nf_conncount.c (16017B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * count the number of connections matching an arbitrary key. 4 * 5 * (C) 2017 Red Hat GmbH 6 * Author: Florian Westphal <fw@strlen.de> 7 * 8 * split from xt_connlimit.c: 9 * (c) 2000 Gerd Knorr <kraxel@bytesex.org> 10 * Nov 2002: Martin Bene <martin.bene@icomedias.com>: 11 * only ignore TIME_WAIT or gone connections 12 * (C) CC Computer Consultants GmbH, 2007 13 */ 14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15#include <linux/in.h> 16#include <linux/in6.h> 17#include <linux/ip.h> 18#include <linux/ipv6.h> 19#include <linux/jhash.h> 20#include <linux/slab.h> 21#include <linux/list.h> 22#include <linux/rbtree.h> 23#include <linux/module.h> 24#include <linux/random.h> 25#include <linux/skbuff.h> 26#include <linux/spinlock.h> 27#include <linux/netfilter/nf_conntrack_tcp.h> 28#include <linux/netfilter/x_tables.h> 29#include <net/netfilter/nf_conntrack.h> 30#include <net/netfilter/nf_conntrack_count.h> 31#include <net/netfilter/nf_conntrack_core.h> 32#include <net/netfilter/nf_conntrack_tuple.h> 33#include <net/netfilter/nf_conntrack_zones.h> 34 35#define CONNCOUNT_SLOTS 256U 36 37#define CONNCOUNT_GC_MAX_NODES 8 38#define MAX_KEYLEN 5 39 40/* we will save the tuples of all connections we care about */ 41struct nf_conncount_tuple { 42 struct list_head node; 43 struct nf_conntrack_tuple tuple; 44 struct nf_conntrack_zone zone; 45 int cpu; 46 u32 jiffies32; 47}; 48 49struct nf_conncount_rb { 50 struct rb_node node; 51 struct nf_conncount_list list; 52 u32 key[MAX_KEYLEN]; 53 struct rcu_head rcu_head; 54}; 55 56static spinlock_t nf_conncount_locks[CONNCOUNT_SLOTS] __cacheline_aligned_in_smp; 57 58struct nf_conncount_data { 59 unsigned int keylen; 60 struct rb_root root[CONNCOUNT_SLOTS]; 61 struct net *net; 62 struct work_struct gc_work; 63 unsigned long pending_trees[BITS_TO_LONGS(CONNCOUNT_SLOTS)]; 64 unsigned int gc_tree; 65}; 66 67static u_int32_t conncount_rnd __read_mostly; 68static struct kmem_cache *conncount_rb_cachep __read_mostly; 69static struct kmem_cache *conncount_conn_cachep __read_mostly; 70 71static inline bool already_closed(const struct nf_conn *conn) 72{ 73 if (nf_ct_protonum(conn) == IPPROTO_TCP) 74 return conn->proto.tcp.state == TCP_CONNTRACK_TIME_WAIT || 75 conn->proto.tcp.state == TCP_CONNTRACK_CLOSE; 76 else 77 return false; 78} 79 80static int key_diff(const u32 *a, const u32 *b, unsigned int klen) 81{ 82 return memcmp(a, b, klen * sizeof(u32)); 83} 84 85static void conn_free(struct nf_conncount_list *list, 86 struct nf_conncount_tuple *conn) 87{ 88 lockdep_assert_held(&list->list_lock); 89 90 list->count--; 91 list_del(&conn->node); 92 93 kmem_cache_free(conncount_conn_cachep, conn); 94} 95 96static const struct nf_conntrack_tuple_hash * 97find_or_evict(struct net *net, struct nf_conncount_list *list, 98 struct nf_conncount_tuple *conn) 99{ 100 const struct nf_conntrack_tuple_hash *found; 101 unsigned long a, b; 102 int cpu = raw_smp_processor_id(); 103 u32 age; 104 105 found = nf_conntrack_find_get(net, &conn->zone, &conn->tuple); 106 if (found) 107 return found; 108 b = conn->jiffies32; 109 a = (u32)jiffies; 110 111 /* conn might have been added just before by another cpu and 112 * might still be unconfirmed. In this case, nf_conntrack_find() 113 * returns no result. Thus only evict if this cpu added the 114 * stale entry or if the entry is older than two jiffies. 115 */ 116 age = a - b; 117 if (conn->cpu == cpu || age >= 2) { 118 conn_free(list, conn); 119 return ERR_PTR(-ENOENT); 120 } 121 122 return ERR_PTR(-EAGAIN); 123} 124 125static int __nf_conncount_add(struct net *net, 126 struct nf_conncount_list *list, 127 const struct nf_conntrack_tuple *tuple, 128 const struct nf_conntrack_zone *zone) 129{ 130 const struct nf_conntrack_tuple_hash *found; 131 struct nf_conncount_tuple *conn, *conn_n; 132 struct nf_conn *found_ct; 133 unsigned int collect = 0; 134 135 if (time_is_after_eq_jiffies((unsigned long)list->last_gc)) 136 goto add_new_node; 137 138 /* check the saved connections */ 139 list_for_each_entry_safe(conn, conn_n, &list->head, node) { 140 if (collect > CONNCOUNT_GC_MAX_NODES) 141 break; 142 143 found = find_or_evict(net, list, conn); 144 if (IS_ERR(found)) { 145 /* Not found, but might be about to be confirmed */ 146 if (PTR_ERR(found) == -EAGAIN) { 147 if (nf_ct_tuple_equal(&conn->tuple, tuple) && 148 nf_ct_zone_id(&conn->zone, conn->zone.dir) == 149 nf_ct_zone_id(zone, zone->dir)) 150 return 0; /* already exists */ 151 } else { 152 collect++; 153 } 154 continue; 155 } 156 157 found_ct = nf_ct_tuplehash_to_ctrack(found); 158 159 if (nf_ct_tuple_equal(&conn->tuple, tuple) && 160 nf_ct_zone_equal(found_ct, zone, zone->dir)) { 161 /* 162 * We should not see tuples twice unless someone hooks 163 * this into a table without "-p tcp --syn". 164 * 165 * Attempt to avoid a re-add in this case. 166 */ 167 nf_ct_put(found_ct); 168 return 0; 169 } else if (already_closed(found_ct)) { 170 /* 171 * we do not care about connections which are 172 * closed already -> ditch it 173 */ 174 nf_ct_put(found_ct); 175 conn_free(list, conn); 176 collect++; 177 continue; 178 } 179 180 nf_ct_put(found_ct); 181 } 182 183add_new_node: 184 if (WARN_ON_ONCE(list->count > INT_MAX)) 185 return -EOVERFLOW; 186 187 conn = kmem_cache_alloc(conncount_conn_cachep, GFP_ATOMIC); 188 if (conn == NULL) 189 return -ENOMEM; 190 191 conn->tuple = *tuple; 192 conn->zone = *zone; 193 conn->cpu = raw_smp_processor_id(); 194 conn->jiffies32 = (u32)jiffies; 195 list_add_tail(&conn->node, &list->head); 196 list->count++; 197 list->last_gc = (u32)jiffies; 198 return 0; 199} 200 201int nf_conncount_add(struct net *net, 202 struct nf_conncount_list *list, 203 const struct nf_conntrack_tuple *tuple, 204 const struct nf_conntrack_zone *zone) 205{ 206 int ret; 207 208 /* check the saved connections */ 209 spin_lock_bh(&list->list_lock); 210 ret = __nf_conncount_add(net, list, tuple, zone); 211 spin_unlock_bh(&list->list_lock); 212 213 return ret; 214} 215EXPORT_SYMBOL_GPL(nf_conncount_add); 216 217void nf_conncount_list_init(struct nf_conncount_list *list) 218{ 219 spin_lock_init(&list->list_lock); 220 INIT_LIST_HEAD(&list->head); 221 list->count = 0; 222 list->last_gc = (u32)jiffies; 223} 224EXPORT_SYMBOL_GPL(nf_conncount_list_init); 225 226/* Return true if the list is empty. Must be called with BH disabled. */ 227bool nf_conncount_gc_list(struct net *net, 228 struct nf_conncount_list *list) 229{ 230 const struct nf_conntrack_tuple_hash *found; 231 struct nf_conncount_tuple *conn, *conn_n; 232 struct nf_conn *found_ct; 233 unsigned int collected = 0; 234 bool ret = false; 235 236 /* don't bother if we just did GC */ 237 if (time_is_after_eq_jiffies((unsigned long)READ_ONCE(list->last_gc))) 238 return false; 239 240 /* don't bother if other cpu is already doing GC */ 241 if (!spin_trylock(&list->list_lock)) 242 return false; 243 244 list_for_each_entry_safe(conn, conn_n, &list->head, node) { 245 found = find_or_evict(net, list, conn); 246 if (IS_ERR(found)) { 247 if (PTR_ERR(found) == -ENOENT) 248 collected++; 249 continue; 250 } 251 252 found_ct = nf_ct_tuplehash_to_ctrack(found); 253 if (already_closed(found_ct)) { 254 /* 255 * we do not care about connections which are 256 * closed already -> ditch it 257 */ 258 nf_ct_put(found_ct); 259 conn_free(list, conn); 260 collected++; 261 continue; 262 } 263 264 nf_ct_put(found_ct); 265 if (collected > CONNCOUNT_GC_MAX_NODES) 266 break; 267 } 268 269 if (!list->count) 270 ret = true; 271 list->last_gc = (u32)jiffies; 272 spin_unlock(&list->list_lock); 273 274 return ret; 275} 276EXPORT_SYMBOL_GPL(nf_conncount_gc_list); 277 278static void __tree_nodes_free(struct rcu_head *h) 279{ 280 struct nf_conncount_rb *rbconn; 281 282 rbconn = container_of(h, struct nf_conncount_rb, rcu_head); 283 kmem_cache_free(conncount_rb_cachep, rbconn); 284} 285 286/* caller must hold tree nf_conncount_locks[] lock */ 287static void tree_nodes_free(struct rb_root *root, 288 struct nf_conncount_rb *gc_nodes[], 289 unsigned int gc_count) 290{ 291 struct nf_conncount_rb *rbconn; 292 293 while (gc_count) { 294 rbconn = gc_nodes[--gc_count]; 295 spin_lock(&rbconn->list.list_lock); 296 if (!rbconn->list.count) { 297 rb_erase(&rbconn->node, root); 298 call_rcu(&rbconn->rcu_head, __tree_nodes_free); 299 } 300 spin_unlock(&rbconn->list.list_lock); 301 } 302} 303 304static void schedule_gc_worker(struct nf_conncount_data *data, int tree) 305{ 306 set_bit(tree, data->pending_trees); 307 schedule_work(&data->gc_work); 308} 309 310static unsigned int 311insert_tree(struct net *net, 312 struct nf_conncount_data *data, 313 struct rb_root *root, 314 unsigned int hash, 315 const u32 *key, 316 const struct nf_conntrack_tuple *tuple, 317 const struct nf_conntrack_zone *zone) 318{ 319 struct nf_conncount_rb *gc_nodes[CONNCOUNT_GC_MAX_NODES]; 320 struct rb_node **rbnode, *parent; 321 struct nf_conncount_rb *rbconn; 322 struct nf_conncount_tuple *conn; 323 unsigned int count = 0, gc_count = 0; 324 u8 keylen = data->keylen; 325 bool do_gc = true; 326 327 spin_lock_bh(&nf_conncount_locks[hash]); 328restart: 329 parent = NULL; 330 rbnode = &(root->rb_node); 331 while (*rbnode) { 332 int diff; 333 rbconn = rb_entry(*rbnode, struct nf_conncount_rb, node); 334 335 parent = *rbnode; 336 diff = key_diff(key, rbconn->key, keylen); 337 if (diff < 0) { 338 rbnode = &((*rbnode)->rb_left); 339 } else if (diff > 0) { 340 rbnode = &((*rbnode)->rb_right); 341 } else { 342 int ret; 343 344 ret = nf_conncount_add(net, &rbconn->list, tuple, zone); 345 if (ret) 346 count = 0; /* hotdrop */ 347 else 348 count = rbconn->list.count; 349 tree_nodes_free(root, gc_nodes, gc_count); 350 goto out_unlock; 351 } 352 353 if (gc_count >= ARRAY_SIZE(gc_nodes)) 354 continue; 355 356 if (do_gc && nf_conncount_gc_list(net, &rbconn->list)) 357 gc_nodes[gc_count++] = rbconn; 358 } 359 360 if (gc_count) { 361 tree_nodes_free(root, gc_nodes, gc_count); 362 schedule_gc_worker(data, hash); 363 gc_count = 0; 364 do_gc = false; 365 goto restart; 366 } 367 368 /* expected case: match, insert new node */ 369 rbconn = kmem_cache_alloc(conncount_rb_cachep, GFP_ATOMIC); 370 if (rbconn == NULL) 371 goto out_unlock; 372 373 conn = kmem_cache_alloc(conncount_conn_cachep, GFP_ATOMIC); 374 if (conn == NULL) { 375 kmem_cache_free(conncount_rb_cachep, rbconn); 376 goto out_unlock; 377 } 378 379 conn->tuple = *tuple; 380 conn->zone = *zone; 381 memcpy(rbconn->key, key, sizeof(u32) * keylen); 382 383 nf_conncount_list_init(&rbconn->list); 384 list_add(&conn->node, &rbconn->list.head); 385 count = 1; 386 rbconn->list.count = count; 387 388 rb_link_node_rcu(&rbconn->node, parent, rbnode); 389 rb_insert_color(&rbconn->node, root); 390out_unlock: 391 spin_unlock_bh(&nf_conncount_locks[hash]); 392 return count; 393} 394 395static unsigned int 396count_tree(struct net *net, 397 struct nf_conncount_data *data, 398 const u32 *key, 399 const struct nf_conntrack_tuple *tuple, 400 const struct nf_conntrack_zone *zone) 401{ 402 struct rb_root *root; 403 struct rb_node *parent; 404 struct nf_conncount_rb *rbconn; 405 unsigned int hash; 406 u8 keylen = data->keylen; 407 408 hash = jhash2(key, data->keylen, conncount_rnd) % CONNCOUNT_SLOTS; 409 root = &data->root[hash]; 410 411 parent = rcu_dereference_raw(root->rb_node); 412 while (parent) { 413 int diff; 414 415 rbconn = rb_entry(parent, struct nf_conncount_rb, node); 416 417 diff = key_diff(key, rbconn->key, keylen); 418 if (diff < 0) { 419 parent = rcu_dereference_raw(parent->rb_left); 420 } else if (diff > 0) { 421 parent = rcu_dereference_raw(parent->rb_right); 422 } else { 423 int ret; 424 425 if (!tuple) { 426 nf_conncount_gc_list(net, &rbconn->list); 427 return rbconn->list.count; 428 } 429 430 spin_lock_bh(&rbconn->list.list_lock); 431 /* Node might be about to be free'd. 432 * We need to defer to insert_tree() in this case. 433 */ 434 if (rbconn->list.count == 0) { 435 spin_unlock_bh(&rbconn->list.list_lock); 436 break; 437 } 438 439 /* same source network -> be counted! */ 440 ret = __nf_conncount_add(net, &rbconn->list, tuple, zone); 441 spin_unlock_bh(&rbconn->list.list_lock); 442 if (ret) 443 return 0; /* hotdrop */ 444 else 445 return rbconn->list.count; 446 } 447 } 448 449 if (!tuple) 450 return 0; 451 452 return insert_tree(net, data, root, hash, key, tuple, zone); 453} 454 455static void tree_gc_worker(struct work_struct *work) 456{ 457 struct nf_conncount_data *data = container_of(work, struct nf_conncount_data, gc_work); 458 struct nf_conncount_rb *gc_nodes[CONNCOUNT_GC_MAX_NODES], *rbconn; 459 struct rb_root *root; 460 struct rb_node *node; 461 unsigned int tree, next_tree, gc_count = 0; 462 463 tree = data->gc_tree % CONNCOUNT_SLOTS; 464 root = &data->root[tree]; 465 466 local_bh_disable(); 467 rcu_read_lock(); 468 for (node = rb_first(root); node != NULL; node = rb_next(node)) { 469 rbconn = rb_entry(node, struct nf_conncount_rb, node); 470 if (nf_conncount_gc_list(data->net, &rbconn->list)) 471 gc_count++; 472 } 473 rcu_read_unlock(); 474 local_bh_enable(); 475 476 cond_resched(); 477 478 spin_lock_bh(&nf_conncount_locks[tree]); 479 if (gc_count < ARRAY_SIZE(gc_nodes)) 480 goto next; /* do not bother */ 481 482 gc_count = 0; 483 node = rb_first(root); 484 while (node != NULL) { 485 rbconn = rb_entry(node, struct nf_conncount_rb, node); 486 node = rb_next(node); 487 488 if (rbconn->list.count > 0) 489 continue; 490 491 gc_nodes[gc_count++] = rbconn; 492 if (gc_count >= ARRAY_SIZE(gc_nodes)) { 493 tree_nodes_free(root, gc_nodes, gc_count); 494 gc_count = 0; 495 } 496 } 497 498 tree_nodes_free(root, gc_nodes, gc_count); 499next: 500 clear_bit(tree, data->pending_trees); 501 502 next_tree = (tree + 1) % CONNCOUNT_SLOTS; 503 next_tree = find_next_bit(data->pending_trees, CONNCOUNT_SLOTS, next_tree); 504 505 if (next_tree < CONNCOUNT_SLOTS) { 506 data->gc_tree = next_tree; 507 schedule_work(work); 508 } 509 510 spin_unlock_bh(&nf_conncount_locks[tree]); 511} 512 513/* Count and return number of conntrack entries in 'net' with particular 'key'. 514 * If 'tuple' is not null, insert it into the accounting data structure. 515 * Call with RCU read lock. 516 */ 517unsigned int nf_conncount_count(struct net *net, 518 struct nf_conncount_data *data, 519 const u32 *key, 520 const struct nf_conntrack_tuple *tuple, 521 const struct nf_conntrack_zone *zone) 522{ 523 return count_tree(net, data, key, tuple, zone); 524} 525EXPORT_SYMBOL_GPL(nf_conncount_count); 526 527struct nf_conncount_data *nf_conncount_init(struct net *net, unsigned int family, 528 unsigned int keylen) 529{ 530 struct nf_conncount_data *data; 531 int ret, i; 532 533 if (keylen % sizeof(u32) || 534 keylen / sizeof(u32) > MAX_KEYLEN || 535 keylen == 0) 536 return ERR_PTR(-EINVAL); 537 538 net_get_random_once(&conncount_rnd, sizeof(conncount_rnd)); 539 540 data = kmalloc(sizeof(*data), GFP_KERNEL); 541 if (!data) 542 return ERR_PTR(-ENOMEM); 543 544 ret = nf_ct_netns_get(net, family); 545 if (ret < 0) { 546 kfree(data); 547 return ERR_PTR(ret); 548 } 549 550 for (i = 0; i < ARRAY_SIZE(data->root); ++i) 551 data->root[i] = RB_ROOT; 552 553 data->keylen = keylen / sizeof(u32); 554 data->net = net; 555 INIT_WORK(&data->gc_work, tree_gc_worker); 556 557 return data; 558} 559EXPORT_SYMBOL_GPL(nf_conncount_init); 560 561void nf_conncount_cache_free(struct nf_conncount_list *list) 562{ 563 struct nf_conncount_tuple *conn, *conn_n; 564 565 list_for_each_entry_safe(conn, conn_n, &list->head, node) 566 kmem_cache_free(conncount_conn_cachep, conn); 567} 568EXPORT_SYMBOL_GPL(nf_conncount_cache_free); 569 570static void destroy_tree(struct rb_root *r) 571{ 572 struct nf_conncount_rb *rbconn; 573 struct rb_node *node; 574 575 while ((node = rb_first(r)) != NULL) { 576 rbconn = rb_entry(node, struct nf_conncount_rb, node); 577 578 rb_erase(node, r); 579 580 nf_conncount_cache_free(&rbconn->list); 581 582 kmem_cache_free(conncount_rb_cachep, rbconn); 583 } 584} 585 586void nf_conncount_destroy(struct net *net, unsigned int family, 587 struct nf_conncount_data *data) 588{ 589 unsigned int i; 590 591 cancel_work_sync(&data->gc_work); 592 nf_ct_netns_put(net, family); 593 594 for (i = 0; i < ARRAY_SIZE(data->root); ++i) 595 destroy_tree(&data->root[i]); 596 597 kfree(data); 598} 599EXPORT_SYMBOL_GPL(nf_conncount_destroy); 600 601static int __init nf_conncount_modinit(void) 602{ 603 int i; 604 605 for (i = 0; i < CONNCOUNT_SLOTS; ++i) 606 spin_lock_init(&nf_conncount_locks[i]); 607 608 conncount_conn_cachep = kmem_cache_create("nf_conncount_tuple", 609 sizeof(struct nf_conncount_tuple), 610 0, 0, NULL); 611 if (!conncount_conn_cachep) 612 return -ENOMEM; 613 614 conncount_rb_cachep = kmem_cache_create("nf_conncount_rb", 615 sizeof(struct nf_conncount_rb), 616 0, 0, NULL); 617 if (!conncount_rb_cachep) { 618 kmem_cache_destroy(conncount_conn_cachep); 619 return -ENOMEM; 620 } 621 622 return 0; 623} 624 625static void __exit nf_conncount_modexit(void) 626{ 627 kmem_cache_destroy(conncount_conn_cachep); 628 kmem_cache_destroy(conncount_rb_cachep); 629} 630 631module_init(nf_conncount_modinit); 632module_exit(nf_conncount_modexit); 633MODULE_AUTHOR("Jan Engelhardt <jengelh@medozas.de>"); 634MODULE_AUTHOR("Florian Westphal <fw@strlen.de>"); 635MODULE_DESCRIPTION("netfilter: count number of connections matching a key"); 636MODULE_LICENSE("GPL");