cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tcp_fastopen.c (16857B)


      1// SPDX-License-Identifier: GPL-2.0
      2#include <linux/kernel.h>
      3#include <linux/tcp.h>
      4#include <linux/rcupdate.h>
      5#include <net/tcp.h>
      6
      7void tcp_fastopen_init_key_once(struct net *net)
      8{
      9	u8 key[TCP_FASTOPEN_KEY_LENGTH];
     10	struct tcp_fastopen_context *ctxt;
     11
     12	rcu_read_lock();
     13	ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
     14	if (ctxt) {
     15		rcu_read_unlock();
     16		return;
     17	}
     18	rcu_read_unlock();
     19
     20	/* tcp_fastopen_reset_cipher publishes the new context
     21	 * atomically, so we allow this race happening here.
     22	 *
     23	 * All call sites of tcp_fastopen_cookie_gen also check
     24	 * for a valid cookie, so this is an acceptable risk.
     25	 */
     26	get_random_bytes(key, sizeof(key));
     27	tcp_fastopen_reset_cipher(net, NULL, key, NULL);
     28}
     29
     30static void tcp_fastopen_ctx_free(struct rcu_head *head)
     31{
     32	struct tcp_fastopen_context *ctx =
     33	    container_of(head, struct tcp_fastopen_context, rcu);
     34
     35	kfree_sensitive(ctx);
     36}
     37
     38void tcp_fastopen_destroy_cipher(struct sock *sk)
     39{
     40	struct tcp_fastopen_context *ctx;
     41
     42	ctx = rcu_dereference_protected(
     43			inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
     44	if (ctx)
     45		call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
     46}
     47
     48void tcp_fastopen_ctx_destroy(struct net *net)
     49{
     50	struct tcp_fastopen_context *ctxt;
     51
     52	ctxt = xchg((__force struct tcp_fastopen_context **)&net->ipv4.tcp_fastopen_ctx, NULL);
     53
     54	if (ctxt)
     55		call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
     56}
     57
     58int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
     59			      void *primary_key, void *backup_key)
     60{
     61	struct tcp_fastopen_context *ctx, *octx;
     62	struct fastopen_queue *q;
     63	int err = 0;
     64
     65	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
     66	if (!ctx) {
     67		err = -ENOMEM;
     68		goto out;
     69	}
     70
     71	ctx->key[0].key[0] = get_unaligned_le64(primary_key);
     72	ctx->key[0].key[1] = get_unaligned_le64(primary_key + 8);
     73	if (backup_key) {
     74		ctx->key[1].key[0] = get_unaligned_le64(backup_key);
     75		ctx->key[1].key[1] = get_unaligned_le64(backup_key + 8);
     76		ctx->num = 2;
     77	} else {
     78		ctx->num = 1;
     79	}
     80
     81	if (sk) {
     82		q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
     83		octx = xchg((__force struct tcp_fastopen_context **)&q->ctx, ctx);
     84	} else {
     85		octx = xchg((__force struct tcp_fastopen_context **)&net->ipv4.tcp_fastopen_ctx, ctx);
     86	}
     87
     88	if (octx)
     89		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
     90out:
     91	return err;
     92}
     93
     94int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
     95			    u64 *key)
     96{
     97	struct tcp_fastopen_context *ctx;
     98	int n_keys = 0, i;
     99
    100	rcu_read_lock();
    101	if (icsk)
    102		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
    103	else
    104		ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
    105	if (ctx) {
    106		n_keys = tcp_fastopen_context_len(ctx);
    107		for (i = 0; i < n_keys; i++) {
    108			put_unaligned_le64(ctx->key[i].key[0], key + (i * 2));
    109			put_unaligned_le64(ctx->key[i].key[1], key + (i * 2) + 1);
    110		}
    111	}
    112	rcu_read_unlock();
    113
    114	return n_keys;
    115}
    116
    117static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req,
    118					     struct sk_buff *syn,
    119					     const siphash_key_t *key,
    120					     struct tcp_fastopen_cookie *foc)
    121{
    122	BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64));
    123
    124	if (req->rsk_ops->family == AF_INET) {
    125		const struct iphdr *iph = ip_hdr(syn);
    126
    127		foc->val[0] = cpu_to_le64(siphash(&iph->saddr,
    128					  sizeof(iph->saddr) +
    129					  sizeof(iph->daddr),
    130					  key));
    131		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
    132		return true;
    133	}
    134#if IS_ENABLED(CONFIG_IPV6)
    135	if (req->rsk_ops->family == AF_INET6) {
    136		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
    137
    138		foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr,
    139					  sizeof(ip6h->saddr) +
    140					  sizeof(ip6h->daddr),
    141					  key));
    142		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
    143		return true;
    144	}
    145#endif
    146	return false;
    147}
    148
    149/* Generate the fastopen cookie by applying SipHash to both the source and
    150 * destination addresses.
    151 */
    152static void tcp_fastopen_cookie_gen(struct sock *sk,
    153				    struct request_sock *req,
    154				    struct sk_buff *syn,
    155				    struct tcp_fastopen_cookie *foc)
    156{
    157	struct tcp_fastopen_context *ctx;
    158
    159	rcu_read_lock();
    160	ctx = tcp_fastopen_get_ctx(sk);
    161	if (ctx)
    162		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[0], foc);
    163	rcu_read_unlock();
    164}
    165
    166/* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
    167 * queue this additional data / FIN.
    168 */
    169void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
    170{
    171	struct tcp_sock *tp = tcp_sk(sk);
    172
    173	if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
    174		return;
    175
    176	skb = skb_clone(skb, GFP_ATOMIC);
    177	if (!skb)
    178		return;
    179
    180	skb_dst_drop(skb);
    181	/* segs_in has been initialized to 1 in tcp_create_openreq_child().
    182	 * Hence, reset segs_in to 0 before calling tcp_segs_in()
    183	 * to avoid double counting.  Also, tcp_segs_in() expects
    184	 * skb->len to include the tcp_hdrlen.  Hence, it should
    185	 * be called before __skb_pull().
    186	 */
    187	tp->segs_in = 0;
    188	tcp_segs_in(tp, skb);
    189	__skb_pull(skb, tcp_hdrlen(skb));
    190	sk_forced_mem_schedule(sk, skb->truesize);
    191	skb_set_owner_r(skb, sk);
    192
    193	TCP_SKB_CB(skb)->seq++;
    194	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
    195
    196	tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
    197	__skb_queue_tail(&sk->sk_receive_queue, skb);
    198	tp->syn_data_acked = 1;
    199
    200	/* u64_stats_update_begin(&tp->syncp) not needed here,
    201	 * as we certainly are not changing upper 32bit value (0)
    202	 */
    203	tp->bytes_received = skb->len;
    204
    205	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
    206		tcp_fin(sk);
    207}
    208
    209/* returns 0 - no key match, 1 for primary, 2 for backup */
    210static int tcp_fastopen_cookie_gen_check(struct sock *sk,
    211					 struct request_sock *req,
    212					 struct sk_buff *syn,
    213					 struct tcp_fastopen_cookie *orig,
    214					 struct tcp_fastopen_cookie *valid_foc)
    215{
    216	struct tcp_fastopen_cookie search_foc = { .len = -1 };
    217	struct tcp_fastopen_cookie *foc = valid_foc;
    218	struct tcp_fastopen_context *ctx;
    219	int i, ret = 0;
    220
    221	rcu_read_lock();
    222	ctx = tcp_fastopen_get_ctx(sk);
    223	if (!ctx)
    224		goto out;
    225	for (i = 0; i < tcp_fastopen_context_len(ctx); i++) {
    226		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[i], foc);
    227		if (tcp_fastopen_cookie_match(foc, orig)) {
    228			ret = i + 1;
    229			goto out;
    230		}
    231		foc = &search_foc;
    232	}
    233out:
    234	rcu_read_unlock();
    235	return ret;
    236}
    237
    238static struct sock *tcp_fastopen_create_child(struct sock *sk,
    239					      struct sk_buff *skb,
    240					      struct request_sock *req)
    241{
    242	struct tcp_sock *tp;
    243	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
    244	struct sock *child;
    245	bool own_req;
    246
    247	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
    248							 NULL, &own_req);
    249	if (!child)
    250		return NULL;
    251
    252	spin_lock(&queue->fastopenq.lock);
    253	queue->fastopenq.qlen++;
    254	spin_unlock(&queue->fastopenq.lock);
    255
    256	/* Initialize the child socket. Have to fix some values to take
    257	 * into account the child is a Fast Open socket and is created
    258	 * only out of the bits carried in the SYN packet.
    259	 */
    260	tp = tcp_sk(child);
    261
    262	rcu_assign_pointer(tp->fastopen_rsk, req);
    263	tcp_rsk(req)->tfo_listener = true;
    264
    265	/* RFC1323: The window in SYN & SYN/ACK segments is never
    266	 * scaled. So correct it appropriately.
    267	 */
    268	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
    269	tp->max_window = tp->snd_wnd;
    270
    271	/* Activate the retrans timer so that SYNACK can be retransmitted.
    272	 * The request socket is not added to the ehash
    273	 * because it's been added to the accept queue directly.
    274	 */
    275	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
    276				  TCP_TIMEOUT_INIT, TCP_RTO_MAX);
    277
    278	refcount_set(&req->rsk_refcnt, 2);
    279
    280	/* Now finish processing the fastopen child socket. */
    281	tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, skb);
    282
    283	tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
    284
    285	tcp_fastopen_add_skb(child, skb);
    286
    287	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
    288	tp->rcv_wup = tp->rcv_nxt;
    289	/* tcp_conn_request() is sending the SYNACK,
    290	 * and queues the child into listener accept queue.
    291	 */
    292	return child;
    293}
    294
    295static bool tcp_fastopen_queue_check(struct sock *sk)
    296{
    297	struct fastopen_queue *fastopenq;
    298
    299	/* Make sure the listener has enabled fastopen, and we don't
    300	 * exceed the max # of pending TFO requests allowed before trying
    301	 * to validating the cookie in order to avoid burning CPU cycles
    302	 * unnecessarily.
    303	 *
    304	 * XXX (TFO) - The implication of checking the max_qlen before
    305	 * processing a cookie request is that clients can't differentiate
    306	 * between qlen overflow causing Fast Open to be disabled
    307	 * temporarily vs a server not supporting Fast Open at all.
    308	 */
    309	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
    310	if (fastopenq->max_qlen == 0)
    311		return false;
    312
    313	if (fastopenq->qlen >= fastopenq->max_qlen) {
    314		struct request_sock *req1;
    315		spin_lock(&fastopenq->lock);
    316		req1 = fastopenq->rskq_rst_head;
    317		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
    318			__NET_INC_STATS(sock_net(sk),
    319					LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
    320			spin_unlock(&fastopenq->lock);
    321			return false;
    322		}
    323		fastopenq->rskq_rst_head = req1->dl_next;
    324		fastopenq->qlen--;
    325		spin_unlock(&fastopenq->lock);
    326		reqsk_put(req1);
    327	}
    328	return true;
    329}
    330
    331static bool tcp_fastopen_no_cookie(const struct sock *sk,
    332				   const struct dst_entry *dst,
    333				   int flag)
    334{
    335	return (sock_net(sk)->ipv4.sysctl_tcp_fastopen & flag) ||
    336	       tcp_sk(sk)->fastopen_no_cookie ||
    337	       (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
    338}
    339
    340/* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
    341 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
    342 * cookie request (foc->len == 0).
    343 */
    344struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
    345			      struct request_sock *req,
    346			      struct tcp_fastopen_cookie *foc,
    347			      const struct dst_entry *dst)
    348{
    349	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
    350	int tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen;
    351	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
    352	struct sock *child;
    353	int ret = 0;
    354
    355	if (foc->len == 0) /* Client requests a cookie */
    356		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
    357
    358	if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
    359	      (syn_data || foc->len >= 0) &&
    360	      tcp_fastopen_queue_check(sk))) {
    361		foc->len = -1;
    362		return NULL;
    363	}
    364
    365	if (tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
    366		goto fastopen;
    367
    368	if (foc->len == 0) {
    369		/* Client requests a cookie. */
    370		tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc);
    371	} else if (foc->len > 0) {
    372		ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc,
    373						    &valid_foc);
    374		if (!ret) {
    375			NET_INC_STATS(sock_net(sk),
    376				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
    377		} else {
    378			/* Cookie is valid. Create a (full) child socket to
    379			 * accept the data in SYN before returning a SYN-ACK to
    380			 * ack the data. If we fail to create the socket, fall
    381			 * back and ack the ISN only but includes the same
    382			 * cookie.
    383			 *
    384			 * Note: Data-less SYN with valid cookie is allowed to
    385			 * send data in SYN_RECV state.
    386			 */
    387fastopen:
    388			child = tcp_fastopen_create_child(sk, skb, req);
    389			if (child) {
    390				if (ret == 2) {
    391					valid_foc.exp = foc->exp;
    392					*foc = valid_foc;
    393					NET_INC_STATS(sock_net(sk),
    394						      LINUX_MIB_TCPFASTOPENPASSIVEALTKEY);
    395				} else {
    396					foc->len = -1;
    397				}
    398				NET_INC_STATS(sock_net(sk),
    399					      LINUX_MIB_TCPFASTOPENPASSIVE);
    400				return child;
    401			}
    402			NET_INC_STATS(sock_net(sk),
    403				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
    404		}
    405	}
    406	valid_foc.exp = foc->exp;
    407	*foc = valid_foc;
    408	return NULL;
    409}
    410
    411bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
    412			       struct tcp_fastopen_cookie *cookie)
    413{
    414	const struct dst_entry *dst;
    415
    416	tcp_fastopen_cache_get(sk, mss, cookie);
    417
    418	/* Firewall blackhole issue check */
    419	if (tcp_fastopen_active_should_disable(sk)) {
    420		cookie->len = -1;
    421		return false;
    422	}
    423
    424	dst = __sk_dst_get(sk);
    425
    426	if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
    427		cookie->len = -1;
    428		return true;
    429	}
    430	if (cookie->len > 0)
    431		return true;
    432	tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE;
    433	return false;
    434}
    435
    436/* This function checks if we want to defer sending SYN until the first
    437 * write().  We defer under the following conditions:
    438 * 1. fastopen_connect sockopt is set
    439 * 2. we have a valid cookie
    440 * Return value: return true if we want to defer until application writes data
    441 *               return false if we want to send out SYN immediately
    442 */
    443bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
    444{
    445	struct tcp_fastopen_cookie cookie = { .len = 0 };
    446	struct tcp_sock *tp = tcp_sk(sk);
    447	u16 mss;
    448
    449	if (tp->fastopen_connect && !tp->fastopen_req) {
    450		if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
    451			inet_sk(sk)->defer_connect = 1;
    452			return true;
    453		}
    454
    455		/* Alloc fastopen_req in order for FO option to be included
    456		 * in SYN
    457		 */
    458		tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
    459					   sk->sk_allocation);
    460		if (tp->fastopen_req)
    461			tp->fastopen_req->cookie = cookie;
    462		else
    463			*err = -ENOBUFS;
    464	}
    465	return false;
    466}
    467EXPORT_SYMBOL(tcp_fastopen_defer_connect);
    468
    469/*
    470 * The following code block is to deal with middle box issues with TFO:
    471 * Middlebox firewall issues can potentially cause server's data being
    472 * blackholed after a successful 3WHS using TFO.
    473 * The proposed solution is to disable active TFO globally under the
    474 * following circumstances:
    475 *   1. client side TFO socket receives out of order FIN
    476 *   2. client side TFO socket receives out of order RST
    477 *   3. client side TFO socket has timed out three times consecutively during
    478 *      or after handshake
    479 * We disable active side TFO globally for 1hr at first. Then if it
    480 * happens again, we disable it for 2h, then 4h, 8h, ...
    481 * And we reset the timeout back to 1hr when we see a successful active
    482 * TFO connection with data exchanges.
    483 */
    484
    485/* Disable active TFO and record current jiffies and
    486 * tfo_active_disable_times
    487 */
    488void tcp_fastopen_active_disable(struct sock *sk)
    489{
    490	struct net *net = sock_net(sk);
    491
    492	if (!sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout)
    493		return;
    494
    495	/* Paired with READ_ONCE() in tcp_fastopen_active_should_disable() */
    496	WRITE_ONCE(net->ipv4.tfo_active_disable_stamp, jiffies);
    497
    498	/* Paired with smp_rmb() in tcp_fastopen_active_should_disable().
    499	 * We want net->ipv4.tfo_active_disable_stamp to be updated first.
    500	 */
    501	smp_mb__before_atomic();
    502	atomic_inc(&net->ipv4.tfo_active_disable_times);
    503
    504	NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
    505}
    506
    507/* Calculate timeout for tfo active disable
    508 * Return true if we are still in the active TFO disable period
    509 * Return false if timeout already expired and we should use active TFO
    510 */
    511bool tcp_fastopen_active_should_disable(struct sock *sk)
    512{
    513	unsigned int tfo_bh_timeout = sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout;
    514	unsigned long timeout;
    515	int tfo_da_times;
    516	int multiplier;
    517
    518	if (!tfo_bh_timeout)
    519		return false;
    520
    521	tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
    522	if (!tfo_da_times)
    523		return false;
    524
    525	/* Paired with smp_mb__before_atomic() in tcp_fastopen_active_disable() */
    526	smp_rmb();
    527
    528	/* Limit timeout to max: 2^6 * initial timeout */
    529	multiplier = 1 << min(tfo_da_times - 1, 6);
    530
    531	/* Paired with the WRITE_ONCE() in tcp_fastopen_active_disable(). */
    532	timeout = READ_ONCE(sock_net(sk)->ipv4.tfo_active_disable_stamp) +
    533		  multiplier * tfo_bh_timeout * HZ;
    534	if (time_before(jiffies, timeout))
    535		return true;
    536
    537	/* Mark check bit so we can check for successful active TFO
    538	 * condition and reset tfo_active_disable_times
    539	 */
    540	tcp_sk(sk)->syn_fastopen_ch = 1;
    541	return false;
    542}
    543
    544/* Disable active TFO if FIN is the only packet in the ofo queue
    545 * and no data is received.
    546 * Also check if we can reset tfo_active_disable_times if data is
    547 * received successfully on a marked active TFO sockets opened on
    548 * a non-loopback interface
    549 */
    550void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
    551{
    552	struct tcp_sock *tp = tcp_sk(sk);
    553	struct dst_entry *dst;
    554	struct sk_buff *skb;
    555
    556	if (!tp->syn_fastopen)
    557		return;
    558
    559	if (!tp->data_segs_in) {
    560		skb = skb_rb_first(&tp->out_of_order_queue);
    561		if (skb && !skb_rb_next(skb)) {
    562			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
    563				tcp_fastopen_active_disable(sk);
    564				return;
    565			}
    566		}
    567	} else if (tp->syn_fastopen_ch &&
    568		   atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
    569		dst = sk_dst_get(sk);
    570		if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
    571			atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
    572		dst_release(dst);
    573	}
    574}
    575
    576void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired)
    577{
    578	u32 timeouts = inet_csk(sk)->icsk_retransmits;
    579	struct tcp_sock *tp = tcp_sk(sk);
    580
    581	/* Broken middle-boxes may black-hole Fast Open connection during or
    582	 * even after the handshake. Be extremely conservative and pause
    583	 * Fast Open globally after hitting the third consecutive timeout or
    584	 * exceeding the configured timeout limit.
    585	 */
    586	if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) &&
    587	    (timeouts == 2 || (timeouts < 2 && expired))) {
    588		tcp_fastopen_active_disable(sk);
    589		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
    590	}
    591}