824		cindex = 0;
   1825	}
   1826
   1827	*tn = pn;
   1828	return NULL; /* Root of trie */
   1829found:
   1830	/* if we are at the limit for keys just return NULL for the tnode */
   1831	*tn = pn;
   1832	return n;
   1833}
   1834
   1835static void fib_trie_free(struct fib_table *tb)
   1836{
   1837	struct trie *t = (struct trie *)tb->tb_data;
   1838	struct key_vector *pn = t->kv;
   1839	unsigned long cindex = 1;
   1840	struct hlist_node *tmp;
   1841	struct fib_alias *fa;
   1842
   1843	/* walk trie in reverse order and free everything */
   1844	for (;;) {
   1845		struct key_vector *n;
   1846
   1847		if (!(cindex--)) {
   1848			t_key pkey = pn->key;
   1849
   1850			if (IS_TRIE(pn))
   1851				break;
   1852
   1853			n = pn;
   1854			pn = node_parent(pn);
   1855
   1856			/* drop emptied tnode */
   1857			put_child_root(pn, n->key, NULL);
   1858			node_free(n);
   1859
   1860			cindex = get_index(pkey, pn);
   1861
   1862			continue;
   1863		}
   1864
   1865		/* grab the next available node */
   1866		n = get_child(pn, cindex);
   1867		if (!n)
   1868			continue;
   1869
   1870		if (IS_TNODE(n)) {
   1871			/* record pn and cindex for leaf walking */
   1872			pn = n;
   1873			cindex = 1ul << n->bits;
   1874
   1875			continue;
   1876		}
   1877
   1878		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
   1879			hlist_del_rcu(&fa->fa_list);
   1880			alias_free_mem_rcu(fa);
   1881		}
   1882
   1883		put_child_root(pn, n->key, NULL);
   1884		node_free(n);
   1885	}
   1886
   1887#ifdef CONFIG_IP_FIB_TRIE_STATS
   1888	free_percpu(t->stats);
   1889#endif
   1890	kfree(tb);
   1891}
   1892
   1893struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
   1894{
   1895	struct trie *ot = (struct trie *)oldtb->tb_data;
   1896	struct key_vector *l, *tp = ot->kv;
   1897	struct fib_table *local_tb;
   1898	struct fib_alias *fa;
   1899	struct trie *lt;
   1900	t_key key = 0;
   1901
   1902	if (oldtb->tb_data == oldtb->__data)
   1903		return oldtb;
   1904
   1905	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
   1906	if (!local_tb)
   1907		return NULL;
   1908
   1909	lt = (struct trie *)local_tb->tb_data;
   1910
   1911	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
   1912		struct key_vector *local_l = NULL, *local_tp;
   1913
   1914		hlist_for_each_entry(fa, &l->leaf, fa_list) {
   1915			struct fib_alias *new_fa;
   1916
   1917			if (local_tb->tb_id != fa->tb_id)
   1918				continue;
   1919
   1920			/* clone fa for new local table */
   1921			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
   1922			if (!new_fa)
   1923				goto out;
   1924
   1925			memcpy(new_fa, fa, sizeof(*fa));
   1926
   1927			/* insert clone into table */
   1928			if (!local_l)
   1929				local_l = fib_find_node(lt, &local_tp, l->key);
   1930
   1931			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
   1932					     NULL, l->key)) {
   1933				kmem_cache_free(fn_alias_kmem, new_fa);
   1934				goto out;
   1935			}
   1936		}
   1937
   1938		/* stop loop if key wrapped back to 0 */
   1939		key = l->key + 1;
   1940		if (key < l->key)
   1941			break;
   1942	}
   1943
   1944	return local_tb;
   1945out:
   1946	fib_trie_free(local_tb);
   1947
   1948	return NULL;
   1949}
   1950
   1951/* Caller must hold RTNL */
   1952void fib_table_flush_external(struct fib_table *tb)
   1953{
   1954	struct trie *t = (struct trie *)tb->tb_data;
   1955	struct key_vector *pn = t->kv;
   1956	unsigned long cindex = 1;
   1957	struct hlist_node *tmp;
   1958	struct fib_alias *fa;
   1959
   1960	/* walk trie in reverse order */
   1961	for (;;) {
   1962		unsigned char slen = 0;
   1963		struct key_vector *n;
   1964
   1965		if (!(cindex--)) {
   1966			t_key pkey = pn->key;
   1967
   1968			/* cannot resize the trie vector */
   1969			if (IS_TRIE(pn))
   1970				break;
   1971
   1972			/* update the suffix to address pulled leaves */
   1973			if (pn->slen > pn->pos)
   1974				update_suffix(pn);
   1975
   1976			/* resize completed node */
   1977			pn = resize(t, pn);
   1978			cindex = get_index(pkey, pn);
   1979
   1980			continue;
   1981		}
   1982
   1983		/* grab the next available node */
   1984		n = get_child(pn, cindex);
   1985		if (!n)
   1986			continue;
   1987
   1988		if (IS_TNODE(n)) {
   1989			/* record pn and cindex for leaf walking */
   1990			pn = n;
   1991			cindex = 1ul << n->bits;
   1992
   1993			continue;
   1994		}
   1995
   1996		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
   1997			/* if alias was cloned to local then we just
   1998			 * need to remove the local copy from main
   1999			 */
   2000			if (tb->tb_id != fa->tb_id) {
   2001				hlist_del_rcu(&fa->fa_list);
   2002				alias_free_mem_rcu(fa);
   2003				continue;
   2004			}
   2005
   2006			/* record local slen */
   2007			slen = fa->fa_slen;
   2008		}
   2009
   2010		/* update leaf slen */
   2011		n->slen = slen;
   2012
   2013		if (hlist_empty(&n->leaf)) {
   2014			put_child_root(pn, n->key, NULL);
   2015			node_free(n);
   2016		}
   2017	}
   2018}
   2019
   2020/* Caller must hold RTNL. */
   2021int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
   2022{
   2023	struct trie *t = (struct trie *)tb->tb_data;
   2024	struct key_vector *pn = t->kv;
   2025	unsigned long cindex = 1;
   2026	struct hlist_node *tmp;
   2027	struct fib_alias *fa;
   2028	int found = 0;
   2029
   2030	/* walk trie in reverse order */
   2031	for (;;) {
   2032		unsigned char slen = 0;
   2033		struct key_vector *n;
   2034
   2035		if (!(cindex--)) {
   2036			t_key pkey = pn->key;
   2037
   2038			/* cannot resize the trie vector */
   2039			if (IS_TRIE(pn))
   2040				break;
   2041
   2042			/* update the suffix to address pulled leaves */
   2043			if (pn->slen > pn->pos)
   2044				update_suffix(pn);
   2045
   2046			/* resize completed node */
   2047			pn = resize(t, pn);
   2048			cindex = get_index(pkey, pn);
   2049
   2050			continue;
   2051		}
   2052
   2053		/* grab the next available node */
   2054		n = get_child(pn, cindex);
   2055		if (!n)
   2056			continue;
   2057
   2058		if (IS_TNODE(n)) {
   2059			/* record pn and cindex for leaf walking */
   2060			pn = n;
   2061			cindex = 1ul << n->bits;
   2062
   2063			continue;
   2064		}
   2065
   2066		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
   2067			struct fib_info *fi = fa->fa_info;
   2068
   2069			if (!fi || tb->tb_id != fa->tb_id ||
   2070			    (!(fi->fib_flags & RTNH_F_DEAD) &&
   2071			     !fib_props[fa->fa_type].error)) {
   2072				slen = fa->fa_slen;
   2073				continue;
   2074			}
   2075
   2076			/* Do not flush error routes if network namespace is
   2077			 * not being dismantled
   2078			 */
   2079			if (!flush_all && fib_props[fa->fa_type].error) {
   2080				slen = fa->fa_slen;
   2081				continue;
   2082			}
   2083
   2084			fib_notify_alias_delete(net, n->key, &n->leaf, fa,
   2085						NULL);
   2086			hlist_del_rcu(&fa->fa_list);
   2087			fib_release_info(fa->fa_info);
   2088			alias_free_mem_rcu(fa);
   2089			found++;
   2090		}
   2091
   2092		/* update leaf slen */
   2093		n->slen = slen;
   2094
   2095		if (hlist_empty(&n->leaf)) {
   2096			put_child_root(pn, n->key, NULL);
   2097			node_free(n);
   2098		}
   2099	}
   2100
   2101	pr_debug("trie_flush found=%d\n", found);
   2102	return found;
   2103}
   2104
   2105/* derived from fib_trie_free */
   2106static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
   2107				     struct nl_info *info)
   2108{
   2109	struct trie *t = (struct trie *)tb->tb_data;
   2110	struct key_vector *pn = t->kv;
   2111	unsigned long cindex = 1;
   2112	struct fib_alias *fa;
   2113
   2114	for (;;) {
   2115		struct key_vector *n;
   2116
   2117		if (!(cindex--)) {
   2118			t_key pkey = pn->key;
   2119
   2120			if (IS_TRIE(pn))
   2121				break;
   2122
   2123			pn = node_parent(pn);
   2124			cindex = get_index(pkey, pn);
   2125			continue;
   2126		}
   2127
   2128		/* grab the next available node */
   2129		n = get_child(pn, cindex);
   2130		if (!n)
   2131			continue;
   2132
   2133		if (IS_TNODE(n)) {
   2134			/* record pn and cindex for leaf walking */
   2135			pn = n;
   2136			cindex = 1ul << n->bits;
   2137
   2138			continue;
   2139		}
   2140
   2141		hlist_for_each_entry(fa, &n->leaf, fa_list) {
   2142			struct fib_info *fi = fa->fa_info;
   2143
   2144			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
   2145				continue;
   2146
   2147			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
   2148				  KEYLENGTH - fa->fa_slen, tb->tb_id,
   2149				  info, NLM_F_REPLACE);
   2150		}
   2151	}
   2152}
   2153
   2154void fib_info_notify_update(struct net *net, struct nl_info *info)
   2155{
   2156	unsigned int h;
   2157
   2158	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
   2159		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
   2160		struct fib_table *tb;
   2161
   2162		hlist_for_each_entry_rcu(tb, head, tb_hlist,
   2163					 lockdep_rtnl_is_held())
   2164			__fib_info_notify_update(net, tb, info);
   2165	}
   2166}
   2167
   2168static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
   2169			   struct notifier_block *nb,
   2170			   struct netlink_ext_ack *extack)
   2171{
   2172	struct fib_alias *fa;
   2173	int last_slen = -1;
   2174	int err;
   2175
   2176	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
   2177		struct fib_info *fi = fa->fa_info;
   2178
   2179		if (!fi)
   2180			continue;
   2181
   2182		/* local and main table can share the same trie,
   2183		 * so don't notify twice for the same entry.
   2184		 */
   2185		if (tb->tb_id != fa->tb_id)
   2186			continue;
   2187
   2188		if (fa->fa_slen == last_slen)
   2189			continue;
   2190
   2191		last_slen = fa->fa_slen;
   2192		err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
   2193					      l->key, KEYLENGTH - fa->fa_slen,
   2194					      fa, extack);
   2195		if (err)
   2196			return err;
   2197	}
   2198	return 0;
   2199}
   2200
   2201static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
   2202			    struct netlink_ext_ack *extack)
   2203{
   2204	struct trie *t = (struct trie *)tb->tb_data;
   2205	struct key_vector *l, *tp = t->kv;
   2206	t_key key = 0;
   2207	int err;
   2208
   2209	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
   2210		err = fib_leaf_notify(l, tb, nb, extack);
   2211		if (err)
   2212			return err;
   2213
   2214		key = l->key + 1;
   2215		/* stop in case of wrap around */
   2216		if (key < l->key)
   2217			break;
   2218	}
   2219	return 0;
   2220}
   2221
   2222int fib_notify(struct net *net, struct notifier_block *nb,
   2223	       struct netlink_ext_ack *extack)
   2224{
   2225	unsigned int h;
   2226	int err;
   2227
   2228	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
   2229		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
   2230		struct fib_table *tb;
   2231
   2232		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
   2233			err = fib_table_notify(tb, nb, extack);
   2234			if (err)
   2235				return err;
   2236		}
   2237	}
   2238	return 0;
   2239}
   2240
   2241static void __trie_free_rcu(struct rcu_head *head)
   2242{
   2243	struct fib_table *tb = container_of(head, struct fib_table, rcu);
   2244#ifdef CONFIG_IP_FIB_TRIE_STATS
   2245	struct trie *t = (struct trie *)tb->tb_data;
   2246
   2247	if (tb->tb_data == tb->__data)
   2248		free_percpu(t->stats);
   2249#endif /* CONFIG_IP_FIB_TRIE_STATS */
   2250	kfree(tb);
   2251}
   2252
   2253void fib_free_table(struct fib_table *tb)
   2254{
   2255	call_rcu(&tb->rcu, __trie_free_rcu);
   2256}
   2257
   2258static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
   2259			     struct sk_buff *skb, struct netlink_callback *cb,
   2260			     struct fib_dump_filter *filter)
   2261{
   2262	unsigned int flags = NLM_F_MULTI;
   2263	__be32 xkey = htonl(l->key);
   2264	int i, s_i, i_fa, s_fa, err;
   2265	struct fib_alias *fa;
   2266
   2267	if (filter->filter_set ||
   2268	    !filter->dump_exceptions || !filter->dump_routes)
   2269		flags |= NLM_F_DUMP_FILTERED;
   2270
   2271	s_i = cb->args[4];
   2272	s_fa = cb->args[5];
   2273	i = 0;
   2274
   2275	/* rcu_read_lock is hold by caller */
   2276	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
   2277		struct fib_info *fi = fa->fa_info;
   2278
   2279		if (i < s_i)
   2280			goto next;
   2281
   2282		i_fa = 0;
   2283
   2284		if (tb->tb_id != fa->tb_id)
   2285			goto next;
   2286
   2287		if (filter->filter_set) {
   2288			if (filter->rt_type && fa->fa_type != filter->rt_type)
   2289				goto next;
   2290
   2291			if ((filter->protocol &&
   2292			     fi->fib_protocol != filter->protocol))
   2293				goto next;
   2294
   2295			if (filter->dev &&
   2296			    !fib_info_nh_uses_dev(fi, filter->dev))
   2297				goto next;
   2298		}
   2299
   2300		if (filter->dump_routes) {
   2301			if (!s_fa) {
   2302				struct fib_rt_info fri;
   2303
   2304				fri.fi = fi;
   2305				fri.tb_id = tb->tb_id;
   2306				fri.dst = xkey;
   2307				fri.dst_len = KEYLENGTH - fa->fa_slen;
   2308				fri.dscp = fa->fa_dscp;
   2309				fri.type = fa->fa_type;
   2310				fri.offload = READ_ONCE(fa->offload);
   2311				fri.trap = READ_ONCE(fa->trap);
   2312				fri.offload_failed = READ_ONCE(fa->offload_failed);
   2313				err = fib_dump_info(skb,
   2314						    NETLINK_CB(cb->skb).portid,
   2315						    cb->nlh->nlmsg_seq,
   2316						    RTM_NEWROUTE, &fri, flags);
   2317				if (err < 0)
   2318					goto stop;
   2319			}
   2320
   2321			i_fa++;
   2322		}
   2323
   2324		if (filter->dump_exceptions) {
   2325			err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
   2326						 &i_fa, s_fa, flags);
   2327			if (err < 0)
   2328				goto stop;
   2329		}
   2330
   2331next:
   2332		i++;
   2333	}
   2334
   2335	cb->args[4] = i;
   2336	return skb->len;
   2337
   2338stop:
   2339	cb->args[4] = i;
   2340	cb->args[5] = i_fa;
   2341	return err;
   2342}
   2343
   2344/* rcu_read_lock needs to be hold by caller from readside */
   2345int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
   2346		   struct netlink_callback *cb, struct fib_dump_filter *filter)
   2347{
   2348	struct trie *t = (struct trie *)tb->tb_data;
   2349	struct key_vector *l, *tp = t->kv;
   2350	/* Dump starting at last key.
   2351	 * Note: 0.0.0.0/0 (ie default) is first key.
   2352	 */
   2353	int count = cb->args[2];
   2354	t_key key = cb->args[3];
   2355
   2356	/* First time here, count and key are both always 0. Count > 0
   2357	 * and key == 0 means the dump has wrapped around and we are done.
   2358	 */
   2359	if (count && !key)
   2360		return skb->len;
   2361
   2362	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
   2363		int err;
   2364
   2365		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
   2366		if (err < 0) {
   2367			cb->args[3] = key;
   2368			cb->args[2] = count;
   2369			return err;
   2370		}
   2371
   2372		++count;
   2373		key = l->key + 1;
   2374
   2375		memset(&cb->args[4], 0,
   2376		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
   2377
   2378		/* stop loop if key wrapped back to 0 */
   2379		if (key < l->key)
   2380			break;
   2381	}
   2382
   2383	cb->args[3] = key;
   2384	cb->args[2] = count;
   2385
   2386	return skb->len;
   2387}
   2388
   2389void __init fib_trie_init(void)
   2390{
   2391	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
   2392					  sizeof(struct fib_alias),
   2393					  0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
   2394
   2395	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
   2396					   LEAF_SIZE,
   2397					   0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
   2398}
   2399
   2400struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
   2401{
   2402	struct fib_table *tb;
   2403	struct trie *t;
   2404	size_t sz = sizeof(*tb);
   2405
   2406	if (!alias)
   2407		sz += sizeof(struct trie);
   2408
   2409	tb = kzalloc(sz, GFP_KERNEL);
   2410	if (!tb)
   2411		return NULL;
   2412
   2413	tb->tb_id = id;
   2414	tb->tb_num_default = 0;
   2415	tb->tb_data = (alias ? alias->__data : tb->__data);
   2416
   2417	if (alias)
   2418		return tb;
   2419
   2420	t = (struct trie *) tb->tb_data;
   2421	t->kv[0].pos = KEYLENGTH;
   2422	t->kv[0].slen = KEYLENGTH;
   2423#ifdef CONFIG_IP_FIB_TRIE_STATS
   2424	t->stats = alloc_percpu(struct trie_use_stats);
   2425	if (!t->stats) {
   2426		kfree(tb);
   2427		tb = NULL;
   2428	}
   2429#endif
   2430
   2431	return tb;
   2432}
   2433
   2434#ifdef CONFIG_PROC_FS
   2435/* Depth first Trie walk iterator */
   2436struct fib_trie_iter {
   2437	struct seq_net_private p;
   2438	struct fib_table *tb;
   2439	struct key_vector *tnode;
   2440	unsigned int index;
   2441	unsigned int depth;
   2442};
   2443
   2444static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
   2445{
   2446	unsigned long cindex = iter->index;
   2447	struct key_vector *pn = iter->tnode;
   2448	t_key pkey;
   2449
   2450	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
   2451		 iter->tnode, iter->index, iter->depth);
   2452
   2453	while (!IS_TRIE(pn)) {
   2454		while (cindex < child_length(pn)) {
   2455			struct key_vector *n = get_child_rcu(pn, cindex++);
   2456
   2457			if (!n)
   2458				continue;
   2459
   2460			if (IS_LEAF(n)) {
   2461				iter->tnode = pn;
   2462				iter->index = cindex;
   2463			} else {
   2464				/* push down one level */
   2465				iter->tnode = n;
   2466				iter->index = 0;
   2467				++iter->depth;
   2468			}
   2469
   2470			return n;
   2471		}
   2472
   2473		/* Current node exhausted, pop back up */
   2474		pkey = pn->key;
   2475		pn = node_parent_rcu(pn);
   2476		cindex = get_index(pkey, pn) + 1;
   2477		--iter->depth;
   2478	}
   2479
   2480	/* record root node so further searches know we are done */
   2481	iter->tnode = pn;
   2482	iter->index = 0;
   2483
   2484	return NULL;
   2485}
   2486
   2487static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
   2488					     struct trie *t)
   2489{
   2490	struct key_vector *n, *pn;
   2491
   2492	if (!t)
   2493		return NULL;
   2494
   2495	pn = t->kv;
   2496	n = rcu_dereference(pn->tnode[0]);
   2497	if (!n)
   2498		return NULL;
   2499
   2500	if (IS_TNODE(n)) {
   2501		iter->tnode = n;
   2502		iter->index = 0;
   2503		iter->depth = 1;
   2504	} else {
   2505		iter->tnode = pn;
   2506		iter->index = 0;
   2507		iter->depth = 0;
   2508	}
   2509
   2510	return n;
   2511}
   2512
   2513static void trie_collect_stats(struct trie *t, struct trie_stat *s)
   2514{
   2515	struct key_vector *n;
   2516	struct fib_trie_iter iter;
   2517
   2518	memset(s, 0, sizeof(*s));
   2519
   2520	rcu_read_lock();
   2521	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
   2522		if (IS_LEAF(n)) {
   2523			struct fib_alias *fa;
   2524
   2525			s->leaves++;
   2526			s->totdepth += iter.depth;
   2527			if (iter.depth > s->maxdepth)
   2528				s->maxdepth = iter.depth;
   2529
   2530			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
   2531				++s->prefixes;
   2532		} else {
   2533			s->tnodes++;
   2534			if (n->bits < MAX_STAT_DEPTH)
   2535				s->nodesizes[n->bits]++;
   2536			s->nullpointers += tn_info(n)->empty_children;
   2537		}
   2538	}
   2539	rcu_read_unlock();
   2540}
   2541
   2542/*
   2543 *	This outputs /proc/net/fib_triestats
   2544 */
   2545static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
   2546{
   2547	unsigned int i, max, pointers, bytes, avdepth;
   2548
   2549	if (stat->leaves)
   2550		avdepth = stat->totdepth*100 / stat->leaves;
   2551	else
   2552		avdepth = 0;
   2553
   2554	seq_printf(seq, "\tAver depth:     %u.%02d\n",
   2555		   avdepth / 100, avdepth % 100);
   2556	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
   2557
   2558	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
   2559	bytes = LEAF_SIZE * stat->leaves;
   2560
   2561	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
   2562	bytes += sizeof(struct fib_alias) * stat->prefixes;
   2563
   2564	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
   2565	bytes += TNODE_SIZE(0) * stat->tnodes;
   2566
   2567	max = MAX_STAT_DEPTH;
   2568	while (max > 0 && stat->nodesizes[max-1] == 0)
   2569		max--;
   2570
   2571	pointers = 0;
   2572	for (i = 1; i < max; i++)
   2573		if (stat->nodesizes[i] != 0) {
   2574			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
   2575			pointers += (1<<i) * stat->nodesizes[i];
   2576		}
   2577	seq_putc(seq, '\n');
   2578	seq_printf(seq, "\tPointers: %u\n", pointers);
   2579
   2580	bytes += sizeof(struct key_vector *) * pointers;
   2581	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
   2582	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
   2583}
   2584
   2585#ifdef CONFIG_IP_FIB_TRIE_STATS
   2586static void trie_show_usage(struct seq_file *seq,
   2587			    const struct trie_use_stats __percpu *stats)
   2588{
   2589	struct trie_use_stats s = { 0 };
   2590	int cpu;
   2591
   2592	/* loop through all of the CPUs and gather up the stats */
   2593	for_each_possible_cpu(cpu) {
   2594		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
   2595
   2596		s.gets += pcpu->gets;
   2597		s.backtrack += pcpu->backtrack;
   2598		s.semantic_match_passed += pcpu->semantic_match_passed;
   2599		s.semantic_match_miss += pcpu->semantic_match_miss;
   2600		s.null_node_hit += pcpu->null_node_hit;
   2601		s.resize_node_skipped += pcpu->resize_node_skipped;
   2602	}
   2603
   2604	seq_printf(seq, "\nCounters:\n---------\n");
   2605	seq_printf(seq, "gets = %u\n", s.gets);
   2606	seq_printf(seq, "backtracks = %u\n", s.backtrack);
   2607	seq_printf(seq, "semantic match passed = %u\n",
   2608		   s.semantic_match_passed);
   2609	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
   2610	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
   2611	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
   2612}
   2613#endif /*  CONFIG_IP_FIB_TRIE_STATS */
   2614
   2615static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
   2616{
   2617	if (tb->tb_id == RT_TABLE_LOCAL)
   2618		seq_puts(seq, "Local:\n");
   2619	else if (tb->tb_id == RT_TABLE_MAIN)
   2620		seq_puts(seq, "Main:\n");
   2621	else
   2622		seq_printf(seq, "Id %d:\n", tb->tb_id);
   2623}
   2624
   2625
   2626static int fib_triestat_seq_show(struct seq_file *seq, void *v)
   2627{
   2628	struct net *net = seq->private;
   2629	unsigned int h;
   2630
   2631	seq_printf(seq,
   2632		   "Basic info: size of leaf:"
   2633		   " %zd bytes, size of tnode: %zd bytes.\n",
   2634		   LEAF_SIZE, TNODE_SIZE(0));
   2635
   2636	rcu_read_lock();
   2637	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
   2638		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
   2639		struct fib_table *tb;
   2640
   2641		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
   2642			struct trie *t = (struct trie *) tb->tb_data;
   2643			struct trie_stat stat;
   2644
   2645			if (!t)
   2646				continue;
   2647
   2648			fib_table_print(seq, tb);
   2649
   2650			trie_collect_stats(t, &stat);
   2651			trie_show_stats(seq, &stat);
   2652#ifdef CONFIG_IP_FIB_TRIE_STATS
   2653			trie_show_usage(seq, t->stats);
   2654#endif
   2655		}
   2656		cond_resched_rcu();
   2657	}
   2658	rcu_read_unlock();
   2659
   2660	return 0;
   2661}
   2662
   2663static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
   2664{
   2665	struct fib_trie_iter *iter = seq->private;
   2666	struct net *net = seq_file_net(seq);
   2667	loff_t idx = 0;
   2668	unsigned int h;
   2669
   2670	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
   2671		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
   2672		struct fib_table *tb;
   2673
   2674		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
   2675			struct key_vector *n;
   2676
   2677			for (n = fib_trie_get_first(iter,
   2678						    (struct trie *) tb->tb_data);
   2679			     n; n = fib_trie_get_next(iter))
   2680				if (pos == idx++) {
   2681					iter->tb = tb;
   2682					return n;
   2683				}
   2684		}
   2685	}
   2686
   2687	return NULL;
   2688}
   2689
   2690static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
   2691	__acquires(RCU)
   2692{
   2693	rcu_read_lock();
   2694	return fib_trie_get_idx(seq, *pos);
   2695}
   2696
   2697static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
   2698{
   2699	struct fib_trie_iter *iter = seq->private;
   2700	struct net *net = seq_file_net(seq);
   2701	struct fib_table *tb = iter->tb;
   2702	struct hlist_node *tb_node;
   2703	unsigned int h;
   2704	struct key_vector *n;
   2705
   2706	++*pos;
   2707	/* next node in same table */
   2708	n = fib_trie_get_next(iter);
   2709	if (n)
   2710		return n;
   2711
   2712	/* walk rest of this hash chain */
   2713	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
   2714	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
   2715		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
   2716		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
   2717		if (n)
   2718			goto found;
   2719	}
   2720
   2721	/* new hash chain */
   2722	while (++h < FIB_TABLE_HASHSZ) {
   2723		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
   2724		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
   2725			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
   2726			if (n)
   2727				goto found;
   2728		}
   2729	}
   2730	return NULL;
   2731
   2732found:
   2733	iter->tb = tb;
   2734	return n;
   2735}
   2736
   2737static void fib_trie_seq_stop(struct seq_file *seq, void *v)
   2738	__releases(RCU)
   2739{
   2740	rcu_read_unlock();
   2741}
   2742
   2743static void seq_indent(struct seq_file *seq, int n)
   2744{
   2745	while (n-- > 0)
   2746		seq_puts(seq, "   ");
   2747}
   2748
   2749static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
   2750{
   2751	switch (s) {
   2752	case RT_SCOPE_UNIVERSE: return "universe";
   2753	case RT_SCOPE_SITE:	return "site";
   2754	case RT_SCOPE_LINK:	return "link";
   2755	case RT_SCOPE_HOST:	return "host";
   2756	case RT_SCOPE_NOWHERE:	return "nowhere";
   2757	default:
   2758		snprintf(buf, len, "scope=%d", s);
   2759		return buf;
   2760	}
   2761}
   2762
   2763static const char *const rtn_type_names[__RTN_MAX] = {
   2764	[RTN_UNSPEC] = "UNSPEC",
   2765	[RTN_UNICAST] = "UNICAST",
   2766	[RTN_LOCAL] = "LOCAL",
   2767	[RTN_BROADCAST] = "BROADCAST",
   2768	[RTN_ANYCAST] = "ANYCAST",
   2769	[RTN_MULTICAST] = "MULTICAST",
   2770	[RTN_BLACKHOLE] = "BLACKHOLE",
   2771	[RTN_UNREACHABLE] = "UNREACHABLE",
   2772	[RTN_PROHIBIT] = "PROHIBIT",
   2773	[RTN_THROW] = "THROW",
   2774	[RTN_NAT] = "NAT",
   2775	[RTN_XRESOLVE] = "XRESOLVE",
   2776};
   2777
   2778static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
   2779{
   2780	if (t < __RTN_MAX && rtn_type_names[t])
   2781		return rtn_type_names[t];
   2782	snprintf(buf, len, "type %u", t);
   2783	return buf;
   2784}
   2785
   2786/* Pretty print the trie */
   2787static int fib_trie_seq_show(struct seq_file *seq, void *v)
   2788{
   2789	const struct fib_trie_iter *iter = seq->private;
   2790	struct key_vector *n = v;
   2791
   2792	if (IS_TRIE(node_parent_rcu(n)))
   2793		fib_table_print(seq, iter->tb);
   2794
   2795	if (IS_TNODE(n)) {
   2796		__be32 prf = htonl(n->key);
   2797
   2798		seq_indent(seq, iter->depth-1);
   2799		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
   2800			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
   2801			   tn_info(n)->full_children,
   2802			   tn_info(n)->empty_children);
   2803	} else {
   2804		__be32 val = htonl(n->key);
   2805		struct fib_alias *fa;
   2806
   2807		seq_indent(seq, iter->depth);
   2808		seq_printf(seq, "  |-- %pI4\n", &val);
   2809
   2810		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
   2811			char buf1[32], buf2[32];
   2812
   2813			seq_indent(seq, iter->depth + 1);
   2814			seq_printf(seq, "  /%zu %s %s",
   2815				   KEYLENGTH - fa->fa_slen,
   2816				   rtn_scope(buf1, sizeof(buf1),
   2817					     fa->fa_info->fib_scope),
   2818				   rtn_type(buf2, sizeof(buf2),
   2819					    fa->fa_type));
   2820			if (fa->fa_dscp)
   2821				seq_printf(seq, " tos=%d",
   2822					   inet_dscp_to_dsfield(fa->fa_dscp));
   2823			seq_putc(seq, '\n');
   2824		}
   2825	}
   2826
   2827	return 0;
   2828}
   2829
   2830static const struct seq_operations fib_trie_seq_ops = {
   2831	.start  = fib_trie_seq_start,
   2832	.next   = fib_trie_seq_next,
   2833	.stop   = fib_trie_seq_stop,
   2834	.show   = fib_trie_seq_show,
   2835};
   2836
   2837struct fib_route_iter {
   2838	struct seq_net_private p;
   2839	struct fib_table *main_tb;
   2840	struct key_vector *tnode;
   2841	loff_t	pos;
   2842	t_key	key;
   2843};
   2844
   2845static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
   2846					    loff_t pos)
   2847{
   2848	struct key_vector *l, **tp = &iter->tnode;
   2849	t_key key;
   2850
   2851	/* use cached location of previously found key */
   2852	if (iter->pos > 0 && pos >= iter->pos) {
   2853		key = iter->key;
   2854	} else {
   2855		iter->pos = 1;
   2856		key = 0;
   2857	}
   2858
   2859	pos -= iter->pos;
   2860
   2861	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
   2862		key = l->key + 1;
   2863		iter->pos++;
   2864		l = NULL;
   2865
   2866		/* handle unlikely case of a key wrap */
   2867		if (!key)
   2868			break;
   2869	}
   2870
   2871	if (l)
   2872		iter->key = l->key;	/* remember it */
   2873	else
   2874		iter->pos = 0;		/* forget it */
   2875
   2876	return l;
   2877}
   2878
   2879static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
   2880	__acquires(RCU)
   2881{
   2882	struct fib_route_iter *iter = seq->private;
   2883	struct fib_table *tb;
   2884	struct trie *t;
   2885
   2886	rcu_read_lock();
   2887
   2888	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
   2889	if (!tb)
   2890		return NULL;
   2891
   2892	iter->main_tb = tb;
   2893	t = (struct trie *)tb->tb_data;
   2894	iter->tnode = t->kv;
   2895
   2896	if (*pos != 0)
   2897		return fib_route_get_idx(iter, *pos);
   2898
   2899	iter->pos = 0;
   2900	iter->key = KEY_MAX;
   2901
   2902	return SEQ_START_TOKEN;
   2903}
   2904
   2905static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
   2906{
   2907	struct fib_route_iter *iter = seq->private;
   2908	struct key_vector *l = NULL;
   2909	t_key key = iter->key + 1;
   2910
   2911	++*pos;
   2912
   2913	/* only allow key of 0 for start of sequence */
   2914	if ((v == SEQ_START_TOKEN) || key)
   2915		l = leaf_walk_rcu(&iter->tnode, key);
   2916
   2917	if (l) {
   2918		iter->key = l->key;
   2919		iter->pos++;
   2920	} else {
   2921		iter->pos = 0;
   2922	}
   2923
   2924	return l;
   2925}
   2926
   2927static void fib_route_seq_stop(struct seq_file *seq, void *v)
   2928	__releases(RCU)
   2929{
   2930	rcu_read_unlock();
   2931}
   2932
   2933static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
   2934{
   2935	unsigned int flags = 0;
   2936
   2937	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
   2938		flags = RTF_REJECT;
   2939	if (fi) {
   2940		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
   2941
   2942		if (nhc->nhc_gw.ipv4)
   2943			flags |= RTF_GATEWAY;
   2944	}
   2945	if (mask == htonl(0xFFFFFFFF))
   2946		flags |= RTF_HOST;
   2947	flags |= RTF_UP;
   2948	return flags;
   2949}
   2950
   2951/*
   2952 *	This outputs /proc/net/route.
   2953 *	The format of the file is not supposed to be changed
   2954 *	and needs to be same as fib_hash output to avoid breaking
   2955 *	legacy utilities
   2956 */
   2957static int fib_route_seq_show(struct seq_file *seq, void *v)
   2958{
   2959	struct fib_route_iter *iter = seq->private;
   2960	struct fib_table *tb = iter->main_tb;
   2961	struct fib_alias *fa;
   2962	struct key_vector *l = v;
   2963	__be32 prefix;
   2964
   2965	if (v == SEQ_START_TOKEN) {
   2966		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
   2967			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
   2968			   "\tWindow\tIRTT");
   2969		return 0;
   2970	}
   2971
   2972	prefix = htonl(l->key);
   2973
   2974	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
   2975		struct fib_info *fi = fa->fa_info;
   2976		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
   2977		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
   2978
   2979		if ((fa->fa_type == RTN_BROADCAST) ||
   2980		    (fa->fa_type == RTN_MULTICAST))
   2981			continue;
   2982
   2983		if (fa->tb_id != tb->tb_id)
   2984			continue;
   2985
   2986		seq_setwidth(seq, 127);
   2987
   2988		if (fi) {
   2989			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
   2990			__be32 gw = 0;
   2991
   2992			if (nhc->nhc_gw_family == AF_INET)
   2993				gw = nhc->nhc_gw.ipv4;
   2994
   2995			seq_printf(seq,
   2996				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
   2997				   "%d\t%08X\t%d\t%u\t%u",
   2998				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
   2999				   prefix, gw, flags, 0, 0,
   3000				   fi->fib_priority,
   3001				   mask,
   3002				   (fi->fib_advmss ?
   3003				    fi->fib_advmss + 40 : 0),
   3004				   fi->fib_window,
   3005				   fi->fib_rtt >> 3);
   3006		} else {
   3007			seq_printf(seq,
   3008				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
   3009				   "%d\t%08X\t%d\t%u\t%u",
   3010				   prefix, 0, flags, 0, 0, 0,
   3011				   mask, 0, 0, 0);
   3012		}
   3013		seq_pad(seq, '\n');
   3014	}
   3015
   3016	return 0;
   3017}
   3018
   3019static const struct seq_operations fib_route_seq_ops = {
   3020	.start  = fib_route_seq_start,
   3021	.next   = fib_route_seq_next,
   3022	.stop   = fib_route_seq_stop,
   3023	.show   = fib_route_seq_show,
   3024};
   3025
   3026int __net_init fib_proc_init(struct net *net)
   3027{
   3028	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
   3029			sizeof(struct fib_trie_iter)))
   3030		goto out1;
   3031
   3032	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
   3033			fib_triestat_seq_show, NULL))
   3034		goto out2;
   3035
   3036	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
   3037			sizeof(struct fib_route_iter)))
   3038		goto out3;
   3039
   3040	return 0;
   3041
   3042out3:
   3043	remove_proc_entry("fib_triestat", net->proc_net);
   3044out2:
   3045	remove_proc_entry("fib_trie", net->proc_net);
   3046out1:
   3047	return -ENOMEM;
   3048}
   3049
   3050void __net_exit fib_proc_exit(struct net *net)
   3051{
   3052	remove_proc_entry("fib_trie", net->proc_net);
   3053	remove_proc_entry("fib_triestat", net->proc_net);
   3054	remove_proc_entry("route", net->proc_net);
   3055}
   3056
   3057#endif /* CONFIG_PROC_FS */