cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tcp_input.c (206096B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
      4 *		operating system.  INET is implemented using the  BSD Socket
      5 *		interface as the means of communication with the user level.
      6 *
      7 *		Implementation of the Transmission Control Protocol(TCP).
      8 *
      9 * Authors:	Ross Biro
     10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
     11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
     12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
     13 *		Florian La Roche, <flla@stud.uni-sb.de>
     14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
     15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
     16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
     17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
     18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
     19 *		Jorge Cwik, <jorge@laser.satlink.net>
     20 */
     21
     22/*
     23 * Changes:
     24 *		Pedro Roque	:	Fast Retransmit/Recovery.
     25 *					Two receive queues.
     26 *					Retransmit queue handled by TCP.
     27 *					Better retransmit timer handling.
     28 *					New congestion avoidance.
     29 *					Header prediction.
     30 *					Variable renaming.
     31 *
     32 *		Eric		:	Fast Retransmit.
     33 *		Randy Scott	:	MSS option defines.
     34 *		Eric Schenk	:	Fixes to slow start algorithm.
     35 *		Eric Schenk	:	Yet another double ACK bug.
     36 *		Eric Schenk	:	Delayed ACK bug fixes.
     37 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
     38 *		David S. Miller	:	Don't allow zero congestion window.
     39 *		Eric Schenk	:	Fix retransmitter so that it sends
     40 *					next packet on ack of previous packet.
     41 *		Andi Kleen	:	Moved open_request checking here
     42 *					and process RSTs for open_requests.
     43 *		Andi Kleen	:	Better prune_queue, and other fixes.
     44 *		Andrey Savochkin:	Fix RTT measurements in the presence of
     45 *					timestamps.
     46 *		Andrey Savochkin:	Check sequence numbers correctly when
     47 *					removing SACKs due to in sequence incoming
     48 *					data segments.
     49 *		Andi Kleen:		Make sure we never ack data there is not
     50 *					enough room for. Also make this condition
     51 *					a fatal error if it might still happen.
     52 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
     53 *					connections with MSS<min(MTU,ann. MSS)
     54 *					work without delayed acks.
     55 *		Andi Kleen:		Process packets with PSH set in the
     56 *					fast path.
     57 *		J Hadi Salim:		ECN support
     58 *	 	Andrei Gurtov,
     59 *		Pasi Sarolahti,
     60 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
     61 *					engine. Lots of bugs are found.
     62 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
     63 */
     64
     65#define pr_fmt(fmt) "TCP: " fmt
     66
     67#include <linux/mm.h>
     68#include <linux/slab.h>
     69#include <linux/module.h>
     70#include <linux/sysctl.h>
     71#include <linux/kernel.h>
     72#include <linux/prefetch.h>
     73#include <net/dst.h>
     74#include <net/tcp.h>
     75#include <net/inet_common.h>
     76#include <linux/ipsec.h>
     77#include <asm/unaligned.h>
     78#include <linux/errqueue.h>
     79#include <trace/events/tcp.h>
     80#include <linux/jump_label_ratelimit.h>
     81#include <net/busy_poll.h>
     82#include <net/mptcp.h>
     83
     84int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
     85
     86#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
     87#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
     88#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
     89#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
     90#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
     91#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
     92#define FLAG_ECE		0x40 /* ECE in this ACK				*/
     93#define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
     94#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
     95#define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
     96#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
     97#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
     98#define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
     99#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
    100#define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
    101#define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
    102#define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
    103#define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
    104
    105#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
    106#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
    107#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
    108#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
    109
    110#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
    111#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
    112
    113#define REXMIT_NONE	0 /* no loss recovery to do */
    114#define REXMIT_LOST	1 /* retransmit packets marked lost */
    115#define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
    116
    117#if IS_ENABLED(CONFIG_TLS_DEVICE)
    118static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
    119
    120void clean_acked_data_enable(struct inet_connection_sock *icsk,
    121			     void (*cad)(struct sock *sk, u32 ack_seq))
    122{
    123	icsk->icsk_clean_acked = cad;
    124	static_branch_deferred_inc(&clean_acked_data_enabled);
    125}
    126EXPORT_SYMBOL_GPL(clean_acked_data_enable);
    127
    128void clean_acked_data_disable(struct inet_connection_sock *icsk)
    129{
    130	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
    131	icsk->icsk_clean_acked = NULL;
    132}
    133EXPORT_SYMBOL_GPL(clean_acked_data_disable);
    134
    135void clean_acked_data_flush(void)
    136{
    137	static_key_deferred_flush(&clean_acked_data_enabled);
    138}
    139EXPORT_SYMBOL_GPL(clean_acked_data_flush);
    140#endif
    141
    142#ifdef CONFIG_CGROUP_BPF
    143static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
    144{
    145	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
    146		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
    147				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
    148	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
    149						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
    150	struct bpf_sock_ops_kern sock_ops;
    151
    152	if (likely(!unknown_opt && !parse_all_opt))
    153		return;
    154
    155	/* The skb will be handled in the
    156	 * bpf_skops_established() or
    157	 * bpf_skops_write_hdr_opt().
    158	 */
    159	switch (sk->sk_state) {
    160	case TCP_SYN_RECV:
    161	case TCP_SYN_SENT:
    162	case TCP_LISTEN:
    163		return;
    164	}
    165
    166	sock_owned_by_me(sk);
    167
    168	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
    169	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
    170	sock_ops.is_fullsock = 1;
    171	sock_ops.sk = sk;
    172	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
    173
    174	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
    175}
    176
    177static void bpf_skops_established(struct sock *sk, int bpf_op,
    178				  struct sk_buff *skb)
    179{
    180	struct bpf_sock_ops_kern sock_ops;
    181
    182	sock_owned_by_me(sk);
    183
    184	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
    185	sock_ops.op = bpf_op;
    186	sock_ops.is_fullsock = 1;
    187	sock_ops.sk = sk;
    188	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
    189	if (skb)
    190		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
    191
    192	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
    193}
    194#else
    195static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
    196{
    197}
    198
    199static void bpf_skops_established(struct sock *sk, int bpf_op,
    200				  struct sk_buff *skb)
    201{
    202}
    203#endif
    204
    205static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
    206			     unsigned int len)
    207{
    208	static bool __once __read_mostly;
    209
    210	if (!__once) {
    211		struct net_device *dev;
    212
    213		__once = true;
    214
    215		rcu_read_lock();
    216		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
    217		if (!dev || len >= dev->mtu)
    218			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
    219				dev ? dev->name : "Unknown driver");
    220		rcu_read_unlock();
    221	}
    222}
    223
    224/* Adapt the MSS value used to make delayed ack decision to the
    225 * real world.
    226 */
    227static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
    228{
    229	struct inet_connection_sock *icsk = inet_csk(sk);
    230	const unsigned int lss = icsk->icsk_ack.last_seg_size;
    231	unsigned int len;
    232
    233	icsk->icsk_ack.last_seg_size = 0;
    234
    235	/* skb->len may jitter because of SACKs, even if peer
    236	 * sends good full-sized frames.
    237	 */
    238	len = skb_shinfo(skb)->gso_size ? : skb->len;
    239	if (len >= icsk->icsk_ack.rcv_mss) {
    240		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
    241					       tcp_sk(sk)->advmss);
    242		/* Account for possibly-removed options */
    243		if (unlikely(len > icsk->icsk_ack.rcv_mss +
    244				   MAX_TCP_OPTION_SPACE))
    245			tcp_gro_dev_warn(sk, skb, len);
    246	} else {
    247		/* Otherwise, we make more careful check taking into account,
    248		 * that SACKs block is variable.
    249		 *
    250		 * "len" is invariant segment length, including TCP header.
    251		 */
    252		len += skb->data - skb_transport_header(skb);
    253		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
    254		    /* If PSH is not set, packet should be
    255		     * full sized, provided peer TCP is not badly broken.
    256		     * This observation (if it is correct 8)) allows
    257		     * to handle super-low mtu links fairly.
    258		     */
    259		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
    260		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
    261			/* Subtract also invariant (if peer is RFC compliant),
    262			 * tcp header plus fixed timestamp option length.
    263			 * Resulting "len" is MSS free of SACK jitter.
    264			 */
    265			len -= tcp_sk(sk)->tcp_header_len;
    266			icsk->icsk_ack.last_seg_size = len;
    267			if (len == lss) {
    268				icsk->icsk_ack.rcv_mss = len;
    269				return;
    270			}
    271		}
    272		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
    273			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
    274		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
    275	}
    276}
    277
    278static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
    279{
    280	struct inet_connection_sock *icsk = inet_csk(sk);
    281	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
    282
    283	if (quickacks == 0)
    284		quickacks = 2;
    285	quickacks = min(quickacks, max_quickacks);
    286	if (quickacks > icsk->icsk_ack.quick)
    287		icsk->icsk_ack.quick = quickacks;
    288}
    289
    290void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
    291{
    292	struct inet_connection_sock *icsk = inet_csk(sk);
    293
    294	tcp_incr_quickack(sk, max_quickacks);
    295	inet_csk_exit_pingpong_mode(sk);
    296	icsk->icsk_ack.ato = TCP_ATO_MIN;
    297}
    298EXPORT_SYMBOL(tcp_enter_quickack_mode);
    299
    300/* Send ACKs quickly, if "quick" count is not exhausted
    301 * and the session is not interactive.
    302 */
    303
    304static bool tcp_in_quickack_mode(struct sock *sk)
    305{
    306	const struct inet_connection_sock *icsk = inet_csk(sk);
    307	const struct dst_entry *dst = __sk_dst_get(sk);
    308
    309	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
    310		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
    311}
    312
    313static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
    314{
    315	if (tp->ecn_flags & TCP_ECN_OK)
    316		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
    317}
    318
    319static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
    320{
    321	if (tcp_hdr(skb)->cwr) {
    322		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
    323
    324		/* If the sender is telling us it has entered CWR, then its
    325		 * cwnd may be very low (even just 1 packet), so we should ACK
    326		 * immediately.
    327		 */
    328		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
    329			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
    330	}
    331}
    332
    333static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
    334{
    335	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
    336}
    337
    338static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
    339{
    340	struct tcp_sock *tp = tcp_sk(sk);
    341
    342	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
    343	case INET_ECN_NOT_ECT:
    344		/* Funny extension: if ECT is not set on a segment,
    345		 * and we already seen ECT on a previous segment,
    346		 * it is probably a retransmit.
    347		 */
    348		if (tp->ecn_flags & TCP_ECN_SEEN)
    349			tcp_enter_quickack_mode(sk, 2);
    350		break;
    351	case INET_ECN_CE:
    352		if (tcp_ca_needs_ecn(sk))
    353			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
    354
    355		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
    356			/* Better not delay acks, sender can have a very low cwnd */
    357			tcp_enter_quickack_mode(sk, 2);
    358			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
    359		}
    360		tp->ecn_flags |= TCP_ECN_SEEN;
    361		break;
    362	default:
    363		if (tcp_ca_needs_ecn(sk))
    364			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
    365		tp->ecn_flags |= TCP_ECN_SEEN;
    366		break;
    367	}
    368}
    369
    370static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
    371{
    372	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
    373		__tcp_ecn_check_ce(sk, skb);
    374}
    375
    376static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
    377{
    378	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
    379		tp->ecn_flags &= ~TCP_ECN_OK;
    380}
    381
    382static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
    383{
    384	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
    385		tp->ecn_flags &= ~TCP_ECN_OK;
    386}
    387
    388static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
    389{
    390	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
    391		return true;
    392	return false;
    393}
    394
    395/* Buffer size and advertised window tuning.
    396 *
    397 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
    398 */
    399
    400static void tcp_sndbuf_expand(struct sock *sk)
    401{
    402	const struct tcp_sock *tp = tcp_sk(sk);
    403	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
    404	int sndmem, per_mss;
    405	u32 nr_segs;
    406
    407	/* Worst case is non GSO/TSO : each frame consumes one skb
    408	 * and skb->head is kmalloced using power of two area of memory
    409	 */
    410	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
    411		  MAX_TCP_HEADER +
    412		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
    413
    414	per_mss = roundup_pow_of_two(per_mss) +
    415		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
    416
    417	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
    418	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
    419
    420	/* Fast Recovery (RFC 5681 3.2) :
    421	 * Cubic needs 1.7 factor, rounded to 2 to include
    422	 * extra cushion (application might react slowly to EPOLLOUT)
    423	 */
    424	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
    425	sndmem *= nr_segs * per_mss;
    426
    427	if (sk->sk_sndbuf < sndmem)
    428		WRITE_ONCE(sk->sk_sndbuf,
    429			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
    430}
    431
    432/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
    433 *
    434 * All tcp_full_space() is split to two parts: "network" buffer, allocated
    435 * forward and advertised in receiver window (tp->rcv_wnd) and
    436 * "application buffer", required to isolate scheduling/application
    437 * latencies from network.
    438 * window_clamp is maximal advertised window. It can be less than
    439 * tcp_full_space(), in this case tcp_full_space() - window_clamp
    440 * is reserved for "application" buffer. The less window_clamp is
    441 * the smoother our behaviour from viewpoint of network, but the lower
    442 * throughput and the higher sensitivity of the connection to losses. 8)
    443 *
    444 * rcv_ssthresh is more strict window_clamp used at "slow start"
    445 * phase to predict further behaviour of this connection.
    446 * It is used for two goals:
    447 * - to enforce header prediction at sender, even when application
    448 *   requires some significant "application buffer". It is check #1.
    449 * - to prevent pruning of receive queue because of misprediction
    450 *   of receiver window. Check #2.
    451 *
    452 * The scheme does not work when sender sends good segments opening
    453 * window and then starts to feed us spaghetti. But it should work
    454 * in common situations. Otherwise, we have to rely on queue collapsing.
    455 */
    456
    457/* Slow part of check#2. */
    458static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
    459			     unsigned int skbtruesize)
    460{
    461	struct tcp_sock *tp = tcp_sk(sk);
    462	/* Optimize this! */
    463	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
    464	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
    465
    466	while (tp->rcv_ssthresh <= window) {
    467		if (truesize <= skb->len)
    468			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
    469
    470		truesize >>= 1;
    471		window >>= 1;
    472	}
    473	return 0;
    474}
    475
    476/* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
    477 * can play nice with us, as sk_buff and skb->head might be either
    478 * freed or shared with up to MAX_SKB_FRAGS segments.
    479 * Only give a boost to drivers using page frag(s) to hold the frame(s),
    480 * and if no payload was pulled in skb->head before reaching us.
    481 */
    482static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
    483{
    484	u32 truesize = skb->truesize;
    485
    486	if (adjust && !skb_headlen(skb)) {
    487		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
    488		/* paranoid check, some drivers might be buggy */
    489		if (unlikely((int)truesize < (int)skb->len))
    490			truesize = skb->truesize;
    491	}
    492	return truesize;
    493}
    494
    495static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
    496			    bool adjust)
    497{
    498	struct tcp_sock *tp = tcp_sk(sk);
    499	int room;
    500
    501	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
    502
    503	if (room <= 0)
    504		return;
    505
    506	/* Check #1 */
    507	if (!tcp_under_memory_pressure(sk)) {
    508		unsigned int truesize = truesize_adjust(adjust, skb);
    509		int incr;
    510
    511		/* Check #2. Increase window, if skb with such overhead
    512		 * will fit to rcvbuf in future.
    513		 */
    514		if (tcp_win_from_space(sk, truesize) <= skb->len)
    515			incr = 2 * tp->advmss;
    516		else
    517			incr = __tcp_grow_window(sk, skb, truesize);
    518
    519		if (incr) {
    520			incr = max_t(int, incr, 2 * skb->len);
    521			tp->rcv_ssthresh += min(room, incr);
    522			inet_csk(sk)->icsk_ack.quick |= 1;
    523		}
    524	} else {
    525		/* Under pressure:
    526		 * Adjust rcv_ssthresh according to reserved mem
    527		 */
    528		tcp_adjust_rcv_ssthresh(sk);
    529	}
    530}
    531
    532/* 3. Try to fixup all. It is made immediately after connection enters
    533 *    established state.
    534 */
    535static void tcp_init_buffer_space(struct sock *sk)
    536{
    537	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
    538	struct tcp_sock *tp = tcp_sk(sk);
    539	int maxwin;
    540
    541	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
    542		tcp_sndbuf_expand(sk);
    543
    544	tcp_mstamp_refresh(tp);
    545	tp->rcvq_space.time = tp->tcp_mstamp;
    546	tp->rcvq_space.seq = tp->copied_seq;
    547
    548	maxwin = tcp_full_space(sk);
    549
    550	if (tp->window_clamp >= maxwin) {
    551		tp->window_clamp = maxwin;
    552
    553		if (tcp_app_win && maxwin > 4 * tp->advmss)
    554			tp->window_clamp = max(maxwin -
    555					       (maxwin >> tcp_app_win),
    556					       4 * tp->advmss);
    557	}
    558
    559	/* Force reservation of one segment. */
    560	if (tcp_app_win &&
    561	    tp->window_clamp > 2 * tp->advmss &&
    562	    tp->window_clamp + tp->advmss > maxwin)
    563		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
    564
    565	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
    566	tp->snd_cwnd_stamp = tcp_jiffies32;
    567	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
    568				    (u32)TCP_INIT_CWND * tp->advmss);
    569}
    570
    571/* 4. Recalculate window clamp after socket hit its memory bounds. */
    572static void tcp_clamp_window(struct sock *sk)
    573{
    574	struct tcp_sock *tp = tcp_sk(sk);
    575	struct inet_connection_sock *icsk = inet_csk(sk);
    576	struct net *net = sock_net(sk);
    577
    578	icsk->icsk_ack.quick = 0;
    579
    580	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
    581	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
    582	    !tcp_under_memory_pressure(sk) &&
    583	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
    584		WRITE_ONCE(sk->sk_rcvbuf,
    585			   min(atomic_read(&sk->sk_rmem_alloc),
    586			       net->ipv4.sysctl_tcp_rmem[2]));
    587	}
    588	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
    589		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
    590}
    591
    592/* Initialize RCV_MSS value.
    593 * RCV_MSS is an our guess about MSS used by the peer.
    594 * We haven't any direct information about the MSS.
    595 * It's better to underestimate the RCV_MSS rather than overestimate.
    596 * Overestimations make us ACKing less frequently than needed.
    597 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
    598 */
    599void tcp_initialize_rcv_mss(struct sock *sk)
    600{
    601	const struct tcp_sock *tp = tcp_sk(sk);
    602	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
    603
    604	hint = min(hint, tp->rcv_wnd / 2);
    605	hint = min(hint, TCP_MSS_DEFAULT);
    606	hint = max(hint, TCP_MIN_MSS);
    607
    608	inet_csk(sk)->icsk_ack.rcv_mss = hint;
    609}
    610EXPORT_SYMBOL(tcp_initialize_rcv_mss);
    611
    612/* Receiver "autotuning" code.
    613 *
    614 * The algorithm for RTT estimation w/o timestamps is based on
    615 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
    616 * <https://public.lanl.gov/radiant/pubs.html#DRS>
    617 *
    618 * More detail on this code can be found at
    619 * <http://staff.psc.edu/jheffner/>,
    620 * though this reference is out of date.  A new paper
    621 * is pending.
    622 */
    623static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
    624{
    625	u32 new_sample = tp->rcv_rtt_est.rtt_us;
    626	long m = sample;
    627
    628	if (new_sample != 0) {
    629		/* If we sample in larger samples in the non-timestamp
    630		 * case, we could grossly overestimate the RTT especially
    631		 * with chatty applications or bulk transfer apps which
    632		 * are stalled on filesystem I/O.
    633		 *
    634		 * Also, since we are only going for a minimum in the
    635		 * non-timestamp case, we do not smooth things out
    636		 * else with timestamps disabled convergence takes too
    637		 * long.
    638		 */
    639		if (!win_dep) {
    640			m -= (new_sample >> 3);
    641			new_sample += m;
    642		} else {
    643			m <<= 3;
    644			if (m < new_sample)
    645				new_sample = m;
    646		}
    647	} else {
    648		/* No previous measure. */
    649		new_sample = m << 3;
    650	}
    651
    652	tp->rcv_rtt_est.rtt_us = new_sample;
    653}
    654
    655static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
    656{
    657	u32 delta_us;
    658
    659	if (tp->rcv_rtt_est.time == 0)
    660		goto new_measure;
    661	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
    662		return;
    663	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
    664	if (!delta_us)
    665		delta_us = 1;
    666	tcp_rcv_rtt_update(tp, delta_us, 1);
    667
    668new_measure:
    669	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
    670	tp->rcv_rtt_est.time = tp->tcp_mstamp;
    671}
    672
    673static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
    674					  const struct sk_buff *skb)
    675{
    676	struct tcp_sock *tp = tcp_sk(sk);
    677
    678	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
    679		return;
    680	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
    681
    682	if (TCP_SKB_CB(skb)->end_seq -
    683	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
    684		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
    685		u32 delta_us;
    686
    687		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
    688			if (!delta)
    689				delta = 1;
    690			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
    691			tcp_rcv_rtt_update(tp, delta_us, 0);
    692		}
    693	}
    694}
    695
    696/*
    697 * This function should be called every time data is copied to user space.
    698 * It calculates the appropriate TCP receive buffer space.
    699 */
    700void tcp_rcv_space_adjust(struct sock *sk)
    701{
    702	struct tcp_sock *tp = tcp_sk(sk);
    703	u32 copied;
    704	int time;
    705
    706	trace_tcp_rcv_space_adjust(sk);
    707
    708	tcp_mstamp_refresh(tp);
    709	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
    710	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
    711		return;
    712
    713	/* Number of bytes copied to user in last RTT */
    714	copied = tp->copied_seq - tp->rcvq_space.seq;
    715	if (copied <= tp->rcvq_space.space)
    716		goto new_measure;
    717
    718	/* A bit of theory :
    719	 * copied = bytes received in previous RTT, our base window
    720	 * To cope with packet losses, we need a 2x factor
    721	 * To cope with slow start, and sender growing its cwin by 100 %
    722	 * every RTT, we need a 4x factor, because the ACK we are sending
    723	 * now is for the next RTT, not the current one :
    724	 * <prev RTT . ><current RTT .. ><next RTT .... >
    725	 */
    726
    727	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
    728	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
    729		int rcvmem, rcvbuf;
    730		u64 rcvwin, grow;
    731
    732		/* minimal window to cope with packet losses, assuming
    733		 * steady state. Add some cushion because of small variations.
    734		 */
    735		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
    736
    737		/* Accommodate for sender rate increase (eg. slow start) */
    738		grow = rcvwin * (copied - tp->rcvq_space.space);
    739		do_div(grow, tp->rcvq_space.space);
    740		rcvwin += (grow << 1);
    741
    742		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
    743		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
    744			rcvmem += 128;
    745
    746		do_div(rcvwin, tp->advmss);
    747		rcvbuf = min_t(u64, rcvwin * rcvmem,
    748			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
    749		if (rcvbuf > sk->sk_rcvbuf) {
    750			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
    751
    752			/* Make the window clamp follow along.  */
    753			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
    754		}
    755	}
    756	tp->rcvq_space.space = copied;
    757
    758new_measure:
    759	tp->rcvq_space.seq = tp->copied_seq;
    760	tp->rcvq_space.time = tp->tcp_mstamp;
    761}
    762
    763/* There is something which you must keep in mind when you analyze the
    764 * behavior of the tp->ato delayed ack timeout interval.  When a
    765 * connection starts up, we want to ack as quickly as possible.  The
    766 * problem is that "good" TCP's do slow start at the beginning of data
    767 * transmission.  The means that until we send the first few ACK's the
    768 * sender will sit on his end and only queue most of his data, because
    769 * he can only send snd_cwnd unacked packets at any given time.  For
    770 * each ACK we send, he increments snd_cwnd and transmits more of his
    771 * queue.  -DaveM
    772 */
    773static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
    774{
    775	struct tcp_sock *tp = tcp_sk(sk);
    776	struct inet_connection_sock *icsk = inet_csk(sk);
    777	u32 now;
    778
    779	inet_csk_schedule_ack(sk);
    780
    781	tcp_measure_rcv_mss(sk, skb);
    782
    783	tcp_rcv_rtt_measure(tp);
    784
    785	now = tcp_jiffies32;
    786
    787	if (!icsk->icsk_ack.ato) {
    788		/* The _first_ data packet received, initialize
    789		 * delayed ACK engine.
    790		 */
    791		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
    792		icsk->icsk_ack.ato = TCP_ATO_MIN;
    793	} else {
    794		int m = now - icsk->icsk_ack.lrcvtime;
    795
    796		if (m <= TCP_ATO_MIN / 2) {
    797			/* The fastest case is the first. */
    798			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
    799		} else if (m < icsk->icsk_ack.ato) {
    800			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
    801			if (icsk->icsk_ack.ato > icsk->icsk_rto)
    802				icsk->icsk_ack.ato = icsk->icsk_rto;
    803		} else if (m > icsk->icsk_rto) {
    804			/* Too long gap. Apparently sender failed to
    805			 * restart window, so that we send ACKs quickly.
    806			 */
    807			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
    808			sk_mem_reclaim(sk);
    809		}
    810	}
    811	icsk->icsk_ack.lrcvtime = now;
    812
    813	tcp_ecn_check_ce(sk, skb);
    814
    815	if (skb->len >= 128)
    816		tcp_grow_window(sk, skb, true);
    817}
    818
    819/* Called to compute a smoothed rtt estimate. The data fed to this
    820 * routine either comes from timestamps, or from segments that were
    821 * known _not_ to have been retransmitted [see Karn/Partridge
    822 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
    823 * piece by Van Jacobson.
    824 * NOTE: the next three routines used to be one big routine.
    825 * To save cycles in the RFC 1323 implementation it was better to break
    826 * it up into three procedures. -- erics
    827 */
    828static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
    829{
    830	struct tcp_sock *tp = tcp_sk(sk);
    831	long m = mrtt_us; /* RTT */
    832	u32 srtt = tp->srtt_us;
    833
    834	/*	The following amusing code comes from Jacobson's
    835	 *	article in SIGCOMM '88.  Note that rtt and mdev
    836	 *	are scaled versions of rtt and mean deviation.
    837	 *	This is designed to be as fast as possible
    838	 *	m stands for "measurement".
    839	 *
    840	 *	On a 1990 paper the rto value is changed to:
    841	 *	RTO = rtt + 4 * mdev
    842	 *
    843	 * Funny. This algorithm seems to be very broken.
    844	 * These formulae increase RTO, when it should be decreased, increase
    845	 * too slowly, when it should be increased quickly, decrease too quickly
    846	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
    847	 * does not matter how to _calculate_ it. Seems, it was trap
    848	 * that VJ failed to avoid. 8)
    849	 */
    850	if (srtt != 0) {
    851		m -= (srtt >> 3);	/* m is now error in rtt est */
    852		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
    853		if (m < 0) {
    854			m = -m;		/* m is now abs(error) */
    855			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
    856			/* This is similar to one of Eifel findings.
    857			 * Eifel blocks mdev updates when rtt decreases.
    858			 * This solution is a bit different: we use finer gain
    859			 * for mdev in this case (alpha*beta).
    860			 * Like Eifel it also prevents growth of rto,
    861			 * but also it limits too fast rto decreases,
    862			 * happening in pure Eifel.
    863			 */
    864			if (m > 0)
    865				m >>= 3;
    866		} else {
    867			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
    868		}
    869		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
    870		if (tp->mdev_us > tp->mdev_max_us) {
    871			tp->mdev_max_us = tp->mdev_us;
    872			if (tp->mdev_max_us > tp->rttvar_us)
    873				tp->rttvar_us = tp->mdev_max_us;
    874		}
    875		if (after(tp->snd_una, tp->rtt_seq)) {
    876			if (tp->mdev_max_us < tp->rttvar_us)
    877				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
    878			tp->rtt_seq = tp->snd_nxt;
    879			tp->mdev_max_us = tcp_rto_min_us(sk);
    880
    881			tcp_bpf_rtt(sk);
    882		}
    883	} else {
    884		/* no previous measure. */
    885		srtt = m << 3;		/* take the measured time to be rtt */
    886		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
    887		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
    888		tp->mdev_max_us = tp->rttvar_us;
    889		tp->rtt_seq = tp->snd_nxt;
    890
    891		tcp_bpf_rtt(sk);
    892	}
    893	tp->srtt_us = max(1U, srtt);
    894}
    895
    896static void tcp_update_pacing_rate(struct sock *sk)
    897{
    898	const struct tcp_sock *tp = tcp_sk(sk);
    899	u64 rate;
    900
    901	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
    902	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
    903
    904	/* current rate is (cwnd * mss) / srtt
    905	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
    906	 * In Congestion Avoidance phase, set it to 120 % the current rate.
    907	 *
    908	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
    909	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
    910	 *	 end of slow start and should slow down.
    911	 */
    912	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
    913		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
    914	else
    915		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
    916
    917	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
    918
    919	if (likely(tp->srtt_us))
    920		do_div(rate, tp->srtt_us);
    921
    922	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
    923	 * without any lock. We want to make sure compiler wont store
    924	 * intermediate values in this location.
    925	 */
    926	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
    927					     sk->sk_max_pacing_rate));
    928}
    929
    930/* Calculate rto without backoff.  This is the second half of Van Jacobson's
    931 * routine referred to above.
    932 */
    933static void tcp_set_rto(struct sock *sk)
    934{
    935	const struct tcp_sock *tp = tcp_sk(sk);
    936	/* Old crap is replaced with new one. 8)
    937	 *
    938	 * More seriously:
    939	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
    940	 *    It cannot be less due to utterly erratic ACK generation made
    941	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
    942	 *    to do with delayed acks, because at cwnd>2 true delack timeout
    943	 *    is invisible. Actually, Linux-2.4 also generates erratic
    944	 *    ACKs in some circumstances.
    945	 */
    946	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
    947
    948	/* 2. Fixups made earlier cannot be right.
    949	 *    If we do not estimate RTO correctly without them,
    950	 *    all the algo is pure shit and should be replaced
    951	 *    with correct one. It is exactly, which we pretend to do.
    952	 */
    953
    954	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
    955	 * guarantees that rto is higher.
    956	 */
    957	tcp_bound_rto(sk);
    958}
    959
    960__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
    961{
    962	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
    963
    964	if (!cwnd)
    965		cwnd = TCP_INIT_CWND;
    966	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
    967}
    968
    969struct tcp_sacktag_state {
    970	/* Timestamps for earliest and latest never-retransmitted segment
    971	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
    972	 * but congestion control should still get an accurate delay signal.
    973	 */
    974	u64	first_sackt;
    975	u64	last_sackt;
    976	u32	reord;
    977	u32	sack_delivered;
    978	int	flag;
    979	unsigned int mss_now;
    980	struct rate_sample *rate;
    981};
    982
    983/* Take a notice that peer is sending D-SACKs. Skip update of data delivery
    984 * and spurious retransmission information if this DSACK is unlikely caused by
    985 * sender's action:
    986 * - DSACKed sequence range is larger than maximum receiver's window.
    987 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
    988 */
    989static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
    990			  u32 end_seq, struct tcp_sacktag_state *state)
    991{
    992	u32 seq_len, dup_segs = 1;
    993
    994	if (!before(start_seq, end_seq))
    995		return 0;
    996
    997	seq_len = end_seq - start_seq;
    998	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
    999	if (seq_len > tp->max_window)
   1000		return 0;
   1001	if (seq_len > tp->mss_cache)
   1002		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
   1003	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
   1004		state->flag |= FLAG_DSACK_TLP;
   1005
   1006	tp->dsack_dups += dup_segs;
   1007	/* Skip the DSACK if dup segs weren't retransmitted by sender */
   1008	if (tp->dsack_dups > tp->total_retrans)
   1009		return 0;
   1010
   1011	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
   1012	/* We increase the RACK ordering window in rounds where we receive
   1013	 * DSACKs that may have been due to reordering causing RACK to trigger
   1014	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
   1015	 * without having seen reordering, or that match TLP probes (TLP
   1016	 * is timer-driven, not triggered by RACK).
   1017	 */
   1018	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
   1019		tp->rack.dsack_seen = 1;
   1020
   1021	state->flag |= FLAG_DSACKING_ACK;
   1022	/* A spurious retransmission is delivered */
   1023	state->sack_delivered += dup_segs;
   1024
   1025	return dup_segs;
   1026}
   1027
   1028/* It's reordering when higher sequence was delivered (i.e. sacked) before
   1029 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
   1030 * distance is approximated in full-mss packet distance ("reordering").
   1031 */
   1032static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
   1033				      const int ts)
   1034{
   1035	struct tcp_sock *tp = tcp_sk(sk);
   1036	const u32 mss = tp->mss_cache;
   1037	u32 fack, metric;
   1038
   1039	fack = tcp_highest_sack_seq(tp);
   1040	if (!before(low_seq, fack))
   1041		return;
   1042
   1043	metric = fack - low_seq;
   1044	if ((metric > tp->reordering * mss) && mss) {
   1045#if FASTRETRANS_DEBUG > 1
   1046		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
   1047			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
   1048			 tp->reordering,
   1049			 0,
   1050			 tp->sacked_out,
   1051			 tp->undo_marker ? tp->undo_retrans : 0);
   1052#endif
   1053		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
   1054				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
   1055	}
   1056
   1057	/* This exciting event is worth to be remembered. 8) */
   1058	tp->reord_seen++;
   1059	NET_INC_STATS(sock_net(sk),
   1060		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
   1061}
   1062
   1063 /* This must be called before lost_out or retrans_out are updated
   1064  * on a new loss, because we want to know if all skbs previously
   1065  * known to be lost have already been retransmitted, indicating
   1066  * that this newly lost skb is our next skb to retransmit.
   1067  */
   1068static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
   1069{
   1070	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
   1071	    (tp->retransmit_skb_hint &&
   1072	     before(TCP_SKB_CB(skb)->seq,
   1073		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
   1074		tp->retransmit_skb_hint = skb;
   1075}
   1076
   1077/* Sum the number of packets on the wire we have marked as lost, and
   1078 * notify the congestion control module that the given skb was marked lost.
   1079 */
   1080static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
   1081{
   1082	tp->lost += tcp_skb_pcount(skb);
   1083}
   1084
   1085void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
   1086{
   1087	__u8 sacked = TCP_SKB_CB(skb)->sacked;
   1088	struct tcp_sock *tp = tcp_sk(sk);
   1089
   1090	if (sacked & TCPCB_SACKED_ACKED)
   1091		return;
   1092
   1093	tcp_verify_retransmit_hint(tp, skb);
   1094	if (sacked & TCPCB_LOST) {
   1095		if (sacked & TCPCB_SACKED_RETRANS) {
   1096			/* Account for retransmits that are lost again */
   1097			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
   1098			tp->retrans_out -= tcp_skb_pcount(skb);
   1099			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
   1100				      tcp_skb_pcount(skb));
   1101			tcp_notify_skb_loss_event(tp, skb);
   1102		}
   1103	} else {
   1104		tp->lost_out += tcp_skb_pcount(skb);
   1105		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
   1106		tcp_notify_skb_loss_event(tp, skb);
   1107	}
   1108}
   1109
   1110/* Updates the delivered and delivered_ce counts */
   1111static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
   1112				bool ece_ack)
   1113{
   1114	tp->delivered += delivered;
   1115	if (ece_ack)
   1116		tp->delivered_ce += delivered;
   1117}
   1118
   1119/* This procedure tags the retransmission queue when SACKs arrive.
   1120 *
   1121 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
   1122 * Packets in queue with these bits set are counted in variables
   1123 * sacked_out, retrans_out and lost_out, correspondingly.
   1124 *
   1125 * Valid combinations are:
   1126 * Tag  InFlight	Description
   1127 * 0	1		- orig segment is in flight.
   1128 * S	0		- nothing flies, orig reached receiver.
   1129 * L	0		- nothing flies, orig lost by net.
   1130 * R	2		- both orig and retransmit are in flight.
   1131 * L|R	1		- orig is lost, retransmit is in flight.
   1132 * S|R  1		- orig reached receiver, retrans is still in flight.
   1133 * (L|S|R is logically valid, it could occur when L|R is sacked,
   1134 *  but it is equivalent to plain S and code short-curcuits it to S.
   1135 *  L|S is logically invalid, it would mean -1 packet in flight 8))
   1136 *
   1137 * These 6 states form finite state machine, controlled by the following events:
   1138 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
   1139 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
   1140 * 3. Loss detection event of two flavors:
   1141 *	A. Scoreboard estimator decided the packet is lost.
   1142 *	   A'. Reno "three dupacks" marks head of queue lost.
   1143 *	B. SACK arrives sacking SND.NXT at the moment, when the
   1144 *	   segment was retransmitted.
   1145 * 4. D-SACK added new rule: D-SACK changes any tag to S.
   1146 *
   1147 * It is pleasant to note, that state diagram turns out to be commutative,
   1148 * so that we are allowed not to be bothered by order of our actions,
   1149 * when multiple events arrive simultaneously. (see the function below).
   1150 *
   1151 * Reordering detection.
   1152 * --------------------
   1153 * Reordering metric is maximal distance, which a packet can be displaced
   1154 * in packet stream. With SACKs we can estimate it:
   1155 *
   1156 * 1. SACK fills old hole and the corresponding segment was not
   1157 *    ever retransmitted -> reordering. Alas, we cannot use it
   1158 *    when segment was retransmitted.
   1159 * 2. The last flaw is solved with D-SACK. D-SACK arrives
   1160 *    for retransmitted and already SACKed segment -> reordering..
   1161 * Both of these heuristics are not used in Loss state, when we cannot
   1162 * account for retransmits accurately.
   1163 *
   1164 * SACK block validation.
   1165 * ----------------------
   1166 *
   1167 * SACK block range validation checks that the received SACK block fits to
   1168 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
   1169 * Note that SND.UNA is not included to the range though being valid because
   1170 * it means that the receiver is rather inconsistent with itself reporting
   1171 * SACK reneging when it should advance SND.UNA. Such SACK block this is
   1172 * perfectly valid, however, in light of RFC2018 which explicitly states
   1173 * that "SACK block MUST reflect the newest segment.  Even if the newest
   1174 * segment is going to be discarded ...", not that it looks very clever
   1175 * in case of head skb. Due to potentional receiver driven attacks, we
   1176 * choose to avoid immediate execution of a walk in write queue due to
   1177 * reneging and defer head skb's loss recovery to standard loss recovery
   1178 * procedure that will eventually trigger (nothing forbids us doing this).
   1179 *
   1180 * Implements also blockage to start_seq wrap-around. Problem lies in the
   1181 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
   1182 * there's no guarantee that it will be before snd_nxt (n). The problem
   1183 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
   1184 * wrap (s_w):
   1185 *
   1186 *         <- outs wnd ->                          <- wrapzone ->
   1187 *         u     e      n                         u_w   e_w  s n_w
   1188 *         |     |      |                          |     |   |  |
   1189 * |<------------+------+----- TCP seqno space --------------+---------->|
   1190 * ...-- <2^31 ->|                                           |<--------...
   1191 * ...---- >2^31 ------>|                                    |<--------...
   1192 *
   1193 * Current code wouldn't be vulnerable but it's better still to discard such
   1194 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
   1195 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
   1196 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
   1197 * equal to the ideal case (infinite seqno space without wrap caused issues).
   1198 *
   1199 * With D-SACK the lower bound is extended to cover sequence space below
   1200 * SND.UNA down to undo_marker, which is the last point of interest. Yet
   1201 * again, D-SACK block must not to go across snd_una (for the same reason as
   1202 * for the normal SACK blocks, explained above). But there all simplicity
   1203 * ends, TCP might receive valid D-SACKs below that. As long as they reside
   1204 * fully below undo_marker they do not affect behavior in anyway and can
   1205 * therefore be safely ignored. In rare cases (which are more or less
   1206 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
   1207 * fragmentation and packet reordering past skb's retransmission. To consider
   1208 * them correctly, the acceptable range must be extended even more though
   1209 * the exact amount is rather hard to quantify. However, tp->max_window can
   1210 * be used as an exaggerated estimate.
   1211 */
   1212static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
   1213				   u32 start_seq, u32 end_seq)
   1214{
   1215	/* Too far in future, or reversed (interpretation is ambiguous) */
   1216	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
   1217		return false;
   1218
   1219	/* Nasty start_seq wrap-around check (see comments above) */
   1220	if (!before(start_seq, tp->snd_nxt))
   1221		return false;
   1222
   1223	/* In outstanding window? ...This is valid exit for D-SACKs too.
   1224	 * start_seq == snd_una is non-sensical (see comments above)
   1225	 */
   1226	if (after(start_seq, tp->snd_una))
   1227		return true;
   1228
   1229	if (!is_dsack || !tp->undo_marker)
   1230		return false;
   1231
   1232	/* ...Then it's D-SACK, and must reside below snd_una completely */
   1233	if (after(end_seq, tp->snd_una))
   1234		return false;
   1235
   1236	if (!before(start_seq, tp->undo_marker))
   1237		return true;
   1238
   1239	/* Too old */
   1240	if (!after(end_seq, tp->undo_marker))
   1241		return false;
   1242
   1243	/* Undo_marker boundary crossing (overestimates a lot). Known already:
   1244	 *   start_seq < undo_marker and end_seq >= undo_marker.
   1245	 */
   1246	return !before(start_seq, end_seq - tp->max_window);
   1247}
   1248
   1249static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
   1250			    struct tcp_sack_block_wire *sp, int num_sacks,
   1251			    u32 prior_snd_una, struct tcp_sacktag_state *state)
   1252{
   1253	struct tcp_sock *tp = tcp_sk(sk);
   1254	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
   1255	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
   1256	u32 dup_segs;
   1257
   1258	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
   1259		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
   1260	} else if (num_sacks > 1) {
   1261		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
   1262		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
   1263
   1264		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
   1265			return false;
   1266		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
   1267	} else {
   1268		return false;
   1269	}
   1270
   1271	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
   1272	if (!dup_segs) {	/* Skip dubious DSACK */
   1273		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
   1274		return false;
   1275	}
   1276
   1277	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
   1278
   1279	/* D-SACK for already forgotten data... Do dumb counting. */
   1280	if (tp->undo_marker && tp->undo_retrans > 0 &&
   1281	    !after(end_seq_0, prior_snd_una) &&
   1282	    after(end_seq_0, tp->undo_marker))
   1283		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
   1284
   1285	return true;
   1286}
   1287
   1288/* Check if skb is fully within the SACK block. In presence of GSO skbs,
   1289 * the incoming SACK may not exactly match but we can find smaller MSS
   1290 * aligned portion of it that matches. Therefore we might need to fragment
   1291 * which may fail and creates some hassle (caller must handle error case
   1292 * returns).
   1293 *
   1294 * FIXME: this could be merged to shift decision code
   1295 */
   1296static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
   1297				  u32 start_seq, u32 end_seq)
   1298{
   1299	int err;
   1300	bool in_sack;
   1301	unsigned int pkt_len;
   1302	unsigned int mss;
   1303
   1304	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
   1305		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
   1306
   1307	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
   1308	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
   1309		mss = tcp_skb_mss(skb);
   1310		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
   1311
   1312		if (!in_sack) {
   1313			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
   1314			if (pkt_len < mss)
   1315				pkt_len = mss;
   1316		} else {
   1317			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
   1318			if (pkt_len < mss)
   1319				return -EINVAL;
   1320		}
   1321
   1322		/* Round if necessary so that SACKs cover only full MSSes
   1323		 * and/or the remaining small portion (if present)
   1324		 */
   1325		if (pkt_len > mss) {
   1326			unsigned int new_len = (pkt_len / mss) * mss;
   1327			if (!in_sack && new_len < pkt_len)
   1328				new_len += mss;
   1329			pkt_len = new_len;
   1330		}
   1331
   1332		if (pkt_len >= skb->len && !in_sack)
   1333			return 0;
   1334
   1335		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
   1336				   pkt_len, mss, GFP_ATOMIC);
   1337		if (err < 0)
   1338			return err;
   1339	}
   1340
   1341	return in_sack;
   1342}
   1343
   1344/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
   1345static u8 tcp_sacktag_one(struct sock *sk,
   1346			  struct tcp_sacktag_state *state, u8 sacked,
   1347			  u32 start_seq, u32 end_seq,
   1348			  int dup_sack, int pcount,
   1349			  u64 xmit_time)
   1350{
   1351	struct tcp_sock *tp = tcp_sk(sk);
   1352
   1353	/* Account D-SACK for retransmitted packet. */
   1354	if (dup_sack && (sacked & TCPCB_RETRANS)) {
   1355		if (tp->undo_marker && tp->undo_retrans > 0 &&
   1356		    after(end_seq, tp->undo_marker))
   1357			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
   1358		if ((sacked & TCPCB_SACKED_ACKED) &&
   1359		    before(start_seq, state->reord))
   1360				state->reord = start_seq;
   1361	}
   1362
   1363	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
   1364	if (!after(end_seq, tp->snd_una))
   1365		return sacked;
   1366
   1367	if (!(sacked & TCPCB_SACKED_ACKED)) {
   1368		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
   1369
   1370		if (sacked & TCPCB_SACKED_RETRANS) {
   1371			/* If the segment is not tagged as lost,
   1372			 * we do not clear RETRANS, believing
   1373			 * that retransmission is still in flight.
   1374			 */
   1375			if (sacked & TCPCB_LOST) {
   1376				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
   1377				tp->lost_out -= pcount;
   1378				tp->retrans_out -= pcount;
   1379			}
   1380		} else {
   1381			if (!(sacked & TCPCB_RETRANS)) {
   1382				/* New sack for not retransmitted frame,
   1383				 * which was in hole. It is reordering.
   1384				 */
   1385				if (before(start_seq,
   1386					   tcp_highest_sack_seq(tp)) &&
   1387				    before(start_seq, state->reord))
   1388					state->reord = start_seq;
   1389
   1390				if (!after(end_seq, tp->high_seq))
   1391					state->flag |= FLAG_ORIG_SACK_ACKED;
   1392				if (state->first_sackt == 0)
   1393					state->first_sackt = xmit_time;
   1394				state->last_sackt = xmit_time;
   1395			}
   1396
   1397			if (sacked & TCPCB_LOST) {
   1398				sacked &= ~TCPCB_LOST;
   1399				tp->lost_out -= pcount;
   1400			}
   1401		}
   1402
   1403		sacked |= TCPCB_SACKED_ACKED;
   1404		state->flag |= FLAG_DATA_SACKED;
   1405		tp->sacked_out += pcount;
   1406		/* Out-of-order packets delivered */
   1407		state->sack_delivered += pcount;
   1408
   1409		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
   1410		if (tp->lost_skb_hint &&
   1411		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
   1412			tp->lost_cnt_hint += pcount;
   1413	}
   1414
   1415	/* D-SACK. We can detect redundant retransmission in S|R and plain R
   1416	 * frames and clear it. undo_retrans is decreased above, L|R frames
   1417	 * are accounted above as well.
   1418	 */
   1419	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
   1420		sacked &= ~TCPCB_SACKED_RETRANS;
   1421		tp->retrans_out -= pcount;
   1422	}
   1423
   1424	return sacked;
   1425}
   1426
   1427/* Shift newly-SACKed bytes from this skb to the immediately previous
   1428 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
   1429 */
   1430static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
   1431			    struct sk_buff *skb,
   1432			    struct tcp_sacktag_state *state,
   1433			    unsigned int pcount, int shifted, int mss,
   1434			    bool dup_sack)
   1435{
   1436	struct tcp_sock *tp = tcp_sk(sk);
   1437	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
   1438	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
   1439
   1440	BUG_ON(!pcount);
   1441
   1442	/* Adjust counters and hints for the newly sacked sequence
   1443	 * range but discard the return value since prev is already
   1444	 * marked. We must tag the range first because the seq
   1445	 * advancement below implicitly advances
   1446	 * tcp_highest_sack_seq() when skb is highest_sack.
   1447	 */
   1448	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
   1449			start_seq, end_seq, dup_sack, pcount,
   1450			tcp_skb_timestamp_us(skb));
   1451	tcp_rate_skb_delivered(sk, skb, state->rate);
   1452
   1453	if (skb == tp->lost_skb_hint)
   1454		tp->lost_cnt_hint += pcount;
   1455
   1456	TCP_SKB_CB(prev)->end_seq += shifted;
   1457	TCP_SKB_CB(skb)->seq += shifted;
   1458
   1459	tcp_skb_pcount_add(prev, pcount);
   1460	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
   1461	tcp_skb_pcount_add(skb, -pcount);
   1462
   1463	/* When we're adding to gso_segs == 1, gso_size will be zero,
   1464	 * in theory this shouldn't be necessary but as long as DSACK
   1465	 * code can come after this skb later on it's better to keep
   1466	 * setting gso_size to something.
   1467	 */
   1468	if (!TCP_SKB_CB(prev)->tcp_gso_size)
   1469		TCP_SKB_CB(prev)->tcp_gso_size = mss;
   1470
   1471	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
   1472	if (tcp_skb_pcount(skb) <= 1)
   1473		TCP_SKB_CB(skb)->tcp_gso_size = 0;
   1474
   1475	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
   1476	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
   1477
   1478	if (skb->len > 0) {
   1479		BUG_ON(!tcp_skb_pcount(skb));
   1480		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
   1481		return false;
   1482	}
   1483
   1484	/* Whole SKB was eaten :-) */
   1485
   1486	if (skb == tp->retransmit_skb_hint)
   1487		tp->retransmit_skb_hint = prev;
   1488	if (skb == tp->lost_skb_hint) {
   1489		tp->lost_skb_hint = prev;
   1490		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
   1491	}
   1492
   1493	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
   1494	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
   1495	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
   1496		TCP_SKB_CB(prev)->end_seq++;
   1497
   1498	if (skb == tcp_highest_sack(sk))
   1499		tcp_advance_highest_sack(sk, skb);
   1500
   1501	tcp_skb_collapse_tstamp(prev, skb);
   1502	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
   1503		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
   1504
   1505	tcp_rtx_queue_unlink_and_free(skb, sk);
   1506
   1507	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
   1508
   1509	return true;
   1510}
   1511
   1512/* I wish gso_size would have a bit more sane initialization than
   1513 * something-or-zero which complicates things
   1514 */
   1515static int tcp_skb_seglen(const struct sk_buff *skb)
   1516{
   1517	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
   1518}
   1519
   1520/* Shifting pages past head area doesn't work */
   1521static int skb_can_shift(const struct sk_buff *skb)
   1522{
   1523	return !skb_headlen(skb) && skb_is_nonlinear(skb);
   1524}
   1525
   1526int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
   1527		  int pcount, int shiftlen)
   1528{
   1529	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
   1530	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
   1531	 * to make sure not storing more than 65535 * 8 bytes per skb,
   1532	 * even if current MSS is bigger.
   1533	 */
   1534	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
   1535		return 0;
   1536	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
   1537		return 0;
   1538	return skb_shift(to, from, shiftlen);
   1539}
   1540
   1541/* Try collapsing SACK blocks spanning across multiple skbs to a single
   1542 * skb.
   1543 */
   1544static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
   1545					  struct tcp_sacktag_state *state,
   1546					  u32 start_seq, u32 end_seq,
   1547					  bool dup_sack)
   1548{
   1549	struct tcp_sock *tp = tcp_sk(sk);
   1550	struct sk_buff *prev;
   1551	int mss;
   1552	int pcount = 0;
   1553	int len;
   1554	int in_sack;
   1555
   1556	/* Normally R but no L won't result in plain S */
   1557	if (!dup_sack &&
   1558	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
   1559		goto fallback;
   1560	if (!skb_can_shift(skb))
   1561		goto fallback;
   1562	/* This frame is about to be dropped (was ACKed). */
   1563	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
   1564		goto fallback;
   1565
   1566	/* Can only happen with delayed DSACK + discard craziness */
   1567	prev = skb_rb_prev(skb);
   1568	if (!prev)
   1569		goto fallback;
   1570
   1571	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
   1572		goto fallback;
   1573
   1574	if (!tcp_skb_can_collapse(prev, skb))
   1575		goto fallback;
   1576
   1577	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
   1578		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
   1579
   1580	if (in_sack) {
   1581		len = skb->len;
   1582		pcount = tcp_skb_pcount(skb);
   1583		mss = tcp_skb_seglen(skb);
   1584
   1585		/* TODO: Fix DSACKs to not fragment already SACKed and we can
   1586		 * drop this restriction as unnecessary
   1587		 */
   1588		if (mss != tcp_skb_seglen(prev))
   1589			goto fallback;
   1590	} else {
   1591		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
   1592			goto noop;
   1593		/* CHECKME: This is non-MSS split case only?, this will
   1594		 * cause skipped skbs due to advancing loop btw, original
   1595		 * has that feature too
   1596		 */
   1597		if (tcp_skb_pcount(skb) <= 1)
   1598			goto noop;
   1599
   1600		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
   1601		if (!in_sack) {
   1602			/* TODO: head merge to next could be attempted here
   1603			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
   1604			 * though it might not be worth of the additional hassle
   1605			 *
   1606			 * ...we can probably just fallback to what was done
   1607			 * previously. We could try merging non-SACKed ones
   1608			 * as well but it probably isn't going to buy off
   1609			 * because later SACKs might again split them, and
   1610			 * it would make skb timestamp tracking considerably
   1611			 * harder problem.
   1612			 */
   1613			goto fallback;
   1614		}
   1615
   1616		len = end_seq - TCP_SKB_CB(skb)->seq;
   1617		BUG_ON(len < 0);
   1618		BUG_ON(len > skb->len);
   1619
   1620		/* MSS boundaries should be honoured or else pcount will
   1621		 * severely break even though it makes things bit trickier.
   1622		 * Optimize common case to avoid most of the divides
   1623		 */
   1624		mss = tcp_skb_mss(skb);
   1625
   1626		/* TODO: Fix DSACKs to not fragment already SACKed and we can
   1627		 * drop this restriction as unnecessary
   1628		 */
   1629		if (mss != tcp_skb_seglen(prev))
   1630			goto fallback;
   1631
   1632		if (len == mss) {
   1633			pcount = 1;
   1634		} else if (len < mss) {
   1635			goto noop;
   1636		} else {
   1637			pcount = len / mss;
   1638			len = pcount * mss;
   1639		}
   1640	}
   1641
   1642	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
   1643	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
   1644		goto fallback;
   1645
   1646	if (!tcp_skb_shift(prev, skb, pcount, len))
   1647		goto fallback;
   1648	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
   1649		goto out;
   1650
   1651	/* Hole filled allows collapsing with the next as well, this is very
   1652	 * useful when hole on every nth skb pattern happens
   1653	 */
   1654	skb = skb_rb_next(prev);
   1655	if (!skb)
   1656		goto out;
   1657
   1658	if (!skb_can_shift(skb) ||
   1659	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
   1660	    (mss != tcp_skb_seglen(skb)))
   1661		goto out;
   1662
   1663	if (!tcp_skb_can_collapse(prev, skb))
   1664		goto out;
   1665	len = skb->len;
   1666	pcount = tcp_skb_pcount(skb);
   1667	if (tcp_skb_shift(prev, skb, pcount, len))
   1668		tcp_shifted_skb(sk, prev, skb, state, pcount,
   1669				len, mss, 0);
   1670
   1671out:
   1672	return prev;
   1673
   1674noop:
   1675	return skb;
   1676
   1677fallback:
   1678	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
   1679	return NULL;
   1680}
   1681
   1682static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
   1683					struct tcp_sack_block *next_dup,
   1684					struct tcp_sacktag_state *state,
   1685					u32 start_seq, u32 end_seq,
   1686					bool dup_sack_in)
   1687{
   1688	struct tcp_sock *tp = tcp_sk(sk);
   1689	struct sk_buff *tmp;
   1690
   1691	skb_rbtree_walk_from(skb) {
   1692		int in_sack = 0;
   1693		bool dup_sack = dup_sack_in;
   1694
   1695		/* queue is in-order => we can short-circuit the walk early */
   1696		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
   1697			break;
   1698
   1699		if (next_dup  &&
   1700		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
   1701			in_sack = tcp_match_skb_to_sack(sk, skb,
   1702							next_dup->start_seq,
   1703							next_dup->end_seq);
   1704			if (in_sack > 0)
   1705				dup_sack = true;
   1706		}
   1707
   1708		/* skb reference here is a bit tricky to get right, since
   1709		 * shifting can eat and free both this skb and the next,
   1710		 * so not even _safe variant of the loop is enough.
   1711		 */
   1712		if (in_sack <= 0) {
   1713			tmp = tcp_shift_skb_data(sk, skb, state,
   1714						 start_seq, end_seq, dup_sack);
   1715			if (tmp) {
   1716				if (tmp != skb) {
   1717					skb = tmp;
   1718					continue;
   1719				}
   1720
   1721				in_sack = 0;
   1722			} else {
   1723				in_sack = tcp_match_skb_to_sack(sk, skb,
   1724								start_seq,
   1725								end_seq);
   1726			}
   1727		}
   1728
   1729		if (unlikely(in_sack < 0))
   1730			break;
   1731
   1732		if (in_sack) {
   1733			TCP_SKB_CB(skb)->sacked =
   1734				tcp_sacktag_one(sk,
   1735						state,
   1736						TCP_SKB_CB(skb)->sacked,
   1737						TCP_SKB_CB(skb)->seq,
   1738						TCP_SKB_CB(skb)->end_seq,
   1739						dup_sack,
   1740						tcp_skb_pcount(skb),
   1741						tcp_skb_timestamp_us(skb));
   1742			tcp_rate_skb_delivered(sk, skb, state->rate);
   1743			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
   1744				list_del_init(&skb->tcp_tsorted_anchor);
   1745
   1746			if (!before(TCP_SKB_CB(skb)->seq,
   1747				    tcp_highest_sack_seq(tp)))
   1748				tcp_advance_highest_sack(sk, skb);
   1749		}
   1750	}
   1751	return skb;
   1752}
   1753
   1754static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
   1755{
   1756	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
   1757	struct sk_buff *skb;
   1758
   1759	while (*p) {
   1760		parent = *p;
   1761		skb = rb_to_skb(parent);
   1762		if (before(seq, TCP_SKB_CB(skb)->seq)) {
   1763			p = &parent->rb_left;
   1764			continue;
   1765		}
   1766		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
   1767			p = &parent->rb_right;
   1768			continue;
   1769		}
   1770		return skb;
   1771	}
   1772	return NULL;
   1773}
   1774
   1775static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
   1776					u32 skip_to_seq)
   1777{
   1778	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
   1779		return skb;
   1780
   1781	return tcp_sacktag_bsearch(sk, skip_to_seq);
   1782}
   1783
   1784static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
   1785						struct sock *sk,
   1786						struct tcp_sack_block *next_dup,
   1787						struct tcp_sacktag_state *state,
   1788						u32 skip_to_seq)
   1789{
   1790	if (!next_dup)
   1791		return skb;
   1792
   1793	if (before(next_dup->start_seq, skip_to_seq)) {
   1794		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
   1795		skb = tcp_sacktag_walk(skb, sk, NULL, state,
   1796				       next_dup->start_seq, next_dup->end_seq,
   1797				       1);
   1798	}
   1799
   1800	return skb;
   1801}
   1802
   1803static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
   1804{
   1805	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
   1806}
   1807
   1808static int
   1809tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
   1810			u32 prior_snd_una, struct tcp_sacktag_state *state)
   1811{
   1812	struct tcp_sock *tp = tcp_sk(sk);
   1813	const unsigned char *ptr = (skb_transport_header(ack_skb) +
   1814				    TCP_SKB_CB(ack_skb)->sacked);
   1815	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
   1816	struct tcp_sack_block sp[TCP_NUM_SACKS];
   1817	struct tcp_sack_block *cache;
   1818	struct sk_buff *skb;
   1819	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
   1820	int used_sacks;
   1821	bool found_dup_sack = false;
   1822	int i, j;
   1823	int first_sack_index;
   1824
   1825	state->flag = 0;
   1826	state->reord = tp->snd_nxt;
   1827
   1828	if (!tp->sacked_out)
   1829		tcp_highest_sack_reset(sk);
   1830
   1831	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
   1832					 num_sacks, prior_snd_una, state);
   1833
   1834	/* Eliminate too old ACKs, but take into
   1835	 * account more or less fresh ones, they can
   1836	 * contain valid SACK info.
   1837	 */
   1838	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
   1839		return 0;
   1840
   1841	if (!tp->packets_out)
   1842		goto out;
   1843
   1844	used_sacks = 0;
   1845	first_sack_index = 0;
   1846	for (i = 0; i < num_sacks; i++) {
   1847		bool dup_sack = !i && found_dup_sack;
   1848
   1849		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
   1850		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
   1851
   1852		if (!tcp_is_sackblock_valid(tp, dup_sack,
   1853					    sp[used_sacks].start_seq,
   1854					    sp[used_sacks].end_seq)) {
   1855			int mib_idx;
   1856
   1857			if (dup_sack) {
   1858				if (!tp->undo_marker)
   1859					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
   1860				else
   1861					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
   1862			} else {
   1863				/* Don't count olds caused by ACK reordering */
   1864				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
   1865				    !after(sp[used_sacks].end_seq, tp->snd_una))
   1866					continue;
   1867				mib_idx = LINUX_MIB_TCPSACKDISCARD;
   1868			}
   1869
   1870			NET_INC_STATS(sock_net(sk), mib_idx);
   1871			if (i == 0)
   1872				first_sack_index = -1;
   1873			continue;
   1874		}
   1875
   1876		/* Ignore very old stuff early */
   1877		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
   1878			if (i == 0)
   1879				first_sack_index = -1;
   1880			continue;
   1881		}
   1882
   1883		used_sacks++;
   1884	}
   1885
   1886	/* order SACK blocks to allow in order walk of the retrans queue */
   1887	for (i = used_sacks - 1; i > 0; i--) {
   1888		for (j = 0; j < i; j++) {
   1889			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
   1890				swap(sp[j], sp[j + 1]);
   1891
   1892				/* Track where the first SACK block goes to */
   1893				if (j == first_sack_index)
   1894					first_sack_index = j + 1;
   1895			}
   1896		}
   1897	}
   1898
   1899	state->mss_now = tcp_current_mss(sk);
   1900	skb = NULL;
   1901	i = 0;
   1902
   1903	if (!tp->sacked_out) {
   1904		/* It's already past, so skip checking against it */
   1905		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
   1906	} else {
   1907		cache = tp->recv_sack_cache;
   1908		/* Skip empty blocks in at head of the cache */
   1909		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
   1910		       !cache->end_seq)
   1911			cache++;
   1912	}
   1913
   1914	while (i < used_sacks) {
   1915		u32 start_seq = sp[i].start_seq;
   1916		u32 end_seq = sp[i].end_seq;
   1917		bool dup_sack = (found_dup_sack && (i == first_sack_index));
   1918		struct tcp_sack_block *next_dup = NULL;
   1919
   1920		if (found_dup_sack && ((i + 1) == first_sack_index))
   1921			next_dup = &sp[i + 1];
   1922
   1923		/* Skip too early cached blocks */
   1924		while (tcp_sack_cache_ok(tp, cache) &&
   1925		       !before(start_seq, cache->end_seq))
   1926			cache++;
   1927
   1928		/* Can skip some work by looking recv_sack_cache? */
   1929		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
   1930		    after(end_seq, cache->start_seq)) {
   1931
   1932			/* Head todo? */
   1933			if (before(start_seq, cache->start_seq)) {
   1934				skb = tcp_sacktag_skip(skb, sk, start_seq);
   1935				skb = tcp_sacktag_walk(skb, sk, next_dup,
   1936						       state,
   1937						       start_seq,
   1938						       cache->start_seq,
   1939						       dup_sack);
   1940			}
   1941
   1942			/* Rest of the block already fully processed? */
   1943			if (!after(end_seq, cache->end_seq))
   1944				goto advance_sp;
   1945
   1946			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
   1947						       state,
   1948						       cache->end_seq);
   1949
   1950			/* ...tail remains todo... */
   1951			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
   1952				/* ...but better entrypoint exists! */
   1953				skb = tcp_highest_sack(sk);
   1954				if (!skb)
   1955					break;
   1956				cache++;
   1957				goto walk;
   1958			}
   1959
   1960			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
   1961			/* Check overlap against next cached too (past this one already) */
   1962			cache++;
   1963			continue;
   1964		}
   1965
   1966		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
   1967			skb = tcp_highest_sack(sk);
   1968			if (!skb)
   1969				break;
   1970		}
   1971		skb = tcp_sacktag_skip(skb, sk, start_seq);
   1972
   1973walk:
   1974		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
   1975				       start_seq, end_seq, dup_sack);
   1976
   1977advance_sp:
   1978		i++;
   1979	}
   1980
   1981	/* Clear the head of the cache sack blocks so we can skip it next time */
   1982	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
   1983		tp->recv_sack_cache[i].start_seq = 0;
   1984		tp->recv_sack_cache[i].end_seq = 0;
   1985	}
   1986	for (j = 0; j < used_sacks; j++)
   1987		tp->recv_sack_cache[i++] = sp[j];
   1988
   1989	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
   1990		tcp_check_sack_reordering(sk, state->reord, 0);
   1991
   1992	tcp_verify_left_out(tp);
   1993out:
   1994
   1995#if FASTRETRANS_DEBUG > 0
   1996	WARN_ON((int)tp->sacked_out < 0);
   1997	WARN_ON((int)tp->lost_out < 0);
   1998	WARN_ON((int)tp->retrans_out < 0);
   1999	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
   2000#endif
   2001	return state->flag;
   2002}
   2003
   2004/* Limits sacked_out so that sum with lost_out isn't ever larger than
   2005 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
   2006 */
   2007static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
   2008{
   2009	u32 holes;
   2010
   2011	holes = max(tp->lost_out, 1U);
   2012	holes = min(holes, tp->packets_out);
   2013
   2014	if ((tp->sacked_out + holes) > tp->packets_out) {
   2015		tp->sacked_out = tp->packets_out - holes;
   2016		return true;
   2017	}
   2018	return false;
   2019}
   2020
   2021/* If we receive more dupacks than we expected counting segments
   2022 * in assumption of absent reordering, interpret this as reordering.
   2023 * The only another reason could be bug in receiver TCP.
   2024 */
   2025static void tcp_check_reno_reordering(struct sock *sk, const int addend)
   2026{
   2027	struct tcp_sock *tp = tcp_sk(sk);
   2028
   2029	if (!tcp_limit_reno_sacked(tp))
   2030		return;
   2031
   2032	tp->reordering = min_t(u32, tp->packets_out + addend,
   2033			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
   2034	tp->reord_seen++;
   2035	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
   2036}
   2037
   2038/* Emulate SACKs for SACKless connection: account for a new dupack. */
   2039
   2040static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
   2041{
   2042	if (num_dupack) {
   2043		struct tcp_sock *tp = tcp_sk(sk);
   2044		u32 prior_sacked = tp->sacked_out;
   2045		s32 delivered;
   2046
   2047		tp->sacked_out += num_dupack;
   2048		tcp_check_reno_reordering(sk, 0);
   2049		delivered = tp->sacked_out - prior_sacked;
   2050		if (delivered > 0)
   2051			tcp_count_delivered(tp, delivered, ece_ack);
   2052		tcp_verify_left_out(tp);
   2053	}
   2054}
   2055
   2056/* Account for ACK, ACKing some data in Reno Recovery phase. */
   2057
   2058static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
   2059{
   2060	struct tcp_sock *tp = tcp_sk(sk);
   2061
   2062	if (acked > 0) {
   2063		/* One ACK acked hole. The rest eat duplicate ACKs. */
   2064		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
   2065				    ece_ack);
   2066		if (acked - 1 >= tp->sacked_out)
   2067			tp->sacked_out = 0;
   2068		else
   2069			tp->sacked_out -= acked - 1;
   2070	}
   2071	tcp_check_reno_reordering(sk, acked);
   2072	tcp_verify_left_out(tp);
   2073}
   2074
   2075static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
   2076{
   2077	tp->sacked_out = 0;
   2078}
   2079
   2080void tcp_clear_retrans(struct tcp_sock *tp)
   2081{
   2082	tp->retrans_out = 0;
   2083	tp->lost_out = 0;
   2084	tp->undo_marker = 0;
   2085	tp->undo_retrans = -1;
   2086	tp->sacked_out = 0;
   2087}
   2088
   2089static inline void tcp_init_undo(struct tcp_sock *tp)
   2090{
   2091	tp->undo_marker = tp->snd_una;
   2092	/* Retransmission still in flight may cause DSACKs later. */
   2093	tp->undo_retrans = tp->retrans_out ? : -1;
   2094}
   2095
   2096static bool tcp_is_rack(const struct sock *sk)
   2097{
   2098	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
   2099}
   2100
   2101/* If we detect SACK reneging, forget all SACK information
   2102 * and reset tags completely, otherwise preserve SACKs. If receiver
   2103 * dropped its ofo queue, we will know this due to reneging detection.
   2104 */
   2105static void tcp_timeout_mark_lost(struct sock *sk)
   2106{
   2107	struct tcp_sock *tp = tcp_sk(sk);
   2108	struct sk_buff *skb, *head;
   2109	bool is_reneg;			/* is receiver reneging on SACKs? */
   2110
   2111	head = tcp_rtx_queue_head(sk);
   2112	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
   2113	if (is_reneg) {
   2114		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
   2115		tp->sacked_out = 0;
   2116		/* Mark SACK reneging until we recover from this loss event. */
   2117		tp->is_sack_reneg = 1;
   2118	} else if (tcp_is_reno(tp)) {
   2119		tcp_reset_reno_sack(tp);
   2120	}
   2121
   2122	skb = head;
   2123	skb_rbtree_walk_from(skb) {
   2124		if (is_reneg)
   2125			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
   2126		else if (tcp_is_rack(sk) && skb != head &&
   2127			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
   2128			continue; /* Don't mark recently sent ones lost yet */
   2129		tcp_mark_skb_lost(sk, skb);
   2130	}
   2131	tcp_verify_left_out(tp);
   2132	tcp_clear_all_retrans_hints(tp);
   2133}
   2134
   2135/* Enter Loss state. */
   2136void tcp_enter_loss(struct sock *sk)
   2137{
   2138	const struct inet_connection_sock *icsk = inet_csk(sk);
   2139	struct tcp_sock *tp = tcp_sk(sk);
   2140	struct net *net = sock_net(sk);
   2141	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
   2142
   2143	tcp_timeout_mark_lost(sk);
   2144
   2145	/* Reduce ssthresh if it has not yet been made inside this window. */
   2146	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
   2147	    !after(tp->high_seq, tp->snd_una) ||
   2148	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
   2149		tp->prior_ssthresh = tcp_current_ssthresh(sk);
   2150		tp->prior_cwnd = tcp_snd_cwnd(tp);
   2151		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
   2152		tcp_ca_event(sk, CA_EVENT_LOSS);
   2153		tcp_init_undo(tp);
   2154	}
   2155	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
   2156	tp->snd_cwnd_cnt   = 0;
   2157	tp->snd_cwnd_stamp = tcp_jiffies32;
   2158
   2159	/* Timeout in disordered state after receiving substantial DUPACKs
   2160	 * suggests that the degree of reordering is over-estimated.
   2161	 */
   2162	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
   2163	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
   2164		tp->reordering = min_t(unsigned int, tp->reordering,
   2165				       net->ipv4.sysctl_tcp_reordering);
   2166	tcp_set_ca_state(sk, TCP_CA_Loss);
   2167	tp->high_seq = tp->snd_nxt;
   2168	tcp_ecn_queue_cwr(tp);
   2169
   2170	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
   2171	 * loss recovery is underway except recurring timeout(s) on
   2172	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
   2173	 */
   2174	tp->frto = net->ipv4.sysctl_tcp_frto &&
   2175		   (new_recovery || icsk->icsk_retransmits) &&
   2176		   !inet_csk(sk)->icsk_mtup.probe_size;
   2177}
   2178
   2179/* If ACK arrived pointing to a remembered SACK, it means that our
   2180 * remembered SACKs do not reflect real state of receiver i.e.
   2181 * receiver _host_ is heavily congested (or buggy).
   2182 *
   2183 * To avoid big spurious retransmission bursts due to transient SACK
   2184 * scoreboard oddities that look like reneging, we give the receiver a
   2185 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
   2186 * restore sanity to the SACK scoreboard. If the apparent reneging
   2187 * persists until this RTO then we'll clear the SACK scoreboard.
   2188 */
   2189static bool tcp_check_sack_reneging(struct sock *sk, int flag)
   2190{
   2191	if (flag & FLAG_SACK_RENEGING) {
   2192		struct tcp_sock *tp = tcp_sk(sk);
   2193		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
   2194					  msecs_to_jiffies(10));
   2195
   2196		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
   2197					  delay, TCP_RTO_MAX);
   2198		return true;
   2199	}
   2200	return false;
   2201}
   2202
   2203/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
   2204 * counter when SACK is enabled (without SACK, sacked_out is used for
   2205 * that purpose).
   2206 *
   2207 * With reordering, holes may still be in flight, so RFC3517 recovery
   2208 * uses pure sacked_out (total number of SACKed segments) even though
   2209 * it violates the RFC that uses duplicate ACKs, often these are equal
   2210 * but when e.g. out-of-window ACKs or packet duplication occurs,
   2211 * they differ. Since neither occurs due to loss, TCP should really
   2212 * ignore them.
   2213 */
   2214static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
   2215{
   2216	return tp->sacked_out + 1;
   2217}
   2218
   2219/* Linux NewReno/SACK/ECN state machine.
   2220 * --------------------------------------
   2221 *
   2222 * "Open"	Normal state, no dubious events, fast path.
   2223 * "Disorder"   In all the respects it is "Open",
   2224 *		but requires a bit more attention. It is entered when
   2225 *		we see some SACKs or dupacks. It is split of "Open"
   2226 *		mainly to move some processing from fast path to slow one.
   2227 * "CWR"	CWND was reduced due to some Congestion Notification event.
   2228 *		It can be ECN, ICMP source quench, local device congestion.
   2229 * "Recovery"	CWND was reduced, we are fast-retransmitting.
   2230 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
   2231 *
   2232 * tcp_fastretrans_alert() is entered:
   2233 * - each incoming ACK, if state is not "Open"
   2234 * - when arrived ACK is unusual, namely:
   2235 *	* SACK
   2236 *	* Duplicate ACK.
   2237 *	* ECN ECE.
   2238 *
   2239 * Counting packets in flight is pretty simple.
   2240 *
   2241 *	in_flight = packets_out - left_out + retrans_out
   2242 *
   2243 *	packets_out is SND.NXT-SND.UNA counted in packets.
   2244 *
   2245 *	retrans_out is number of retransmitted segments.
   2246 *
   2247 *	left_out is number of segments left network, but not ACKed yet.
   2248 *
   2249 *		left_out = sacked_out + lost_out
   2250 *
   2251 *     sacked_out: Packets, which arrived to receiver out of order
   2252 *		   and hence not ACKed. With SACKs this number is simply
   2253 *		   amount of SACKed data. Even without SACKs
   2254 *		   it is easy to give pretty reliable estimate of this number,
   2255 *		   counting duplicate ACKs.
   2256 *
   2257 *       lost_out: Packets lost by network. TCP has no explicit
   2258 *		   "loss notification" feedback from network (for now).
   2259 *		   It means that this number can be only _guessed_.
   2260 *		   Actually, it is the heuristics to predict lossage that
   2261 *		   distinguishes different algorithms.
   2262 *
   2263 *	F.e. after RTO, when all the queue is considered as lost,
   2264 *	lost_out = packets_out and in_flight = retrans_out.
   2265 *
   2266 *		Essentially, we have now a few algorithms detecting
   2267 *		lost packets.
   2268 *
   2269 *		If the receiver supports SACK:
   2270 *
   2271 *		RFC6675/3517: It is the conventional algorithm. A packet is
   2272 *		considered lost if the number of higher sequence packets
   2273 *		SACKed is greater than or equal the DUPACK thoreshold
   2274 *		(reordering). This is implemented in tcp_mark_head_lost and
   2275 *		tcp_update_scoreboard.
   2276 *
   2277 *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
   2278 *		(2017-) that checks timing instead of counting DUPACKs.
   2279 *		Essentially a packet is considered lost if it's not S/ACKed
   2280 *		after RTT + reordering_window, where both metrics are
   2281 *		dynamically measured and adjusted. This is implemented in
   2282 *		tcp_rack_mark_lost.
   2283 *
   2284 *		If the receiver does not support SACK:
   2285 *
   2286 *		NewReno (RFC6582): in Recovery we assume that one segment
   2287 *		is lost (classic Reno). While we are in Recovery and
   2288 *		a partial ACK arrives, we assume that one more packet
   2289 *		is lost (NewReno). This heuristics are the same in NewReno
   2290 *		and SACK.
   2291 *
   2292 * Really tricky (and requiring careful tuning) part of algorithm
   2293 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
   2294 * The first determines the moment _when_ we should reduce CWND and,
   2295 * hence, slow down forward transmission. In fact, it determines the moment
   2296 * when we decide that hole is caused by loss, rather than by a reorder.
   2297 *
   2298 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
   2299 * holes, caused by lost packets.
   2300 *
   2301 * And the most logically complicated part of algorithm is undo
   2302 * heuristics. We detect false retransmits due to both too early
   2303 * fast retransmit (reordering) and underestimated RTO, analyzing
   2304 * timestamps and D-SACKs. When we detect that some segments were
   2305 * retransmitted by mistake and CWND reduction was wrong, we undo
   2306 * window reduction and abort recovery phase. This logic is hidden
   2307 * inside several functions named tcp_try_undo_<something>.
   2308 */
   2309
   2310/* This function decides, when we should leave Disordered state
   2311 * and enter Recovery phase, reducing congestion window.
   2312 *
   2313 * Main question: may we further continue forward transmission
   2314 * with the same cwnd?
   2315 */
   2316static bool tcp_time_to_recover(struct sock *sk, int flag)
   2317{
   2318	struct tcp_sock *tp = tcp_sk(sk);
   2319
   2320	/* Trick#1: The loss is proven. */
   2321	if (tp->lost_out)
   2322		return true;
   2323
   2324	/* Not-A-Trick#2 : Classic rule... */
   2325	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
   2326		return true;
   2327
   2328	return false;
   2329}
   2330
   2331/* Detect loss in event "A" above by marking head of queue up as lost.
   2332 * For RFC3517 SACK, a segment is considered lost if it
   2333 * has at least tp->reordering SACKed seqments above it; "packets" refers to
   2334 * the maximum SACKed segments to pass before reaching this limit.
   2335 */
   2336static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
   2337{
   2338	struct tcp_sock *tp = tcp_sk(sk);
   2339	struct sk_buff *skb;
   2340	int cnt;
   2341	/* Use SACK to deduce losses of new sequences sent during recovery */
   2342	const u32 loss_high = tp->snd_nxt;
   2343
   2344	WARN_ON(packets > tp->packets_out);
   2345	skb = tp->lost_skb_hint;
   2346	if (skb) {
   2347		/* Head already handled? */
   2348		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
   2349			return;
   2350		cnt = tp->lost_cnt_hint;
   2351	} else {
   2352		skb = tcp_rtx_queue_head(sk);
   2353		cnt = 0;
   2354	}
   2355
   2356	skb_rbtree_walk_from(skb) {
   2357		/* TODO: do this better */
   2358		/* this is not the most efficient way to do this... */
   2359		tp->lost_skb_hint = skb;
   2360		tp->lost_cnt_hint = cnt;
   2361
   2362		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
   2363			break;
   2364
   2365		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
   2366			cnt += tcp_skb_pcount(skb);
   2367
   2368		if (cnt > packets)
   2369			break;
   2370
   2371		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
   2372			tcp_mark_skb_lost(sk, skb);
   2373
   2374		if (mark_head)
   2375			break;
   2376	}
   2377	tcp_verify_left_out(tp);
   2378}
   2379
   2380/* Account newly detected lost packet(s) */
   2381
   2382static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
   2383{
   2384	struct tcp_sock *tp = tcp_sk(sk);
   2385
   2386	if (tcp_is_sack(tp)) {
   2387		int sacked_upto = tp->sacked_out - tp->reordering;
   2388		if (sacked_upto >= 0)
   2389			tcp_mark_head_lost(sk, sacked_upto, 0);
   2390		else if (fast_rexmit)
   2391			tcp_mark_head_lost(sk, 1, 1);
   2392	}
   2393}
   2394
   2395static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
   2396{
   2397	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
   2398	       before(tp->rx_opt.rcv_tsecr, when);
   2399}
   2400
   2401/* skb is spurious retransmitted if the returned timestamp echo
   2402 * reply is prior to the skb transmission time
   2403 */
   2404static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
   2405				     const struct sk_buff *skb)
   2406{
   2407	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
   2408	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
   2409}
   2410
   2411/* Nothing was retransmitted or returned timestamp is less
   2412 * than timestamp of the first retransmission.
   2413 */
   2414static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
   2415{
   2416	return tp->retrans_stamp &&
   2417	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
   2418}
   2419
   2420/* Undo procedures. */
   2421
   2422/* We can clear retrans_stamp when there are no retransmissions in the
   2423 * window. It would seem that it is trivially available for us in
   2424 * tp->retrans_out, however, that kind of assumptions doesn't consider
   2425 * what will happen if errors occur when sending retransmission for the
   2426 * second time. ...It could the that such segment has only
   2427 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
   2428 * the head skb is enough except for some reneging corner cases that
   2429 * are not worth the effort.
   2430 *
   2431 * Main reason for all this complexity is the fact that connection dying
   2432 * time now depends on the validity of the retrans_stamp, in particular,
   2433 * that successive retransmissions of a segment must not advance
   2434 * retrans_stamp under any conditions.
   2435 */
   2436static bool tcp_any_retrans_done(const struct sock *sk)
   2437{
   2438	const struct tcp_sock *tp = tcp_sk(sk);
   2439	struct sk_buff *skb;
   2440
   2441	if (tp->retrans_out)
   2442		return true;
   2443
   2444	skb = tcp_rtx_queue_head(sk);
   2445	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
   2446		return true;
   2447
   2448	return false;
   2449}
   2450
   2451static void DBGUNDO(struct sock *sk, const char *msg)
   2452{
   2453#if FASTRETRANS_DEBUG > 1
   2454	struct tcp_sock *tp = tcp_sk(sk);
   2455	struct inet_sock *inet = inet_sk(sk);
   2456
   2457	if (sk->sk_family == AF_INET) {
   2458		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
   2459			 msg,
   2460			 &inet->inet_daddr, ntohs(inet->inet_dport),
   2461			 tcp_snd_cwnd(tp), tcp_left_out(tp),
   2462			 tp->snd_ssthresh, tp->prior_ssthresh,
   2463			 tp->packets_out);
   2464	}
   2465#if IS_ENABLED(CONFIG_IPV6)
   2466	else if (sk->sk_family == AF_INET6) {
   2467		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
   2468			 msg,
   2469			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
   2470			 tcp_snd_cwnd(tp), tcp_left_out(tp),
   2471			 tp->snd_ssthresh, tp->prior_ssthresh,
   2472			 tp->packets_out);
   2473	}
   2474#endif
   2475#endif
   2476}
   2477
   2478static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
   2479{
   2480	struct tcp_sock *tp = tcp_sk(sk);
   2481
   2482	if (unmark_loss) {
   2483		struct sk_buff *skb;
   2484
   2485		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
   2486			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
   2487		}
   2488		tp->lost_out = 0;
   2489		tcp_clear_all_retrans_hints(tp);
   2490	}
   2491
   2492	if (tp->prior_ssthresh) {
   2493		const struct inet_connection_sock *icsk = inet_csk(sk);
   2494
   2495		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
   2496
   2497		if (tp->prior_ssthresh > tp->snd_ssthresh) {
   2498			tp->snd_ssthresh = tp->prior_ssthresh;
   2499			tcp_ecn_withdraw_cwr(tp);
   2500		}
   2501	}
   2502	tp->snd_cwnd_stamp = tcp_jiffies32;
   2503	tp->undo_marker = 0;
   2504	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
   2505}
   2506
   2507static inline bool tcp_may_undo(const struct tcp_sock *tp)
   2508{
   2509	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
   2510}
   2511
   2512/* People celebrate: "We love our President!" */
   2513static bool tcp_try_undo_recovery(struct sock *sk)
   2514{
   2515	struct tcp_sock *tp = tcp_sk(sk);
   2516
   2517	if (tcp_may_undo(tp)) {
   2518		int mib_idx;
   2519
   2520		/* Happy end! We did not retransmit anything
   2521		 * or our original transmission succeeded.
   2522		 */
   2523		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
   2524		tcp_undo_cwnd_reduction(sk, false);
   2525		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
   2526			mib_idx = LINUX_MIB_TCPLOSSUNDO;
   2527		else
   2528			mib_idx = LINUX_MIB_TCPFULLUNDO;
   2529
   2530		NET_INC_STATS(sock_net(sk), mib_idx);
   2531	} else if (tp->rack.reo_wnd_persist) {
   2532		tp->rack.reo_wnd_persist--;
   2533	}
   2534	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
   2535		/* Hold old state until something *above* high_seq
   2536		 * is ACKed. For Reno it is MUST to prevent false
   2537		 * fast retransmits (RFC2582). SACK TCP is safe. */
   2538		if (!tcp_any_retrans_done(sk))
   2539			tp->retrans_stamp = 0;
   2540		return true;
   2541	}
   2542	tcp_set_ca_state(sk, TCP_CA_Open);
   2543	tp->is_sack_reneg = 0;
   2544	return false;
   2545}
   2546
   2547/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
   2548static bool tcp_try_undo_dsack(struct sock *sk)
   2549{
   2550	struct tcp_sock *tp = tcp_sk(sk);
   2551
   2552	if (tp->undo_marker && !tp->undo_retrans) {
   2553		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
   2554					       tp->rack.reo_wnd_persist + 1);
   2555		DBGUNDO(sk, "D-SACK");
   2556		tcp_undo_cwnd_reduction(sk, false);
   2557		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
   2558		return true;
   2559	}
   2560	return false;
   2561}
   2562
   2563/* Undo during loss recovery after partial ACK or using F-RTO. */
   2564static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
   2565{
   2566	struct tcp_sock *tp = tcp_sk(sk);
   2567
   2568	if (frto_undo || tcp_may_undo(tp)) {
   2569		tcp_undo_cwnd_reduction(sk, true);
   2570
   2571		DBGUNDO(sk, "partial loss");
   2572		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
   2573		if (frto_undo)
   2574			NET_INC_STATS(sock_net(sk),
   2575					LINUX_MIB_TCPSPURIOUSRTOS);
   2576		inet_csk(sk)->icsk_retransmits = 0;
   2577		if (frto_undo || tcp_is_sack(tp)) {
   2578			tcp_set_ca_state(sk, TCP_CA_Open);
   2579			tp->is_sack_reneg = 0;
   2580		}
   2581		return true;
   2582	}
   2583	return false;
   2584}
   2585
   2586/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
   2587 * It computes the number of packets to send (sndcnt) based on packets newly
   2588 * delivered:
   2589 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
   2590 *	cwnd reductions across a full RTT.
   2591 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
   2592 *      But when SND_UNA is acked without further losses,
   2593 *      slow starts cwnd up to ssthresh to speed up the recovery.
   2594 */
   2595static void tcp_init_cwnd_reduction(struct sock *sk)
   2596{
   2597	struct tcp_sock *tp = tcp_sk(sk);
   2598
   2599	tp->high_seq = tp->snd_nxt;
   2600	tp->tlp_high_seq = 0;
   2601	tp->snd_cwnd_cnt = 0;
   2602	tp->prior_cwnd = tcp_snd_cwnd(tp);
   2603	tp->prr_delivered = 0;
   2604	tp->prr_out = 0;
   2605	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
   2606	tcp_ecn_queue_cwr(tp);
   2607}
   2608
   2609void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
   2610{
   2611	struct tcp_sock *tp = tcp_sk(sk);
   2612	int sndcnt = 0;
   2613	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
   2614
   2615	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
   2616		return;
   2617
   2618	tp->prr_delivered += newly_acked_sacked;
   2619	if (delta < 0) {
   2620		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
   2621			       tp->prior_cwnd - 1;
   2622		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
   2623	} else {
   2624		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
   2625			       newly_acked_sacked);
   2626		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
   2627			sndcnt++;
   2628		sndcnt = min(delta, sndcnt);
   2629	}
   2630	/* Force a fast retransmit upon entering fast recovery */
   2631	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
   2632	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
   2633}
   2634
   2635static inline void tcp_end_cwnd_reduction(struct sock *sk)
   2636{
   2637	struct tcp_sock *tp = tcp_sk(sk);
   2638
   2639	if (inet_csk(sk)->icsk_ca_ops->cong_control)
   2640		return;
   2641
   2642	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
   2643	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
   2644	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
   2645		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
   2646		tp->snd_cwnd_stamp = tcp_jiffies32;
   2647	}
   2648	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
   2649}
   2650
   2651/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
   2652void tcp_enter_cwr(struct sock *sk)
   2653{
   2654	struct tcp_sock *tp = tcp_sk(sk);
   2655
   2656	tp->prior_ssthresh = 0;
   2657	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
   2658		tp->undo_marker = 0;
   2659		tcp_init_cwnd_reduction(sk);
   2660		tcp_set_ca_state(sk, TCP_CA_CWR);
   2661	}
   2662}
   2663EXPORT_SYMBOL(tcp_enter_cwr);
   2664
   2665static void tcp_try_keep_open(struct sock *sk)
   2666{
   2667	struct tcp_sock *tp = tcp_sk(sk);
   2668	int state = TCP_CA_Open;
   2669
   2670	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
   2671		state = TCP_CA_Disorder;
   2672
   2673	if (inet_csk(sk)->icsk_ca_state != state) {
   2674		tcp_set_ca_state(sk, state);
   2675		tp->high_seq = tp->snd_nxt;
   2676	}
   2677}
   2678
   2679static void tcp_try_to_open(struct sock *sk, int flag)
   2680{
   2681	struct tcp_sock *tp = tcp_sk(sk);
   2682
   2683	tcp_verify_left_out(tp);
   2684
   2685	if (!tcp_any_retrans_done(sk))
   2686		tp->retrans_stamp = 0;
   2687
   2688	if (flag & FLAG_ECE)
   2689		tcp_enter_cwr(sk);
   2690
   2691	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
   2692		tcp_try_keep_open(sk);
   2693	}
   2694}
   2695
   2696static void tcp_mtup_probe_failed(struct sock *sk)
   2697{
   2698	struct inet_connection_sock *icsk = inet_csk(sk);
   2699
   2700	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
   2701	icsk->icsk_mtup.probe_size = 0;
   2702	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
   2703}
   2704
   2705static void tcp_mtup_probe_success(struct sock *sk)
   2706{
   2707	struct tcp_sock *tp = tcp_sk(sk);
   2708	struct inet_connection_sock *icsk = inet_csk(sk);
   2709	u64 val;
   2710
   2711	tp->prior_ssthresh = tcp_current_ssthresh(sk);
   2712
   2713	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
   2714	do_div(val, icsk->icsk_mtup.probe_size);
   2715	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
   2716	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
   2717
   2718	tp->snd_cwnd_cnt = 0;
   2719	tp->snd_cwnd_stamp = tcp_jiffies32;
   2720	tp->snd_ssthresh = tcp_current_ssthresh(sk);
   2721
   2722	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
   2723	icsk->icsk_mtup.probe_size = 0;
   2724	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
   2725	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
   2726}
   2727
   2728/* Do a simple retransmit without using the backoff mechanisms in
   2729 * tcp_timer. This is used for path mtu discovery.
   2730 * The socket is already locked here.
   2731 */
   2732void tcp_simple_retransmit(struct sock *sk)
   2733{
   2734	const struct inet_connection_sock *icsk = inet_csk(sk);
   2735	struct tcp_sock *tp = tcp_sk(sk);
   2736	struct sk_buff *skb;
   2737	int mss;
   2738
   2739	/* A fastopen SYN request is stored as two separate packets within
   2740	 * the retransmit queue, this is done by tcp_send_syn_data().
   2741	 * As a result simply checking the MSS of the frames in the queue
   2742	 * will not work for the SYN packet.
   2743	 *
   2744	 * Us being here is an indication of a path MTU issue so we can
   2745	 * assume that the fastopen SYN was lost and just mark all the
   2746	 * frames in the retransmit queue as lost. We will use an MSS of
   2747	 * -1 to mark all frames as lost, otherwise compute the current MSS.
   2748	 */
   2749	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
   2750		mss = -1;
   2751	else
   2752		mss = tcp_current_mss(sk);
   2753
   2754	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
   2755		if (tcp_skb_seglen(skb) > mss)
   2756			tcp_mark_skb_lost(sk, skb);
   2757	}
   2758
   2759	tcp_clear_retrans_hints_partial(tp);
   2760
   2761	if (!tp->lost_out)
   2762		return;
   2763
   2764	if (tcp_is_reno(tp))
   2765		tcp_limit_reno_sacked(tp);
   2766
   2767	tcp_verify_left_out(tp);
   2768
   2769	/* Don't muck with the congestion window here.
   2770	 * Reason is that we do not increase amount of _data_
   2771	 * in network, but units changed and effective
   2772	 * cwnd/ssthresh really reduced now.
   2773	 */
   2774	if (icsk->icsk_ca_state != TCP_CA_Loss) {
   2775		tp->high_seq = tp->snd_nxt;
   2776		tp->snd_ssthresh = tcp_current_ssthresh(sk);
   2777		tp->prior_ssthresh = 0;
   2778		tp->undo_marker = 0;
   2779		tcp_set_ca_state(sk, TCP_CA_Loss);
   2780	}
   2781	tcp_xmit_retransmit_queue(sk);
   2782}
   2783EXPORT_SYMBOL(tcp_simple_retransmit);
   2784
   2785void tcp_enter_recovery(struct sock *sk, bool ece_ack)
   2786{
   2787	struct tcp_sock *tp = tcp_sk(sk);
   2788	int mib_idx;
   2789
   2790	if (tcp_is_reno(tp))
   2791		mib_idx = LINUX_MIB_TCPRENORECOVERY;
   2792	else
   2793		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
   2794
   2795	NET_INC_STATS(sock_net(sk), mib_idx);
   2796
   2797	tp->prior_ssthresh = 0;
   2798	tcp_init_undo(tp);
   2799
   2800	if (!tcp_in_cwnd_reduction(sk)) {
   2801		if (!ece_ack)
   2802			tp->prior_ssthresh = tcp_current_ssthresh(sk);
   2803		tcp_init_cwnd_reduction(sk);
   2804	}
   2805	tcp_set_ca_state(sk, TCP_CA_Recovery);
   2806}
   2807
   2808/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
   2809 * recovered or spurious. Otherwise retransmits more on partial ACKs.
   2810 */
   2811static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
   2812			     int *rexmit)
   2813{
   2814	struct tcp_sock *tp = tcp_sk(sk);
   2815	bool recovered = !before(tp->snd_una, tp->high_seq);
   2816
   2817	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
   2818	    tcp_try_undo_loss(sk, false))
   2819		return;
   2820
   2821	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
   2822		/* Step 3.b. A timeout is spurious if not all data are
   2823		 * lost, i.e., never-retransmitted data are (s)acked.
   2824		 */
   2825		if ((flag & FLAG_ORIG_SACK_ACKED) &&
   2826		    tcp_try_undo_loss(sk, true))
   2827			return;
   2828
   2829		if (after(tp->snd_nxt, tp->high_seq)) {
   2830			if (flag & FLAG_DATA_SACKED || num_dupack)
   2831				tp->frto = 0; /* Step 3.a. loss was real */
   2832		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
   2833			tp->high_seq = tp->snd_nxt;
   2834			/* Step 2.b. Try send new data (but deferred until cwnd
   2835			 * is updated in tcp_ack()). Otherwise fall back to
   2836			 * the conventional recovery.
   2837			 */
   2838			if (!tcp_write_queue_empty(sk) &&
   2839			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
   2840				*rexmit = REXMIT_NEW;
   2841				return;
   2842			}
   2843			tp->frto = 0;
   2844		}
   2845	}
   2846
   2847	if (recovered) {
   2848		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
   2849		tcp_try_undo_recovery(sk);
   2850		return;
   2851	}
   2852	if (tcp_is_reno(tp)) {
   2853		/* A Reno DUPACK means new data in F-RTO step 2.b above are
   2854		 * delivered. Lower inflight to clock out (re)tranmissions.
   2855		 */
   2856		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
   2857			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
   2858		else if (flag & FLAG_SND_UNA_ADVANCED)
   2859			tcp_reset_reno_sack(tp);
   2860	}
   2861	*rexmit = REXMIT_LOST;
   2862}
   2863
   2864static bool tcp_force_fast_retransmit(struct sock *sk)
   2865{
   2866	struct tcp_sock *tp = tcp_sk(sk);
   2867
   2868	return after(tcp_highest_sack_seq(tp),
   2869		     tp->snd_una + tp->reordering * tp->mss_cache);
   2870}
   2871
   2872/* Undo during fast recovery after partial ACK. */
   2873static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
   2874				 bool *do_lost)
   2875{
   2876	struct tcp_sock *tp = tcp_sk(sk);
   2877
   2878	if (tp->undo_marker && tcp_packet_delayed(tp)) {
   2879		/* Plain luck! Hole if filled with delayed
   2880		 * packet, rather than with a retransmit. Check reordering.
   2881		 */
   2882		tcp_check_sack_reordering(sk, prior_snd_una, 1);
   2883
   2884		/* We are getting evidence that the reordering degree is higher
   2885		 * than we realized. If there are no retransmits out then we
   2886		 * can undo. Otherwise we clock out new packets but do not
   2887		 * mark more packets lost or retransmit more.
   2888		 */
   2889		if (tp->retrans_out)
   2890			return true;
   2891
   2892		if (!tcp_any_retrans_done(sk))
   2893			tp->retrans_stamp = 0;
   2894
   2895		DBGUNDO(sk, "partial recovery");
   2896		tcp_undo_cwnd_reduction(sk, true);
   2897		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
   2898		tcp_try_keep_open(sk);
   2899	} else {
   2900		/* Partial ACK arrived. Force fast retransmit. */
   2901		*do_lost = tcp_force_fast_retransmit(sk);
   2902	}
   2903	return false;
   2904}
   2905
   2906static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
   2907{
   2908	struct tcp_sock *tp = tcp_sk(sk);
   2909
   2910	if (tcp_rtx_queue_empty(sk))
   2911		return;
   2912
   2913	if (unlikely(tcp_is_reno(tp))) {
   2914		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
   2915	} else if (tcp_is_rack(sk)) {
   2916		u32 prior_retrans = tp->retrans_out;
   2917
   2918		if (tcp_rack_mark_lost(sk))
   2919			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
   2920		if (prior_retrans > tp->retrans_out)
   2921			*ack_flag |= FLAG_LOST_RETRANS;
   2922	}
   2923}
   2924
   2925/* Process an event, which can update packets-in-flight not trivially.
   2926 * Main goal of this function is to calculate new estimate for left_out,
   2927 * taking into account both packets sitting in receiver's buffer and
   2928 * packets lost by network.
   2929 *
   2930 * Besides that it updates the congestion state when packet loss or ECN
   2931 * is detected. But it does not reduce the cwnd, it is done by the
   2932 * congestion control later.
   2933 *
   2934 * It does _not_ decide what to send, it is made in function
   2935 * tcp_xmit_retransmit_queue().
   2936 */
   2937static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
   2938				  int num_dupack, int *ack_flag, int *rexmit)
   2939{
   2940	struct inet_connection_sock *icsk = inet_csk(sk);
   2941	struct tcp_sock *tp = tcp_sk(sk);
   2942	int fast_rexmit = 0, flag = *ack_flag;
   2943	bool ece_ack = flag & FLAG_ECE;
   2944	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
   2945				      tcp_force_fast_retransmit(sk));
   2946
   2947	if (!tp->packets_out && tp->sacked_out)
   2948		tp->sacked_out = 0;
   2949
   2950	/* Now state machine starts.
   2951	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
   2952	if (ece_ack)
   2953		tp->prior_ssthresh = 0;
   2954
   2955	/* B. In all the states check for reneging SACKs. */
   2956	if (tcp_check_sack_reneging(sk, flag))
   2957		return;
   2958
   2959	/* C. Check consistency of the current state. */
   2960	tcp_verify_left_out(tp);
   2961
   2962	/* D. Check state exit conditions. State can be terminated
   2963	 *    when high_seq is ACKed. */
   2964	if (icsk->icsk_ca_state == TCP_CA_Open) {
   2965		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
   2966		tp->retrans_stamp = 0;
   2967	} else if (!before(tp->snd_una, tp->high_seq)) {
   2968		switch (icsk->icsk_ca_state) {
   2969		case TCP_CA_CWR:
   2970			/* CWR is to be held something *above* high_seq
   2971			 * is ACKed for CWR bit to reach receiver. */
   2972			if (tp->snd_una != tp->high_seq) {
   2973				tcp_end_cwnd_reduction(sk);
   2974				tcp_set_ca_state(sk, TCP_CA_Open);
   2975			}
   2976			break;
   2977
   2978		case TCP_CA_Recovery:
   2979			if (tcp_is_reno(tp))
   2980				tcp_reset_reno_sack(tp);
   2981			if (tcp_try_undo_recovery(sk))
   2982				return;
   2983			tcp_end_cwnd_reduction(sk);
   2984			break;
   2985		}
   2986	}
   2987
   2988	/* E. Process state. */
   2989	switch (icsk->icsk_ca_state) {
   2990	case TCP_CA_Recovery:
   2991		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
   2992			if (tcp_is_reno(tp))
   2993				tcp_add_reno_sack(sk, num_dupack, ece_ack);
   2994		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
   2995			return;
   2996
   2997		if (tcp_try_undo_dsack(sk))
   2998			tcp_try_keep_open(sk);
   2999
   3000		tcp_identify_packet_loss(sk, ack_flag);
   3001		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
   3002			if (!tcp_time_to_recover(sk, flag))
   3003				return;
   3004			/* Undo reverts the recovery state. If loss is evident,
   3005			 * starts a new recovery (e.g. reordering then loss);
   3006			 */
   3007			tcp_enter_recovery(sk, ece_ack);
   3008		}
   3009		break;
   3010	case TCP_CA_Loss:
   3011		tcp_process_loss(sk, flag, num_dupack, rexmit);
   3012		tcp_identify_packet_loss(sk, ack_flag);
   3013		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
   3014		      (*ack_flag & FLAG_LOST_RETRANS)))
   3015			return;
   3016		/* Change state if cwnd is undone or retransmits are lost */
   3017		fallthrough;
   3018	default:
   3019		if (tcp_is_reno(tp)) {
   3020			if (flag & FLAG_SND_UNA_ADVANCED)
   3021				tcp_reset_reno_sack(tp);
   3022			tcp_add_reno_sack(sk, num_dupack, ece_ack);
   3023		}
   3024
   3025		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
   3026			tcp_try_undo_dsack(sk);
   3027
   3028		tcp_identify_packet_loss(sk, ack_flag);
   3029		if (!tcp_time_to_recover(sk, flag)) {
   3030			tcp_try_to_open(sk, flag);
   3031			return;
   3032		}
   3033
   3034		/* MTU probe failure: don't reduce cwnd */
   3035		if (icsk->icsk_ca_state < TCP_CA_CWR &&
   3036		    icsk->icsk_mtup.probe_size &&
   3037		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
   3038			tcp_mtup_probe_failed(sk);
   3039			/* Restores the reduction we did in tcp_mtup_probe() */
   3040			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
   3041			tcp_simple_retransmit(sk);
   3042			return;
   3043		}
   3044
   3045		/* Otherwise enter Recovery state */
   3046		tcp_enter_recovery(sk, ece_ack);
   3047		fast_rexmit = 1;
   3048	}
   3049
   3050	if (!tcp_is_rack(sk) && do_lost)
   3051		tcp_update_scoreboard(sk, fast_rexmit);
   3052	*rexmit = REXMIT_LOST;
   3053}
   3054
   3055static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
   3056{
   3057	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
   3058	struct tcp_sock *tp = tcp_sk(sk);
   3059
   3060	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
   3061		/* If the remote keeps returning delayed ACKs, eventually
   3062		 * the min filter would pick it up and overestimate the
   3063		 * prop. delay when it expires. Skip suspected delayed ACKs.
   3064		 */
   3065		return;
   3066	}
   3067	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
   3068			   rtt_us ? : jiffies_to_usecs(1));
   3069}
   3070
   3071static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
   3072			       long seq_rtt_us, long sack_rtt_us,
   3073			       long ca_rtt_us, struct rate_sample *rs)
   3074{
   3075	const struct tcp_sock *tp = tcp_sk(sk);
   3076
   3077	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
   3078	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
   3079	 * Karn's algorithm forbids taking RTT if some retransmitted data
   3080	 * is acked (RFC6298).
   3081	 */
   3082	if (seq_rtt_us < 0)
   3083		seq_rtt_us = sack_rtt_us;
   3084
   3085	/* RTTM Rule: A TSecr value received in a segment is used to
   3086	 * update the averaged RTT measurement only if the segment
   3087	 * acknowledges some new data, i.e., only if it advances the
   3088	 * left edge of the send window.
   3089	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
   3090	 */
   3091	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
   3092	    flag & FLAG_ACKED) {
   3093		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
   3094
   3095		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
   3096			if (!delta)
   3097				delta = 1;
   3098			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
   3099			ca_rtt_us = seq_rtt_us;
   3100		}
   3101	}
   3102	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
   3103	if (seq_rtt_us < 0)
   3104		return false;
   3105
   3106	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
   3107	 * always taken together with ACK, SACK, or TS-opts. Any negative
   3108	 * values will be skipped with the seq_rtt_us < 0 check above.
   3109	 */
   3110	tcp_update_rtt_min(sk, ca_rtt_us, flag);
   3111	tcp_rtt_estimator(sk, seq_rtt_us);
   3112	tcp_set_rto(sk);
   3113
   3114	/* RFC6298: only reset backoff on valid RTT measurement. */
   3115	inet_csk(sk)->icsk_backoff = 0;
   3116	return true;
   3117}
   3118
   3119/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
   3120void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
   3121{
   3122	struct rate_sample rs;
   3123	long rtt_us = -1L;
   3124
   3125	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
   3126		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
   3127
   3128	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
   3129}
   3130
   3131
   3132static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
   3133{
   3134	const struct inet_connection_sock *icsk = inet_csk(sk);
   3135
   3136	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
   3137	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
   3138}
   3139
   3140/* Restart timer after forward progress on connection.
   3141 * RFC2988 recommends to restart timer to now+rto.
   3142 */
   3143void tcp_rearm_rto(struct sock *sk)
   3144{
   3145	const struct inet_connection_sock *icsk = inet_csk(sk);
   3146	struct tcp_sock *tp = tcp_sk(sk);
   3147
   3148	/* If the retrans timer is currently being used by Fast Open
   3149	 * for SYN-ACK retrans purpose, stay put.
   3150	 */
   3151	if (rcu_access_pointer(tp->fastopen_rsk))
   3152		return;
   3153
   3154	if (!tp->packets_out) {
   3155		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
   3156	} else {
   3157		u32 rto = inet_csk(sk)->icsk_rto;
   3158		/* Offset the time elapsed after installing regular RTO */
   3159		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
   3160		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
   3161			s64 delta_us = tcp_rto_delta_us(sk);
   3162			/* delta_us may not be positive if the socket is locked
   3163			 * when the retrans timer fires and is rescheduled.
   3164			 */
   3165			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
   3166		}
   3167		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
   3168				     TCP_RTO_MAX);
   3169	}
   3170}
   3171
   3172/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
   3173static void tcp_set_xmit_timer(struct sock *sk)
   3174{
   3175	if (!tcp_schedule_loss_probe(sk, true))
   3176		tcp_rearm_rto(sk);
   3177}
   3178
   3179/* If we get here, the whole TSO packet has not been acked. */
   3180static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
   3181{
   3182	struct tcp_sock *tp = tcp_sk(sk);
   3183	u32 packets_acked;
   3184
   3185	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
   3186
   3187	packets_acked = tcp_skb_pcount(skb);
   3188	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
   3189		return 0;
   3190	packets_acked -= tcp_skb_pcount(skb);
   3191
   3192	if (packets_acked) {
   3193		BUG_ON(tcp_skb_pcount(skb) == 0);
   3194		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
   3195	}
   3196
   3197	return packets_acked;
   3198}
   3199
   3200static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
   3201			   const struct sk_buff *ack_skb, u32 prior_snd_una)
   3202{
   3203	const struct skb_shared_info *shinfo;
   3204
   3205	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
   3206	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
   3207		return;
   3208
   3209	shinfo = skb_shinfo(skb);
   3210	if (!before(shinfo->tskey, prior_snd_una) &&
   3211	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
   3212		tcp_skb_tsorted_save(skb) {
   3213			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
   3214		} tcp_skb_tsorted_restore(skb);
   3215	}
   3216}
   3217
   3218/* Remove acknowledged frames from the retransmission queue. If our packet
   3219 * is before the ack sequence we can discard it as it's confirmed to have
   3220 * arrived at the other end.
   3221 */
   3222static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
   3223			       u32 prior_fack, u32 prior_snd_una,
   3224			       struct tcp_sacktag_state *sack, bool ece_ack)
   3225{
   3226	const struct inet_connection_sock *icsk = inet_csk(sk);
   3227	u64 first_ackt, last_ackt;
   3228	struct tcp_sock *tp = tcp_sk(sk);
   3229	u32 prior_sacked = tp->sacked_out;
   3230	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
   3231	struct sk_buff *skb, *next;
   3232	bool fully_acked = true;
   3233	long sack_rtt_us = -1L;
   3234	long seq_rtt_us = -1L;
   3235	long ca_rtt_us = -1L;
   3236	u32 pkts_acked = 0;
   3237	bool rtt_update;
   3238	int flag = 0;
   3239
   3240	first_ackt = 0;
   3241
   3242	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
   3243		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
   3244		const u32 start_seq = scb->seq;
   3245		u8 sacked = scb->sacked;
   3246		u32 acked_pcount;
   3247
   3248		/* Determine how many packets and what bytes were acked, tso and else */
   3249		if (after(scb->end_seq, tp->snd_una)) {
   3250			if (tcp_skb_pcount(skb) == 1 ||
   3251			    !after(tp->snd_una, scb->seq))
   3252				break;
   3253
   3254			acked_pcount = tcp_tso_acked(sk, skb);
   3255			if (!acked_pcount)
   3256				break;
   3257			fully_acked = false;
   3258		} else {
   3259			acked_pcount = tcp_skb_pcount(skb);
   3260		}
   3261
   3262		if (unlikely(sacked & TCPCB_RETRANS)) {
   3263			if (sacked & TCPCB_SACKED_RETRANS)
   3264				tp->retrans_out -= acked_pcount;
   3265			flag |= FLAG_RETRANS_DATA_ACKED;
   3266		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
   3267			last_ackt = tcp_skb_timestamp_us(skb);
   3268			WARN_ON_ONCE(last_ackt == 0);
   3269			if (!first_ackt)
   3270				first_ackt = last_ackt;
   3271
   3272			if (before(start_seq, reord))
   3273				reord = start_seq;
   3274			if (!after(scb->end_seq, tp->high_seq))
   3275				flag |= FLAG_ORIG_SACK_ACKED;
   3276		}
   3277
   3278		if (sacked & TCPCB_SACKED_ACKED) {
   3279			tp->sacked_out -= acked_pcount;
   3280		} else if (tcp_is_sack(tp)) {
   3281			tcp_count_delivered(tp, acked_pcount, ece_ack);
   3282			if (!tcp_skb_spurious_retrans(tp, skb))
   3283				tcp_rack_advance(tp, sacked, scb->end_seq,
   3284						 tcp_skb_timestamp_us(skb));
   3285		}
   3286		if (sacked & TCPCB_LOST)
   3287			tp->lost_out -= acked_pcount;
   3288
   3289		tp->packets_out -= acked_pcount;
   3290		pkts_acked += acked_pcount;
   3291		tcp_rate_skb_delivered(sk, skb, sack->rate);
   3292
   3293		/* Initial outgoing SYN's get put onto the write_queue
   3294		 * just like anything else we transmit.  It is not
   3295		 * true data, and if we misinform our callers that
   3296		 * this ACK acks real data, we will erroneously exit
   3297		 * connection startup slow start one packet too
   3298		 * quickly.  This is severely frowned upon behavior.
   3299		 */
   3300		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
   3301			flag |= FLAG_DATA_ACKED;
   3302		} else {
   3303			flag |= FLAG_SYN_ACKED;
   3304			tp->retrans_stamp = 0;
   3305		}
   3306
   3307		if (!fully_acked)
   3308			break;
   3309
   3310		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
   3311
   3312		next = skb_rb_next(skb);
   3313		if (unlikely(skb == tp->retransmit_skb_hint))
   3314			tp->retransmit_skb_hint = NULL;
   3315		if (unlikely(skb == tp->lost_skb_hint))
   3316			tp->lost_skb_hint = NULL;
   3317		tcp_highest_sack_replace(sk, skb, next);
   3318		tcp_rtx_queue_unlink_and_free(skb, sk);
   3319	}
   3320
   3321	if (!skb)
   3322		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
   3323
   3324	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
   3325		tp->snd_up = tp->snd_una;
   3326
   3327	if (skb) {
   3328		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
   3329		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
   3330			flag |= FLAG_SACK_RENEGING;
   3331	}
   3332
   3333	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
   3334		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
   3335		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
   3336
   3337		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
   3338		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
   3339		    sack->rate->prior_delivered + 1 == tp->delivered &&
   3340		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
   3341			/* Conservatively mark a delayed ACK. It's typically
   3342			 * from a lone runt packet over the round trip to
   3343			 * a receiver w/o out-of-order or CE events.
   3344			 */
   3345			flag |= FLAG_ACK_MAYBE_DELAYED;
   3346		}
   3347	}
   3348	if (sack->first_sackt) {
   3349		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
   3350		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
   3351	}
   3352	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
   3353					ca_rtt_us, sack->rate);
   3354
   3355	if (flag & FLAG_ACKED) {
   3356		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
   3357		if (unlikely(icsk->icsk_mtup.probe_size &&
   3358			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
   3359			tcp_mtup_probe_success(sk);
   3360		}
   3361
   3362		if (tcp_is_reno(tp)) {
   3363			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
   3364
   3365			/* If any of the cumulatively ACKed segments was
   3366			 * retransmitted, non-SACK case cannot confirm that
   3367			 * progress was due to original transmission due to
   3368			 * lack of TCPCB_SACKED_ACKED bits even if some of
   3369			 * the packets may have been never retransmitted.
   3370			 */
   3371			if (flag & FLAG_RETRANS_DATA_ACKED)
   3372				flag &= ~FLAG_ORIG_SACK_ACKED;
   3373		} else {
   3374			int delta;
   3375
   3376			/* Non-retransmitted hole got filled? That's reordering */
   3377			if (before(reord, prior_fack))
   3378				tcp_check_sack_reordering(sk, reord, 0);
   3379
   3380			delta = prior_sacked - tp->sacked_out;
   3381			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
   3382		}
   3383	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
   3384		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
   3385						    tcp_skb_timestamp_us(skb))) {
   3386		/* Do not re-arm RTO if the sack RTT is measured from data sent
   3387		 * after when the head was last (re)transmitted. Otherwise the
   3388		 * timeout may continue to extend in loss recovery.
   3389		 */
   3390		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
   3391	}
   3392
   3393	if (icsk->icsk_ca_ops->pkts_acked) {
   3394		struct ack_sample sample = { .pkts_acked = pkts_acked,
   3395					     .rtt_us = sack->rate->rtt_us };
   3396
   3397		sample.in_flight = tp->mss_cache *
   3398			(tp->delivered - sack->rate->prior_delivered);
   3399		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
   3400	}
   3401
   3402#if FASTRETRANS_DEBUG > 0
   3403	WARN_ON((int)tp->sacked_out < 0);
   3404	WARN_ON((int)tp->lost_out < 0);
   3405	WARN_ON((int)tp->retrans_out < 0);
   3406	if (!tp->packets_out && tcp_is_sack(tp)) {
   3407		icsk = inet_csk(sk);
   3408		if (tp->lost_out) {
   3409			pr_debug("Leak l=%u %d\n",
   3410				 tp->lost_out, icsk->icsk_ca_state);
   3411			tp->lost_out = 0;
   3412		}
   3413		if (tp->sacked_out) {
   3414			pr_debug("Leak s=%u %d\n",
   3415				 tp->sacked_out, icsk->icsk_ca_state);
   3416			tp->sacked_out = 0;
   3417		}
   3418		if (tp->retrans_out) {
   3419			pr_debug("Leak r=%u %d\n",
   3420				 tp->retrans_out, icsk->icsk_ca_state);
   3421			tp->retrans_out = 0;
   3422		}
   3423	}
   3424#endif
   3425	return flag;
   3426}
   3427
   3428static void tcp_ack_probe(struct sock *sk)
   3429{
   3430	struct inet_connection_sock *icsk = inet_csk(sk);
   3431	struct sk_buff *head = tcp_send_head(sk);
   3432	const struct tcp_sock *tp = tcp_sk(sk);
   3433
   3434	/* Was it a usable window open? */
   3435	if (!head)
   3436		return;
   3437	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
   3438		icsk->icsk_backoff = 0;
   3439		icsk->icsk_probes_tstamp = 0;
   3440		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
   3441		/* Socket must be waked up by subsequent tcp_data_snd_check().
   3442		 * This function is not for random using!
   3443		 */
   3444	} else {
   3445		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
   3446
   3447		when = tcp_clamp_probe0_to_user_timeout(sk, when);
   3448		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
   3449	}
   3450}
   3451
   3452static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
   3453{
   3454	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
   3455		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
   3456}
   3457
   3458/* Decide wheather to run the increase function of congestion control. */
   3459static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
   3460{
   3461	/* If reordering is high then always grow cwnd whenever data is
   3462	 * delivered regardless of its ordering. Otherwise stay conservative
   3463	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
   3464	 * new SACK or ECE mark may first advance cwnd here and later reduce
   3465	 * cwnd in tcp_fastretrans_alert() based on more states.
   3466	 */
   3467	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
   3468		return flag & FLAG_FORWARD_PROGRESS;
   3469
   3470	return flag & FLAG_DATA_ACKED;
   3471}
   3472
   3473/* The "ultimate" congestion control function that aims to replace the rigid
   3474 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
   3475 * It's called toward the end of processing an ACK with precise rate
   3476 * information. All transmission or retransmission are delayed afterwards.
   3477 */
   3478static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
   3479			     int flag, const struct rate_sample *rs)
   3480{
   3481	const struct inet_connection_sock *icsk = inet_csk(sk);
   3482
   3483	if (icsk->icsk_ca_ops->cong_control) {
   3484		icsk->icsk_ca_ops->cong_control(sk, rs);
   3485		return;
   3486	}
   3487
   3488	if (tcp_in_cwnd_reduction(sk)) {
   3489		/* Reduce cwnd if state mandates */
   3490		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
   3491	} else if (tcp_may_raise_cwnd(sk, flag)) {
   3492		/* Advance cwnd if state allows */
   3493		tcp_cong_avoid(sk, ack, acked_sacked);
   3494	}
   3495	tcp_update_pacing_rate(sk);
   3496}
   3497
   3498/* Check that window update is acceptable.
   3499 * The function assumes that snd_una<=ack<=snd_next.
   3500 */
   3501static inline bool tcp_may_update_window(const struct tcp_sock *tp,
   3502					const u32 ack, const u32 ack_seq,
   3503					const u32 nwin)
   3504{
   3505	return	after(ack, tp->snd_una) ||
   3506		after(ack_seq, tp->snd_wl1) ||
   3507		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
   3508}
   3509
   3510/* If we update tp->snd_una, also update tp->bytes_acked */
   3511static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
   3512{
   3513	u32 delta = ack - tp->snd_una;
   3514
   3515	sock_owned_by_me((struct sock *)tp);
   3516	tp->bytes_acked += delta;
   3517	tp->snd_una = ack;
   3518}
   3519
   3520/* If we update tp->rcv_nxt, also update tp->bytes_received */
   3521static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
   3522{
   3523	u32 delta = seq - tp->rcv_nxt;
   3524
   3525	sock_owned_by_me((struct sock *)tp);
   3526	tp->bytes_received += delta;
   3527	WRITE_ONCE(tp->rcv_nxt, seq);
   3528}
   3529
   3530/* Update our send window.
   3531 *
   3532 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
   3533 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
   3534 */
   3535static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
   3536				 u32 ack_seq)
   3537{
   3538	struct tcp_sock *tp = tcp_sk(sk);
   3539	int flag = 0;
   3540	u32 nwin = ntohs(tcp_hdr(skb)->window);
   3541
   3542	if (likely(!tcp_hdr(skb)->syn))
   3543		nwin <<= tp->rx_opt.snd_wscale;
   3544
   3545	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
   3546		flag |= FLAG_WIN_UPDATE;
   3547		tcp_update_wl(tp, ack_seq);
   3548
   3549		if (tp->snd_wnd != nwin) {
   3550			tp->snd_wnd = nwin;
   3551
   3552			/* Note, it is the only place, where
   3553			 * fast path is recovered for sending TCP.
   3554			 */
   3555			tp->pred_flags = 0;
   3556			tcp_fast_path_check(sk);
   3557
   3558			if (!tcp_write_queue_empty(sk))
   3559				tcp_slow_start_after_idle_check(sk);
   3560
   3561			if (nwin > tp->max_window) {
   3562				tp->max_window = nwin;
   3563				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
   3564			}
   3565		}
   3566	}
   3567
   3568	tcp_snd_una_update(tp, ack);
   3569
   3570	return flag;
   3571}
   3572
   3573static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
   3574				   u32 *last_oow_ack_time)
   3575{
   3576	if (*last_oow_ack_time) {
   3577		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
   3578
   3579		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
   3580			NET_INC_STATS(net, mib_idx);
   3581			return true;	/* rate-limited: don't send yet! */
   3582		}
   3583	}
   3584
   3585	*last_oow_ack_time = tcp_jiffies32;
   3586
   3587	return false;	/* not rate-limited: go ahead, send dupack now! */
   3588}
   3589
   3590/* Return true if we're currently rate-limiting out-of-window ACKs and
   3591 * thus shouldn't send a dupack right now. We rate-limit dupacks in
   3592 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
   3593 * attacks that send repeated SYNs or ACKs for the same connection. To
   3594 * do this, we do not send a duplicate SYNACK or ACK if the remote
   3595 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
   3596 */
   3597bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
   3598			  int mib_idx, u32 *last_oow_ack_time)
   3599{
   3600	/* Data packets without SYNs are not likely part of an ACK loop. */
   3601	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
   3602	    !tcp_hdr(skb)->syn)
   3603		return false;
   3604
   3605	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
   3606}
   3607
   3608/* RFC 5961 7 [ACK Throttling] */
   3609static void tcp_send_challenge_ack(struct sock *sk)
   3610{
   3611	/* unprotected vars, we dont care of overwrites */
   3612	static u32 challenge_timestamp;
   3613	static unsigned int challenge_count;
   3614	struct tcp_sock *tp = tcp_sk(sk);
   3615	struct net *net = sock_net(sk);
   3616	u32 count, now;
   3617
   3618	/* First check our per-socket dupack rate limit. */
   3619	if (__tcp_oow_rate_limited(net,
   3620				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
   3621				   &tp->last_oow_ack_time))
   3622		return;
   3623
   3624	/* Then check host-wide RFC 5961 rate limit. */
   3625	now = jiffies / HZ;
   3626	if (now != challenge_timestamp) {
   3627		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
   3628		u32 half = (ack_limit + 1) >> 1;
   3629
   3630		challenge_timestamp = now;
   3631		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
   3632	}
   3633	count = READ_ONCE(challenge_count);
   3634	if (count > 0) {
   3635		WRITE_ONCE(challenge_count, count - 1);
   3636		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
   3637		tcp_send_ack(sk);
   3638	}
   3639}
   3640
   3641static void tcp_store_ts_recent(struct tcp_sock *tp)
   3642{
   3643	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
   3644	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
   3645}
   3646
   3647static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
   3648{
   3649	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
   3650		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
   3651		 * extra check below makes sure this can only happen
   3652		 * for pure ACK frames.  -DaveM
   3653		 *
   3654		 * Not only, also it occurs for expired timestamps.
   3655		 */
   3656
   3657		if (tcp_paws_check(&tp->rx_opt, 0))
   3658			tcp_store_ts_recent(tp);
   3659	}
   3660}
   3661
   3662/* This routine deals with acks during a TLP episode and ends an episode by
   3663 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
   3664 */
   3665static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
   3666{
   3667	struct tcp_sock *tp = tcp_sk(sk);
   3668
   3669	if (before(ack, tp->tlp_high_seq))
   3670		return;
   3671
   3672	if (!tp->tlp_retrans) {
   3673		/* TLP of new data has been acknowledged */
   3674		tp->tlp_high_seq = 0;
   3675	} else if (flag & FLAG_DSACK_TLP) {
   3676		/* This DSACK means original and TLP probe arrived; no loss */
   3677		tp->tlp_high_seq = 0;
   3678	} else if (after(ack, tp->tlp_high_seq)) {
   3679		/* ACK advances: there was a loss, so reduce cwnd. Reset
   3680		 * tlp_high_seq in tcp_init_cwnd_reduction()
   3681		 */
   3682		tcp_init_cwnd_reduction(sk);
   3683		tcp_set_ca_state(sk, TCP_CA_CWR);
   3684		tcp_end_cwnd_reduction(sk);
   3685		tcp_try_keep_open(sk);
   3686		NET_INC_STATS(sock_net(sk),
   3687				LINUX_MIB_TCPLOSSPROBERECOVERY);
   3688	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
   3689			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
   3690		/* Pure dupack: original and TLP probe arrived; no loss */
   3691		tp->tlp_high_seq = 0;
   3692	}
   3693}
   3694
   3695static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
   3696{
   3697	const struct inet_connection_sock *icsk = inet_csk(sk);
   3698
   3699	if (icsk->icsk_ca_ops->in_ack_event)
   3700		icsk->icsk_ca_ops->in_ack_event(sk, flags);
   3701}
   3702
   3703/* Congestion control has updated the cwnd already. So if we're in
   3704 * loss recovery then now we do any new sends (for FRTO) or
   3705 * retransmits (for CA_Loss or CA_recovery) that make sense.
   3706 */
   3707static void tcp_xmit_recovery(struct sock *sk, int rexmit)
   3708{
   3709	struct tcp_sock *tp = tcp_sk(sk);
   3710
   3711	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
   3712		return;
   3713
   3714	if (unlikely(rexmit == REXMIT_NEW)) {
   3715		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
   3716					  TCP_NAGLE_OFF);
   3717		if (after(tp->snd_nxt, tp->high_seq))
   3718			return;
   3719		tp->frto = 0;
   3720	}
   3721	tcp_xmit_retransmit_queue(sk);
   3722}
   3723
   3724/* Returns the number of packets newly acked or sacked by the current ACK */
   3725static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
   3726{
   3727	const struct net *net = sock_net(sk);
   3728	struct tcp_sock *tp = tcp_sk(sk);
   3729	u32 delivered;
   3730
   3731	delivered = tp->delivered - prior_delivered;
   3732	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
   3733	if (flag & FLAG_ECE)
   3734		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
   3735
   3736	return delivered;
   3737}
   3738
   3739/* This routine deals with incoming acks, but not outgoing ones. */
   3740static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
   3741{
   3742	struct inet_connection_sock *icsk = inet_csk(sk);
   3743	struct tcp_sock *tp = tcp_sk(sk);
   3744	struct tcp_sacktag_state sack_state;
   3745	struct rate_sample rs = { .prior_delivered = 0 };
   3746	u32 prior_snd_una = tp->snd_una;
   3747	bool is_sack_reneg = tp->is_sack_reneg;
   3748	u32 ack_seq = TCP_SKB_CB(skb)->seq;
   3749	u32 ack = TCP_SKB_CB(skb)->ack_seq;
   3750	int num_dupack = 0;
   3751	int prior_packets = tp->packets_out;
   3752	u32 delivered = tp->delivered;
   3753	u32 lost = tp->lost;
   3754	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
   3755	u32 prior_fack;
   3756
   3757	sack_state.first_sackt = 0;
   3758	sack_state.rate = &rs;
   3759	sack_state.sack_delivered = 0;
   3760
   3761	/* We very likely will need to access rtx queue. */
   3762	prefetch(sk->tcp_rtx_queue.rb_node);
   3763
   3764	/* If the ack is older than previous acks
   3765	 * then we can probably ignore it.
   3766	 */
   3767	if (before(ack, prior_snd_una)) {
   3768		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
   3769		if (before(ack, prior_snd_una - tp->max_window)) {
   3770			if (!(flag & FLAG_NO_CHALLENGE_ACK))
   3771				tcp_send_challenge_ack(sk);
   3772			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
   3773		}
   3774		goto old_ack;
   3775	}
   3776
   3777	/* If the ack includes data we haven't sent yet, discard
   3778	 * this segment (RFC793 Section 3.9).
   3779	 */
   3780	if (after(ack, tp->snd_nxt))
   3781		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
   3782
   3783	if (after(ack, prior_snd_una)) {
   3784		flag |= FLAG_SND_UNA_ADVANCED;
   3785		icsk->icsk_retransmits = 0;
   3786
   3787#if IS_ENABLED(CONFIG_TLS_DEVICE)
   3788		if (static_branch_unlikely(&clean_acked_data_enabled.key))
   3789			if (icsk->icsk_clean_acked)
   3790				icsk->icsk_clean_acked(sk, ack);
   3791#endif
   3792	}
   3793
   3794	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
   3795	rs.prior_in_flight = tcp_packets_in_flight(tp);
   3796
   3797	/* ts_recent update must be made after we are sure that the packet
   3798	 * is in window.
   3799	 */
   3800	if (flag & FLAG_UPDATE_TS_RECENT)
   3801		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
   3802
   3803	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
   3804	    FLAG_SND_UNA_ADVANCED) {
   3805		/* Window is constant, pure forward advance.
   3806		 * No more checks are required.
   3807		 * Note, we use the fact that SND.UNA>=SND.WL2.
   3808		 */
   3809		tcp_update_wl(tp, ack_seq);
   3810		tcp_snd_una_update(tp, ack);
   3811		flag |= FLAG_WIN_UPDATE;
   3812
   3813		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
   3814
   3815		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
   3816	} else {
   3817		u32 ack_ev_flags = CA_ACK_SLOWPATH;
   3818
   3819		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
   3820			flag |= FLAG_DATA;
   3821		else
   3822			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
   3823
   3824		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
   3825
   3826		if (TCP_SKB_CB(skb)->sacked)
   3827			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
   3828							&sack_state);
   3829
   3830		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
   3831			flag |= FLAG_ECE;
   3832			ack_ev_flags |= CA_ACK_ECE;
   3833		}
   3834
   3835		if (sack_state.sack_delivered)
   3836			tcp_count_delivered(tp, sack_state.sack_delivered,
   3837					    flag & FLAG_ECE);
   3838
   3839		if (flag & FLAG_WIN_UPDATE)
   3840			ack_ev_flags |= CA_ACK_WIN_UPDATE;
   3841
   3842		tcp_in_ack_event(sk, ack_ev_flags);
   3843	}
   3844
   3845	/* This is a deviation from RFC3168 since it states that:
   3846	 * "When the TCP data sender is ready to set the CWR bit after reducing
   3847	 * the congestion window, it SHOULD set the CWR bit only on the first
   3848	 * new data packet that it transmits."
   3849	 * We accept CWR on pure ACKs to be more robust
   3850	 * with widely-deployed TCP implementations that do this.
   3851	 */
   3852	tcp_ecn_accept_cwr(sk, skb);
   3853
   3854	/* We passed data and got it acked, remove any soft error
   3855	 * log. Something worked...
   3856	 */
   3857	sk->sk_err_soft = 0;
   3858	icsk->icsk_probes_out = 0;
   3859	tp->rcv_tstamp = tcp_jiffies32;
   3860	if (!prior_packets)
   3861		goto no_queue;
   3862
   3863	/* See if we can take anything off of the retransmit queue. */
   3864	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
   3865				    &sack_state, flag & FLAG_ECE);
   3866
   3867	tcp_rack_update_reo_wnd(sk, &rs);
   3868
   3869	if (tp->tlp_high_seq)
   3870		tcp_process_tlp_ack(sk, ack, flag);
   3871
   3872	if (tcp_ack_is_dubious(sk, flag)) {
   3873		if (!(flag & (FLAG_SND_UNA_ADVANCED |
   3874			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
   3875			num_dupack = 1;
   3876			/* Consider if pure acks were aggregated in tcp_add_backlog() */
   3877			if (!(flag & FLAG_DATA))
   3878				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
   3879		}
   3880		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
   3881				      &rexmit);
   3882	}
   3883
   3884	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
   3885	if (flag & FLAG_SET_XMIT_TIMER)
   3886		tcp_set_xmit_timer(sk);
   3887
   3888	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
   3889		sk_dst_confirm(sk);
   3890
   3891	delivered = tcp_newly_delivered(sk, delivered, flag);
   3892	lost = tp->lost - lost;			/* freshly marked lost */
   3893	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
   3894	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
   3895	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
   3896	tcp_xmit_recovery(sk, rexmit);
   3897	return 1;
   3898
   3899no_queue:
   3900	/* If data was DSACKed, see if we can undo a cwnd reduction. */
   3901	if (flag & FLAG_DSACKING_ACK) {
   3902		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
   3903				      &rexmit);
   3904		tcp_newly_delivered(sk, delivered, flag);
   3905	}
   3906	/* If this ack opens up a zero window, clear backoff.  It was
   3907	 * being used to time the probes, and is probably far higher than
   3908	 * it needs to be for normal retransmission.
   3909	 */
   3910	tcp_ack_probe(sk);
   3911
   3912	if (tp->tlp_high_seq)
   3913		tcp_process_tlp_ack(sk, ack, flag);
   3914	return 1;
   3915
   3916old_ack:
   3917	/* If data was SACKed, tag it and see if we should send more data.
   3918	 * If data was DSACKed, see if we can undo a cwnd reduction.
   3919	 */
   3920	if (TCP_SKB_CB(skb)->sacked) {
   3921		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
   3922						&sack_state);
   3923		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
   3924				      &rexmit);
   3925		tcp_newly_delivered(sk, delivered, flag);
   3926		tcp_xmit_recovery(sk, rexmit);
   3927	}
   3928
   3929	return 0;
   3930}
   3931
   3932static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
   3933				      bool syn, struct tcp_fastopen_cookie *foc,
   3934				      bool exp_opt)
   3935{
   3936	/* Valid only in SYN or SYN-ACK with an even length.  */
   3937	if (!foc || !syn || len < 0 || (len & 1))
   3938		return;
   3939
   3940	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
   3941	    len <= TCP_FASTOPEN_COOKIE_MAX)
   3942		memcpy(foc->val, cookie, len);
   3943	else if (len != 0)
   3944		len = -1;
   3945	foc->len = len;
   3946	foc->exp = exp_opt;
   3947}
   3948
   3949static bool smc_parse_options(const struct tcphdr *th,
   3950			      struct tcp_options_received *opt_rx,
   3951			      const unsigned char *ptr,
   3952			      int opsize)
   3953{
   3954#if IS_ENABLED(CONFIG_SMC)
   3955	if (static_branch_unlikely(&tcp_have_smc)) {
   3956		if (th->syn && !(opsize & 1) &&
   3957		    opsize >= TCPOLEN_EXP_SMC_BASE &&
   3958		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
   3959			opt_rx->smc_ok = 1;
   3960			return true;
   3961		}
   3962	}
   3963#endif
   3964	return false;
   3965}
   3966
   3967/* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
   3968 * value on success.
   3969 */
   3970static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
   3971{
   3972	const unsigned char *ptr = (const unsigned char *)(th + 1);
   3973	int length = (th->doff * 4) - sizeof(struct tcphdr);
   3974	u16 mss = 0;
   3975
   3976	while (length > 0) {
   3977		int opcode = *ptr++;
   3978		int opsize;
   3979
   3980		switch (opcode) {
   3981		case TCPOPT_EOL:
   3982			return mss;
   3983		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
   3984			length--;
   3985			continue;
   3986		default:
   3987			if (length < 2)
   3988				return mss;
   3989			opsize = *ptr++;
   3990			if (opsize < 2) /* "silly options" */
   3991				return mss;
   3992			if (opsize > length)
   3993				return mss;	/* fail on partial options */
   3994			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
   3995				u16 in_mss = get_unaligned_be16(ptr);
   3996
   3997				if (in_mss) {
   3998					if (user_mss && user_mss < in_mss)
   3999						in_mss = user_mss;
   4000					mss = in_mss;
   4001				}
   4002			}
   4003			ptr += opsize - 2;
   4004			length -= opsize;
   4005		}
   4006	}
   4007	return mss;
   4008}
   4009
   4010/* Look for tcp options. Normally only called on SYN and SYNACK packets.
   4011 * But, this can also be called on packets in the established flow when
   4012 * the fast version below fails.
   4013 */
   4014void tcp_parse_options(const struct net *net,
   4015		       const struct sk_buff *skb,
   4016		       struct tcp_options_received *opt_rx, int estab,
   4017		       struct tcp_fastopen_cookie *foc)
   4018{
   4019	const unsigned char *ptr;
   4020	const struct tcphdr *th = tcp_hdr(skb);
   4021	int length = (th->doff * 4) - sizeof(struct tcphdr);
   4022
   4023	ptr = (const unsigned char *)(th + 1);
   4024	opt_rx->saw_tstamp = 0;
   4025	opt_rx->saw_unknown = 0;
   4026
   4027	while (length > 0) {
   4028		int opcode = *ptr++;
   4029		int opsize;
   4030
   4031		switch (opcode) {
   4032		case TCPOPT_EOL:
   4033			return;
   4034		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
   4035			length--;
   4036			continue;
   4037		default:
   4038			if (length < 2)
   4039				return;
   4040			opsize = *ptr++;
   4041			if (opsize < 2) /* "silly options" */
   4042				return;
   4043			if (opsize > length)
   4044				return;	/* don't parse partial options */
   4045			switch (opcode) {
   4046			case TCPOPT_MSS:
   4047				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
   4048					u16 in_mss = get_unaligned_be16(ptr);
   4049					if (in_mss) {
   4050						if (opt_rx->user_mss &&
   4051						    opt_rx->user_mss < in_mss)
   4052							in_mss = opt_rx->user_mss;
   4053						opt_rx->mss_clamp = in_mss;
   4054					}
   4055				}
   4056				break;
   4057			case TCPOPT_WINDOW:
   4058				if (opsize == TCPOLEN_WINDOW && th->syn &&
   4059				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
   4060					__u8 snd_wscale = *(__u8 *)ptr;
   4061					opt_rx->wscale_ok = 1;
   4062					if (snd_wscale > TCP_MAX_WSCALE) {
   4063						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
   4064								     __func__,
   4065								     snd_wscale,
   4066								     TCP_MAX_WSCALE);
   4067						snd_wscale = TCP_MAX_WSCALE;
   4068					}
   4069					opt_rx->snd_wscale = snd_wscale;
   4070				}
   4071				break;
   4072			case TCPOPT_TIMESTAMP:
   4073				if ((opsize == TCPOLEN_TIMESTAMP) &&
   4074				    ((estab && opt_rx->tstamp_ok) ||
   4075				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
   4076					opt_rx->saw_tstamp = 1;
   4077					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
   4078					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
   4079				}
   4080				break;
   4081			case TCPOPT_SACK_PERM:
   4082				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
   4083				    !estab && net->ipv4.sysctl_tcp_sack) {
   4084					opt_rx->sack_ok = TCP_SACK_SEEN;
   4085					tcp_sack_reset(opt_rx);
   4086				}
   4087				break;
   4088
   4089			case TCPOPT_SACK:
   4090				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
   4091				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
   4092				   opt_rx->sack_ok) {
   4093					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
   4094				}
   4095				break;
   4096#ifdef CONFIG_TCP_MD5SIG
   4097			case TCPOPT_MD5SIG:
   4098				/*
   4099				 * The MD5 Hash has already been
   4100				 * checked (see tcp_v{4,6}_do_rcv()).
   4101				 */
   4102				break;
   4103#endif
   4104			case TCPOPT_FASTOPEN:
   4105				tcp_parse_fastopen_option(
   4106					opsize - TCPOLEN_FASTOPEN_BASE,
   4107					ptr, th->syn, foc, false);
   4108				break;
   4109
   4110			case TCPOPT_EXP:
   4111				/* Fast Open option shares code 254 using a
   4112				 * 16 bits magic number.
   4113				 */
   4114				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
   4115				    get_unaligned_be16(ptr) ==
   4116				    TCPOPT_FASTOPEN_MAGIC) {
   4117					tcp_parse_fastopen_option(opsize -
   4118						TCPOLEN_EXP_FASTOPEN_BASE,
   4119						ptr + 2, th->syn, foc, true);
   4120					break;
   4121				}
   4122
   4123				if (smc_parse_options(th, opt_rx, ptr, opsize))
   4124					break;
   4125
   4126				opt_rx->saw_unknown = 1;
   4127				break;
   4128
   4129			default:
   4130				opt_rx->saw_unknown = 1;
   4131			}
   4132			ptr += opsize-2;
   4133			length -= opsize;
   4134		}
   4135	}
   4136}
   4137EXPORT_SYMBOL(tcp_parse_options);
   4138
   4139static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
   4140{
   4141	const __be32 *ptr = (const __be32 *)(th + 1);
   4142
   4143	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
   4144			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
   4145		tp->rx_opt.saw_tstamp = 1;
   4146		++ptr;
   4147		tp->rx_opt.rcv_tsval = ntohl(*ptr);
   4148		++ptr;
   4149		if (*ptr)
   4150			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
   4151		else
   4152			tp->rx_opt.rcv_tsecr = 0;
   4153		return true;
   4154	}
   4155	return false;
   4156}
   4157
   4158/* Fast parse options. This hopes to only see timestamps.
   4159 * If it is wrong it falls back on tcp_parse_options().
   4160 */
   4161static bool tcp_fast_parse_options(const struct net *net,
   4162				   const struct sk_buff *skb,
   4163				   const struct tcphdr *th, struct tcp_sock *tp)
   4164{
   4165	/* In the spirit of fast parsing, compare doff directly to constant
   4166	 * values.  Because equality is used, short doff can be ignored here.
   4167	 */
   4168	if (th->doff == (sizeof(*th) / 4)) {
   4169		tp->rx_opt.saw_tstamp = 0;
   4170		return false;
   4171	} else if (tp->rx_opt.tstamp_ok &&
   4172		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
   4173		if (tcp_parse_aligned_timestamp(tp, th))
   4174			return true;
   4175	}
   4176
   4177	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
   4178	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
   4179		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
   4180
   4181	return true;
   4182}
   4183
   4184#ifdef CONFIG_TCP_MD5SIG
   4185/*
   4186 * Parse MD5 Signature option
   4187 */
   4188const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
   4189{
   4190	int length = (th->doff << 2) - sizeof(*th);
   4191	const u8 *ptr = (const u8 *)(th + 1);
   4192
   4193	/* If not enough data remaining, we can short cut */
   4194	while (length >= TCPOLEN_MD5SIG) {
   4195		int opcode = *ptr++;
   4196		int opsize;
   4197
   4198		switch (opcode) {
   4199		case TCPOPT_EOL:
   4200			return NULL;
   4201		case TCPOPT_NOP:
   4202			length--;
   4203			continue;
   4204		default:
   4205			opsize = *ptr++;
   4206			if (opsize < 2 || opsize > length)
   4207				return NULL;
   4208			if (opcode == TCPOPT_MD5SIG)
   4209				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
   4210		}
   4211		ptr += opsize - 2;
   4212		length -= opsize;
   4213	}
   4214	return NULL;
   4215}
   4216EXPORT_SYMBOL(tcp_parse_md5sig_option);
   4217#endif
   4218
   4219/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
   4220 *
   4221 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
   4222 * it can pass through stack. So, the following predicate verifies that
   4223 * this segment is not used for anything but congestion avoidance or
   4224 * fast retransmit. Moreover, we even are able to eliminate most of such
   4225 * second order effects, if we apply some small "replay" window (~RTO)
   4226 * to timestamp space.
   4227 *
   4228 * All these measures still do not guarantee that we reject wrapped ACKs
   4229 * on networks with high bandwidth, when sequence space is recycled fastly,
   4230 * but it guarantees that such events will be very rare and do not affect
   4231 * connection seriously. This doesn't look nice, but alas, PAWS is really
   4232 * buggy extension.
   4233 *
   4234 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
   4235 * states that events when retransmit arrives after original data are rare.
   4236 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
   4237 * the biggest problem on large power networks even with minor reordering.
   4238 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
   4239 * up to bandwidth of 18Gigabit/sec. 8) ]
   4240 */
   4241
   4242static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
   4243{
   4244	const struct tcp_sock *tp = tcp_sk(sk);
   4245	const struct tcphdr *th = tcp_hdr(skb);
   4246	u32 seq = TCP_SKB_CB(skb)->seq;
   4247	u32 ack = TCP_SKB_CB(skb)->ack_seq;
   4248
   4249	return (/* 1. Pure ACK with correct sequence number. */
   4250		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
   4251
   4252		/* 2. ... and duplicate ACK. */
   4253		ack == tp->snd_una &&
   4254
   4255		/* 3. ... and does not update window. */
   4256		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
   4257
   4258		/* 4. ... and sits in replay window. */
   4259		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
   4260}
   4261
   4262static inline bool tcp_paws_discard(const struct sock *sk,
   4263				   const struct sk_buff *skb)
   4264{
   4265	const struct tcp_sock *tp = tcp_sk(sk);
   4266
   4267	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
   4268	       !tcp_disordered_ack(sk, skb);
   4269}
   4270
   4271/* Check segment sequence number for validity.
   4272 *
   4273 * Segment controls are considered valid, if the segment
   4274 * fits to the window after truncation to the window. Acceptability
   4275 * of data (and SYN, FIN, of course) is checked separately.
   4276 * See tcp_data_queue(), for example.
   4277 *
   4278 * Also, controls (RST is main one) are accepted using RCV.WUP instead
   4279 * of RCV.NXT. Peer still did not advance his SND.UNA when we
   4280 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
   4281 * (borrowed from freebsd)
   4282 */
   4283
   4284static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
   4285{
   4286	return	!before(end_seq, tp->rcv_wup) &&
   4287		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
   4288}
   4289
   4290/* When we get a reset we do this. */
   4291void tcp_reset(struct sock *sk, struct sk_buff *skb)
   4292{
   4293	trace_tcp_receive_reset(sk);
   4294
   4295	/* mptcp can't tell us to ignore reset pkts,
   4296	 * so just ignore the return value of mptcp_incoming_options().
   4297	 */
   4298	if (sk_is_mptcp(sk))
   4299		mptcp_incoming_options(sk, skb);
   4300
   4301	/* We want the right error as BSD sees it (and indeed as we do). */
   4302	switch (sk->sk_state) {
   4303	case TCP_SYN_SENT:
   4304		sk->sk_err = ECONNREFUSED;
   4305		break;
   4306	case TCP_CLOSE_WAIT:
   4307		sk->sk_err = EPIPE;
   4308		break;
   4309	case TCP_CLOSE:
   4310		return;
   4311	default:
   4312		sk->sk_err = ECONNRESET;
   4313	}
   4314	/* This barrier is coupled with smp_rmb() in tcp_poll() */
   4315	smp_wmb();
   4316
   4317	tcp_write_queue_purge(sk);
   4318	tcp_done(sk);
   4319
   4320	if (!sock_flag(sk, SOCK_DEAD))
   4321		sk_error_report(sk);
   4322}
   4323
   4324/*
   4325 * 	Process the FIN bit. This now behaves as it is supposed to work
   4326 *	and the FIN takes effect when it is validly part of sequence
   4327 *	space. Not before when we get holes.
   4328 *
   4329 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
   4330 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
   4331 *	TIME-WAIT)
   4332 *
   4333 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
   4334 *	close and we go into CLOSING (and later onto TIME-WAIT)
   4335 *
   4336 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
   4337 */
   4338void tcp_fin(struct sock *sk)
   4339{
   4340	struct tcp_sock *tp = tcp_sk(sk);
   4341
   4342	inet_csk_schedule_ack(sk);
   4343
   4344	sk->sk_shutdown |= RCV_SHUTDOWN;
   4345	sock_set_flag(sk, SOCK_DONE);
   4346
   4347	switch (sk->sk_state) {
   4348	case TCP_SYN_RECV:
   4349	case TCP_ESTABLISHED:
   4350		/* Move to CLOSE_WAIT */
   4351		tcp_set_state(sk, TCP_CLOSE_WAIT);
   4352		inet_csk_enter_pingpong_mode(sk);
   4353		break;
   4354
   4355	case TCP_CLOSE_WAIT:
   4356	case TCP_CLOSING:
   4357		/* Received a retransmission of the FIN, do
   4358		 * nothing.
   4359		 */
   4360		break;
   4361	case TCP_LAST_ACK:
   4362		/* RFC793: Remain in the LAST-ACK state. */
   4363		break;
   4364
   4365	case TCP_FIN_WAIT1:
   4366		/* This case occurs when a simultaneous close
   4367		 * happens, we must ack the received FIN and
   4368		 * enter the CLOSING state.
   4369		 */
   4370		tcp_send_ack(sk);
   4371		tcp_set_state(sk, TCP_CLOSING);
   4372		break;
   4373	case TCP_FIN_WAIT2:
   4374		/* Received a FIN -- send ACK and enter TIME_WAIT. */
   4375		tcp_send_ack(sk);
   4376		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
   4377		break;
   4378	default:
   4379		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
   4380		 * cases we should never reach this piece of code.
   4381		 */
   4382		pr_err("%s: Impossible, sk->sk_state=%d\n",
   4383		       __func__, sk->sk_state);
   4384		break;
   4385	}
   4386
   4387	/* It _is_ possible, that we have something out-of-order _after_ FIN.
   4388	 * Probably, we should reset in this case. For now drop them.
   4389	 */
   4390	skb_rbtree_purge(&tp->out_of_order_queue);
   4391	if (tcp_is_sack(tp))
   4392		tcp_sack_reset(&tp->rx_opt);
   4393	sk_mem_reclaim(sk);
   4394
   4395	if (!sock_flag(sk, SOCK_DEAD)) {
   4396		sk->sk_state_change(sk);
   4397
   4398		/* Do not send POLL_HUP for half duplex close. */
   4399		if (sk->sk_shutdown == SHUTDOWN_MASK ||
   4400		    sk->sk_state == TCP_CLOSE)
   4401			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
   4402		else
   4403			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
   4404	}
   4405}
   4406
   4407static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
   4408				  u32 end_seq)
   4409{
   4410	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
   4411		if (before(seq, sp->start_seq))
   4412			sp->start_seq = seq;
   4413		if (after(end_seq, sp->end_seq))
   4414			sp->end_seq = end_seq;
   4415		return true;
   4416	}
   4417	return false;
   4418}
   4419
   4420static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
   4421{
   4422	struct tcp_sock *tp = tcp_sk(sk);
   4423
   4424	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
   4425		int mib_idx;
   4426
   4427		if (before(seq, tp->rcv_nxt))
   4428			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
   4429		else
   4430			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
   4431
   4432		NET_INC_STATS(sock_net(sk), mib_idx);
   4433
   4434		tp->rx_opt.dsack = 1;
   4435		tp->duplicate_sack[0].start_seq = seq;
   4436		tp->duplicate_sack[0].end_seq = end_seq;
   4437	}
   4438}
   4439
   4440static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
   4441{
   4442	struct tcp_sock *tp = tcp_sk(sk);
   4443
   4444	if (!tp->rx_opt.dsack)
   4445		tcp_dsack_set(sk, seq, end_seq);
   4446	else
   4447		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
   4448}
   4449
   4450static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
   4451{
   4452	/* When the ACK path fails or drops most ACKs, the sender would
   4453	 * timeout and spuriously retransmit the same segment repeatedly.
   4454	 * The receiver remembers and reflects via DSACKs. Leverage the
   4455	 * DSACK state and change the txhash to re-route speculatively.
   4456	 */
   4457	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
   4458	    sk_rethink_txhash(sk))
   4459		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
   4460}
   4461
   4462static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
   4463{
   4464	struct tcp_sock *tp = tcp_sk(sk);
   4465
   4466	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
   4467	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
   4468		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
   4469		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
   4470
   4471		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
   4472			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
   4473
   4474			tcp_rcv_spurious_retrans(sk, skb);
   4475			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
   4476				end_seq = tp->rcv_nxt;
   4477			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
   4478		}
   4479	}
   4480
   4481	tcp_send_ack(sk);
   4482}
   4483
   4484/* These routines update the SACK block as out-of-order packets arrive or
   4485 * in-order packets close up the sequence space.
   4486 */
   4487static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
   4488{
   4489	int this_sack;
   4490	struct tcp_sack_block *sp = &tp->selective_acks[0];
   4491	struct tcp_sack_block *swalk = sp + 1;
   4492
   4493	/* See if the recent change to the first SACK eats into
   4494	 * or hits the sequence space of other SACK blocks, if so coalesce.
   4495	 */
   4496	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
   4497		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
   4498			int i;
   4499
   4500			/* Zap SWALK, by moving every further SACK up by one slot.
   4501			 * Decrease num_sacks.
   4502			 */
   4503			tp->rx_opt.num_sacks--;
   4504			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
   4505				sp[i] = sp[i + 1];
   4506			continue;
   4507		}
   4508		this_sack++;
   4509		swalk++;
   4510	}
   4511}
   4512
   4513static void tcp_sack_compress_send_ack(struct sock *sk)
   4514{
   4515	struct tcp_sock *tp = tcp_sk(sk);
   4516
   4517	if (!tp->compressed_ack)
   4518		return;
   4519
   4520	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
   4521		__sock_put(sk);
   4522
   4523	/* Since we have to send one ack finally,
   4524	 * substract one from tp->compressed_ack to keep
   4525	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
   4526	 */
   4527	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
   4528		      tp->compressed_ack - 1);
   4529
   4530	tp->compressed_ack = 0;
   4531	tcp_send_ack(sk);
   4532}
   4533
   4534/* Reasonable amount of sack blocks included in TCP SACK option
   4535 * The max is 4, but this becomes 3 if TCP timestamps are there.
   4536 * Given that SACK packets might be lost, be conservative and use 2.
   4537 */
   4538#define TCP_SACK_BLOCKS_EXPECTED 2
   4539
   4540static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
   4541{
   4542	struct tcp_sock *tp = tcp_sk(sk);
   4543	struct tcp_sack_block *sp = &tp->selective_acks[0];
   4544	int cur_sacks = tp->rx_opt.num_sacks;
   4545	int this_sack;
   4546
   4547	if (!cur_sacks)
   4548		goto new_sack;
   4549
   4550	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
   4551		if (tcp_sack_extend(sp, seq, end_seq)) {
   4552			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
   4553				tcp_sack_compress_send_ack(sk);
   4554			/* Rotate this_sack to the first one. */
   4555			for (; this_sack > 0; this_sack--, sp--)
   4556				swap(*sp, *(sp - 1));
   4557			if (cur_sacks > 1)
   4558				tcp_sack_maybe_coalesce(tp);
   4559			return;
   4560		}
   4561	}
   4562
   4563	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
   4564		tcp_sack_compress_send_ack(sk);
   4565
   4566	/* Could not find an adjacent existing SACK, build a new one,
   4567	 * put it at the front, and shift everyone else down.  We
   4568	 * always know there is at least one SACK present already here.
   4569	 *
   4570	 * If the sack array is full, forget about the last one.
   4571	 */
   4572	if (this_sack >= TCP_NUM_SACKS) {
   4573		this_sack--;
   4574		tp->rx_opt.num_sacks--;
   4575		sp--;
   4576	}
   4577	for (; this_sack > 0; this_sack--, sp--)
   4578		*sp = *(sp - 1);
   4579
   4580new_sack:
   4581	/* Build the new head SACK, and we're done. */
   4582	sp->start_seq = seq;
   4583	sp->end_seq = end_seq;
   4584	tp->rx_opt.num_sacks++;
   4585}
   4586
   4587/* RCV.NXT advances, some SACKs should be eaten. */
   4588
   4589static void tcp_sack_remove(struct tcp_sock *tp)
   4590{
   4591	struct tcp_sack_block *sp = &tp->selective_acks[0];
   4592	int num_sacks = tp->rx_opt.num_sacks;
   4593	int this_sack;
   4594
   4595	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
   4596	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
   4597		tp->rx_opt.num_sacks = 0;
   4598		return;
   4599	}
   4600
   4601	for (this_sack = 0; this_sack < num_sacks;) {
   4602		/* Check if the start of the sack is covered by RCV.NXT. */
   4603		if (!before(tp->rcv_nxt, sp->start_seq)) {
   4604			int i;
   4605
   4606			/* RCV.NXT must cover all the block! */
   4607			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
   4608
   4609			/* Zap this SACK, by moving forward any other SACKS. */
   4610			for (i = this_sack+1; i < num_sacks; i++)
   4611				tp->selective_acks[i-1] = tp->selective_acks[i];
   4612			num_sacks--;
   4613			continue;
   4614		}
   4615		this_sack++;
   4616		sp++;
   4617	}
   4618	tp->rx_opt.num_sacks = num_sacks;
   4619}
   4620
   4621/**
   4622 * tcp_try_coalesce - try to merge skb to prior one
   4623 * @sk: socket
   4624 * @to: prior buffer
   4625 * @from: buffer to add in queue
   4626 * @fragstolen: pointer to boolean
   4627 *
   4628 * Before queueing skb @from after @to, try to merge them
   4629 * to reduce overall memory use and queue lengths, if cost is small.
   4630 * Packets in ofo or receive queues can stay a long time.
   4631 * Better try to coalesce them right now to avoid future collapses.
   4632 * Returns true if caller should free @from instead of queueing it
   4633 */
   4634static bool tcp_try_coalesce(struct sock *sk,
   4635			     struct sk_buff *to,
   4636			     struct sk_buff *from,
   4637			     bool *fragstolen)
   4638{
   4639	int delta;
   4640
   4641	*fragstolen = false;
   4642
   4643	/* Its possible this segment overlaps with prior segment in queue */
   4644	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
   4645		return false;
   4646
   4647	if (!mptcp_skb_can_collapse(to, from))
   4648		return false;
   4649
   4650#ifdef CONFIG_TLS_DEVICE
   4651	if (from->decrypted != to->decrypted)
   4652		return false;
   4653#endif
   4654
   4655	if (!skb_try_coalesce(to, from, fragstolen, &delta))
   4656		return false;
   4657
   4658	atomic_add(delta, &sk->sk_rmem_alloc);
   4659	sk_mem_charge(sk, delta);
   4660	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
   4661	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
   4662	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
   4663	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
   4664
   4665	if (TCP_SKB_CB(from)->has_rxtstamp) {
   4666		TCP_SKB_CB(to)->has_rxtstamp = true;
   4667		to->tstamp = from->tstamp;
   4668		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
   4669	}
   4670
   4671	return true;
   4672}
   4673
   4674static bool tcp_ooo_try_coalesce(struct sock *sk,
   4675			     struct sk_buff *to,
   4676			     struct sk_buff *from,
   4677			     bool *fragstolen)
   4678{
   4679	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
   4680
   4681	/* In case tcp_drop_reason() is called later, update to->gso_segs */
   4682	if (res) {
   4683		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
   4684			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
   4685
   4686		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
   4687	}
   4688	return res;
   4689}
   4690
   4691static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
   4692			    enum skb_drop_reason reason)
   4693{
   4694	sk_drops_add(sk, skb);
   4695	kfree_skb_reason(skb, reason);
   4696}
   4697
   4698/* This one checks to see if we can put data from the
   4699 * out_of_order queue into the receive_queue.
   4700 */
   4701static void tcp_ofo_queue(struct sock *sk)
   4702{
   4703	struct tcp_sock *tp = tcp_sk(sk);
   4704	__u32 dsack_high = tp->rcv_nxt;
   4705	bool fin, fragstolen, eaten;
   4706	struct sk_buff *skb, *tail;
   4707	struct rb_node *p;
   4708
   4709	p = rb_first(&tp->out_of_order_queue);
   4710	while (p) {
   4711		skb = rb_to_skb(p);
   4712		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
   4713			break;
   4714
   4715		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
   4716			__u32 dsack = dsack_high;
   4717			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
   4718				dsack_high = TCP_SKB_CB(skb)->end_seq;
   4719			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
   4720		}
   4721		p = rb_next(p);
   4722		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
   4723
   4724		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
   4725			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
   4726			continue;
   4727		}
   4728
   4729		tail = skb_peek_tail(&sk->sk_receive_queue);
   4730		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
   4731		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
   4732		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
   4733		if (!eaten)
   4734			__skb_queue_tail(&sk->sk_receive_queue, skb);
   4735		else
   4736			kfree_skb_partial(skb, fragstolen);
   4737
   4738		if (unlikely(fin)) {
   4739			tcp_fin(sk);
   4740			/* tcp_fin() purges tp->out_of_order_queue,
   4741			 * so we must end this loop right now.
   4742			 */
   4743			break;
   4744		}
   4745	}
   4746}
   4747
   4748static bool tcp_prune_ofo_queue(struct sock *sk);
   4749static int tcp_prune_queue(struct sock *sk);
   4750
   4751static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
   4752				 unsigned int size)
   4753{
   4754	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
   4755	    !sk_rmem_schedule(sk, skb, size)) {
   4756
   4757		if (tcp_prune_queue(sk) < 0)
   4758			return -1;
   4759
   4760		while (!sk_rmem_schedule(sk, skb, size)) {
   4761			if (!tcp_prune_ofo_queue(sk))
   4762				return -1;
   4763		}
   4764	}
   4765	return 0;
   4766}
   4767
   4768static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
   4769{
   4770	struct tcp_sock *tp = tcp_sk(sk);
   4771	struct rb_node **p, *parent;
   4772	struct sk_buff *skb1;
   4773	u32 seq, end_seq;
   4774	bool fragstolen;
   4775
   4776	tcp_ecn_check_ce(sk, skb);
   4777
   4778	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
   4779		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
   4780		sk->sk_data_ready(sk);
   4781		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
   4782		return;
   4783	}
   4784
   4785	/* Disable header prediction. */
   4786	tp->pred_flags = 0;
   4787	inet_csk_schedule_ack(sk);
   4788
   4789	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
   4790	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
   4791	seq = TCP_SKB_CB(skb)->seq;
   4792	end_seq = TCP_SKB_CB(skb)->end_seq;
   4793
   4794	p = &tp->out_of_order_queue.rb_node;
   4795	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
   4796		/* Initial out of order segment, build 1 SACK. */
   4797		if (tcp_is_sack(tp)) {
   4798			tp->rx_opt.num_sacks = 1;
   4799			tp->selective_acks[0].start_seq = seq;
   4800			tp->selective_acks[0].end_seq = end_seq;
   4801		}
   4802		rb_link_node(&skb->rbnode, NULL, p);
   4803		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
   4804		tp->ooo_last_skb = skb;
   4805		goto end;
   4806	}
   4807
   4808	/* In the typical case, we are adding an skb to the end of the list.
   4809	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
   4810	 */
   4811	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
   4812				 skb, &fragstolen)) {
   4813coalesce_done:
   4814		/* For non sack flows, do not grow window to force DUPACK
   4815		 * and trigger fast retransmit.
   4816		 */
   4817		if (tcp_is_sack(tp))
   4818			tcp_grow_window(sk, skb, true);
   4819		kfree_skb_partial(skb, fragstolen);
   4820		skb = NULL;
   4821		goto add_sack;
   4822	}
   4823	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
   4824	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
   4825		parent = &tp->ooo_last_skb->rbnode;
   4826		p = &parent->rb_right;
   4827		goto insert;
   4828	}
   4829
   4830	/* Find place to insert this segment. Handle overlaps on the way. */
   4831	parent = NULL;
   4832	while (*p) {
   4833		parent = *p;
   4834		skb1 = rb_to_skb(parent);
   4835		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
   4836			p = &parent->rb_left;
   4837			continue;
   4838		}
   4839		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
   4840			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
   4841				/* All the bits are present. Drop. */
   4842				NET_INC_STATS(sock_net(sk),
   4843					      LINUX_MIB_TCPOFOMERGE);
   4844				tcp_drop_reason(sk, skb,
   4845						SKB_DROP_REASON_TCP_OFOMERGE);
   4846				skb = NULL;
   4847				tcp_dsack_set(sk, seq, end_seq);
   4848				goto add_sack;
   4849			}
   4850			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
   4851				/* Partial overlap. */
   4852				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
   4853			} else {
   4854				/* skb's seq == skb1's seq and skb covers skb1.
   4855				 * Replace skb1 with skb.
   4856				 */
   4857				rb_replace_node(&skb1->rbnode, &skb->rbnode,
   4858						&tp->out_of_order_queue);
   4859				tcp_dsack_extend(sk,
   4860						 TCP_SKB_CB(skb1)->seq,
   4861						 TCP_SKB_CB(skb1)->end_seq);
   4862				NET_INC_STATS(sock_net(sk),
   4863					      LINUX_MIB_TCPOFOMERGE);
   4864				tcp_drop_reason(sk, skb1,
   4865						SKB_DROP_REASON_TCP_OFOMERGE);
   4866				goto merge_right;
   4867			}
   4868		} else if (tcp_ooo_try_coalesce(sk, skb1,
   4869						skb, &fragstolen)) {
   4870			goto coalesce_done;
   4871		}
   4872		p = &parent->rb_right;
   4873	}
   4874insert:
   4875	/* Insert segment into RB tree. */
   4876	rb_link_node(&skb->rbnode, parent, p);
   4877	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
   4878
   4879merge_right:
   4880	/* Remove other segments covered by skb. */
   4881	while ((skb1 = skb_rb_next(skb)) != NULL) {
   4882		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
   4883			break;
   4884		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
   4885			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
   4886					 end_seq);
   4887			break;
   4888		}
   4889		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
   4890		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
   4891				 TCP_SKB_CB(skb1)->end_seq);
   4892		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
   4893		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
   4894	}
   4895	/* If there is no skb after us, we are the last_skb ! */
   4896	if (!skb1)
   4897		tp->ooo_last_skb = skb;
   4898
   4899add_sack:
   4900	if (tcp_is_sack(tp))
   4901		tcp_sack_new_ofo_skb(sk, seq, end_seq);
   4902end:
   4903	if (skb) {
   4904		/* For non sack flows, do not grow window to force DUPACK
   4905		 * and trigger fast retransmit.
   4906		 */
   4907		if (tcp_is_sack(tp))
   4908			tcp_grow_window(sk, skb, false);
   4909		skb_condense(skb);
   4910		skb_set_owner_r(skb, sk);
   4911	}
   4912}
   4913
   4914static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
   4915				      bool *fragstolen)
   4916{
   4917	int eaten;
   4918	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
   4919
   4920	eaten = (tail &&
   4921		 tcp_try_coalesce(sk, tail,
   4922				  skb, fragstolen)) ? 1 : 0;
   4923	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
   4924	if (!eaten) {
   4925		__skb_queue_tail(&sk->sk_receive_queue, skb);
   4926		skb_set_owner_r(skb, sk);
   4927	}
   4928	return eaten;
   4929}
   4930
   4931int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
   4932{
   4933	struct sk_buff *skb;
   4934	int err = -ENOMEM;
   4935	int data_len = 0;
   4936	bool fragstolen;
   4937
   4938	if (size == 0)
   4939		return 0;
   4940
   4941	if (size > PAGE_SIZE) {
   4942		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
   4943
   4944		data_len = npages << PAGE_SHIFT;
   4945		size = data_len + (size & ~PAGE_MASK);
   4946	}
   4947	skb = alloc_skb_with_frags(size - data_len, data_len,
   4948				   PAGE_ALLOC_COSTLY_ORDER,
   4949				   &err, sk->sk_allocation);
   4950	if (!skb)
   4951		goto err;
   4952
   4953	skb_put(skb, size - data_len);
   4954	skb->data_len = data_len;
   4955	skb->len = size;
   4956
   4957	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
   4958		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
   4959		goto err_free;
   4960	}
   4961
   4962	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
   4963	if (err)
   4964		goto err_free;
   4965
   4966	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
   4967	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
   4968	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
   4969
   4970	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
   4971		WARN_ON_ONCE(fragstolen); /* should not happen */
   4972		__kfree_skb(skb);
   4973	}
   4974	return size;
   4975
   4976err_free:
   4977	kfree_skb(skb);
   4978err:
   4979	return err;
   4980
   4981}
   4982
   4983void tcp_data_ready(struct sock *sk)
   4984{
   4985	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
   4986		sk->sk_data_ready(sk);
   4987}
   4988
   4989static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
   4990{
   4991	struct tcp_sock *tp = tcp_sk(sk);
   4992	enum skb_drop_reason reason;
   4993	bool fragstolen;
   4994	int eaten;
   4995
   4996	/* If a subflow has been reset, the packet should not continue
   4997	 * to be processed, drop the packet.
   4998	 */
   4999	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
   5000		__kfree_skb(skb);
   5001		return;
   5002	}
   5003
   5004	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
   5005		__kfree_skb(skb);
   5006		return;
   5007	}
   5008	skb_dst_drop(skb);
   5009	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
   5010
   5011	reason = SKB_DROP_REASON_NOT_SPECIFIED;
   5012	tp->rx_opt.dsack = 0;
   5013
   5014	/*  Queue data for delivery to the user.
   5015	 *  Packets in sequence go to the receive queue.
   5016	 *  Out of sequence packets to the out_of_order_queue.
   5017	 */
   5018	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
   5019		if (tcp_receive_window(tp) == 0) {
   5020			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
   5021			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
   5022			goto out_of_window;
   5023		}
   5024
   5025		/* Ok. In sequence. In window. */
   5026queue_and_out:
   5027		if (skb_queue_len(&sk->sk_receive_queue) == 0)
   5028			sk_forced_mem_schedule(sk, skb->truesize);
   5029		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
   5030			reason = SKB_DROP_REASON_PROTO_MEM;
   5031			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
   5032			sk->sk_data_ready(sk);
   5033			goto drop;
   5034		}
   5035
   5036		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
   5037		if (skb->len)
   5038			tcp_event_data_recv(sk, skb);
   5039		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
   5040			tcp_fin(sk);
   5041
   5042		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
   5043			tcp_ofo_queue(sk);
   5044
   5045			/* RFC5681. 4.2. SHOULD send immediate ACK, when
   5046			 * gap in queue is filled.
   5047			 */
   5048			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
   5049				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
   5050		}
   5051
   5052		if (tp->rx_opt.num_sacks)
   5053			tcp_sack_remove(tp);
   5054
   5055		tcp_fast_path_check(sk);
   5056
   5057		if (eaten > 0)
   5058			kfree_skb_partial(skb, fragstolen);
   5059		if (!sock_flag(sk, SOCK_DEAD))
   5060			tcp_data_ready(sk);
   5061		return;
   5062	}
   5063
   5064	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
   5065		tcp_rcv_spurious_retrans(sk, skb);
   5066		/* A retransmit, 2nd most common case.  Force an immediate ack. */
   5067		reason = SKB_DROP_REASON_TCP_OLD_DATA;
   5068		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
   5069		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
   5070
   5071out_of_window:
   5072		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
   5073		inet_csk_schedule_ack(sk);
   5074drop:
   5075		tcp_drop_reason(sk, skb, reason);
   5076		return;
   5077	}
   5078
   5079	/* Out of window. F.e. zero window probe. */
   5080	if (!before(TCP_SKB_CB(skb)->seq,
   5081		    tp->rcv_nxt + tcp_receive_window(tp))) {
   5082		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
   5083		goto out_of_window;
   5084	}
   5085
   5086	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
   5087		/* Partial packet, seq < rcv_next < end_seq */
   5088		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
   5089
   5090		/* If window is closed, drop tail of packet. But after
   5091		 * remembering D-SACK for its head made in previous line.
   5092		 */
   5093		if (!tcp_receive_window(tp)) {
   5094			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
   5095			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
   5096			goto out_of_window;
   5097		}
   5098		goto queue_and_out;
   5099	}
   5100
   5101	tcp_data_queue_ofo(sk, skb);
   5102}
   5103
   5104static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
   5105{
   5106	if (list)
   5107		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
   5108
   5109	return skb_rb_next(skb);
   5110}
   5111
   5112static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
   5113					struct sk_buff_head *list,
   5114					struct rb_root *root)
   5115{
   5116	struct sk_buff *next = tcp_skb_next(skb, list);
   5117
   5118	if (list)
   5119		__skb_unlink(skb, list);
   5120	else
   5121		rb_erase(&skb->rbnode, root);
   5122
   5123	__kfree_skb(skb);
   5124	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
   5125
   5126	return next;
   5127}
   5128
   5129/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
   5130void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
   5131{
   5132	struct rb_node **p = &root->rb_node;
   5133	struct rb_node *parent = NULL;
   5134	struct sk_buff *skb1;
   5135
   5136	while (*p) {
   5137		parent = *p;
   5138		skb1 = rb_to_skb(parent);
   5139		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
   5140			p = &parent->rb_left;
   5141		else
   5142			p = &parent->rb_right;
   5143	}
   5144	rb_link_node(&skb->rbnode, parent, p);
   5145	rb_insert_color(&skb->rbnode, root);
   5146}
   5147
   5148/* Collapse contiguous sequence of skbs head..tail with
   5149 * sequence numbers start..end.
   5150 *
   5151 * If tail is NULL, this means until the end of the queue.
   5152 *
   5153 * Segments with FIN/SYN are not collapsed (only because this
   5154 * simplifies code)
   5155 */
   5156static void
   5157tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
   5158	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
   5159{
   5160	struct sk_buff *skb = head, *n;
   5161	struct sk_buff_head tmp;
   5162	bool end_of_skbs;
   5163
   5164	/* First, check that queue is collapsible and find
   5165	 * the point where collapsing can be useful.
   5166	 */
   5167restart:
   5168	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
   5169		n = tcp_skb_next(skb, list);
   5170
   5171		/* No new bits? It is possible on ofo queue. */
   5172		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
   5173			skb = tcp_collapse_one(sk, skb, list, root);
   5174			if (!skb)
   5175				break;
   5176			goto restart;
   5177		}
   5178
   5179		/* The first skb to collapse is:
   5180		 * - not SYN/FIN and
   5181		 * - bloated or contains data before "start" or
   5182		 *   overlaps to the next one and mptcp allow collapsing.
   5183		 */
   5184		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
   5185		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
   5186		     before(TCP_SKB_CB(skb)->seq, start))) {
   5187			end_of_skbs = false;
   5188			break;
   5189		}
   5190
   5191		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
   5192		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
   5193			end_of_skbs = false;
   5194			break;
   5195		}
   5196
   5197		/* Decided to skip this, advance start seq. */
   5198		start = TCP_SKB_CB(skb)->end_seq;
   5199	}
   5200	if (end_of_skbs ||
   5201	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
   5202		return;
   5203
   5204	__skb_queue_head_init(&tmp);
   5205
   5206	while (before(start, end)) {
   5207		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
   5208		struct sk_buff *nskb;
   5209
   5210		nskb = alloc_skb(copy, GFP_ATOMIC);
   5211		if (!nskb)
   5212			break;
   5213
   5214		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
   5215#ifdef CONFIG_TLS_DEVICE
   5216		nskb->decrypted = skb->decrypted;
   5217#endif
   5218		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
   5219		if (list)
   5220			__skb_queue_before(list, skb, nskb);
   5221		else
   5222			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
   5223		skb_set_owner_r(nskb, sk);
   5224		mptcp_skb_ext_move(nskb, skb);
   5225
   5226		/* Copy data, releasing collapsed skbs. */
   5227		while (copy > 0) {
   5228			int offset = start - TCP_SKB_CB(skb)->seq;
   5229			int size = TCP_SKB_CB(skb)->end_seq - start;
   5230
   5231			BUG_ON(offset < 0);
   5232			if (size > 0) {
   5233				size = min(copy, size);
   5234				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
   5235					BUG();
   5236				TCP_SKB_CB(nskb)->end_seq += size;
   5237				copy -= size;
   5238				start += size;
   5239			}
   5240			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
   5241				skb = tcp_collapse_one(sk, skb, list, root);
   5242				if (!skb ||
   5243				    skb == tail ||
   5244				    !mptcp_skb_can_collapse(nskb, skb) ||
   5245				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
   5246					goto end;
   5247#ifdef CONFIG_TLS_DEVICE
   5248				if (skb->decrypted != nskb->decrypted)
   5249					goto end;
   5250#endif
   5251			}
   5252		}
   5253	}
   5254end:
   5255	skb_queue_walk_safe(&tmp, skb, n)
   5256		tcp_rbtree_insert(root, skb);
   5257}
   5258
   5259/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
   5260 * and tcp_collapse() them until all the queue is collapsed.
   5261 */
   5262static void tcp_collapse_ofo_queue(struct sock *sk)
   5263{
   5264	struct tcp_sock *tp = tcp_sk(sk);
   5265	u32 range_truesize, sum_tiny = 0;
   5266	struct sk_buff *skb, *head;
   5267	u32 start, end;
   5268
   5269	skb = skb_rb_first(&tp->out_of_order_queue);
   5270new_range:
   5271	if (!skb) {
   5272		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
   5273		return;
   5274	}
   5275	start = TCP_SKB_CB(skb)->seq;
   5276	end = TCP_SKB_CB(skb)->end_seq;
   5277	range_truesize = skb->truesize;
   5278
   5279	for (head = skb;;) {
   5280		skb = skb_rb_next(skb);
   5281
   5282		/* Range is terminated when we see a gap or when
   5283		 * we are at the queue end.
   5284		 */
   5285		if (!skb ||
   5286		    after(TCP_SKB_CB(skb)->seq, end) ||
   5287		    before(TCP_SKB_CB(skb)->end_seq, start)) {
   5288			/* Do not attempt collapsing tiny skbs */
   5289			if (range_truesize != head->truesize ||
   5290			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
   5291				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
   5292					     head, skb, start, end);
   5293			} else {
   5294				sum_tiny += range_truesize;
   5295				if (sum_tiny > sk->sk_rcvbuf >> 3)
   5296					return;
   5297			}
   5298			goto new_range;
   5299		}
   5300
   5301		range_truesize += skb->truesize;
   5302		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
   5303			start = TCP_SKB_CB(skb)->seq;
   5304		if (after(TCP_SKB_CB(skb)->end_seq, end))
   5305			end = TCP_SKB_CB(skb)->end_seq;
   5306	}
   5307}
   5308
   5309/*
   5310 * Clean the out-of-order queue to make room.
   5311 * We drop high sequences packets to :
   5312 * 1) Let a chance for holes to be filled.
   5313 * 2) not add too big latencies if thousands of packets sit there.
   5314 *    (But if application shrinks SO_RCVBUF, we could still end up
   5315 *     freeing whole queue here)
   5316 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
   5317 *
   5318 * Return true if queue has shrunk.
   5319 */
   5320static bool tcp_prune_ofo_queue(struct sock *sk)
   5321{
   5322	struct tcp_sock *tp = tcp_sk(sk);
   5323	struct rb_node *node, *prev;
   5324	int goal;
   5325
   5326	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
   5327		return false;
   5328
   5329	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
   5330	goal = sk->sk_rcvbuf >> 3;
   5331	node = &tp->ooo_last_skb->rbnode;
   5332	do {
   5333		prev = rb_prev(node);
   5334		rb_erase(node, &tp->out_of_order_queue);
   5335		goal -= rb_to_skb(node)->truesize;
   5336		tcp_drop_reason(sk, rb_to_skb(node),
   5337				SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
   5338		if (!prev || goal <= 0) {
   5339			sk_mem_reclaim(sk);
   5340			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
   5341			    !tcp_under_memory_pressure(sk))
   5342				break;
   5343			goal = sk->sk_rcvbuf >> 3;
   5344		}
   5345		node = prev;
   5346	} while (node);
   5347	tp->ooo_last_skb = rb_to_skb(prev);
   5348
   5349	/* Reset SACK state.  A conforming SACK implementation will
   5350	 * do the same at a timeout based retransmit.  When a connection
   5351	 * is in a sad state like this, we care only about integrity
   5352	 * of the connection not performance.
   5353	 */
   5354	if (tp->rx_opt.sack_ok)
   5355		tcp_sack_reset(&tp->rx_opt);
   5356	return true;
   5357}
   5358
   5359/* Reduce allocated memory if we can, trying to get
   5360 * the socket within its memory limits again.
   5361 *
   5362 * Return less than zero if we should start dropping frames
   5363 * until the socket owning process reads some of the data
   5364 * to stabilize the situation.
   5365 */
   5366static int tcp_prune_queue(struct sock *sk)
   5367{
   5368	struct tcp_sock *tp = tcp_sk(sk);
   5369
   5370	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
   5371
   5372	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
   5373		tcp_clamp_window(sk);
   5374	else if (tcp_under_memory_pressure(sk))
   5375		tcp_adjust_rcv_ssthresh(sk);
   5376
   5377	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
   5378		return 0;
   5379
   5380	tcp_collapse_ofo_queue(sk);
   5381	if (!skb_queue_empty(&sk->sk_receive_queue))
   5382		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
   5383			     skb_peek(&sk->sk_receive_queue),
   5384			     NULL,
   5385			     tp->copied_seq, tp->rcv_nxt);
   5386	sk_mem_reclaim(sk);
   5387
   5388	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
   5389		return 0;
   5390
   5391	/* Collapsing did not help, destructive actions follow.
   5392	 * This must not ever occur. */
   5393
   5394	tcp_prune_ofo_queue(sk);
   5395
   5396	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
   5397		return 0;
   5398
   5399	/* If we are really being abused, tell the caller to silently
   5400	 * drop receive data on the floor.  It will get retransmitted
   5401	 * and hopefully then we'll have sufficient space.
   5402	 */
   5403	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
   5404
   5405	/* Massive buffer overcommit. */
   5406	tp->pred_flags = 0;
   5407	return -1;
   5408}
   5409
   5410static bool tcp_should_expand_sndbuf(struct sock *sk)
   5411{
   5412	const struct tcp_sock *tp = tcp_sk(sk);
   5413
   5414	/* If the user specified a specific send buffer setting, do
   5415	 * not modify it.
   5416	 */
   5417	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
   5418		return false;
   5419
   5420	/* If we are under global TCP memory pressure, do not expand.  */
   5421	if (tcp_under_memory_pressure(sk)) {
   5422		int unused_mem = sk_unused_reserved_mem(sk);
   5423
   5424		/* Adjust sndbuf according to reserved mem. But make sure
   5425		 * it never goes below SOCK_MIN_SNDBUF.
   5426		 * See sk_stream_moderate_sndbuf() for more details.
   5427		 */
   5428		if (unused_mem > SOCK_MIN_SNDBUF)
   5429			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
   5430
   5431		return false;
   5432	}
   5433
   5434	/* If we are under soft global TCP memory pressure, do not expand.  */
   5435	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
   5436		return false;
   5437
   5438	/* If we filled the congestion window, do not expand.  */
   5439	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
   5440		return false;
   5441
   5442	return true;
   5443}
   5444
   5445static void tcp_new_space(struct sock *sk)
   5446{
   5447	struct tcp_sock *tp = tcp_sk(sk);
   5448
   5449	if (tcp_should_expand_sndbuf(sk)) {
   5450		tcp_sndbuf_expand(sk);
   5451		tp->snd_cwnd_stamp = tcp_jiffies32;
   5452	}
   5453
   5454	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
   5455}
   5456
   5457/* Caller made space either from:
   5458 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
   5459 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
   5460 *
   5461 * We might be able to generate EPOLLOUT to the application if:
   5462 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
   5463 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
   5464 *    small enough that tcp_stream_memory_free() decides it
   5465 *    is time to generate EPOLLOUT.
   5466 */
   5467void tcp_check_space(struct sock *sk)
   5468{
   5469	/* pairs with tcp_poll() */
   5470	smp_mb();
   5471	if (sk->sk_socket &&
   5472	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
   5473		tcp_new_space(sk);
   5474		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
   5475			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
   5476	}
   5477}
   5478
   5479static inline void tcp_data_snd_check(struct sock *sk)
   5480{
   5481	tcp_push_pending_frames(sk);
   5482	tcp_check_space(sk);
   5483}
   5484
   5485/*
   5486 * Check if sending an ack is needed.
   5487 */
   5488static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
   5489{
   5490	struct tcp_sock *tp = tcp_sk(sk);
   5491	unsigned long rtt, delay;
   5492
   5493	    /* More than one full frame received... */
   5494	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
   5495	     /* ... and right edge of window advances far enough.
   5496	      * (tcp_recvmsg() will send ACK otherwise).
   5497	      * If application uses SO_RCVLOWAT, we want send ack now if
   5498	      * we have not received enough bytes to satisfy the condition.
   5499	      */
   5500	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
   5501	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
   5502	    /* We ACK each frame or... */
   5503	    tcp_in_quickack_mode(sk) ||
   5504	    /* Protocol state mandates a one-time immediate ACK */
   5505	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
   5506send_now:
   5507		tcp_send_ack(sk);
   5508		return;
   5509	}
   5510
   5511	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
   5512		tcp_send_delayed_ack(sk);
   5513		return;
   5514	}
   5515
   5516	if (!tcp_is_sack(tp) ||
   5517	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
   5518		goto send_now;
   5519
   5520	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
   5521		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
   5522		tp->dup_ack_counter = 0;
   5523	}
   5524	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
   5525		tp->dup_ack_counter++;
   5526		goto send_now;
   5527	}
   5528	tp->compressed_ack++;
   5529	if (hrtimer_is_queued(&tp->compressed_ack_timer))
   5530		return;
   5531
   5532	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
   5533
   5534	rtt = tp->rcv_rtt_est.rtt_us;
   5535	if (tp->srtt_us && tp->srtt_us < rtt)
   5536		rtt = tp->srtt_us;
   5537
   5538	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
   5539		      rtt * (NSEC_PER_USEC >> 3)/20);
   5540	sock_hold(sk);
   5541	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
   5542			       sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
   5543			       HRTIMER_MODE_REL_PINNED_SOFT);
   5544}
   5545
   5546static inline void tcp_ack_snd_check(struct sock *sk)
   5547{
   5548	if (!inet_csk_ack_scheduled(sk)) {
   5549		/* We sent a data segment already. */
   5550		return;
   5551	}
   5552	__tcp_ack_snd_check(sk, 1);
   5553}
   5554
   5555/*
   5556 *	This routine is only called when we have urgent data
   5557 *	signaled. Its the 'slow' part of tcp_urg. It could be
   5558 *	moved inline now as tcp_urg is only called from one
   5559 *	place. We handle URGent data wrong. We have to - as
   5560 *	BSD still doesn't use the correction from RFC961.
   5561 *	For 1003.1g we should support a new option TCP_STDURG to permit
   5562 *	either form (or just set the sysctl tcp_stdurg).
   5563 */
   5564
   5565static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
   5566{
   5567	struct tcp_sock *tp = tcp_sk(sk);
   5568	u32 ptr = ntohs(th->urg_ptr);
   5569
   5570	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
   5571		ptr--;
   5572	ptr += ntohl(th->seq);
   5573
   5574	/* Ignore urgent data that we've already seen and read. */
   5575	if (after(tp->copied_seq, ptr))
   5576		return;
   5577
   5578	/* Do not replay urg ptr.
   5579	 *
   5580	 * NOTE: interesting situation not covered by specs.
   5581	 * Misbehaving sender may send urg ptr, pointing to segment,
   5582	 * which we already have in ofo queue. We are not able to fetch
   5583	 * such data and will stay in TCP_URG_NOTYET until will be eaten
   5584	 * by recvmsg(). Seems, we are not obliged to handle such wicked
   5585	 * situations. But it is worth to think about possibility of some
   5586	 * DoSes using some hypothetical application level deadlock.
   5587	 */
   5588	if (before(ptr, tp->rcv_nxt))
   5589		return;
   5590
   5591	/* Do we already have a newer (or duplicate) urgent pointer? */
   5592	if (tp->urg_data && !after(ptr, tp->urg_seq))
   5593		return;
   5594
   5595	/* Tell the world about our new urgent pointer. */
   5596	sk_send_sigurg(sk);
   5597
   5598	/* We may be adding urgent data when the last byte read was
   5599	 * urgent. To do this requires some care. We cannot just ignore
   5600	 * tp->copied_seq since we would read the last urgent byte again
   5601	 * as data, nor can we alter copied_seq until this data arrives
   5602	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
   5603	 *
   5604	 * NOTE. Double Dutch. Rendering to plain English: author of comment
   5605	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
   5606	 * and expect that both A and B disappear from stream. This is _wrong_.
   5607	 * Though this happens in BSD with high probability, this is occasional.
   5608	 * Any application relying on this is buggy. Note also, that fix "works"
   5609	 * only in this artificial test. Insert some normal data between A and B and we will
   5610	 * decline of BSD again. Verdict: it is better to remove to trap
   5611	 * buggy users.
   5612	 */
   5613	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
   5614	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
   5615		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
   5616		tp->copied_seq++;
   5617		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
   5618			__skb_unlink(skb, &sk->sk_receive_queue);
   5619			__kfree_skb(skb);
   5620		}
   5621	}
   5622
   5623	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
   5624	WRITE_ONCE(tp->urg_seq, ptr);
   5625
   5626	/* Disable header prediction. */
   5627	tp->pred_flags = 0;
   5628}
   5629
   5630/* This is the 'fast' part of urgent handling. */
   5631static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
   5632{
   5633	struct tcp_sock *tp = tcp_sk(sk);
   5634
   5635	/* Check if we get a new urgent pointer - normally not. */
   5636	if (unlikely(th->urg))
   5637		tcp_check_urg(sk, th);
   5638
   5639	/* Do we wait for any urgent data? - normally not... */
   5640	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
   5641		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
   5642			  th->syn;
   5643
   5644		/* Is the urgent pointer pointing into this packet? */
   5645		if (ptr < skb->len) {
   5646			u8 tmp;
   5647			if (skb_copy_bits(skb, ptr, &tmp, 1))
   5648				BUG();
   5649			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
   5650			if (!sock_flag(sk, SOCK_DEAD))
   5651				sk->sk_data_ready(sk);
   5652		}
   5653	}
   5654}
   5655
   5656/* Accept RST for rcv_nxt - 1 after a FIN.
   5657 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
   5658 * FIN is sent followed by a RST packet. The RST is sent with the same
   5659 * sequence number as the FIN, and thus according to RFC 5961 a challenge
   5660 * ACK should be sent. However, Mac OSX rate limits replies to challenge
   5661 * ACKs on the closed socket. In addition middleboxes can drop either the
   5662 * challenge ACK or a subsequent RST.
   5663 */
   5664static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
   5665{
   5666	struct tcp_sock *tp = tcp_sk(sk);
   5667
   5668	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
   5669			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
   5670					       TCPF_CLOSING));
   5671}
   5672
   5673/* Does PAWS and seqno based validation of an incoming segment, flags will
   5674 * play significant role here.
   5675 */
   5676static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
   5677				  const struct tcphdr *th, int syn_inerr)
   5678{
   5679	struct tcp_sock *tp = tcp_sk(sk);
   5680	SKB_DR(reason);
   5681
   5682	/* RFC1323: H1. Apply PAWS check first. */
   5683	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
   5684	    tp->rx_opt.saw_tstamp &&
   5685	    tcp_paws_discard(sk, skb)) {
   5686		if (!th->rst) {
   5687			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
   5688			if (!tcp_oow_rate_limited(sock_net(sk), skb,
   5689						  LINUX_MIB_TCPACKSKIPPEDPAWS,
   5690						  &tp->last_oow_ack_time))
   5691				tcp_send_dupack(sk, skb);
   5692			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
   5693			goto discard;
   5694		}
   5695		/* Reset is accepted even if it did not pass PAWS. */
   5696	}
   5697
   5698	/* Step 1: check sequence number */
   5699	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
   5700		/* RFC793, page 37: "In all states except SYN-SENT, all reset
   5701		 * (RST) segments are validated by checking their SEQ-fields."
   5702		 * And page 69: "If an incoming segment is not acceptable,
   5703		 * an acknowledgment should be sent in reply (unless the RST
   5704		 * bit is set, if so drop the segment and return)".
   5705		 */
   5706		if (!th->rst) {
   5707			if (th->syn)
   5708				goto syn_challenge;
   5709			if (!tcp_oow_rate_limited(sock_net(sk), skb,
   5710						  LINUX_MIB_TCPACKSKIPPEDSEQ,
   5711						  &tp->last_oow_ack_time))
   5712				tcp_send_dupack(sk, skb);
   5713		} else if (tcp_reset_check(sk, skb)) {
   5714			goto reset;
   5715		}
   5716		SKB_DR_SET(reason, TCP_INVALID_SEQUENCE);
   5717		goto discard;
   5718	}
   5719
   5720	/* Step 2: check RST bit */
   5721	if (th->rst) {
   5722		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
   5723		 * FIN and SACK too if available):
   5724		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
   5725		 * the right-most SACK block,
   5726		 * then
   5727		 *     RESET the connection
   5728		 * else
   5729		 *     Send a challenge ACK
   5730		 */
   5731		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
   5732		    tcp_reset_check(sk, skb))
   5733			goto reset;
   5734
   5735		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
   5736			struct tcp_sack_block *sp = &tp->selective_acks[0];
   5737			int max_sack = sp[0].end_seq;
   5738			int this_sack;
   5739
   5740			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
   5741			     ++this_sack) {
   5742				max_sack = after(sp[this_sack].end_seq,
   5743						 max_sack) ?
   5744					sp[this_sack].end_seq : max_sack;
   5745			}
   5746
   5747			if (TCP_SKB_CB(skb)->seq == max_sack)
   5748				goto reset;
   5749		}
   5750
   5751		/* Disable TFO if RST is out-of-order
   5752		 * and no data has been received
   5753		 * for current active TFO socket
   5754		 */
   5755		if (tp->syn_fastopen && !tp->data_segs_in &&
   5756		    sk->sk_state == TCP_ESTABLISHED)
   5757			tcp_fastopen_active_disable(sk);
   5758		tcp_send_challenge_ack(sk);
   5759		SKB_DR_SET(reason, TCP_RESET);
   5760		goto discard;
   5761	}
   5762
   5763	/* step 3: check security and precedence [ignored] */
   5764
   5765	/* step 4: Check for a SYN
   5766	 * RFC 5961 4.2 : Send a challenge ack
   5767	 */
   5768	if (th->syn) {
   5769syn_challenge:
   5770		if (syn_inerr)
   5771			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
   5772		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
   5773		tcp_send_challenge_ack(sk);
   5774		SKB_DR_SET(reason, TCP_INVALID_SYN);
   5775		goto discard;
   5776	}
   5777
   5778	bpf_skops_parse_hdr(sk, skb);
   5779
   5780	return true;
   5781
   5782discard:
   5783	tcp_drop_reason(sk, skb, reason);
   5784	return false;
   5785
   5786reset:
   5787	tcp_reset(sk, skb);
   5788	__kfree_skb(skb);
   5789	return false;
   5790}
   5791
   5792/*
   5793 *	TCP receive function for the ESTABLISHED state.
   5794 *
   5795 *	It is split into a fast path and a slow path. The fast path is
   5796 * 	disabled when:
   5797 *	- A zero window was announced from us - zero window probing
   5798 *        is only handled properly in the slow path.
   5799 *	- Out of order segments arrived.
   5800 *	- Urgent data is expected.
   5801 *	- There is no buffer space left
   5802 *	- Unexpected TCP flags/window values/header lengths are received
   5803 *	  (detected by checking the TCP header against pred_flags)
   5804 *	- Data is sent in both directions. Fast path only supports pure senders
   5805 *	  or pure receivers (this means either the sequence number or the ack
   5806 *	  value must stay constant)
   5807 *	- Unexpected TCP option.
   5808 *
   5809 *	When these conditions are not satisfied it drops into a standard
   5810 *	receive procedure patterned after RFC793 to handle all cases.
   5811 *	The first three cases are guaranteed by proper pred_flags setting,
   5812 *	the rest is checked inline. Fast processing is turned on in
   5813 *	tcp_data_queue when everything is OK.
   5814 */
   5815void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
   5816{
   5817	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
   5818	const struct tcphdr *th = (const struct tcphdr *)skb->data;
   5819	struct tcp_sock *tp = tcp_sk(sk);
   5820	unsigned int len = skb->len;
   5821
   5822	/* TCP congestion window tracking */
   5823	trace_tcp_probe(sk, skb);
   5824
   5825	tcp_mstamp_refresh(tp);
   5826	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
   5827		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
   5828	/*
   5829	 *	Header prediction.
   5830	 *	The code loosely follows the one in the famous
   5831	 *	"30 instruction TCP receive" Van Jacobson mail.
   5832	 *
   5833	 *	Van's trick is to deposit buffers into socket queue
   5834	 *	on a device interrupt, to call tcp_recv function
   5835	 *	on the receive process context and checksum and copy
   5836	 *	the buffer to user space. smart...
   5837	 *
   5838	 *	Our current scheme is not silly either but we take the
   5839	 *	extra cost of the net_bh soft interrupt processing...
   5840	 *	We do checksum and copy also but from device to kernel.
   5841	 */
   5842
   5843	tp->rx_opt.saw_tstamp = 0;
   5844
   5845	/*	pred_flags is 0xS?10 << 16 + snd_wnd
   5846	 *	if header_prediction is to be made
   5847	 *	'S' will always be tp->tcp_header_len >> 2
   5848	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
   5849	 *  turn it off	(when there are holes in the receive
   5850	 *	 space for instance)
   5851	 *	PSH flag is ignored.
   5852	 */
   5853
   5854	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
   5855	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
   5856	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
   5857		int tcp_header_len = tp->tcp_header_len;
   5858
   5859		/* Timestamp header prediction: tcp_header_len
   5860		 * is automatically equal to th->doff*4 due to pred_flags
   5861		 * match.
   5862		 */
   5863
   5864		/* Check timestamp */
   5865		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
   5866			/* No? Slow path! */
   5867			if (!tcp_parse_aligned_timestamp(tp, th))
   5868				goto slow_path;
   5869
   5870			/* If PAWS failed, check it more carefully in slow path */
   5871			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
   5872				goto slow_path;
   5873
   5874			/* DO NOT update ts_recent here, if checksum fails
   5875			 * and timestamp was corrupted part, it will result
   5876			 * in a hung connection since we will drop all
   5877			 * future packets due to the PAWS test.
   5878			 */
   5879		}
   5880
   5881		if (len <= tcp_header_len) {
   5882			/* Bulk data transfer: sender */
   5883			if (len == tcp_header_len) {
   5884				/* Predicted packet is in window by definition.
   5885				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
   5886				 * Hence, check seq<=rcv_wup reduces to:
   5887				 */
   5888				if (tcp_header_len ==
   5889				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
   5890				    tp->rcv_nxt == tp->rcv_wup)
   5891					tcp_store_ts_recent(tp);
   5892
   5893				/* We know that such packets are checksummed
   5894				 * on entry.
   5895				 */
   5896				tcp_ack(sk, skb, 0);
   5897				__kfree_skb(skb);
   5898				tcp_data_snd_check(sk);
   5899				/* When receiving pure ack in fast path, update
   5900				 * last ts ecr directly instead of calling
   5901				 * tcp_rcv_rtt_measure_ts()
   5902				 */
   5903				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
   5904				return;
   5905			} else { /* Header too small */
   5906				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
   5907				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
   5908				goto discard;
   5909			}
   5910		} else {
   5911			int eaten = 0;
   5912			bool fragstolen = false;
   5913
   5914			if (tcp_checksum_complete(skb))
   5915				goto csum_error;
   5916
   5917			if ((int)skb->truesize > sk->sk_forward_alloc)
   5918				goto step5;
   5919
   5920			/* Predicted packet is in window by definition.
   5921			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
   5922			 * Hence, check seq<=rcv_wup reduces to:
   5923			 */
   5924			if (tcp_header_len ==
   5925			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
   5926			    tp->rcv_nxt == tp->rcv_wup)
   5927				tcp_store_ts_recent(tp);
   5928
   5929			tcp_rcv_rtt_measure_ts(sk, skb);
   5930
   5931			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
   5932
   5933			/* Bulk data transfer: receiver */
   5934			skb_dst_drop(skb);
   5935			__skb_pull(skb, tcp_header_len);
   5936			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
   5937
   5938			tcp_event_data_recv(sk, skb);
   5939
   5940			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
   5941				/* Well, only one small jumplet in fast path... */
   5942				tcp_ack(sk, skb, FLAG_DATA);
   5943				tcp_data_snd_check(sk);
   5944				if (!inet_csk_ack_scheduled(sk))
   5945					goto no_ack;
   5946			} else {
   5947				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
   5948			}
   5949
   5950			__tcp_ack_snd_check(sk, 0);
   5951no_ack:
   5952			if (eaten)
   5953				kfree_skb_partial(skb, fragstolen);
   5954			tcp_data_ready(sk);
   5955			return;
   5956		}
   5957	}
   5958
   5959slow_path:
   5960	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
   5961		goto csum_error;
   5962
   5963	if (!th->ack && !th->rst && !th->syn) {
   5964		reason = SKB_DROP_REASON_TCP_FLAGS;
   5965		goto discard;
   5966	}
   5967
   5968	/*
   5969	 *	Standard slow path.
   5970	 */
   5971
   5972	if (!tcp_validate_incoming(sk, skb, th, 1))
   5973		return;
   5974
   5975step5:
   5976	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
   5977	if ((int)reason < 0) {
   5978		reason = -reason;
   5979		goto discard;
   5980	}
   5981	tcp_rcv_rtt_measure_ts(sk, skb);
   5982
   5983	/* Process urgent data. */
   5984	tcp_urg(sk, skb, th);
   5985
   5986	/* step 7: process the segment text */
   5987	tcp_data_queue(sk, skb);
   5988
   5989	tcp_data_snd_check(sk);
   5990	tcp_ack_snd_check(sk);
   5991	return;
   5992
   5993csum_error:
   5994	reason = SKB_DROP_REASON_TCP_CSUM;
   5995	trace_tcp_bad_csum(skb);
   5996	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
   5997	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
   5998
   5999discard:
   6000	tcp_drop_reason(sk, skb, reason);
   6001}
   6002EXPORT_SYMBOL(tcp_rcv_established);
   6003
   6004void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
   6005{
   6006	struct inet_connection_sock *icsk = inet_csk(sk);
   6007	struct tcp_sock *tp = tcp_sk(sk);
   6008
   6009	tcp_mtup_init(sk);
   6010	icsk->icsk_af_ops->rebuild_header(sk);
   6011	tcp_init_metrics(sk);
   6012
   6013	/* Initialize the congestion window to start the transfer.
   6014	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
   6015	 * retransmitted. In light of RFC6298 more aggressive 1sec
   6016	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
   6017	 * retransmission has occurred.
   6018	 */
   6019	if (tp->total_retrans > 1 && tp->undo_marker)
   6020		tcp_snd_cwnd_set(tp, 1);
   6021	else
   6022		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
   6023	tp->snd_cwnd_stamp = tcp_jiffies32;
   6024
   6025	bpf_skops_established(sk, bpf_op, skb);
   6026	/* Initialize congestion control unless BPF initialized it already: */
   6027	if (!icsk->icsk_ca_initialized)
   6028		tcp_init_congestion_control(sk);
   6029	tcp_init_buffer_space(sk);
   6030}
   6031
   6032void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
   6033{
   6034	struct tcp_sock *tp = tcp_sk(sk);
   6035	struct inet_connection_sock *icsk = inet_csk(sk);
   6036
   6037	tcp_set_state(sk, TCP_ESTABLISHED);
   6038	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
   6039
   6040	if (skb) {
   6041		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
   6042		security_inet_conn_established(sk, skb);
   6043		sk_mark_napi_id(sk, skb);
   6044	}
   6045
   6046	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
   6047
   6048	/* Prevent spurious tcp_cwnd_restart() on first data
   6049	 * packet.
   6050	 */
   6051	tp->lsndtime = tcp_jiffies32;
   6052
   6053	if (sock_flag(sk, SOCK_KEEPOPEN))
   6054		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
   6055
   6056	if (!tp->rx_opt.snd_wscale)
   6057		__tcp_fast_path_on(tp, tp->snd_wnd);
   6058	else
   6059		tp->pred_flags = 0;
   6060}
   6061
   6062static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
   6063				    struct tcp_fastopen_cookie *cookie)
   6064{
   6065	struct tcp_sock *tp = tcp_sk(sk);
   6066	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
   6067	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
   6068	bool syn_drop = false;
   6069
   6070	if (mss == tp->rx_opt.user_mss) {
   6071		struct tcp_options_received opt;
   6072
   6073		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
   6074		tcp_clear_options(&opt);
   6075		opt.user_mss = opt.mss_clamp = 0;
   6076		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
   6077		mss = opt.mss_clamp;
   6078	}
   6079
   6080	if (!tp->syn_fastopen) {
   6081		/* Ignore an unsolicited cookie */
   6082		cookie->len = -1;
   6083	} else if (tp->total_retrans) {
   6084		/* SYN timed out and the SYN-ACK neither has a cookie nor
   6085		 * acknowledges data. Presumably the remote received only
   6086		 * the retransmitted (regular) SYNs: either the original
   6087		 * SYN-data or the corresponding SYN-ACK was dropped.
   6088		 */
   6089		syn_drop = (cookie->len < 0 && data);
   6090	} else if (cookie->len < 0 && !tp->syn_data) {
   6091		/* We requested a cookie but didn't get it. If we did not use
   6092		 * the (old) exp opt format then try so next time (try_exp=1).
   6093		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
   6094		 */
   6095		try_exp = tp->syn_fastopen_exp ? 2 : 1;
   6096	}
   6097
   6098	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
   6099
   6100	if (data) { /* Retransmit unacked data in SYN */
   6101		if (tp->total_retrans)
   6102			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
   6103		else
   6104			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
   6105		skb_rbtree_walk_from(data)
   6106			 tcp_mark_skb_lost(sk, data);
   6107		tcp_xmit_retransmit_queue(sk);
   6108		NET_INC_STATS(sock_net(sk),
   6109				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
   6110		return true;
   6111	}
   6112	tp->syn_data_acked = tp->syn_data;
   6113	if (tp->syn_data_acked) {
   6114		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
   6115		/* SYN-data is counted as two separate packets in tcp_ack() */
   6116		if (tp->delivered > 1)
   6117			--tp->delivered;
   6118	}
   6119
   6120	tcp_fastopen_add_skb(sk, synack);
   6121
   6122	return false;
   6123}
   6124
   6125static void smc_check_reset_syn(struct tcp_sock *tp)
   6126{
   6127#if IS_ENABLED(CONFIG_SMC)
   6128	if (static_branch_unlikely(&tcp_have_smc)) {
   6129		if (tp->syn_smc && !tp->rx_opt.smc_ok)
   6130			tp->syn_smc = 0;
   6131	}
   6132#endif
   6133}
   6134
   6135static void tcp_try_undo_spurious_syn(struct sock *sk)
   6136{
   6137	struct tcp_sock *tp = tcp_sk(sk);
   6138	u32 syn_stamp;
   6139
   6140	/* undo_marker is set when SYN or SYNACK times out. The timeout is
   6141	 * spurious if the ACK's timestamp option echo value matches the
   6142	 * original SYN timestamp.
   6143	 */
   6144	syn_stamp = tp->retrans_stamp;
   6145	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
   6146	    syn_stamp == tp->rx_opt.rcv_tsecr)
   6147		tp->undo_marker = 0;
   6148}
   6149
   6150static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
   6151					 const struct tcphdr *th)
   6152{
   6153	struct inet_connection_sock *icsk = inet_csk(sk);
   6154	struct tcp_sock *tp = tcp_sk(sk);
   6155	struct tcp_fastopen_cookie foc = { .len = -1 };
   6156	int saved_clamp = tp->rx_opt.mss_clamp;
   6157	bool fastopen_fail;
   6158	SKB_DR(reason);
   6159
   6160	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
   6161	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
   6162		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
   6163
   6164	if (th->ack) {
   6165		/* rfc793:
   6166		 * "If the state is SYN-SENT then
   6167		 *    first check the ACK bit
   6168		 *      If the ACK bit is set
   6169		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
   6170		 *        a reset (unless the RST bit is set, if so drop
   6171		 *        the segment and return)"
   6172		 */
   6173		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
   6174		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
   6175			/* Previous FIN/ACK or RST/ACK might be ignored. */
   6176			if (icsk->icsk_retransmits == 0)
   6177				inet_csk_reset_xmit_timer(sk,
   6178						ICSK_TIME_RETRANS,
   6179						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
   6180			goto reset_and_undo;
   6181		}
   6182
   6183		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
   6184		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
   6185			     tcp_time_stamp(tp))) {
   6186			NET_INC_STATS(sock_net(sk),
   6187					LINUX_MIB_PAWSACTIVEREJECTED);
   6188			goto reset_and_undo;
   6189		}
   6190
   6191		/* Now ACK is acceptable.
   6192		 *
   6193		 * "If the RST bit is set
   6194		 *    If the ACK was acceptable then signal the user "error:
   6195		 *    connection reset", drop the segment, enter CLOSED state,
   6196		 *    delete TCB, and return."
   6197		 */
   6198
   6199		if (th->rst) {
   6200			tcp_reset(sk, skb);
   6201consume:
   6202			__kfree_skb(skb);
   6203			return 0;
   6204		}
   6205
   6206		/* rfc793:
   6207		 *   "fifth, if neither of the SYN or RST bits is set then
   6208		 *    drop the segment and return."
   6209		 *
   6210		 *    See note below!
   6211		 *                                        --ANK(990513)
   6212		 */
   6213		if (!th->syn) {
   6214			SKB_DR_SET(reason, TCP_FLAGS);
   6215			goto discard_and_undo;
   6216		}
   6217		/* rfc793:
   6218		 *   "If the SYN bit is on ...
   6219		 *    are acceptable then ...
   6220		 *    (our SYN has been ACKed), change the connection
   6221		 *    state to ESTABLISHED..."
   6222		 */
   6223
   6224		tcp_ecn_rcv_synack(tp, th);
   6225
   6226		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
   6227		tcp_try_undo_spurious_syn(sk);
   6228		tcp_ack(sk, skb, FLAG_SLOWPATH);
   6229
   6230		/* Ok.. it's good. Set up sequence numbers and
   6231		 * move to established.
   6232		 */
   6233		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
   6234		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
   6235
   6236		/* RFC1323: The window in SYN & SYN/ACK segments is
   6237		 * never scaled.
   6238		 */
   6239		tp->snd_wnd = ntohs(th->window);
   6240
   6241		if (!tp->rx_opt.wscale_ok) {
   6242			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
   6243			tp->window_clamp = min(tp->window_clamp, 65535U);
   6244		}
   6245
   6246		if (tp->rx_opt.saw_tstamp) {
   6247			tp->rx_opt.tstamp_ok	   = 1;
   6248			tp->tcp_header_len =
   6249				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
   6250			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
   6251			tcp_store_ts_recent(tp);
   6252		} else {
   6253			tp->tcp_header_len = sizeof(struct tcphdr);
   6254		}
   6255
   6256		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
   6257		tcp_initialize_rcv_mss(sk);
   6258
   6259		/* Remember, tcp_poll() does not lock socket!
   6260		 * Change state from SYN-SENT only after copied_seq
   6261		 * is initialized. */
   6262		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
   6263
   6264		smc_check_reset_syn(tp);
   6265
   6266		smp_mb();
   6267
   6268		tcp_finish_connect(sk, skb);
   6269
   6270		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
   6271				tcp_rcv_fastopen_synack(sk, skb, &foc);
   6272
   6273		if (!sock_flag(sk, SOCK_DEAD)) {
   6274			sk->sk_state_change(sk);
   6275			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
   6276		}
   6277		if (fastopen_fail)
   6278			return -1;
   6279		if (sk->sk_write_pending ||
   6280		    icsk->icsk_accept_queue.rskq_defer_accept ||
   6281		    inet_csk_in_pingpong_mode(sk)) {
   6282			/* Save one ACK. Data will be ready after
   6283			 * several ticks, if write_pending is set.
   6284			 *
   6285			 * It may be deleted, but with this feature tcpdumps
   6286			 * look so _wonderfully_ clever, that I was not able
   6287			 * to stand against the temptation 8)     --ANK
   6288			 */
   6289			inet_csk_schedule_ack(sk);
   6290			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
   6291			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
   6292						  TCP_DELACK_MAX, TCP_RTO_MAX);
   6293			goto consume;
   6294		}
   6295		tcp_send_ack(sk);
   6296		return -1;
   6297	}
   6298
   6299	/* No ACK in the segment */
   6300
   6301	if (th->rst) {
   6302		/* rfc793:
   6303		 * "If the RST bit is set
   6304		 *
   6305		 *      Otherwise (no ACK) drop the segment and return."
   6306		 */
   6307		SKB_DR_SET(reason, TCP_RESET);
   6308		goto discard_and_undo;
   6309	}
   6310
   6311	/* PAWS check. */
   6312	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
   6313	    tcp_paws_reject(&tp->rx_opt, 0)) {
   6314		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
   6315		goto discard_and_undo;
   6316	}
   6317	if (th->syn) {
   6318		/* We see SYN without ACK. It is attempt of
   6319		 * simultaneous connect with crossed SYNs.
   6320		 * Particularly, it can be connect to self.
   6321		 */
   6322		tcp_set_state(sk, TCP_SYN_RECV);
   6323
   6324		if (tp->rx_opt.saw_tstamp) {
   6325			tp->rx_opt.tstamp_ok = 1;
   6326			tcp_store_ts_recent(tp);
   6327			tp->tcp_header_len =
   6328				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
   6329		} else {
   6330			tp->tcp_header_len = sizeof(struct tcphdr);
   6331		}
   6332
   6333		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
   6334		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
   6335		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
   6336
   6337		/* RFC1323: The window in SYN & SYN/ACK segments is
   6338		 * never scaled.
   6339		 */
   6340		tp->snd_wnd    = ntohs(th->window);
   6341		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
   6342		tp->max_window = tp->snd_wnd;
   6343
   6344		tcp_ecn_rcv_syn(tp, th);
   6345
   6346		tcp_mtup_init(sk);
   6347		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
   6348		tcp_initialize_rcv_mss(sk);
   6349
   6350		tcp_send_synack(sk);
   6351#if 0
   6352		/* Note, we could accept data and URG from this segment.
   6353		 * There are no obstacles to make this (except that we must
   6354		 * either change tcp_recvmsg() to prevent it from returning data
   6355		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
   6356		 *
   6357		 * However, if we ignore data in ACKless segments sometimes,
   6358		 * we have no reasons to accept it sometimes.
   6359		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
   6360		 * is not flawless. So, discard packet for sanity.
   6361		 * Uncomment this return to process the data.
   6362		 */
   6363		return -1;
   6364#else
   6365		goto consume;
   6366#endif
   6367	}
   6368	/* "fifth, if neither of the SYN or RST bits is set then
   6369	 * drop the segment and return."
   6370	 */
   6371
   6372discard_and_undo:
   6373	tcp_clear_options(&tp->rx_opt);
   6374	tp->rx_opt.mss_clamp = saved_clamp;
   6375	tcp_drop_reason(sk, skb, reason);
   6376	return 0;
   6377
   6378reset_and_undo:
   6379	tcp_clear_options(&tp->rx_opt);
   6380	tp->rx_opt.mss_clamp = saved_clamp;
   6381	return 1;
   6382}
   6383
   6384static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
   6385{
   6386	struct request_sock *req;
   6387
   6388	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
   6389	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
   6390	 */
   6391	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
   6392		tcp_try_undo_loss(sk, false);
   6393
   6394	/* Reset rtx states to prevent spurious retransmits_timed_out() */
   6395	tcp_sk(sk)->retrans_stamp = 0;
   6396	inet_csk(sk)->icsk_retransmits = 0;
   6397
   6398	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
   6399	 * we no longer need req so release it.
   6400	 */
   6401	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
   6402					lockdep_sock_is_held(sk));
   6403	reqsk_fastopen_remove(sk, req, false);
   6404
   6405	/* Re-arm the timer because data may have been sent out.
   6406	 * This is similar to the regular data transmission case
   6407	 * when new data has just been ack'ed.
   6408	 *
   6409	 * (TFO) - we could try to be more aggressive and
   6410	 * retransmitting any data sooner based on when they
   6411	 * are sent out.
   6412	 */
   6413	tcp_rearm_rto(sk);
   6414}
   6415
   6416/*
   6417 *	This function implements the receiving procedure of RFC 793 for
   6418 *	all states except ESTABLISHED and TIME_WAIT.
   6419 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
   6420 *	address independent.
   6421 */
   6422
   6423int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
   6424{
   6425	struct tcp_sock *tp = tcp_sk(sk);
   6426	struct inet_connection_sock *icsk = inet_csk(sk);
   6427	const struct tcphdr *th = tcp_hdr(skb);
   6428	struct request_sock *req;
   6429	int queued = 0;
   6430	bool acceptable;
   6431	SKB_DR(reason);
   6432
   6433	switch (sk->sk_state) {
   6434	case TCP_CLOSE:
   6435		SKB_DR_SET(reason, TCP_CLOSE);
   6436		goto discard;
   6437
   6438	case TCP_LISTEN:
   6439		if (th->ack)
   6440			return 1;
   6441
   6442		if (th->rst) {
   6443			SKB_DR_SET(reason, TCP_RESET);
   6444			goto discard;
   6445		}
   6446		if (th->syn) {
   6447			if (th->fin) {
   6448				SKB_DR_SET(reason, TCP_FLAGS);
   6449				goto discard;
   6450			}
   6451			/* It is possible that we process SYN packets from backlog,
   6452			 * so we need to make sure to disable BH and RCU right there.
   6453			 */
   6454			rcu_read_lock();
   6455			local_bh_disable();
   6456			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
   6457			local_bh_enable();
   6458			rcu_read_unlock();
   6459
   6460			if (!acceptable)
   6461				return 1;
   6462			consume_skb(skb);
   6463			return 0;
   6464		}
   6465		SKB_DR_SET(reason, TCP_FLAGS);
   6466		goto discard;
   6467
   6468	case TCP_SYN_SENT:
   6469		tp->rx_opt.saw_tstamp = 0;
   6470		tcp_mstamp_refresh(tp);
   6471		queued = tcp_rcv_synsent_state_process(sk, skb, th);
   6472		if (queued >= 0)
   6473			return queued;
   6474
   6475		/* Do step6 onward by hand. */
   6476		tcp_urg(sk, skb, th);
   6477		__kfree_skb(skb);
   6478		tcp_data_snd_check(sk);
   6479		return 0;
   6480	}
   6481
   6482	tcp_mstamp_refresh(tp);
   6483	tp->rx_opt.saw_tstamp = 0;
   6484	req = rcu_dereference_protected(tp->fastopen_rsk,
   6485					lockdep_sock_is_held(sk));
   6486	if (req) {
   6487		bool req_stolen;
   6488
   6489		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
   6490		    sk->sk_state != TCP_FIN_WAIT1);
   6491
   6492		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
   6493			SKB_DR_SET(reason, TCP_FASTOPEN);
   6494			goto discard;
   6495		}
   6496	}
   6497
   6498	if (!th->ack && !th->rst && !th->syn) {
   6499		SKB_DR_SET(reason, TCP_FLAGS);
   6500		goto discard;
   6501	}
   6502	if (!tcp_validate_incoming(sk, skb, th, 0))
   6503		return 0;
   6504
   6505	/* step 5: check the ACK field */
   6506	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
   6507				      FLAG_UPDATE_TS_RECENT |
   6508				      FLAG_NO_CHALLENGE_ACK) > 0;
   6509
   6510	if (!acceptable) {
   6511		if (sk->sk_state == TCP_SYN_RECV)
   6512			return 1;	/* send one RST */
   6513		tcp_send_challenge_ack(sk);
   6514		SKB_DR_SET(reason, TCP_OLD_ACK);
   6515		goto discard;
   6516	}
   6517	switch (sk->sk_state) {
   6518	case TCP_SYN_RECV:
   6519		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
   6520		if (!tp->srtt_us)
   6521			tcp_synack_rtt_meas(sk, req);
   6522
   6523		if (req) {
   6524			tcp_rcv_synrecv_state_fastopen(sk);
   6525		} else {
   6526			tcp_try_undo_spurious_syn(sk);
   6527			tp->retrans_stamp = 0;
   6528			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
   6529					  skb);
   6530			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
   6531		}
   6532		smp_mb();
   6533		tcp_set_state(sk, TCP_ESTABLISHED);
   6534		sk->sk_state_change(sk);
   6535
   6536		/* Note, that this wakeup is only for marginal crossed SYN case.
   6537		 * Passively open sockets are not waked up, because
   6538		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
   6539		 */
   6540		if (sk->sk_socket)
   6541			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
   6542
   6543		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
   6544		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
   6545		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
   6546
   6547		if (tp->rx_opt.tstamp_ok)
   6548			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
   6549
   6550		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
   6551			tcp_update_pacing_rate(sk);
   6552
   6553		/* Prevent spurious tcp_cwnd_restart() on first data packet */
   6554		tp->lsndtime = tcp_jiffies32;
   6555
   6556		tcp_initialize_rcv_mss(sk);
   6557		tcp_fast_path_on(tp);
   6558		break;
   6559
   6560	case TCP_FIN_WAIT1: {
   6561		int tmo;
   6562
   6563		if (req)
   6564			tcp_rcv_synrecv_state_fastopen(sk);
   6565
   6566		if (tp->snd_una != tp->write_seq)
   6567			break;
   6568
   6569		tcp_set_state(sk, TCP_FIN_WAIT2);
   6570		sk->sk_shutdown |= SEND_SHUTDOWN;
   6571
   6572		sk_dst_confirm(sk);
   6573
   6574		if (!sock_flag(sk, SOCK_DEAD)) {
   6575			/* Wake up lingering close() */
   6576			sk->sk_state_change(sk);
   6577			break;
   6578		}
   6579
   6580		if (tp->linger2 < 0) {
   6581			tcp_done(sk);
   6582			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
   6583			return 1;
   6584		}
   6585		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
   6586		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
   6587			/* Receive out of order FIN after close() */
   6588			if (tp->syn_fastopen && th->fin)
   6589				tcp_fastopen_active_disable(sk);
   6590			tcp_done(sk);
   6591			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
   6592			return 1;
   6593		}
   6594
   6595		tmo = tcp_fin_time(sk);
   6596		if (tmo > TCP_TIMEWAIT_LEN) {
   6597			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
   6598		} else if (th->fin || sock_owned_by_user(sk)) {
   6599			/* Bad case. We could lose such FIN otherwise.
   6600			 * It is not a big problem, but it looks confusing
   6601			 * and not so rare event. We still can lose it now,
   6602			 * if it spins in bh_lock_sock(), but it is really
   6603			 * marginal case.
   6604			 */
   6605			inet_csk_reset_keepalive_timer(sk, tmo);
   6606		} else {
   6607			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
   6608			goto consume;
   6609		}
   6610		break;
   6611	}
   6612
   6613	case TCP_CLOSING:
   6614		if (tp->snd_una == tp->write_seq) {
   6615			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
   6616			goto consume;
   6617		}
   6618		break;
   6619
   6620	case TCP_LAST_ACK:
   6621		if (tp->snd_una == tp->write_seq) {
   6622			tcp_update_metrics(sk);
   6623			tcp_done(sk);
   6624			goto consume;
   6625		}
   6626		break;
   6627	}
   6628
   6629	/* step 6: check the URG bit */
   6630	tcp_urg(sk, skb, th);
   6631
   6632	/* step 7: process the segment text */
   6633	switch (sk->sk_state) {
   6634	case TCP_CLOSE_WAIT:
   6635	case TCP_CLOSING:
   6636	case TCP_LAST_ACK:
   6637		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
   6638			/* If a subflow has been reset, the packet should not
   6639			 * continue to be processed, drop the packet.
   6640			 */
   6641			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
   6642				goto discard;
   6643			break;
   6644		}
   6645		fallthrough;
   6646	case TCP_FIN_WAIT1:
   6647	case TCP_FIN_WAIT2:
   6648		/* RFC 793 says to queue data in these states,
   6649		 * RFC 1122 says we MUST send a reset.
   6650		 * BSD 4.4 also does reset.
   6651		 */
   6652		if (sk->sk_shutdown & RCV_SHUTDOWN) {
   6653			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
   6654			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
   6655				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
   6656				tcp_reset(sk, skb);
   6657				return 1;
   6658			}
   6659		}
   6660		fallthrough;
   6661	case TCP_ESTABLISHED:
   6662		tcp_data_queue(sk, skb);
   6663		queued = 1;
   6664		break;
   6665	}
   6666
   6667	/* tcp_data could move socket to TIME-WAIT */
   6668	if (sk->sk_state != TCP_CLOSE) {
   6669		tcp_data_snd_check(sk);
   6670		tcp_ack_snd_check(sk);
   6671	}
   6672
   6673	if (!queued) {
   6674discard:
   6675		tcp_drop_reason(sk, skb, reason);
   6676	}
   6677	return 0;
   6678
   6679consume:
   6680	__kfree_skb(skb);
   6681	return 0;
   6682}
   6683EXPORT_SYMBOL(tcp_rcv_state_process);
   6684
   6685static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
   6686{
   6687	struct inet_request_sock *ireq = inet_rsk(req);
   6688
   6689	if (family == AF_INET)
   6690		net_dbg_ratelimited("drop open request from %pI4/%u\n",
   6691				    &ireq->ir_rmt_addr, port);
   6692#if IS_ENABLED(CONFIG_IPV6)
   6693	else if (family == AF_INET6)
   6694		net_dbg_ratelimited("drop open request from %pI6/%u\n",
   6695				    &ireq->ir_v6_rmt_addr, port);
   6696#endif
   6697}
   6698
   6699/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
   6700 *
   6701 * If we receive a SYN packet with these bits set, it means a
   6702 * network is playing bad games with TOS bits. In order to
   6703 * avoid possible false congestion notifications, we disable
   6704 * TCP ECN negotiation.
   6705 *
   6706 * Exception: tcp_ca wants ECN. This is required for DCTCP
   6707 * congestion control: Linux DCTCP asserts ECT on all packets,
   6708 * including SYN, which is most optimal solution; however,
   6709 * others, such as FreeBSD do not.
   6710 *
   6711 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
   6712 * set, indicating the use of a future TCP extension (such as AccECN). See
   6713 * RFC8311 ยง4.3 which updates RFC3168 to allow the development of such
   6714 * extensions.
   6715 */
   6716static void tcp_ecn_create_request(struct request_sock *req,
   6717				   const struct sk_buff *skb,
   6718				   const struct sock *listen_sk,
   6719				   const struct dst_entry *dst)
   6720{
   6721	const struct tcphdr *th = tcp_hdr(skb);
   6722	const struct net *net = sock_net(listen_sk);
   6723	bool th_ecn = th->ece && th->cwr;
   6724	bool ect, ecn_ok;
   6725	u32 ecn_ok_dst;
   6726
   6727	if (!th_ecn)
   6728		return;
   6729
   6730	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
   6731	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
   6732	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
   6733
   6734	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
   6735	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
   6736	    tcp_bpf_ca_needs_ecn((struct sock *)req))
   6737		inet_rsk(req)->ecn_ok = 1;
   6738}
   6739
   6740static void tcp_openreq_init(struct request_sock *req,
   6741			     const struct tcp_options_received *rx_opt,
   6742			     struct sk_buff *skb, const struct sock *sk)
   6743{
   6744	struct inet_request_sock *ireq = inet_rsk(req);
   6745
   6746	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
   6747	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
   6748	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
   6749	tcp_rsk(req)->snt_synack = 0;
   6750	tcp_rsk(req)->last_oow_ack_time = 0;
   6751	req->mss = rx_opt->mss_clamp;
   6752	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
   6753	ireq->tstamp_ok = rx_opt->tstamp_ok;
   6754	ireq->sack_ok = rx_opt->sack_ok;
   6755	ireq->snd_wscale = rx_opt->snd_wscale;
   6756	ireq->wscale_ok = rx_opt->wscale_ok;
   6757	ireq->acked = 0;
   6758	ireq->ecn_ok = 0;
   6759	ireq->ir_rmt_port = tcp_hdr(skb)->source;
   6760	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
   6761	ireq->ir_mark = inet_request_mark(sk, skb);
   6762#if IS_ENABLED(CONFIG_SMC)
   6763	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
   6764			tcp_sk(sk)->smc_hs_congested(sk));
   6765#endif
   6766}
   6767
   6768struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
   6769				      struct sock *sk_listener,
   6770				      bool attach_listener)
   6771{
   6772	struct request_sock *req = reqsk_alloc(ops, sk_listener,
   6773					       attach_listener);
   6774
   6775	if (req) {
   6776		struct inet_request_sock *ireq = inet_rsk(req);
   6777
   6778		ireq->ireq_opt = NULL;
   6779#if IS_ENABLED(CONFIG_IPV6)
   6780		ireq->pktopts = NULL;
   6781#endif
   6782		atomic64_set(&ireq->ir_cookie, 0);
   6783		ireq->ireq_state = TCP_NEW_SYN_RECV;
   6784		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
   6785		ireq->ireq_family = sk_listener->sk_family;
   6786		req->timeout = TCP_TIMEOUT_INIT;
   6787	}
   6788
   6789	return req;
   6790}
   6791EXPORT_SYMBOL(inet_reqsk_alloc);
   6792
   6793/*
   6794 * Return true if a syncookie should be sent
   6795 */
   6796static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
   6797{
   6798	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
   6799	const char *msg = "Dropping request";
   6800	bool want_cookie = false;
   6801	struct net *net = sock_net(sk);
   6802
   6803#ifdef CONFIG_SYN_COOKIES
   6804	if (net->ipv4.sysctl_tcp_syncookies) {
   6805		msg = "Sending cookies";
   6806		want_cookie = true;
   6807		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
   6808	} else
   6809#endif
   6810		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
   6811
   6812	if (!queue->synflood_warned &&
   6813	    net->ipv4.sysctl_tcp_syncookies != 2 &&
   6814	    xchg(&queue->synflood_warned, 1) == 0)
   6815		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
   6816				     proto, sk->sk_num, msg);
   6817
   6818	return want_cookie;
   6819}
   6820
   6821static void tcp_reqsk_record_syn(const struct sock *sk,
   6822				 struct request_sock *req,
   6823				 const struct sk_buff *skb)
   6824{
   6825	if (tcp_sk(sk)->save_syn) {
   6826		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
   6827		struct saved_syn *saved_syn;
   6828		u32 mac_hdrlen;
   6829		void *base;
   6830
   6831		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
   6832			base = skb_mac_header(skb);
   6833			mac_hdrlen = skb_mac_header_len(skb);
   6834			len += mac_hdrlen;
   6835		} else {
   6836			base = skb_network_header(skb);
   6837			mac_hdrlen = 0;
   6838		}
   6839
   6840		saved_syn = kmalloc(struct_size(saved_syn, data, len),
   6841				    GFP_ATOMIC);
   6842		if (saved_syn) {
   6843			saved_syn->mac_hdrlen = mac_hdrlen;
   6844			saved_syn->network_hdrlen = skb_network_header_len(skb);
   6845			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
   6846			memcpy(saved_syn->data, base, len);
   6847			req->saved_syn = saved_syn;
   6848		}
   6849	}
   6850}
   6851
   6852/* If a SYN cookie is required and supported, returns a clamped MSS value to be
   6853 * used for SYN cookie generation.
   6854 */
   6855u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
   6856			  const struct tcp_request_sock_ops *af_ops,
   6857			  struct sock *sk, struct tcphdr *th)
   6858{
   6859	struct tcp_sock *tp = tcp_sk(sk);
   6860	u16 mss;
   6861
   6862	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
   6863	    !inet_csk_reqsk_queue_is_full(sk))
   6864		return 0;
   6865
   6866	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
   6867		return 0;
   6868
   6869	if (sk_acceptq_is_full(sk)) {
   6870		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
   6871		return 0;
   6872	}
   6873
   6874	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
   6875	if (!mss)
   6876		mss = af_ops->mss_clamp;
   6877
   6878	return mss;
   6879}
   6880EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
   6881
   6882int tcp_conn_request(struct request_sock_ops *rsk_ops,
   6883		     const struct tcp_request_sock_ops *af_ops,
   6884		     struct sock *sk, struct sk_buff *skb)
   6885{
   6886	struct tcp_fastopen_cookie foc = { .len = -1 };
   6887	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
   6888	struct tcp_options_received tmp_opt;
   6889	struct tcp_sock *tp = tcp_sk(sk);
   6890	struct net *net = sock_net(sk);
   6891	struct sock *fastopen_sk = NULL;
   6892	struct request_sock *req;
   6893	bool want_cookie = false;
   6894	struct dst_entry *dst;
   6895	struct flowi fl;
   6896
   6897	/* TW buckets are converted to open requests without
   6898	 * limitations, they conserve resources and peer is
   6899	 * evidently real one.
   6900	 */
   6901	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
   6902	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
   6903		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
   6904		if (!want_cookie)
   6905			goto drop;
   6906	}
   6907
   6908	if (sk_acceptq_is_full(sk)) {
   6909		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
   6910		goto drop;
   6911	}
   6912
   6913	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
   6914	if (!req)
   6915		goto drop;
   6916
   6917	req->syncookie = want_cookie;
   6918	tcp_rsk(req)->af_specific = af_ops;
   6919	tcp_rsk(req)->ts_off = 0;
   6920#if IS_ENABLED(CONFIG_MPTCP)
   6921	tcp_rsk(req)->is_mptcp = 0;
   6922#endif
   6923
   6924	tcp_clear_options(&tmp_opt);
   6925	tmp_opt.mss_clamp = af_ops->mss_clamp;
   6926	tmp_opt.user_mss  = tp->rx_opt.user_mss;
   6927	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
   6928			  want_cookie ? NULL : &foc);
   6929
   6930	if (want_cookie && !tmp_opt.saw_tstamp)
   6931		tcp_clear_options(&tmp_opt);
   6932
   6933	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
   6934		tmp_opt.smc_ok = 0;
   6935
   6936	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
   6937	tcp_openreq_init(req, &tmp_opt, skb, sk);
   6938	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
   6939
   6940	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
   6941	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
   6942
   6943	dst = af_ops->route_req(sk, skb, &fl, req);
   6944	if (!dst)
   6945		goto drop_and_free;
   6946
   6947	if (tmp_opt.tstamp_ok)
   6948		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
   6949
   6950	if (!want_cookie && !isn) {
   6951		/* Kill the following clause, if you dislike this way. */
   6952		if (!net->ipv4.sysctl_tcp_syncookies &&
   6953		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
   6954		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
   6955		    !tcp_peer_is_proven(req, dst)) {
   6956			/* Without syncookies last quarter of
   6957			 * backlog is filled with destinations,
   6958			 * proven to be alive.
   6959			 * It means that we continue to communicate
   6960			 * to destinations, already remembered
   6961			 * to the moment of synflood.
   6962			 */
   6963			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
   6964				    rsk_ops->family);
   6965			goto drop_and_release;
   6966		}
   6967
   6968		isn = af_ops->init_seq(skb);
   6969	}
   6970
   6971	tcp_ecn_create_request(req, skb, sk, dst);
   6972
   6973	if (want_cookie) {
   6974		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
   6975		if (!tmp_opt.tstamp_ok)
   6976			inet_rsk(req)->ecn_ok = 0;
   6977	}
   6978
   6979	tcp_rsk(req)->snt_isn = isn;
   6980	tcp_rsk(req)->txhash = net_tx_rndhash();
   6981	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
   6982	tcp_openreq_init_rwin(req, sk, dst);
   6983	sk_rx_queue_set(req_to_sk(req), skb);
   6984	if (!want_cookie) {
   6985		tcp_reqsk_record_syn(sk, req, skb);
   6986		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
   6987	}
   6988	if (fastopen_sk) {
   6989		af_ops->send_synack(fastopen_sk, dst, &fl, req,
   6990				    &foc, TCP_SYNACK_FASTOPEN, skb);
   6991		/* Add the child socket directly into the accept queue */
   6992		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
   6993			reqsk_fastopen_remove(fastopen_sk, req, false);
   6994			bh_unlock_sock(fastopen_sk);
   6995			sock_put(fastopen_sk);
   6996			goto drop_and_free;
   6997		}
   6998		sk->sk_data_ready(sk);
   6999		bh_unlock_sock(fastopen_sk);
   7000		sock_put(fastopen_sk);
   7001	} else {
   7002		tcp_rsk(req)->tfo_listener = false;
   7003		if (!want_cookie) {
   7004			req->timeout = tcp_timeout_init((struct sock *)req);
   7005			inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
   7006		}
   7007		af_ops->send_synack(sk, dst, &fl, req, &foc,
   7008				    !want_cookie ? TCP_SYNACK_NORMAL :
   7009						   TCP_SYNACK_COOKIE,
   7010				    skb);
   7011		if (want_cookie) {
   7012			reqsk_free(req);
   7013			return 0;
   7014		}
   7015	}
   7016	reqsk_put(req);
   7017	return 0;
   7018
   7019drop_and_release:
   7020	dst_release(dst);
   7021drop_and_free:
   7022	__reqsk_free(req);
   7023drop:
   7024	tcp_listendrop(sk);
   7025	return 0;
   7026}
   7027EXPORT_SYMBOL(tcp_conn_request);