cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tcp_bbr.c (42581B)


      1/* Bottleneck Bandwidth and RTT (BBR) congestion control
      2 *
      3 * BBR congestion control computes the sending rate based on the delivery
      4 * rate (throughput) estimated from ACKs. In a nutshell:
      5 *
      6 *   On each ACK, update our model of the network path:
      7 *      bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
      8 *      min_rtt = windowed_min(rtt, 10 seconds)
      9 *   pacing_rate = pacing_gain * bottleneck_bandwidth
     10 *   cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
     11 *
     12 * The core algorithm does not react directly to packet losses or delays,
     13 * although BBR may adjust the size of next send per ACK when loss is
     14 * observed, or adjust the sending rate if it estimates there is a
     15 * traffic policer, in order to keep the drop rate reasonable.
     16 *
     17 * Here is a state transition diagram for BBR:
     18 *
     19 *             |
     20 *             V
     21 *    +---> STARTUP  ----+
     22 *    |        |         |
     23 *    |        V         |
     24 *    |      DRAIN   ----+
     25 *    |        |         |
     26 *    |        V         |
     27 *    +---> PROBE_BW ----+
     28 *    |      ^    |      |
     29 *    |      |    |      |
     30 *    |      +----+      |
     31 *    |                  |
     32 *    +---- PROBE_RTT <--+
     33 *
     34 * A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
     35 * When it estimates the pipe is full, it enters DRAIN to drain the queue.
     36 * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
     37 * A long-lived BBR flow spends the vast majority of its time remaining
     38 * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
     39 * in a fair manner, with a small, bounded queue. *If* a flow has been
     40 * continuously sending for the entire min_rtt window, and hasn't seen an RTT
     41 * sample that matches or decreases its min_rtt estimate for 10 seconds, then
     42 * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
     43 * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
     44 * we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
     45 * otherwise we enter STARTUP to try to fill the pipe.
     46 *
     47 * BBR is described in detail in:
     48 *   "BBR: Congestion-Based Congestion Control",
     49 *   Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
     50 *   Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
     51 *
     52 * There is a public e-mail list for discussing BBR development and testing:
     53 *   https://groups.google.com/forum/#!forum/bbr-dev
     54 *
     55 * NOTE: BBR might be used with the fq qdisc ("man tc-fq") with pacing enabled,
     56 * otherwise TCP stack falls back to an internal pacing using one high
     57 * resolution timer per TCP socket and may use more resources.
     58 */
     59#include <linux/btf.h>
     60#include <linux/btf_ids.h>
     61#include <linux/module.h>
     62#include <net/tcp.h>
     63#include <linux/inet_diag.h>
     64#include <linux/inet.h>
     65#include <linux/random.h>
     66#include <linux/win_minmax.h>
     67
     68/* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
     69 * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
     70 * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
     71 * Since the minimum window is >=4 packets, the lower bound isn't
     72 * an issue. The upper bound isn't an issue with existing technologies.
     73 */
     74#define BW_SCALE 24
     75#define BW_UNIT (1 << BW_SCALE)
     76
     77#define BBR_SCALE 8	/* scaling factor for fractions in BBR (e.g. gains) */
     78#define BBR_UNIT (1 << BBR_SCALE)
     79
     80/* BBR has the following modes for deciding how fast to send: */
     81enum bbr_mode {
     82	BBR_STARTUP,	/* ramp up sending rate rapidly to fill pipe */
     83	BBR_DRAIN,	/* drain any queue created during startup */
     84	BBR_PROBE_BW,	/* discover, share bw: pace around estimated bw */
     85	BBR_PROBE_RTT,	/* cut inflight to min to probe min_rtt */
     86};
     87
     88/* BBR congestion control block */
     89struct bbr {
     90	u32	min_rtt_us;	        /* min RTT in min_rtt_win_sec window */
     91	u32	min_rtt_stamp;	        /* timestamp of min_rtt_us */
     92	u32	probe_rtt_done_stamp;   /* end time for BBR_PROBE_RTT mode */
     93	struct minmax bw;	/* Max recent delivery rate in pkts/uS << 24 */
     94	u32	rtt_cnt;	    /* count of packet-timed rounds elapsed */
     95	u32     next_rtt_delivered; /* scb->tx.delivered at end of round */
     96	u64	cycle_mstamp;	     /* time of this cycle phase start */
     97	u32     mode:3,		     /* current bbr_mode in state machine */
     98		prev_ca_state:3,     /* CA state on previous ACK */
     99		packet_conservation:1,  /* use packet conservation? */
    100		round_start:1,	     /* start of packet-timed tx->ack round? */
    101		idle_restart:1,	     /* restarting after idle? */
    102		probe_rtt_round_done:1,  /* a BBR_PROBE_RTT round at 4 pkts? */
    103		unused:13,
    104		lt_is_sampling:1,    /* taking long-term ("LT") samples now? */
    105		lt_rtt_cnt:7,	     /* round trips in long-term interval */
    106		lt_use_bw:1;	     /* use lt_bw as our bw estimate? */
    107	u32	lt_bw;		     /* LT est delivery rate in pkts/uS << 24 */
    108	u32	lt_last_delivered;   /* LT intvl start: tp->delivered */
    109	u32	lt_last_stamp;	     /* LT intvl start: tp->delivered_mstamp */
    110	u32	lt_last_lost;	     /* LT intvl start: tp->lost */
    111	u32	pacing_gain:10,	/* current gain for setting pacing rate */
    112		cwnd_gain:10,	/* current gain for setting cwnd */
    113		full_bw_reached:1,   /* reached full bw in Startup? */
    114		full_bw_cnt:2,	/* number of rounds without large bw gains */
    115		cycle_idx:3,	/* current index in pacing_gain cycle array */
    116		has_seen_rtt:1, /* have we seen an RTT sample yet? */
    117		unused_b:5;
    118	u32	prior_cwnd;	/* prior cwnd upon entering loss recovery */
    119	u32	full_bw;	/* recent bw, to estimate if pipe is full */
    120
    121	/* For tracking ACK aggregation: */
    122	u64	ack_epoch_mstamp;	/* start of ACK sampling epoch */
    123	u16	extra_acked[2];		/* max excess data ACKed in epoch */
    124	u32	ack_epoch_acked:20,	/* packets (S)ACKed in sampling epoch */
    125		extra_acked_win_rtts:5,	/* age of extra_acked, in round trips */
    126		extra_acked_win_idx:1,	/* current index in extra_acked array */
    127		unused_c:6;
    128};
    129
    130#define CYCLE_LEN	8	/* number of phases in a pacing gain cycle */
    131
    132/* Window length of bw filter (in rounds): */
    133static const int bbr_bw_rtts = CYCLE_LEN + 2;
    134/* Window length of min_rtt filter (in sec): */
    135static const u32 bbr_min_rtt_win_sec = 10;
    136/* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
    137static const u32 bbr_probe_rtt_mode_ms = 200;
    138/* Skip TSO below the following bandwidth (bits/sec): */
    139static const int bbr_min_tso_rate = 1200000;
    140
    141/* Pace at ~1% below estimated bw, on average, to reduce queue at bottleneck.
    142 * In order to help drive the network toward lower queues and low latency while
    143 * maintaining high utilization, the average pacing rate aims to be slightly
    144 * lower than the estimated bandwidth. This is an important aspect of the
    145 * design.
    146 */
    147static const int bbr_pacing_margin_percent = 1;
    148
    149/* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
    150 * that will allow a smoothly increasing pacing rate that will double each RTT
    151 * and send the same number of packets per RTT that an un-paced, slow-starting
    152 * Reno or CUBIC flow would:
    153 */
    154static const int bbr_high_gain  = BBR_UNIT * 2885 / 1000 + 1;
    155/* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
    156 * the queue created in BBR_STARTUP in a single round:
    157 */
    158static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
    159/* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
    160static const int bbr_cwnd_gain  = BBR_UNIT * 2;
    161/* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
    162static const int bbr_pacing_gain[] = {
    163	BBR_UNIT * 5 / 4,	/* probe for more available bw */
    164	BBR_UNIT * 3 / 4,	/* drain queue and/or yield bw to other flows */
    165	BBR_UNIT, BBR_UNIT, BBR_UNIT,	/* cruise at 1.0*bw to utilize pipe, */
    166	BBR_UNIT, BBR_UNIT, BBR_UNIT	/* without creating excess queue... */
    167};
    168/* Randomize the starting gain cycling phase over N phases: */
    169static const u32 bbr_cycle_rand = 7;
    170
    171/* Try to keep at least this many packets in flight, if things go smoothly. For
    172 * smooth functioning, a sliding window protocol ACKing every other packet
    173 * needs at least 4 packets in flight:
    174 */
    175static const u32 bbr_cwnd_min_target = 4;
    176
    177/* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
    178/* If bw has increased significantly (1.25x), there may be more bw available: */
    179static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
    180/* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
    181static const u32 bbr_full_bw_cnt = 3;
    182
    183/* "long-term" ("LT") bandwidth estimator parameters... */
    184/* The minimum number of rounds in an LT bw sampling interval: */
    185static const u32 bbr_lt_intvl_min_rtts = 4;
    186/* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
    187static const u32 bbr_lt_loss_thresh = 50;
    188/* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
    189static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
    190/* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
    191static const u32 bbr_lt_bw_diff = 4000 / 8;
    192/* If we estimate we're policed, use lt_bw for this many round trips: */
    193static const u32 bbr_lt_bw_max_rtts = 48;
    194
    195/* Gain factor for adding extra_acked to target cwnd: */
    196static const int bbr_extra_acked_gain = BBR_UNIT;
    197/* Window length of extra_acked window. */
    198static const u32 bbr_extra_acked_win_rtts = 5;
    199/* Max allowed val for ack_epoch_acked, after which sampling epoch is reset */
    200static const u32 bbr_ack_epoch_acked_reset_thresh = 1U << 20;
    201/* Time period for clamping cwnd increment due to ack aggregation */
    202static const u32 bbr_extra_acked_max_us = 100 * 1000;
    203
    204static void bbr_check_probe_rtt_done(struct sock *sk);
    205
    206/* Do we estimate that STARTUP filled the pipe? */
    207static bool bbr_full_bw_reached(const struct sock *sk)
    208{
    209	const struct bbr *bbr = inet_csk_ca(sk);
    210
    211	return bbr->full_bw_reached;
    212}
    213
    214/* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
    215static u32 bbr_max_bw(const struct sock *sk)
    216{
    217	struct bbr *bbr = inet_csk_ca(sk);
    218
    219	return minmax_get(&bbr->bw);
    220}
    221
    222/* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
    223static u32 bbr_bw(const struct sock *sk)
    224{
    225	struct bbr *bbr = inet_csk_ca(sk);
    226
    227	return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
    228}
    229
    230/* Return maximum extra acked in past k-2k round trips,
    231 * where k = bbr_extra_acked_win_rtts.
    232 */
    233static u16 bbr_extra_acked(const struct sock *sk)
    234{
    235	struct bbr *bbr = inet_csk_ca(sk);
    236
    237	return max(bbr->extra_acked[0], bbr->extra_acked[1]);
    238}
    239
    240/* Return rate in bytes per second, optionally with a gain.
    241 * The order here is chosen carefully to avoid overflow of u64. This should
    242 * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
    243 */
    244static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
    245{
    246	unsigned int mss = tcp_sk(sk)->mss_cache;
    247
    248	rate *= mss;
    249	rate *= gain;
    250	rate >>= BBR_SCALE;
    251	rate *= USEC_PER_SEC / 100 * (100 - bbr_pacing_margin_percent);
    252	return rate >> BW_SCALE;
    253}
    254
    255/* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */
    256static unsigned long bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain)
    257{
    258	u64 rate = bw;
    259
    260	rate = bbr_rate_bytes_per_sec(sk, rate, gain);
    261	rate = min_t(u64, rate, sk->sk_max_pacing_rate);
    262	return rate;
    263}
    264
    265/* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
    266static void bbr_init_pacing_rate_from_rtt(struct sock *sk)
    267{
    268	struct tcp_sock *tp = tcp_sk(sk);
    269	struct bbr *bbr = inet_csk_ca(sk);
    270	u64 bw;
    271	u32 rtt_us;
    272
    273	if (tp->srtt_us) {		/* any RTT sample yet? */
    274		rtt_us = max(tp->srtt_us >> 3, 1U);
    275		bbr->has_seen_rtt = 1;
    276	} else {			 /* no RTT sample yet */
    277		rtt_us = USEC_PER_MSEC;	 /* use nominal default RTT */
    278	}
    279	bw = (u64)tcp_snd_cwnd(tp) * BW_UNIT;
    280	do_div(bw, rtt_us);
    281	sk->sk_pacing_rate = bbr_bw_to_pacing_rate(sk, bw, bbr_high_gain);
    282}
    283
    284/* Pace using current bw estimate and a gain factor. */
    285static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
    286{
    287	struct tcp_sock *tp = tcp_sk(sk);
    288	struct bbr *bbr = inet_csk_ca(sk);
    289	unsigned long rate = bbr_bw_to_pacing_rate(sk, bw, gain);
    290
    291	if (unlikely(!bbr->has_seen_rtt && tp->srtt_us))
    292		bbr_init_pacing_rate_from_rtt(sk);
    293	if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate)
    294		sk->sk_pacing_rate = rate;
    295}
    296
    297/* override sysctl_tcp_min_tso_segs */
    298static u32 bbr_min_tso_segs(struct sock *sk)
    299{
    300	return sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
    301}
    302
    303static u32 bbr_tso_segs_goal(struct sock *sk)
    304{
    305	struct tcp_sock *tp = tcp_sk(sk);
    306	u32 segs, bytes;
    307
    308	/* Sort of tcp_tso_autosize() but ignoring
    309	 * driver provided sk_gso_max_size.
    310	 */
    311	bytes = min_t(unsigned long,
    312		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
    313		      GSO_LEGACY_MAX_SIZE - 1 - MAX_TCP_HEADER);
    314	segs = max_t(u32, bytes / tp->mss_cache, bbr_min_tso_segs(sk));
    315
    316	return min(segs, 0x7FU);
    317}
    318
    319/* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
    320static void bbr_save_cwnd(struct sock *sk)
    321{
    322	struct tcp_sock *tp = tcp_sk(sk);
    323	struct bbr *bbr = inet_csk_ca(sk);
    324
    325	if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
    326		bbr->prior_cwnd = tcp_snd_cwnd(tp);  /* this cwnd is good enough */
    327	else  /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
    328		bbr->prior_cwnd = max(bbr->prior_cwnd, tcp_snd_cwnd(tp));
    329}
    330
    331static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
    332{
    333	struct tcp_sock *tp = tcp_sk(sk);
    334	struct bbr *bbr = inet_csk_ca(sk);
    335
    336	if (event == CA_EVENT_TX_START && tp->app_limited) {
    337		bbr->idle_restart = 1;
    338		bbr->ack_epoch_mstamp = tp->tcp_mstamp;
    339		bbr->ack_epoch_acked = 0;
    340		/* Avoid pointless buffer overflows: pace at est. bw if we don't
    341		 * need more speed (we're restarting from idle and app-limited).
    342		 */
    343		if (bbr->mode == BBR_PROBE_BW)
    344			bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
    345		else if (bbr->mode == BBR_PROBE_RTT)
    346			bbr_check_probe_rtt_done(sk);
    347	}
    348}
    349
    350/* Calculate bdp based on min RTT and the estimated bottleneck bandwidth:
    351 *
    352 * bdp = ceil(bw * min_rtt * gain)
    353 *
    354 * The key factor, gain, controls the amount of queue. While a small gain
    355 * builds a smaller queue, it becomes more vulnerable to noise in RTT
    356 * measurements (e.g., delayed ACKs or other ACK compression effects). This
    357 * noise may cause BBR to under-estimate the rate.
    358 */
    359static u32 bbr_bdp(struct sock *sk, u32 bw, int gain)
    360{
    361	struct bbr *bbr = inet_csk_ca(sk);
    362	u32 bdp;
    363	u64 w;
    364
    365	/* If we've never had a valid RTT sample, cap cwnd at the initial
    366	 * default. This should only happen when the connection is not using TCP
    367	 * timestamps and has retransmitted all of the SYN/SYNACK/data packets
    368	 * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
    369	 * case we need to slow-start up toward something safe: TCP_INIT_CWND.
    370	 */
    371	if (unlikely(bbr->min_rtt_us == ~0U))	 /* no valid RTT samples yet? */
    372		return TCP_INIT_CWND;  /* be safe: cap at default initial cwnd*/
    373
    374	w = (u64)bw * bbr->min_rtt_us;
    375
    376	/* Apply a gain to the given value, remove the BW_SCALE shift, and
    377	 * round the value up to avoid a negative feedback loop.
    378	 */
    379	bdp = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
    380
    381	return bdp;
    382}
    383
    384/* To achieve full performance in high-speed paths, we budget enough cwnd to
    385 * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
    386 *   - one skb in sending host Qdisc,
    387 *   - one skb in sending host TSO/GSO engine
    388 *   - one skb being received by receiver host LRO/GRO/delayed-ACK engine
    389 * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
    390 * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
    391 * which allows 2 outstanding 2-packet sequences, to try to keep pipe
    392 * full even with ACK-every-other-packet delayed ACKs.
    393 */
    394static u32 bbr_quantization_budget(struct sock *sk, u32 cwnd)
    395{
    396	struct bbr *bbr = inet_csk_ca(sk);
    397
    398	/* Allow enough full-sized skbs in flight to utilize end systems. */
    399	cwnd += 3 * bbr_tso_segs_goal(sk);
    400
    401	/* Reduce delayed ACKs by rounding up cwnd to the next even number. */
    402	cwnd = (cwnd + 1) & ~1U;
    403
    404	/* Ensure gain cycling gets inflight above BDP even for small BDPs. */
    405	if (bbr->mode == BBR_PROBE_BW && bbr->cycle_idx == 0)
    406		cwnd += 2;
    407
    408	return cwnd;
    409}
    410
    411/* Find inflight based on min RTT and the estimated bottleneck bandwidth. */
    412static u32 bbr_inflight(struct sock *sk, u32 bw, int gain)
    413{
    414	u32 inflight;
    415
    416	inflight = bbr_bdp(sk, bw, gain);
    417	inflight = bbr_quantization_budget(sk, inflight);
    418
    419	return inflight;
    420}
    421
    422/* With pacing at lower layers, there's often less data "in the network" than
    423 * "in flight". With TSQ and departure time pacing at lower layers (e.g. fq),
    424 * we often have several skbs queued in the pacing layer with a pre-scheduled
    425 * earliest departure time (EDT). BBR adapts its pacing rate based on the
    426 * inflight level that it estimates has already been "baked in" by previous
    427 * departure time decisions. We calculate a rough estimate of the number of our
    428 * packets that might be in the network at the earliest departure time for the
    429 * next skb scheduled:
    430 *   in_network_at_edt = inflight_at_edt - (EDT - now) * bw
    431 * If we're increasing inflight, then we want to know if the transmit of the
    432 * EDT skb will push inflight above the target, so inflight_at_edt includes
    433 * bbr_tso_segs_goal() from the skb departing at EDT. If decreasing inflight,
    434 * then estimate if inflight will sink too low just before the EDT transmit.
    435 */
    436static u32 bbr_packets_in_net_at_edt(struct sock *sk, u32 inflight_now)
    437{
    438	struct tcp_sock *tp = tcp_sk(sk);
    439	struct bbr *bbr = inet_csk_ca(sk);
    440	u64 now_ns, edt_ns, interval_us;
    441	u32 interval_delivered, inflight_at_edt;
    442
    443	now_ns = tp->tcp_clock_cache;
    444	edt_ns = max(tp->tcp_wstamp_ns, now_ns);
    445	interval_us = div_u64(edt_ns - now_ns, NSEC_PER_USEC);
    446	interval_delivered = (u64)bbr_bw(sk) * interval_us >> BW_SCALE;
    447	inflight_at_edt = inflight_now;
    448	if (bbr->pacing_gain > BBR_UNIT)              /* increasing inflight */
    449		inflight_at_edt += bbr_tso_segs_goal(sk);  /* include EDT skb */
    450	if (interval_delivered >= inflight_at_edt)
    451		return 0;
    452	return inflight_at_edt - interval_delivered;
    453}
    454
    455/* Find the cwnd increment based on estimate of ack aggregation */
    456static u32 bbr_ack_aggregation_cwnd(struct sock *sk)
    457{
    458	u32 max_aggr_cwnd, aggr_cwnd = 0;
    459
    460	if (bbr_extra_acked_gain && bbr_full_bw_reached(sk)) {
    461		max_aggr_cwnd = ((u64)bbr_bw(sk) * bbr_extra_acked_max_us)
    462				/ BW_UNIT;
    463		aggr_cwnd = (bbr_extra_acked_gain * bbr_extra_acked(sk))
    464			     >> BBR_SCALE;
    465		aggr_cwnd = min(aggr_cwnd, max_aggr_cwnd);
    466	}
    467
    468	return aggr_cwnd;
    469}
    470
    471/* An optimization in BBR to reduce losses: On the first round of recovery, we
    472 * follow the packet conservation principle: send P packets per P packets acked.
    473 * After that, we slow-start and send at most 2*P packets per P packets acked.
    474 * After recovery finishes, or upon undo, we restore the cwnd we had when
    475 * recovery started (capped by the target cwnd based on estimated BDP).
    476 *
    477 * TODO(ycheng/ncardwell): implement a rate-based approach.
    478 */
    479static bool bbr_set_cwnd_to_recover_or_restore(
    480	struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
    481{
    482	struct tcp_sock *tp = tcp_sk(sk);
    483	struct bbr *bbr = inet_csk_ca(sk);
    484	u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
    485	u32 cwnd = tcp_snd_cwnd(tp);
    486
    487	/* An ACK for P pkts should release at most 2*P packets. We do this
    488	 * in two steps. First, here we deduct the number of lost packets.
    489	 * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
    490	 */
    491	if (rs->losses > 0)
    492		cwnd = max_t(s32, cwnd - rs->losses, 1);
    493
    494	if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
    495		/* Starting 1st round of Recovery, so do packet conservation. */
    496		bbr->packet_conservation = 1;
    497		bbr->next_rtt_delivered = tp->delivered;  /* start round now */
    498		/* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
    499		cwnd = tcp_packets_in_flight(tp) + acked;
    500	} else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
    501		/* Exiting loss recovery; restore cwnd saved before recovery. */
    502		cwnd = max(cwnd, bbr->prior_cwnd);
    503		bbr->packet_conservation = 0;
    504	}
    505	bbr->prev_ca_state = state;
    506
    507	if (bbr->packet_conservation) {
    508		*new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
    509		return true;	/* yes, using packet conservation */
    510	}
    511	*new_cwnd = cwnd;
    512	return false;
    513}
    514
    515/* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
    516 * has drawn us down below target), or snap down to target if we're above it.
    517 */
    518static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
    519			 u32 acked, u32 bw, int gain)
    520{
    521	struct tcp_sock *tp = tcp_sk(sk);
    522	struct bbr *bbr = inet_csk_ca(sk);
    523	u32 cwnd = tcp_snd_cwnd(tp), target_cwnd = 0;
    524
    525	if (!acked)
    526		goto done;  /* no packet fully ACKed; just apply caps */
    527
    528	if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
    529		goto done;
    530
    531	target_cwnd = bbr_bdp(sk, bw, gain);
    532
    533	/* Increment the cwnd to account for excess ACKed data that seems
    534	 * due to aggregation (of data and/or ACKs) visible in the ACK stream.
    535	 */
    536	target_cwnd += bbr_ack_aggregation_cwnd(sk);
    537	target_cwnd = bbr_quantization_budget(sk, target_cwnd);
    538
    539	/* If we're below target cwnd, slow start cwnd toward target cwnd. */
    540	if (bbr_full_bw_reached(sk))  /* only cut cwnd if we filled the pipe */
    541		cwnd = min(cwnd + acked, target_cwnd);
    542	else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
    543		cwnd = cwnd + acked;
    544	cwnd = max(cwnd, bbr_cwnd_min_target);
    545
    546done:
    547	tcp_snd_cwnd_set(tp, min(cwnd, tp->snd_cwnd_clamp));	/* apply global cap */
    548	if (bbr->mode == BBR_PROBE_RTT)  /* drain queue, refresh min_rtt */
    549		tcp_snd_cwnd_set(tp, min(tcp_snd_cwnd(tp), bbr_cwnd_min_target));
    550}
    551
    552/* End cycle phase if it's time and/or we hit the phase's in-flight target. */
    553static bool bbr_is_next_cycle_phase(struct sock *sk,
    554				    const struct rate_sample *rs)
    555{
    556	struct tcp_sock *tp = tcp_sk(sk);
    557	struct bbr *bbr = inet_csk_ca(sk);
    558	bool is_full_length =
    559		tcp_stamp_us_delta(tp->delivered_mstamp, bbr->cycle_mstamp) >
    560		bbr->min_rtt_us;
    561	u32 inflight, bw;
    562
    563	/* The pacing_gain of 1.0 paces at the estimated bw to try to fully
    564	 * use the pipe without increasing the queue.
    565	 */
    566	if (bbr->pacing_gain == BBR_UNIT)
    567		return is_full_length;		/* just use wall clock time */
    568
    569	inflight = bbr_packets_in_net_at_edt(sk, rs->prior_in_flight);
    570	bw = bbr_max_bw(sk);
    571
    572	/* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
    573	 * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
    574	 * small (e.g. on a LAN). We do not persist if packets are lost, since
    575	 * a path with small buffers may not hold that much.
    576	 */
    577	if (bbr->pacing_gain > BBR_UNIT)
    578		return is_full_length &&
    579			(rs->losses ||  /* perhaps pacing_gain*BDP won't fit */
    580			 inflight >= bbr_inflight(sk, bw, bbr->pacing_gain));
    581
    582	/* A pacing_gain < 1.0 tries to drain extra queue we added if bw
    583	 * probing didn't find more bw. If inflight falls to match BDP then we
    584	 * estimate queue is drained; persisting would underutilize the pipe.
    585	 */
    586	return is_full_length ||
    587		inflight <= bbr_inflight(sk, bw, BBR_UNIT);
    588}
    589
    590static void bbr_advance_cycle_phase(struct sock *sk)
    591{
    592	struct tcp_sock *tp = tcp_sk(sk);
    593	struct bbr *bbr = inet_csk_ca(sk);
    594
    595	bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
    596	bbr->cycle_mstamp = tp->delivered_mstamp;
    597}
    598
    599/* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
    600static void bbr_update_cycle_phase(struct sock *sk,
    601				   const struct rate_sample *rs)
    602{
    603	struct bbr *bbr = inet_csk_ca(sk);
    604
    605	if (bbr->mode == BBR_PROBE_BW && bbr_is_next_cycle_phase(sk, rs))
    606		bbr_advance_cycle_phase(sk);
    607}
    608
    609static void bbr_reset_startup_mode(struct sock *sk)
    610{
    611	struct bbr *bbr = inet_csk_ca(sk);
    612
    613	bbr->mode = BBR_STARTUP;
    614}
    615
    616static void bbr_reset_probe_bw_mode(struct sock *sk)
    617{
    618	struct bbr *bbr = inet_csk_ca(sk);
    619
    620	bbr->mode = BBR_PROBE_BW;
    621	bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
    622	bbr_advance_cycle_phase(sk);	/* flip to next phase of gain cycle */
    623}
    624
    625static void bbr_reset_mode(struct sock *sk)
    626{
    627	if (!bbr_full_bw_reached(sk))
    628		bbr_reset_startup_mode(sk);
    629	else
    630		bbr_reset_probe_bw_mode(sk);
    631}
    632
    633/* Start a new long-term sampling interval. */
    634static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
    635{
    636	struct tcp_sock *tp = tcp_sk(sk);
    637	struct bbr *bbr = inet_csk_ca(sk);
    638
    639	bbr->lt_last_stamp = div_u64(tp->delivered_mstamp, USEC_PER_MSEC);
    640	bbr->lt_last_delivered = tp->delivered;
    641	bbr->lt_last_lost = tp->lost;
    642	bbr->lt_rtt_cnt = 0;
    643}
    644
    645/* Completely reset long-term bandwidth sampling. */
    646static void bbr_reset_lt_bw_sampling(struct sock *sk)
    647{
    648	struct bbr *bbr = inet_csk_ca(sk);
    649
    650	bbr->lt_bw = 0;
    651	bbr->lt_use_bw = 0;
    652	bbr->lt_is_sampling = false;
    653	bbr_reset_lt_bw_sampling_interval(sk);
    654}
    655
    656/* Long-term bw sampling interval is done. Estimate whether we're policed. */
    657static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
    658{
    659	struct bbr *bbr = inet_csk_ca(sk);
    660	u32 diff;
    661
    662	if (bbr->lt_bw) {  /* do we have bw from a previous interval? */
    663		/* Is new bw close to the lt_bw from the previous interval? */
    664		diff = abs(bw - bbr->lt_bw);
    665		if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
    666		    (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
    667		     bbr_lt_bw_diff)) {
    668			/* All criteria are met; estimate we're policed. */
    669			bbr->lt_bw = (bw + bbr->lt_bw) >> 1;  /* avg 2 intvls */
    670			bbr->lt_use_bw = 1;
    671			bbr->pacing_gain = BBR_UNIT;  /* try to avoid drops */
    672			bbr->lt_rtt_cnt = 0;
    673			return;
    674		}
    675	}
    676	bbr->lt_bw = bw;
    677	bbr_reset_lt_bw_sampling_interval(sk);
    678}
    679
    680/* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
    681 * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
    682 * explicitly models their policed rate, to reduce unnecessary losses. We
    683 * estimate that we're policed if we see 2 consecutive sampling intervals with
    684 * consistent throughput and high packet loss. If we think we're being policed,
    685 * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
    686 */
    687static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
    688{
    689	struct tcp_sock *tp = tcp_sk(sk);
    690	struct bbr *bbr = inet_csk_ca(sk);
    691	u32 lost, delivered;
    692	u64 bw;
    693	u32 t;
    694
    695	if (bbr->lt_use_bw) {	/* already using long-term rate, lt_bw? */
    696		if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
    697		    ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
    698			bbr_reset_lt_bw_sampling(sk);    /* stop using lt_bw */
    699			bbr_reset_probe_bw_mode(sk);  /* restart gain cycling */
    700		}
    701		return;
    702	}
    703
    704	/* Wait for the first loss before sampling, to let the policer exhaust
    705	 * its tokens and estimate the steady-state rate allowed by the policer.
    706	 * Starting samples earlier includes bursts that over-estimate the bw.
    707	 */
    708	if (!bbr->lt_is_sampling) {
    709		if (!rs->losses)
    710			return;
    711		bbr_reset_lt_bw_sampling_interval(sk);
    712		bbr->lt_is_sampling = true;
    713	}
    714
    715	/* To avoid underestimates, reset sampling if we run out of data. */
    716	if (rs->is_app_limited) {
    717		bbr_reset_lt_bw_sampling(sk);
    718		return;
    719	}
    720
    721	if (bbr->round_start)
    722		bbr->lt_rtt_cnt++;	/* count round trips in this interval */
    723	if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
    724		return;		/* sampling interval needs to be longer */
    725	if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
    726		bbr_reset_lt_bw_sampling(sk);  /* interval is too long */
    727		return;
    728	}
    729
    730	/* End sampling interval when a packet is lost, so we estimate the
    731	 * policer tokens were exhausted. Stopping the sampling before the
    732	 * tokens are exhausted under-estimates the policed rate.
    733	 */
    734	if (!rs->losses)
    735		return;
    736
    737	/* Calculate packets lost and delivered in sampling interval. */
    738	lost = tp->lost - bbr->lt_last_lost;
    739	delivered = tp->delivered - bbr->lt_last_delivered;
    740	/* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
    741	if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
    742		return;
    743
    744	/* Find average delivery rate in this sampling interval. */
    745	t = div_u64(tp->delivered_mstamp, USEC_PER_MSEC) - bbr->lt_last_stamp;
    746	if ((s32)t < 1)
    747		return;		/* interval is less than one ms, so wait */
    748	/* Check if can multiply without overflow */
    749	if (t >= ~0U / USEC_PER_MSEC) {
    750		bbr_reset_lt_bw_sampling(sk);  /* interval too long; reset */
    751		return;
    752	}
    753	t *= USEC_PER_MSEC;
    754	bw = (u64)delivered * BW_UNIT;
    755	do_div(bw, t);
    756	bbr_lt_bw_interval_done(sk, bw);
    757}
    758
    759/* Estimate the bandwidth based on how fast packets are delivered */
    760static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
    761{
    762	struct tcp_sock *tp = tcp_sk(sk);
    763	struct bbr *bbr = inet_csk_ca(sk);
    764	u64 bw;
    765
    766	bbr->round_start = 0;
    767	if (rs->delivered < 0 || rs->interval_us <= 0)
    768		return; /* Not a valid observation */
    769
    770	/* See if we've reached the next RTT */
    771	if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
    772		bbr->next_rtt_delivered = tp->delivered;
    773		bbr->rtt_cnt++;
    774		bbr->round_start = 1;
    775		bbr->packet_conservation = 0;
    776	}
    777
    778	bbr_lt_bw_sampling(sk, rs);
    779
    780	/* Divide delivered by the interval to find a (lower bound) bottleneck
    781	 * bandwidth sample. Delivered is in packets and interval_us in uS and
    782	 * ratio will be <<1 for most connections. So delivered is first scaled.
    783	 */
    784	bw = div64_long((u64)rs->delivered * BW_UNIT, rs->interval_us);
    785
    786	/* If this sample is application-limited, it is likely to have a very
    787	 * low delivered count that represents application behavior rather than
    788	 * the available network rate. Such a sample could drag down estimated
    789	 * bw, causing needless slow-down. Thus, to continue to send at the
    790	 * last measured network rate, we filter out app-limited samples unless
    791	 * they describe the path bw at least as well as our bw model.
    792	 *
    793	 * So the goal during app-limited phase is to proceed with the best
    794	 * network rate no matter how long. We automatically leave this
    795	 * phase when app writes faster than the network can deliver :)
    796	 */
    797	if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
    798		/* Incorporate new sample into our max bw filter. */
    799		minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
    800	}
    801}
    802
    803/* Estimates the windowed max degree of ack aggregation.
    804 * This is used to provision extra in-flight data to keep sending during
    805 * inter-ACK silences.
    806 *
    807 * Degree of ack aggregation is estimated as extra data acked beyond expected.
    808 *
    809 * max_extra_acked = "maximum recent excess data ACKed beyond max_bw * interval"
    810 * cwnd += max_extra_acked
    811 *
    812 * Max extra_acked is clamped by cwnd and bw * bbr_extra_acked_max_us (100 ms).
    813 * Max filter is an approximate sliding window of 5-10 (packet timed) round
    814 * trips.
    815 */
    816static void bbr_update_ack_aggregation(struct sock *sk,
    817				       const struct rate_sample *rs)
    818{
    819	u32 epoch_us, expected_acked, extra_acked;
    820	struct bbr *bbr = inet_csk_ca(sk);
    821	struct tcp_sock *tp = tcp_sk(sk);
    822
    823	if (!bbr_extra_acked_gain || rs->acked_sacked <= 0 ||
    824	    rs->delivered < 0 || rs->interval_us <= 0)
    825		return;
    826
    827	if (bbr->round_start) {
    828		bbr->extra_acked_win_rtts = min(0x1F,
    829						bbr->extra_acked_win_rtts + 1);
    830		if (bbr->extra_acked_win_rtts >= bbr_extra_acked_win_rtts) {
    831			bbr->extra_acked_win_rtts = 0;
    832			bbr->extra_acked_win_idx = bbr->extra_acked_win_idx ?
    833						   0 : 1;
    834			bbr->extra_acked[bbr->extra_acked_win_idx] = 0;
    835		}
    836	}
    837
    838	/* Compute how many packets we expected to be delivered over epoch. */
    839	epoch_us = tcp_stamp_us_delta(tp->delivered_mstamp,
    840				      bbr->ack_epoch_mstamp);
    841	expected_acked = ((u64)bbr_bw(sk) * epoch_us) / BW_UNIT;
    842
    843	/* Reset the aggregation epoch if ACK rate is below expected rate or
    844	 * significantly large no. of ack received since epoch (potentially
    845	 * quite old epoch).
    846	 */
    847	if (bbr->ack_epoch_acked <= expected_acked ||
    848	    (bbr->ack_epoch_acked + rs->acked_sacked >=
    849	     bbr_ack_epoch_acked_reset_thresh)) {
    850		bbr->ack_epoch_acked = 0;
    851		bbr->ack_epoch_mstamp = tp->delivered_mstamp;
    852		expected_acked = 0;
    853	}
    854
    855	/* Compute excess data delivered, beyond what was expected. */
    856	bbr->ack_epoch_acked = min_t(u32, 0xFFFFF,
    857				     bbr->ack_epoch_acked + rs->acked_sacked);
    858	extra_acked = bbr->ack_epoch_acked - expected_acked;
    859	extra_acked = min(extra_acked, tcp_snd_cwnd(tp));
    860	if (extra_acked > bbr->extra_acked[bbr->extra_acked_win_idx])
    861		bbr->extra_acked[bbr->extra_acked_win_idx] = extra_acked;
    862}
    863
    864/* Estimate when the pipe is full, using the change in delivery rate: BBR
    865 * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
    866 * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
    867 * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
    868 * higher rwin, 3: we get higher delivery rate samples. Or transient
    869 * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
    870 * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
    871 */
    872static void bbr_check_full_bw_reached(struct sock *sk,
    873				      const struct rate_sample *rs)
    874{
    875	struct bbr *bbr = inet_csk_ca(sk);
    876	u32 bw_thresh;
    877
    878	if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
    879		return;
    880
    881	bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
    882	if (bbr_max_bw(sk) >= bw_thresh) {
    883		bbr->full_bw = bbr_max_bw(sk);
    884		bbr->full_bw_cnt = 0;
    885		return;
    886	}
    887	++bbr->full_bw_cnt;
    888	bbr->full_bw_reached = bbr->full_bw_cnt >= bbr_full_bw_cnt;
    889}
    890
    891/* If pipe is probably full, drain the queue and then enter steady-state. */
    892static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
    893{
    894	struct bbr *bbr = inet_csk_ca(sk);
    895
    896	if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
    897		bbr->mode = BBR_DRAIN;	/* drain queue we created */
    898		tcp_sk(sk)->snd_ssthresh =
    899				bbr_inflight(sk, bbr_max_bw(sk), BBR_UNIT);
    900	}	/* fall through to check if in-flight is already small: */
    901	if (bbr->mode == BBR_DRAIN &&
    902	    bbr_packets_in_net_at_edt(sk, tcp_packets_in_flight(tcp_sk(sk))) <=
    903	    bbr_inflight(sk, bbr_max_bw(sk), BBR_UNIT))
    904		bbr_reset_probe_bw_mode(sk);  /* we estimate queue is drained */
    905}
    906
    907static void bbr_check_probe_rtt_done(struct sock *sk)
    908{
    909	struct tcp_sock *tp = tcp_sk(sk);
    910	struct bbr *bbr = inet_csk_ca(sk);
    911
    912	if (!(bbr->probe_rtt_done_stamp &&
    913	      after(tcp_jiffies32, bbr->probe_rtt_done_stamp)))
    914		return;
    915
    916	bbr->min_rtt_stamp = tcp_jiffies32;  /* wait a while until PROBE_RTT */
    917	tcp_snd_cwnd_set(tp, max(tcp_snd_cwnd(tp), bbr->prior_cwnd));
    918	bbr_reset_mode(sk);
    919}
    920
    921/* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
    922 * periodically drain the bottleneck queue, to converge to measure the true
    923 * min_rtt (unloaded propagation delay). This allows the flows to keep queues
    924 * small (reducing queuing delay and packet loss) and achieve fairness among
    925 * BBR flows.
    926 *
    927 * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
    928 * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
    929 * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
    930 * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
    931 * re-enter the previous mode. BBR uses 200ms to approximately bound the
    932 * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
    933 *
    934 * Note that flows need only pay 2% if they are busy sending over the last 10
    935 * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
    936 * natural silences or low-rate periods within 10 seconds where the rate is low
    937 * enough for long enough to drain its queue in the bottleneck. We pick up
    938 * these min RTT measurements opportunistically with our min_rtt filter. :-)
    939 */
    940static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
    941{
    942	struct tcp_sock *tp = tcp_sk(sk);
    943	struct bbr *bbr = inet_csk_ca(sk);
    944	bool filter_expired;
    945
    946	/* Track min RTT seen in the min_rtt_win_sec filter window: */
    947	filter_expired = after(tcp_jiffies32,
    948			       bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
    949	if (rs->rtt_us >= 0 &&
    950	    (rs->rtt_us < bbr->min_rtt_us ||
    951	     (filter_expired && !rs->is_ack_delayed))) {
    952		bbr->min_rtt_us = rs->rtt_us;
    953		bbr->min_rtt_stamp = tcp_jiffies32;
    954	}
    955
    956	if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
    957	    !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
    958		bbr->mode = BBR_PROBE_RTT;  /* dip, drain queue */
    959		bbr_save_cwnd(sk);  /* note cwnd so we can restore it */
    960		bbr->probe_rtt_done_stamp = 0;
    961	}
    962
    963	if (bbr->mode == BBR_PROBE_RTT) {
    964		/* Ignore low rate samples during this mode. */
    965		tp->app_limited =
    966			(tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
    967		/* Maintain min packets in flight for max(200 ms, 1 round). */
    968		if (!bbr->probe_rtt_done_stamp &&
    969		    tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
    970			bbr->probe_rtt_done_stamp = tcp_jiffies32 +
    971				msecs_to_jiffies(bbr_probe_rtt_mode_ms);
    972			bbr->probe_rtt_round_done = 0;
    973			bbr->next_rtt_delivered = tp->delivered;
    974		} else if (bbr->probe_rtt_done_stamp) {
    975			if (bbr->round_start)
    976				bbr->probe_rtt_round_done = 1;
    977			if (bbr->probe_rtt_round_done)
    978				bbr_check_probe_rtt_done(sk);
    979		}
    980	}
    981	/* Restart after idle ends only once we process a new S/ACK for data */
    982	if (rs->delivered > 0)
    983		bbr->idle_restart = 0;
    984}
    985
    986static void bbr_update_gains(struct sock *sk)
    987{
    988	struct bbr *bbr = inet_csk_ca(sk);
    989
    990	switch (bbr->mode) {
    991	case BBR_STARTUP:
    992		bbr->pacing_gain = bbr_high_gain;
    993		bbr->cwnd_gain	 = bbr_high_gain;
    994		break;
    995	case BBR_DRAIN:
    996		bbr->pacing_gain = bbr_drain_gain;	/* slow, to drain */
    997		bbr->cwnd_gain	 = bbr_high_gain;	/* keep cwnd */
    998		break;
    999	case BBR_PROBE_BW:
   1000		bbr->pacing_gain = (bbr->lt_use_bw ?
   1001				    BBR_UNIT :
   1002				    bbr_pacing_gain[bbr->cycle_idx]);
   1003		bbr->cwnd_gain	 = bbr_cwnd_gain;
   1004		break;
   1005	case BBR_PROBE_RTT:
   1006		bbr->pacing_gain = BBR_UNIT;
   1007		bbr->cwnd_gain	 = BBR_UNIT;
   1008		break;
   1009	default:
   1010		WARN_ONCE(1, "BBR bad mode: %u\n", bbr->mode);
   1011		break;
   1012	}
   1013}
   1014
   1015static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
   1016{
   1017	bbr_update_bw(sk, rs);
   1018	bbr_update_ack_aggregation(sk, rs);
   1019	bbr_update_cycle_phase(sk, rs);
   1020	bbr_check_full_bw_reached(sk, rs);
   1021	bbr_check_drain(sk, rs);
   1022	bbr_update_min_rtt(sk, rs);
   1023	bbr_update_gains(sk);
   1024}
   1025
   1026static void bbr_main(struct sock *sk, const struct rate_sample *rs)
   1027{
   1028	struct bbr *bbr = inet_csk_ca(sk);
   1029	u32 bw;
   1030
   1031	bbr_update_model(sk, rs);
   1032
   1033	bw = bbr_bw(sk);
   1034	bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
   1035	bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
   1036}
   1037
   1038static void bbr_init(struct sock *sk)
   1039{
   1040	struct tcp_sock *tp = tcp_sk(sk);
   1041	struct bbr *bbr = inet_csk_ca(sk);
   1042
   1043	bbr->prior_cwnd = 0;
   1044	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
   1045	bbr->rtt_cnt = 0;
   1046	bbr->next_rtt_delivered = tp->delivered;
   1047	bbr->prev_ca_state = TCP_CA_Open;
   1048	bbr->packet_conservation = 0;
   1049
   1050	bbr->probe_rtt_done_stamp = 0;
   1051	bbr->probe_rtt_round_done = 0;
   1052	bbr->min_rtt_us = tcp_min_rtt(tp);
   1053	bbr->min_rtt_stamp = tcp_jiffies32;
   1054
   1055	minmax_reset(&bbr->bw, bbr->rtt_cnt, 0);  /* init max bw to 0 */
   1056
   1057	bbr->has_seen_rtt = 0;
   1058	bbr_init_pacing_rate_from_rtt(sk);
   1059
   1060	bbr->round_start = 0;
   1061	bbr->idle_restart = 0;
   1062	bbr->full_bw_reached = 0;
   1063	bbr->full_bw = 0;
   1064	bbr->full_bw_cnt = 0;
   1065	bbr->cycle_mstamp = 0;
   1066	bbr->cycle_idx = 0;
   1067	bbr_reset_lt_bw_sampling(sk);
   1068	bbr_reset_startup_mode(sk);
   1069
   1070	bbr->ack_epoch_mstamp = tp->tcp_mstamp;
   1071	bbr->ack_epoch_acked = 0;
   1072	bbr->extra_acked_win_rtts = 0;
   1073	bbr->extra_acked_win_idx = 0;
   1074	bbr->extra_acked[0] = 0;
   1075	bbr->extra_acked[1] = 0;
   1076
   1077	cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED);
   1078}
   1079
   1080static u32 bbr_sndbuf_expand(struct sock *sk)
   1081{
   1082	/* Provision 3 * cwnd since BBR may slow-start even during recovery. */
   1083	return 3;
   1084}
   1085
   1086/* In theory BBR does not need to undo the cwnd since it does not
   1087 * always reduce cwnd on losses (see bbr_main()). Keep it for now.
   1088 */
   1089static u32 bbr_undo_cwnd(struct sock *sk)
   1090{
   1091	struct bbr *bbr = inet_csk_ca(sk);
   1092
   1093	bbr->full_bw = 0;   /* spurious slow-down; reset full pipe detection */
   1094	bbr->full_bw_cnt = 0;
   1095	bbr_reset_lt_bw_sampling(sk);
   1096	return tcp_snd_cwnd(tcp_sk(sk));
   1097}
   1098
   1099/* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
   1100static u32 bbr_ssthresh(struct sock *sk)
   1101{
   1102	bbr_save_cwnd(sk);
   1103	return tcp_sk(sk)->snd_ssthresh;
   1104}
   1105
   1106static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
   1107			   union tcp_cc_info *info)
   1108{
   1109	if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
   1110	    ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
   1111		struct tcp_sock *tp = tcp_sk(sk);
   1112		struct bbr *bbr = inet_csk_ca(sk);
   1113		u64 bw = bbr_bw(sk);
   1114
   1115		bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
   1116		memset(&info->bbr, 0, sizeof(info->bbr));
   1117		info->bbr.bbr_bw_lo		= (u32)bw;
   1118		info->bbr.bbr_bw_hi		= (u32)(bw >> 32);
   1119		info->bbr.bbr_min_rtt		= bbr->min_rtt_us;
   1120		info->bbr.bbr_pacing_gain	= bbr->pacing_gain;
   1121		info->bbr.bbr_cwnd_gain		= bbr->cwnd_gain;
   1122		*attr = INET_DIAG_BBRINFO;
   1123		return sizeof(info->bbr);
   1124	}
   1125	return 0;
   1126}
   1127
   1128static void bbr_set_state(struct sock *sk, u8 new_state)
   1129{
   1130	struct bbr *bbr = inet_csk_ca(sk);
   1131
   1132	if (new_state == TCP_CA_Loss) {
   1133		struct rate_sample rs = { .losses = 1 };
   1134
   1135		bbr->prev_ca_state = TCP_CA_Loss;
   1136		bbr->full_bw = 0;
   1137		bbr->round_start = 1;	/* treat RTO like end of a round */
   1138		bbr_lt_bw_sampling(sk, &rs);
   1139	}
   1140}
   1141
   1142static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
   1143	.flags		= TCP_CONG_NON_RESTRICTED,
   1144	.name		= "bbr",
   1145	.owner		= THIS_MODULE,
   1146	.init		= bbr_init,
   1147	.cong_control	= bbr_main,
   1148	.sndbuf_expand	= bbr_sndbuf_expand,
   1149	.undo_cwnd	= bbr_undo_cwnd,
   1150	.cwnd_event	= bbr_cwnd_event,
   1151	.ssthresh	= bbr_ssthresh,
   1152	.min_tso_segs	= bbr_min_tso_segs,
   1153	.get_info	= bbr_get_info,
   1154	.set_state	= bbr_set_state,
   1155};
   1156
   1157BTF_SET_START(tcp_bbr_check_kfunc_ids)
   1158#ifdef CONFIG_X86
   1159#ifdef CONFIG_DYNAMIC_FTRACE
   1160BTF_ID(func, bbr_init)
   1161BTF_ID(func, bbr_main)
   1162BTF_ID(func, bbr_sndbuf_expand)
   1163BTF_ID(func, bbr_undo_cwnd)
   1164BTF_ID(func, bbr_cwnd_event)
   1165BTF_ID(func, bbr_ssthresh)
   1166BTF_ID(func, bbr_min_tso_segs)
   1167BTF_ID(func, bbr_set_state)
   1168#endif
   1169#endif
   1170BTF_SET_END(tcp_bbr_check_kfunc_ids)
   1171
   1172static const struct btf_kfunc_id_set tcp_bbr_kfunc_set = {
   1173	.owner     = THIS_MODULE,
   1174	.check_set = &tcp_bbr_check_kfunc_ids,
   1175};
   1176
   1177static int __init bbr_register(void)
   1178{
   1179	int ret;
   1180
   1181	BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
   1182
   1183	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &tcp_bbr_kfunc_set);
   1184	if (ret < 0)
   1185		return ret;
   1186	return tcp_register_congestion_control(&tcp_bbr_cong_ops);
   1187}
   1188
   1189static void __exit bbr_unregister(void)
   1190{
   1191	tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
   1192}
   1193
   1194module_init(bbr_register);
   1195module_exit(bbr_unregister);
   1196
   1197MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
   1198MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
   1199MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
   1200MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
   1201MODULE_LICENSE("Dual BSD/GPL");
   1202MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");