cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tcp_nv.c (16103B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * TCP NV: TCP with Congestion Avoidance
      4 *
      5 * TCP-NV is a successor of TCP-Vegas that has been developed to
      6 * deal with the issues that occur in modern networks.
      7 * Like TCP-Vegas, TCP-NV supports true congestion avoidance,
      8 * the ability to detect congestion before packet losses occur.
      9 * When congestion (queue buildup) starts to occur, TCP-NV
     10 * predicts what the cwnd size should be for the current
     11 * throughput and it reduces the cwnd proportionally to
     12 * the difference between the current cwnd and the predicted cwnd.
     13 *
     14 * NV is only recommeneded for traffic within a data center, and when
     15 * all the flows are NV (at least those within the data center). This
     16 * is due to the inherent unfairness between flows using losses to
     17 * detect congestion (congestion control) and those that use queue
     18 * buildup to detect congestion (congestion avoidance).
     19 *
     20 * Note: High NIC coalescence values may lower the performance of NV
     21 * due to the increased noise in RTT values. In particular, we have
     22 * seen issues with rx-frames values greater than 8.
     23 *
     24 * TODO:
     25 * 1) Add mechanism to deal with reverse congestion.
     26 */
     27
     28#include <linux/module.h>
     29#include <linux/math64.h>
     30#include <net/tcp.h>
     31#include <linux/inet_diag.h>
     32
     33/* TCP NV parameters
     34 *
     35 * nv_pad		Max number of queued packets allowed in network
     36 * nv_pad_buffer	Do not grow cwnd if this closed to nv_pad
     37 * nv_reset_period	How often (in) seconds)to reset min_rtt
     38 * nv_min_cwnd		Don't decrease cwnd below this if there are no losses
     39 * nv_cong_dec_mult	Decrease cwnd by X% (30%) of congestion when detected
     40 * nv_ssthresh_factor	On congestion set ssthresh to this * <desired cwnd> / 8
     41 * nv_rtt_factor	RTT averaging factor
     42 * nv_loss_dec_factor	Decrease cwnd to this (80%) when losses occur
     43 * nv_dec_eval_min_calls	Wait this many RTT measurements before dec cwnd
     44 * nv_inc_eval_min_calls	Wait this many RTT measurements before inc cwnd
     45 * nv_ssthresh_eval_min_calls	Wait this many RTT measurements before stopping
     46 *				slow-start due to congestion
     47 * nv_stop_rtt_cnt	Only grow cwnd for this many RTTs after non-congestion
     48 * nv_rtt_min_cnt	Wait these many RTTs before making congesion decision
     49 * nv_cwnd_growth_rate_neg
     50 * nv_cwnd_growth_rate_pos
     51 *	How quickly to double growth rate (not rate) of cwnd when not
     52 *	congested. One value (nv_cwnd_growth_rate_neg) for when
     53 *	rate < 1 pkt/RTT (after losses). The other (nv_cwnd_growth_rate_pos)
     54 *	otherwise.
     55 */
     56
     57static int nv_pad __read_mostly = 10;
     58static int nv_pad_buffer __read_mostly = 2;
     59static int nv_reset_period __read_mostly = 5; /* in seconds */
     60static int nv_min_cwnd __read_mostly = 2;
     61static int nv_cong_dec_mult __read_mostly = 30 * 128 / 100; /* = 30% */
     62static int nv_ssthresh_factor __read_mostly = 8; /* = 1 */
     63static int nv_rtt_factor __read_mostly = 128; /* = 1/2*old + 1/2*new */
     64static int nv_loss_dec_factor __read_mostly = 819; /* => 80% */
     65static int nv_cwnd_growth_rate_neg __read_mostly = 8;
     66static int nv_cwnd_growth_rate_pos __read_mostly; /* 0 => fixed like Reno */
     67static int nv_dec_eval_min_calls __read_mostly = 60;
     68static int nv_inc_eval_min_calls __read_mostly = 20;
     69static int nv_ssthresh_eval_min_calls __read_mostly = 30;
     70static int nv_stop_rtt_cnt __read_mostly = 10;
     71static int nv_rtt_min_cnt __read_mostly = 2;
     72
     73module_param(nv_pad, int, 0644);
     74MODULE_PARM_DESC(nv_pad, "max queued packets allowed in network");
     75module_param(nv_reset_period, int, 0644);
     76MODULE_PARM_DESC(nv_reset_period, "nv_min_rtt reset period (secs)");
     77module_param(nv_min_cwnd, int, 0644);
     78MODULE_PARM_DESC(nv_min_cwnd, "NV will not decrease cwnd below this value"
     79		 " without losses");
     80
     81/* TCP NV Parameters */
     82struct tcpnv {
     83	unsigned long nv_min_rtt_reset_jiffies;  /* when to switch to
     84						  * nv_min_rtt_new */
     85	s8  cwnd_growth_factor;	/* Current cwnd growth factor,
     86				 * < 0 => less than 1 packet/RTT */
     87	u8  available8;
     88	u16 available16;
     89	u8  nv_allow_cwnd_growth:1, /* whether cwnd can grow */
     90		nv_reset:1,	    /* whether to reset values */
     91		nv_catchup:1;	    /* whether we are growing because
     92				     * of temporary cwnd decrease */
     93	u8  nv_eval_call_cnt;	/* call count since last eval */
     94	u8  nv_min_cwnd;	/* nv won't make a ca decision if cwnd is
     95				 * smaller than this. It may grow to handle
     96				 * TSO, LRO and interrupt coalescence because
     97				 * with these a small cwnd cannot saturate
     98				 * the link. Note that this is different from
     99				 * the file local nv_min_cwnd */
    100	u8  nv_rtt_cnt;		/* RTTs without making ca decision */;
    101	u32 nv_last_rtt;	/* last rtt */
    102	u32 nv_min_rtt;		/* active min rtt. Used to determine slope */
    103	u32 nv_min_rtt_new;	/* min rtt for future use */
    104	u32 nv_base_rtt;        /* If non-zero it represents the threshold for
    105				 * congestion */
    106	u32 nv_lower_bound_rtt; /* Used in conjunction with nv_base_rtt. It is
    107				 * set to 80% of nv_base_rtt. It helps reduce
    108				 * unfairness between flows */
    109	u32 nv_rtt_max_rate;	/* max rate seen during current RTT */
    110	u32 nv_rtt_start_seq;	/* current RTT ends when packet arrives
    111				 * acking beyond nv_rtt_start_seq */
    112	u32 nv_last_snd_una;	/* Previous value of tp->snd_una. It is
    113				 * used to determine bytes acked since last
    114				 * call to bictcp_acked */
    115	u32 nv_no_cong_cnt;	/* Consecutive no congestion decisions */
    116};
    117
    118#define NV_INIT_RTT	  U32_MAX
    119#define NV_MIN_CWND	  4
    120#define NV_MIN_CWND_GROW  2
    121#define NV_TSO_CWND_BOUND 80
    122
    123static inline void tcpnv_reset(struct tcpnv *ca, struct sock *sk)
    124{
    125	struct tcp_sock *tp = tcp_sk(sk);
    126
    127	ca->nv_reset = 0;
    128	ca->nv_no_cong_cnt = 0;
    129	ca->nv_rtt_cnt = 0;
    130	ca->nv_last_rtt = 0;
    131	ca->nv_rtt_max_rate = 0;
    132	ca->nv_rtt_start_seq = tp->snd_una;
    133	ca->nv_eval_call_cnt = 0;
    134	ca->nv_last_snd_una = tp->snd_una;
    135}
    136
    137static void tcpnv_init(struct sock *sk)
    138{
    139	struct tcpnv *ca = inet_csk_ca(sk);
    140	int base_rtt;
    141
    142	tcpnv_reset(ca, sk);
    143
    144	/* See if base_rtt is available from socket_ops bpf program.
    145	 * It is meant to be used in environments, such as communication
    146	 * within a datacenter, where we have reasonable estimates of
    147	 * RTTs
    148	 */
    149	base_rtt = tcp_call_bpf(sk, BPF_SOCK_OPS_BASE_RTT, 0, NULL);
    150	if (base_rtt > 0) {
    151		ca->nv_base_rtt = base_rtt;
    152		ca->nv_lower_bound_rtt = (base_rtt * 205) >> 8; /* 80% */
    153	} else {
    154		ca->nv_base_rtt = 0;
    155		ca->nv_lower_bound_rtt = 0;
    156	}
    157
    158	ca->nv_allow_cwnd_growth = 1;
    159	ca->nv_min_rtt_reset_jiffies = jiffies + 2 * HZ;
    160	ca->nv_min_rtt = NV_INIT_RTT;
    161	ca->nv_min_rtt_new = NV_INIT_RTT;
    162	ca->nv_min_cwnd = NV_MIN_CWND;
    163	ca->nv_catchup = 0;
    164	ca->cwnd_growth_factor = 0;
    165}
    166
    167/* If provided, apply upper (base_rtt) and lower (lower_bound_rtt)
    168 * bounds to RTT.
    169 */
    170inline u32 nv_get_bounded_rtt(struct tcpnv *ca, u32 val)
    171{
    172	if (ca->nv_lower_bound_rtt > 0 && val < ca->nv_lower_bound_rtt)
    173		return ca->nv_lower_bound_rtt;
    174	else if (ca->nv_base_rtt > 0 && val > ca->nv_base_rtt)
    175		return ca->nv_base_rtt;
    176	else
    177		return val;
    178}
    179
    180static void tcpnv_cong_avoid(struct sock *sk, u32 ack, u32 acked)
    181{
    182	struct tcp_sock *tp = tcp_sk(sk);
    183	struct tcpnv *ca = inet_csk_ca(sk);
    184	u32 cnt;
    185
    186	if (!tcp_is_cwnd_limited(sk))
    187		return;
    188
    189	/* Only grow cwnd if NV has not detected congestion */
    190	if (!ca->nv_allow_cwnd_growth)
    191		return;
    192
    193	if (tcp_in_slow_start(tp)) {
    194		acked = tcp_slow_start(tp, acked);
    195		if (!acked)
    196			return;
    197	}
    198
    199	if (ca->cwnd_growth_factor < 0) {
    200		cnt = tcp_snd_cwnd(tp) << -ca->cwnd_growth_factor;
    201		tcp_cong_avoid_ai(tp, cnt, acked);
    202	} else {
    203		cnt = max(4U, tcp_snd_cwnd(tp) >> ca->cwnd_growth_factor);
    204		tcp_cong_avoid_ai(tp, cnt, acked);
    205	}
    206}
    207
    208static u32 tcpnv_recalc_ssthresh(struct sock *sk)
    209{
    210	const struct tcp_sock *tp = tcp_sk(sk);
    211
    212	return max((tcp_snd_cwnd(tp) * nv_loss_dec_factor) >> 10, 2U);
    213}
    214
    215static void tcpnv_state(struct sock *sk, u8 new_state)
    216{
    217	struct tcpnv *ca = inet_csk_ca(sk);
    218
    219	if (new_state == TCP_CA_Open && ca->nv_reset) {
    220		tcpnv_reset(ca, sk);
    221	} else if (new_state == TCP_CA_Loss || new_state == TCP_CA_CWR ||
    222		new_state == TCP_CA_Recovery) {
    223		ca->nv_reset = 1;
    224		ca->nv_allow_cwnd_growth = 0;
    225		if (new_state == TCP_CA_Loss) {
    226			/* Reset cwnd growth factor to Reno value */
    227			if (ca->cwnd_growth_factor > 0)
    228				ca->cwnd_growth_factor = 0;
    229			/* Decrease growth rate if allowed */
    230			if (nv_cwnd_growth_rate_neg > 0 &&
    231			    ca->cwnd_growth_factor > -8)
    232				ca->cwnd_growth_factor--;
    233		}
    234	}
    235}
    236
    237/* Do congestion avoidance calculations for TCP-NV
    238 */
    239static void tcpnv_acked(struct sock *sk, const struct ack_sample *sample)
    240{
    241	const struct inet_connection_sock *icsk = inet_csk(sk);
    242	struct tcp_sock *tp = tcp_sk(sk);
    243	struct tcpnv *ca = inet_csk_ca(sk);
    244	unsigned long now = jiffies;
    245	u64 rate64;
    246	u32 rate, max_win, cwnd_by_slope;
    247	u32 avg_rtt;
    248	u32 bytes_acked = 0;
    249
    250	/* Some calls are for duplicates without timetamps */
    251	if (sample->rtt_us < 0)
    252		return;
    253
    254	/* If not in TCP_CA_Open or TCP_CA_Disorder states, skip. */
    255	if (icsk->icsk_ca_state != TCP_CA_Open &&
    256	    icsk->icsk_ca_state != TCP_CA_Disorder)
    257		return;
    258
    259	/* Stop cwnd growth if we were in catch up mode */
    260	if (ca->nv_catchup && tcp_snd_cwnd(tp) >= nv_min_cwnd) {
    261		ca->nv_catchup = 0;
    262		ca->nv_allow_cwnd_growth = 0;
    263	}
    264
    265	bytes_acked = tp->snd_una - ca->nv_last_snd_una;
    266	ca->nv_last_snd_una = tp->snd_una;
    267
    268	if (sample->in_flight == 0)
    269		return;
    270
    271	/* Calculate moving average of RTT */
    272	if (nv_rtt_factor > 0) {
    273		if (ca->nv_last_rtt > 0) {
    274			avg_rtt = (((u64)sample->rtt_us) * nv_rtt_factor +
    275				   ((u64)ca->nv_last_rtt)
    276				   * (256 - nv_rtt_factor)) >> 8;
    277		} else {
    278			avg_rtt = sample->rtt_us;
    279			ca->nv_min_rtt = avg_rtt << 1;
    280		}
    281		ca->nv_last_rtt = avg_rtt;
    282	} else {
    283		avg_rtt = sample->rtt_us;
    284	}
    285
    286	/* rate in 100's bits per second */
    287	rate64 = ((u64)sample->in_flight) * 80000;
    288	do_div(rate64, avg_rtt ?: 1);
    289	rate = (u32)rate64;
    290
    291	/* Remember the maximum rate seen during this RTT
    292	 * Note: It may be more than one RTT. This function should be
    293	 *       called at least nv_dec_eval_min_calls times.
    294	 */
    295	if (ca->nv_rtt_max_rate < rate)
    296		ca->nv_rtt_max_rate = rate;
    297
    298	/* We have valid information, increment counter */
    299	if (ca->nv_eval_call_cnt < 255)
    300		ca->nv_eval_call_cnt++;
    301
    302	/* Apply bounds to rtt. Only used to update min_rtt */
    303	avg_rtt = nv_get_bounded_rtt(ca, avg_rtt);
    304
    305	/* update min rtt if necessary */
    306	if (avg_rtt < ca->nv_min_rtt)
    307		ca->nv_min_rtt = avg_rtt;
    308
    309	/* update future min_rtt if necessary */
    310	if (avg_rtt < ca->nv_min_rtt_new)
    311		ca->nv_min_rtt_new = avg_rtt;
    312
    313	/* nv_min_rtt is updated with the minimum (possibley averaged) rtt
    314	 * seen in the last sysctl_tcp_nv_reset_period seconds (i.e. a
    315	 * warm reset). This new nv_min_rtt will be continued to be updated
    316	 * and be used for another sysctl_tcp_nv_reset_period seconds,
    317	 * when it will be updated again.
    318	 * In practice we introduce some randomness, so the actual period used
    319	 * is chosen randomly from the range:
    320	 *   [sysctl_tcp_nv_reset_period*3/4, sysctl_tcp_nv_reset_period*5/4)
    321	 */
    322	if (time_after_eq(now, ca->nv_min_rtt_reset_jiffies)) {
    323		unsigned char rand;
    324
    325		ca->nv_min_rtt = ca->nv_min_rtt_new;
    326		ca->nv_min_rtt_new = NV_INIT_RTT;
    327		get_random_bytes(&rand, 1);
    328		ca->nv_min_rtt_reset_jiffies =
    329			now + ((nv_reset_period * (384 + rand) * HZ) >> 9);
    330		/* Every so often we decrease ca->nv_min_cwnd in case previous
    331		 *  value is no longer accurate.
    332		 */
    333		ca->nv_min_cwnd = max(ca->nv_min_cwnd / 2, NV_MIN_CWND);
    334	}
    335
    336	/* Once per RTT check if we need to do congestion avoidance */
    337	if (before(ca->nv_rtt_start_seq, tp->snd_una)) {
    338		ca->nv_rtt_start_seq = tp->snd_nxt;
    339		if (ca->nv_rtt_cnt < 0xff)
    340			/* Increase counter for RTTs without CA decision */
    341			ca->nv_rtt_cnt++;
    342
    343		/* If this function is only called once within an RTT
    344		 * the cwnd is probably too small (in some cases due to
    345		 * tso, lro or interrupt coalescence), so we increase
    346		 * ca->nv_min_cwnd.
    347		 */
    348		if (ca->nv_eval_call_cnt == 1 &&
    349		    bytes_acked >= (ca->nv_min_cwnd - 1) * tp->mss_cache &&
    350		    ca->nv_min_cwnd < (NV_TSO_CWND_BOUND + 1)) {
    351			ca->nv_min_cwnd = min(ca->nv_min_cwnd
    352					      + NV_MIN_CWND_GROW,
    353					      NV_TSO_CWND_BOUND + 1);
    354			ca->nv_rtt_start_seq = tp->snd_nxt +
    355				ca->nv_min_cwnd * tp->mss_cache;
    356			ca->nv_eval_call_cnt = 0;
    357			ca->nv_allow_cwnd_growth = 1;
    358			return;
    359		}
    360
    361		/* Find the ideal cwnd for current rate from slope
    362		 * slope = 80000.0 * mss / nv_min_rtt
    363		 * cwnd_by_slope = nv_rtt_max_rate / slope
    364		 */
    365		cwnd_by_slope = (u32)
    366			div64_u64(((u64)ca->nv_rtt_max_rate) * ca->nv_min_rtt,
    367				  80000ULL * tp->mss_cache);
    368		max_win = cwnd_by_slope + nv_pad;
    369
    370		/* If cwnd > max_win, decrease cwnd
    371		 * if cwnd < max_win, grow cwnd
    372		 * else leave the same
    373		 */
    374		if (tcp_snd_cwnd(tp) > max_win) {
    375			/* there is congestion, check that it is ok
    376			 * to make a CA decision
    377			 * 1. We should have at least nv_dec_eval_min_calls
    378			 *    data points before making a CA  decision
    379			 * 2. We only make a congesion decision after
    380			 *    nv_rtt_min_cnt RTTs
    381			 */
    382			if (ca->nv_rtt_cnt < nv_rtt_min_cnt) {
    383				return;
    384			} else if (tp->snd_ssthresh == TCP_INFINITE_SSTHRESH) {
    385				if (ca->nv_eval_call_cnt <
    386				    nv_ssthresh_eval_min_calls)
    387					return;
    388				/* otherwise we will decrease cwnd */
    389			} else if (ca->nv_eval_call_cnt <
    390				   nv_dec_eval_min_calls) {
    391				if (ca->nv_allow_cwnd_growth &&
    392				    ca->nv_rtt_cnt > nv_stop_rtt_cnt)
    393					ca->nv_allow_cwnd_growth = 0;
    394				return;
    395			}
    396
    397			/* We have enough data to determine we are congested */
    398			ca->nv_allow_cwnd_growth = 0;
    399			tp->snd_ssthresh =
    400				(nv_ssthresh_factor * max_win) >> 3;
    401			if (tcp_snd_cwnd(tp) - max_win > 2) {
    402				/* gap > 2, we do exponential cwnd decrease */
    403				int dec;
    404
    405				dec = max(2U, ((tcp_snd_cwnd(tp) - max_win) *
    406					       nv_cong_dec_mult) >> 7);
    407				tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - dec);
    408			} else if (nv_cong_dec_mult > 0) {
    409				tcp_snd_cwnd_set(tp, max_win);
    410			}
    411			if (ca->cwnd_growth_factor > 0)
    412				ca->cwnd_growth_factor = 0;
    413			ca->nv_no_cong_cnt = 0;
    414		} else if (tcp_snd_cwnd(tp) <= max_win - nv_pad_buffer) {
    415			/* There is no congestion, grow cwnd if allowed*/
    416			if (ca->nv_eval_call_cnt < nv_inc_eval_min_calls)
    417				return;
    418
    419			ca->nv_allow_cwnd_growth = 1;
    420			ca->nv_no_cong_cnt++;
    421			if (ca->cwnd_growth_factor < 0 &&
    422			    nv_cwnd_growth_rate_neg > 0 &&
    423			    ca->nv_no_cong_cnt > nv_cwnd_growth_rate_neg) {
    424				ca->cwnd_growth_factor++;
    425				ca->nv_no_cong_cnt = 0;
    426			} else if (ca->cwnd_growth_factor >= 0 &&
    427				   nv_cwnd_growth_rate_pos > 0 &&
    428				   ca->nv_no_cong_cnt >
    429				   nv_cwnd_growth_rate_pos) {
    430				ca->cwnd_growth_factor++;
    431				ca->nv_no_cong_cnt = 0;
    432			}
    433		} else {
    434			/* cwnd is in-between, so do nothing */
    435			return;
    436		}
    437
    438		/* update state */
    439		ca->nv_eval_call_cnt = 0;
    440		ca->nv_rtt_cnt = 0;
    441		ca->nv_rtt_max_rate = 0;
    442
    443		/* Don't want to make cwnd < nv_min_cwnd
    444		 * (it wasn't before, if it is now is because nv
    445		 *  decreased it).
    446		 */
    447		if (tcp_snd_cwnd(tp) < nv_min_cwnd)
    448			tcp_snd_cwnd_set(tp, nv_min_cwnd);
    449	}
    450}
    451
    452/* Extract info for Tcp socket info provided via netlink */
    453static size_t tcpnv_get_info(struct sock *sk, u32 ext, int *attr,
    454			     union tcp_cc_info *info)
    455{
    456	const struct tcpnv *ca = inet_csk_ca(sk);
    457
    458	if (ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
    459		info->vegas.tcpv_enabled = 1;
    460		info->vegas.tcpv_rttcnt = ca->nv_rtt_cnt;
    461		info->vegas.tcpv_rtt = ca->nv_last_rtt;
    462		info->vegas.tcpv_minrtt = ca->nv_min_rtt;
    463
    464		*attr = INET_DIAG_VEGASINFO;
    465		return sizeof(struct tcpvegas_info);
    466	}
    467	return 0;
    468}
    469
    470static struct tcp_congestion_ops tcpnv __read_mostly = {
    471	.init		= tcpnv_init,
    472	.ssthresh	= tcpnv_recalc_ssthresh,
    473	.cong_avoid	= tcpnv_cong_avoid,
    474	.set_state	= tcpnv_state,
    475	.undo_cwnd	= tcp_reno_undo_cwnd,
    476	.pkts_acked     = tcpnv_acked,
    477	.get_info	= tcpnv_get_info,
    478
    479	.owner		= THIS_MODULE,
    480	.name		= "nv",
    481};
    482
    483static int __init tcpnv_register(void)
    484{
    485	BUILD_BUG_ON(sizeof(struct tcpnv) > ICSK_CA_PRIV_SIZE);
    486
    487	return tcp_register_congestion_control(&tcpnv);
    488}
    489
    490static void __exit tcpnv_unregister(void)
    491{
    492	tcp_unregister_congestion_control(&tcpnv);
    493}
    494
    495module_init(tcpnv_register);
    496module_exit(tcpnv_unregister);
    497
    498MODULE_AUTHOR("Lawrence Brakmo");
    499MODULE_LICENSE("GPL");
    500MODULE_DESCRIPTION("TCP NV");
    501MODULE_VERSION("1.0");