nft_set_pipapo.c (65344B)
1// SPDX-License-Identifier: GPL-2.0-only 2 3/* PIPAPO: PIle PAcket POlicies: set for arbitrary concatenations of ranges 4 * 5 * Copyright (c) 2019-2020 Red Hat GmbH 6 * 7 * Author: Stefano Brivio <sbrivio@redhat.com> 8 */ 9 10/** 11 * DOC: Theory of Operation 12 * 13 * 14 * Problem 15 * ------- 16 * 17 * Match packet bytes against entries composed of ranged or non-ranged packet 18 * field specifiers, mapping them to arbitrary references. For example: 19 * 20 * :: 21 * 22 * --- fields ---> 23 * | [net],[port],[net]... => [reference] 24 * entries [net],[port],[net]... => [reference] 25 * | [net],[port],[net]... => [reference] 26 * V ... 27 * 28 * where [net] fields can be IP ranges or netmasks, and [port] fields are port 29 * ranges. Arbitrary packet fields can be matched. 30 * 31 * 32 * Algorithm Overview 33 * ------------------ 34 * 35 * This algorithm is loosely inspired by [Ligatti 2010], and fundamentally 36 * relies on the consideration that every contiguous range in a space of b bits 37 * can be converted into b * 2 netmasks, from Theorem 3 in [Rottenstreich 2010], 38 * as also illustrated in Section 9 of [Kogan 2014]. 39 * 40 * Classification against a number of entries, that require matching given bits 41 * of a packet field, is performed by grouping those bits in sets of arbitrary 42 * size, and classifying packet bits one group at a time. 43 * 44 * Example: 45 * to match the source port (16 bits) of a packet, we can divide those 16 bits 46 * in 4 groups of 4 bits each. Given the entry: 47 * 0000 0001 0101 1001 48 * and a packet with source port: 49 * 0000 0001 1010 1001 50 * first and second groups match, but the third doesn't. We conclude that the 51 * packet doesn't match the given entry. 52 * 53 * Translate the set to a sequence of lookup tables, one per field. Each table 54 * has two dimensions: bit groups to be matched for a single packet field, and 55 * all the possible values of said groups (buckets). Input entries are 56 * represented as one or more rules, depending on the number of composing 57 * netmasks for the given field specifier, and a group match is indicated as a 58 * set bit, with number corresponding to the rule index, in all the buckets 59 * whose value matches the entry for a given group. 60 * 61 * Rules are mapped between fields through an array of x, n pairs, with each 62 * item mapping a matched rule to one or more rules. The position of the pair in 63 * the array indicates the matched rule to be mapped to the next field, x 64 * indicates the first rule index in the next field, and n the amount of 65 * next-field rules the current rule maps to. 66 * 67 * The mapping array for the last field maps to the desired references. 68 * 69 * To match, we perform table lookups using the values of grouped packet bits, 70 * and use a sequence of bitwise operations to progressively evaluate rule 71 * matching. 72 * 73 * A stand-alone, reference implementation, also including notes about possible 74 * future optimisations, is available at: 75 * https://pipapo.lameexcu.se/ 76 * 77 * Insertion 78 * --------- 79 * 80 * - For each packet field: 81 * 82 * - divide the b packet bits we want to classify into groups of size t, 83 * obtaining ceil(b / t) groups 84 * 85 * Example: match on destination IP address, with t = 4: 32 bits, 8 groups 86 * of 4 bits each 87 * 88 * - allocate a lookup table with one column ("bucket") for each possible 89 * value of a group, and with one row for each group 90 * 91 * Example: 8 groups, 2^4 buckets: 92 * 93 * :: 94 * 95 * bucket 96 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 97 * 0 98 * 1 99 * 2 100 * 3 101 * 4 102 * 5 103 * 6 104 * 7 105 * 106 * - map the bits we want to classify for the current field, for a given 107 * entry, to a single rule for non-ranged and netmask set items, and to one 108 * or multiple rules for ranges. Ranges are expanded to composing netmasks 109 * by pipapo_expand(). 110 * 111 * Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048 112 * - rule #0: 10.0.0.5 113 * - rule #1: 192.168.1.0/24 114 * - rule #2: 192.168.2.0/31 115 * 116 * - insert references to the rules in the lookup table, selecting buckets 117 * according to bit values of a rule in the given group. This is done by 118 * pipapo_insert(). 119 * 120 * Example: given: 121 * - rule #0: 10.0.0.5 mapping to buckets 122 * < 0 10 0 0 0 0 0 5 > 123 * - rule #1: 192.168.1.0/24 mapping to buckets 124 * < 12 0 10 8 0 1 < 0..15 > < 0..15 > > 125 * - rule #2: 192.168.2.0/31 mapping to buckets 126 * < 12 0 10 8 0 2 0 < 0..1 > > 127 * 128 * these bits are set in the lookup table: 129 * 130 * :: 131 * 132 * bucket 133 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 134 * 0 0 1,2 135 * 1 1,2 0 136 * 2 0 1,2 137 * 3 0 1,2 138 * 4 0,1,2 139 * 5 0 1 2 140 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 141 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1 142 * 143 * - if this is not the last field in the set, fill a mapping array that maps 144 * rules from the lookup table to rules belonging to the same entry in 145 * the next lookup table, done by pipapo_map(). 146 * 147 * Note that as rules map to contiguous ranges of rules, given how netmask 148 * expansion and insertion is performed, &union nft_pipapo_map_bucket stores 149 * this information as pairs of first rule index, rule count. 150 * 151 * Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048, 152 * given lookup table #0 for field 0 (see example above): 153 * 154 * :: 155 * 156 * bucket 157 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 158 * 0 0 1,2 159 * 1 1,2 0 160 * 2 0 1,2 161 * 3 0 1,2 162 * 4 0,1,2 163 * 5 0 1 2 164 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 165 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1 166 * 167 * and lookup table #1 for field 1 with: 168 * - rule #0: 1024 mapping to buckets 169 * < 0 0 4 0 > 170 * - rule #1: 2048 mapping to buckets 171 * < 0 0 5 0 > 172 * 173 * :: 174 * 175 * bucket 176 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 177 * 0 0,1 178 * 1 0,1 179 * 2 0 1 180 * 3 0,1 181 * 182 * we need to map rules for 10.0.0.5 in lookup table #0 (rule #0) to 1024 183 * in lookup table #1 (rule #0) and rules for 192.168.1.0-192.168.2.1 184 * (rules #1, #2) to 2048 in lookup table #2 (rule #1): 185 * 186 * :: 187 * 188 * rule indices in current field: 0 1 2 189 * map to rules in next field: 0 1 1 190 * 191 * - if this is the last field in the set, fill a mapping array that maps 192 * rules from the last lookup table to element pointers, also done by 193 * pipapo_map(). 194 * 195 * Note that, in this implementation, we have two elements (start, end) for 196 * each entry. The pointer to the end element is stored in this array, and 197 * the pointer to the start element is linked from it. 198 * 199 * Example: entry 10.0.0.5:1024 has a corresponding &struct nft_pipapo_elem 200 * pointer, 0x66, and element for 192.168.1.0-192.168.2.1:2048 is at 0x42. 201 * From the rules of lookup table #1 as mapped above: 202 * 203 * :: 204 * 205 * rule indices in last field: 0 1 206 * map to elements: 0x66 0x42 207 * 208 * 209 * Matching 210 * -------- 211 * 212 * We use a result bitmap, with the size of a single lookup table bucket, to 213 * represent the matching state that applies at every algorithm step. This is 214 * done by pipapo_lookup(). 215 * 216 * - For each packet field: 217 * 218 * - start with an all-ones result bitmap (res_map in pipapo_lookup()) 219 * 220 * - perform a lookup into the table corresponding to the current field, 221 * for each group, and at every group, AND the current result bitmap with 222 * the value from the lookup table bucket 223 * 224 * :: 225 * 226 * Example: 192.168.1.5 < 12 0 10 8 0 1 0 5 >, with lookup table from 227 * insertion examples. 228 * Lookup table buckets are at least 3 bits wide, we'll assume 8 bits for 229 * convenience in this example. Initial result bitmap is 0xff, the steps 230 * below show the value of the result bitmap after each group is processed: 231 * 232 * bucket 233 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 234 * 0 0 1,2 235 * result bitmap is now: 0xff & 0x6 [bucket 12] = 0x6 236 * 237 * 1 1,2 0 238 * result bitmap is now: 0x6 & 0x6 [bucket 0] = 0x6 239 * 240 * 2 0 1,2 241 * result bitmap is now: 0x6 & 0x6 [bucket 10] = 0x6 242 * 243 * 3 0 1,2 244 * result bitmap is now: 0x6 & 0x6 [bucket 8] = 0x6 245 * 246 * 4 0,1,2 247 * result bitmap is now: 0x6 & 0x7 [bucket 0] = 0x6 248 * 249 * 5 0 1 2 250 * result bitmap is now: 0x6 & 0x2 [bucket 1] = 0x2 251 * 252 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 253 * result bitmap is now: 0x2 & 0x7 [bucket 0] = 0x2 254 * 255 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1 256 * final result bitmap for this field is: 0x2 & 0x3 [bucket 5] = 0x2 257 * 258 * - at the next field, start with a new, all-zeroes result bitmap. For each 259 * bit set in the previous result bitmap, fill the new result bitmap 260 * (fill_map in pipapo_lookup()) with the rule indices from the 261 * corresponding buckets of the mapping field for this field, done by 262 * pipapo_refill() 263 * 264 * Example: with mapping table from insertion examples, with the current 265 * result bitmap from the previous example, 0x02: 266 * 267 * :: 268 * 269 * rule indices in current field: 0 1 2 270 * map to rules in next field: 0 1 1 271 * 272 * the new result bitmap will be 0x02: rule 1 was set, and rule 1 will be 273 * set. 274 * 275 * We can now extend this example to cover the second iteration of the step 276 * above (lookup and AND bitmap): assuming the port field is 277 * 2048 < 0 0 5 0 >, with starting result bitmap 0x2, and lookup table 278 * for "port" field from pre-computation example: 279 * 280 * :: 281 * 282 * bucket 283 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 284 * 0 0,1 285 * 1 0,1 286 * 2 0 1 287 * 3 0,1 288 * 289 * operations are: 0x2 & 0x3 [bucket 0] & 0x3 [bucket 0] & 0x2 [bucket 5] 290 * & 0x3 [bucket 0], resulting bitmap is 0x2. 291 * 292 * - if this is the last field in the set, look up the value from the mapping 293 * array corresponding to the final result bitmap 294 * 295 * Example: 0x2 resulting bitmap from 192.168.1.5:2048, mapping array for 296 * last field from insertion example: 297 * 298 * :: 299 * 300 * rule indices in last field: 0 1 301 * map to elements: 0x66 0x42 302 * 303 * the matching element is at 0x42. 304 * 305 * 306 * References 307 * ---------- 308 * 309 * [Ligatti 2010] 310 * A Packet-classification Algorithm for Arbitrary Bitmask Rules, with 311 * Automatic Time-space Tradeoffs 312 * Jay Ligatti, Josh Kuhn, and Chris Gage. 313 * Proceedings of the IEEE International Conference on Computer 314 * Communication Networks (ICCCN), August 2010. 315 * https://www.cse.usf.edu/~ligatti/papers/grouper-conf.pdf 316 * 317 * [Rottenstreich 2010] 318 * Worst-Case TCAM Rule Expansion 319 * Ori Rottenstreich and Isaac Keslassy. 320 * 2010 Proceedings IEEE INFOCOM, San Diego, CA, 2010. 321 * http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.4592&rep=rep1&type=pdf 322 * 323 * [Kogan 2014] 324 * SAX-PAC (Scalable And eXpressive PAcket Classification) 325 * Kirill Kogan, Sergey Nikolenko, Ori Rottenstreich, William Culhane, 326 * and Patrick Eugster. 327 * Proceedings of the 2014 ACM conference on SIGCOMM, August 2014. 328 * https://www.sigcomm.org/sites/default/files/ccr/papers/2014/August/2619239-2626294.pdf 329 */ 330 331#include <linux/kernel.h> 332#include <linux/init.h> 333#include <linux/module.h> 334#include <linux/netlink.h> 335#include <linux/netfilter.h> 336#include <linux/netfilter/nf_tables.h> 337#include <net/netfilter/nf_tables_core.h> 338#include <uapi/linux/netfilter/nf_tables.h> 339#include <linux/bitmap.h> 340#include <linux/bitops.h> 341 342#include "nft_set_pipapo_avx2.h" 343#include "nft_set_pipapo.h" 344 345/* Current working bitmap index, toggled between field matches */ 346static DEFINE_PER_CPU(bool, nft_pipapo_scratch_index); 347 348/** 349 * pipapo_refill() - For each set bit, set bits from selected mapping table item 350 * @map: Bitmap to be scanned for set bits 351 * @len: Length of bitmap in longs 352 * @rules: Number of rules in field 353 * @dst: Destination bitmap 354 * @mt: Mapping table containing bit set specifiers 355 * @match_only: Find a single bit and return, don't fill 356 * 357 * Iteration over set bits with __builtin_ctzl(): Daniel Lemire, public domain. 358 * 359 * For each bit set in map, select the bucket from mapping table with index 360 * corresponding to the position of the bit set. Use start bit and amount of 361 * bits specified in bucket to fill region in dst. 362 * 363 * Return: -1 on no match, bit position on 'match_only', 0 otherwise. 364 */ 365int pipapo_refill(unsigned long *map, int len, int rules, unsigned long *dst, 366 union nft_pipapo_map_bucket *mt, bool match_only) 367{ 368 unsigned long bitset; 369 int k, ret = -1; 370 371 for (k = 0; k < len; k++) { 372 bitset = map[k]; 373 while (bitset) { 374 unsigned long t = bitset & -bitset; 375 int r = __builtin_ctzl(bitset); 376 int i = k * BITS_PER_LONG + r; 377 378 if (unlikely(i >= rules)) { 379 map[k] = 0; 380 return -1; 381 } 382 383 if (match_only) { 384 bitmap_clear(map, i, 1); 385 return i; 386 } 387 388 ret = 0; 389 390 bitmap_set(dst, mt[i].to, mt[i].n); 391 392 bitset ^= t; 393 } 394 map[k] = 0; 395 } 396 397 return ret; 398} 399 400/** 401 * nft_pipapo_lookup() - Lookup function 402 * @net: Network namespace 403 * @set: nftables API set representation 404 * @key: nftables API element representation containing key data 405 * @ext: nftables API extension pointer, filled with matching reference 406 * 407 * For more details, see DOC: Theory of Operation. 408 * 409 * Return: true on match, false otherwise. 410 */ 411bool nft_pipapo_lookup(const struct net *net, const struct nft_set *set, 412 const u32 *key, const struct nft_set_ext **ext) 413{ 414 struct nft_pipapo *priv = nft_set_priv(set); 415 unsigned long *res_map, *fill_map; 416 u8 genmask = nft_genmask_cur(net); 417 const u8 *rp = (const u8 *)key; 418 struct nft_pipapo_match *m; 419 struct nft_pipapo_field *f; 420 bool map_index; 421 int i; 422 423 local_bh_disable(); 424 425 map_index = raw_cpu_read(nft_pipapo_scratch_index); 426 427 m = rcu_dereference(priv->match); 428 429 if (unlikely(!m || !*raw_cpu_ptr(m->scratch))) 430 goto out; 431 432 res_map = *raw_cpu_ptr(m->scratch) + (map_index ? m->bsize_max : 0); 433 fill_map = *raw_cpu_ptr(m->scratch) + (map_index ? 0 : m->bsize_max); 434 435 memset(res_map, 0xff, m->bsize_max * sizeof(*res_map)); 436 437 nft_pipapo_for_each_field(f, i, m) { 438 bool last = i == m->field_count - 1; 439 int b; 440 441 /* For each bit group: select lookup table bucket depending on 442 * packet bytes value, then AND bucket value 443 */ 444 if (likely(f->bb == 8)) 445 pipapo_and_field_buckets_8bit(f, res_map, rp); 446 else 447 pipapo_and_field_buckets_4bit(f, res_map, rp); 448 NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4; 449 450 rp += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f); 451 452 /* Now populate the bitmap for the next field, unless this is 453 * the last field, in which case return the matched 'ext' 454 * pointer if any. 455 * 456 * Now res_map contains the matching bitmap, and fill_map is the 457 * bitmap for the next field. 458 */ 459next_match: 460 b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt, 461 last); 462 if (b < 0) { 463 raw_cpu_write(nft_pipapo_scratch_index, map_index); 464 local_bh_enable(); 465 466 return false; 467 } 468 469 if (last) { 470 *ext = &f->mt[b].e->ext; 471 if (unlikely(nft_set_elem_expired(*ext) || 472 !nft_set_elem_active(*ext, genmask))) 473 goto next_match; 474 475 /* Last field: we're just returning the key without 476 * filling the initial bitmap for the next field, so the 477 * current inactive bitmap is clean and can be reused as 478 * *next* bitmap (not initial) for the next packet. 479 */ 480 raw_cpu_write(nft_pipapo_scratch_index, map_index); 481 local_bh_enable(); 482 483 return true; 484 } 485 486 /* Swap bitmap indices: res_map is the initial bitmap for the 487 * next field, and fill_map is guaranteed to be all-zeroes at 488 * this point. 489 */ 490 map_index = !map_index; 491 swap(res_map, fill_map); 492 493 rp += NFT_PIPAPO_GROUPS_PADDING(f); 494 } 495 496out: 497 local_bh_enable(); 498 return false; 499} 500 501/** 502 * pipapo_get() - Get matching element reference given key data 503 * @net: Network namespace 504 * @set: nftables API set representation 505 * @data: Key data to be matched against existing elements 506 * @genmask: If set, check that element is active in given genmask 507 * 508 * This is essentially the same as the lookup function, except that it matches 509 * key data against the uncommitted copy and doesn't use preallocated maps for 510 * bitmap results. 511 * 512 * Return: pointer to &struct nft_pipapo_elem on match, error pointer otherwise. 513 */ 514static struct nft_pipapo_elem *pipapo_get(const struct net *net, 515 const struct nft_set *set, 516 const u8 *data, u8 genmask) 517{ 518 struct nft_pipapo_elem *ret = ERR_PTR(-ENOENT); 519 struct nft_pipapo *priv = nft_set_priv(set); 520 struct nft_pipapo_match *m = priv->clone; 521 unsigned long *res_map, *fill_map = NULL; 522 struct nft_pipapo_field *f; 523 int i; 524 525 res_map = kmalloc_array(m->bsize_max, sizeof(*res_map), GFP_ATOMIC); 526 if (!res_map) { 527 ret = ERR_PTR(-ENOMEM); 528 goto out; 529 } 530 531 fill_map = kcalloc(m->bsize_max, sizeof(*res_map), GFP_ATOMIC); 532 if (!fill_map) { 533 ret = ERR_PTR(-ENOMEM); 534 goto out; 535 } 536 537 memset(res_map, 0xff, m->bsize_max * sizeof(*res_map)); 538 539 nft_pipapo_for_each_field(f, i, m) { 540 bool last = i == m->field_count - 1; 541 int b; 542 543 /* For each bit group: select lookup table bucket depending on 544 * packet bytes value, then AND bucket value 545 */ 546 if (f->bb == 8) 547 pipapo_and_field_buckets_8bit(f, res_map, data); 548 else if (f->bb == 4) 549 pipapo_and_field_buckets_4bit(f, res_map, data); 550 else 551 BUG(); 552 553 data += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f); 554 555 /* Now populate the bitmap for the next field, unless this is 556 * the last field, in which case return the matched 'ext' 557 * pointer if any. 558 * 559 * Now res_map contains the matching bitmap, and fill_map is the 560 * bitmap for the next field. 561 */ 562next_match: 563 b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt, 564 last); 565 if (b < 0) 566 goto out; 567 568 if (last) { 569 if (nft_set_elem_expired(&f->mt[b].e->ext) || 570 (genmask && 571 !nft_set_elem_active(&f->mt[b].e->ext, genmask))) 572 goto next_match; 573 574 ret = f->mt[b].e; 575 goto out; 576 } 577 578 data += NFT_PIPAPO_GROUPS_PADDING(f); 579 580 /* Swap bitmap indices: fill_map will be the initial bitmap for 581 * the next field (i.e. the new res_map), and res_map is 582 * guaranteed to be all-zeroes at this point, ready to be filled 583 * according to the next mapping table. 584 */ 585 swap(res_map, fill_map); 586 } 587 588out: 589 kfree(fill_map); 590 kfree(res_map); 591 return ret; 592} 593 594/** 595 * nft_pipapo_get() - Get matching element reference given key data 596 * @net: Network namespace 597 * @set: nftables API set representation 598 * @elem: nftables API element representation containing key data 599 * @flags: Unused 600 */ 601static void *nft_pipapo_get(const struct net *net, const struct nft_set *set, 602 const struct nft_set_elem *elem, unsigned int flags) 603{ 604 return pipapo_get(net, set, (const u8 *)elem->key.val.data, 605 nft_genmask_cur(net)); 606} 607 608/** 609 * pipapo_resize() - Resize lookup or mapping table, or both 610 * @f: Field containing lookup and mapping tables 611 * @old_rules: Previous amount of rules in field 612 * @rules: New amount of rules 613 * 614 * Increase, decrease or maintain tables size depending on new amount of rules, 615 * and copy data over. In case the new size is smaller, throw away data for 616 * highest-numbered rules. 617 * 618 * Return: 0 on success, -ENOMEM on allocation failure. 619 */ 620static int pipapo_resize(struct nft_pipapo_field *f, int old_rules, int rules) 621{ 622 long *new_lt = NULL, *new_p, *old_lt = f->lt, *old_p; 623 union nft_pipapo_map_bucket *new_mt, *old_mt = f->mt; 624 size_t new_bucket_size, copy; 625 int group, bucket; 626 627 new_bucket_size = DIV_ROUND_UP(rules, BITS_PER_LONG); 628#ifdef NFT_PIPAPO_ALIGN 629 new_bucket_size = roundup(new_bucket_size, 630 NFT_PIPAPO_ALIGN / sizeof(*new_lt)); 631#endif 632 633 if (new_bucket_size == f->bsize) 634 goto mt; 635 636 if (new_bucket_size > f->bsize) 637 copy = f->bsize; 638 else 639 copy = new_bucket_size; 640 641 new_lt = kvzalloc(f->groups * NFT_PIPAPO_BUCKETS(f->bb) * 642 new_bucket_size * sizeof(*new_lt) + 643 NFT_PIPAPO_ALIGN_HEADROOM, 644 GFP_KERNEL); 645 if (!new_lt) 646 return -ENOMEM; 647 648 new_p = NFT_PIPAPO_LT_ALIGN(new_lt); 649 old_p = NFT_PIPAPO_LT_ALIGN(old_lt); 650 651 for (group = 0; group < f->groups; group++) { 652 for (bucket = 0; bucket < NFT_PIPAPO_BUCKETS(f->bb); bucket++) { 653 memcpy(new_p, old_p, copy * sizeof(*new_p)); 654 new_p += copy; 655 old_p += copy; 656 657 if (new_bucket_size > f->bsize) 658 new_p += new_bucket_size - f->bsize; 659 else 660 old_p += f->bsize - new_bucket_size; 661 } 662 } 663 664mt: 665 new_mt = kvmalloc(rules * sizeof(*new_mt), GFP_KERNEL); 666 if (!new_mt) { 667 kvfree(new_lt); 668 return -ENOMEM; 669 } 670 671 memcpy(new_mt, f->mt, min(old_rules, rules) * sizeof(*new_mt)); 672 if (rules > old_rules) { 673 memset(new_mt + old_rules, 0, 674 (rules - old_rules) * sizeof(*new_mt)); 675 } 676 677 if (new_lt) { 678 f->bsize = new_bucket_size; 679 NFT_PIPAPO_LT_ASSIGN(f, new_lt); 680 kvfree(old_lt); 681 } 682 683 f->mt = new_mt; 684 kvfree(old_mt); 685 686 return 0; 687} 688 689/** 690 * pipapo_bucket_set() - Set rule bit in bucket given group and group value 691 * @f: Field containing lookup table 692 * @rule: Rule index 693 * @group: Group index 694 * @v: Value of bit group 695 */ 696static void pipapo_bucket_set(struct nft_pipapo_field *f, int rule, int group, 697 int v) 698{ 699 unsigned long *pos; 700 701 pos = NFT_PIPAPO_LT_ALIGN(f->lt); 702 pos += f->bsize * NFT_PIPAPO_BUCKETS(f->bb) * group; 703 pos += f->bsize * v; 704 705 __set_bit(rule, pos); 706} 707 708/** 709 * pipapo_lt_4b_to_8b() - Switch lookup table group width from 4 bits to 8 bits 710 * @old_groups: Number of current groups 711 * @bsize: Size of one bucket, in longs 712 * @old_lt: Pointer to the current lookup table 713 * @new_lt: Pointer to the new, pre-allocated lookup table 714 * 715 * Each bucket with index b in the new lookup table, belonging to group g, is 716 * filled with the bit intersection between: 717 * - bucket with index given by the upper 4 bits of b, from group g, and 718 * - bucket with index given by the lower 4 bits of b, from group g + 1 719 * 720 * That is, given buckets from the new lookup table N(x, y) and the old lookup 721 * table O(x, y), with x bucket index, and y group index: 722 * 723 * N(b, g) := O(b / 16, g) & O(b % 16, g + 1) 724 * 725 * This ensures equivalence of the matching results on lookup. Two examples in 726 * pictures: 727 * 728 * bucket 729 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ... 254 255 730 * 0 ^ 731 * 1 | ^ 732 * ... ( & ) | 733 * / \ | 734 * / \ .-( & )-. 735 * / bucket \ | | 736 * group 0 / 1 2 3 \ 4 5 6 7 8 9 10 11 12 13 |14 15 | 737 * 0 / \ | | 738 * 1 \ | | 739 * 2 | --' 740 * 3 '- 741 * ... 742 */ 743static void pipapo_lt_4b_to_8b(int old_groups, int bsize, 744 unsigned long *old_lt, unsigned long *new_lt) 745{ 746 int g, b, i; 747 748 for (g = 0; g < old_groups / 2; g++) { 749 int src_g0 = g * 2, src_g1 = g * 2 + 1; 750 751 for (b = 0; b < NFT_PIPAPO_BUCKETS(8); b++) { 752 int src_b0 = b / NFT_PIPAPO_BUCKETS(4); 753 int src_b1 = b % NFT_PIPAPO_BUCKETS(4); 754 int src_i0 = src_g0 * NFT_PIPAPO_BUCKETS(4) + src_b0; 755 int src_i1 = src_g1 * NFT_PIPAPO_BUCKETS(4) + src_b1; 756 757 for (i = 0; i < bsize; i++) { 758 *new_lt = old_lt[src_i0 * bsize + i] & 759 old_lt[src_i1 * bsize + i]; 760 new_lt++; 761 } 762 } 763 } 764} 765 766/** 767 * pipapo_lt_8b_to_4b() - Switch lookup table group width from 8 bits to 4 bits 768 * @old_groups: Number of current groups 769 * @bsize: Size of one bucket, in longs 770 * @old_lt: Pointer to the current lookup table 771 * @new_lt: Pointer to the new, pre-allocated lookup table 772 * 773 * Each bucket with index b in the new lookup table, belonging to group g, is 774 * filled with the bit union of: 775 * - all the buckets with index such that the upper four bits of the lower byte 776 * equal b, from group g, with g odd 777 * - all the buckets with index such that the lower four bits equal b, from 778 * group g, with g even 779 * 780 * That is, given buckets from the new lookup table N(x, y) and the old lookup 781 * table O(x, y), with x bucket index, and y group index: 782 * 783 * - with g odd: N(b, g) := U(O(x, g) for each x : x = (b & 0xf0) >> 4) 784 * - with g even: N(b, g) := U(O(x, g) for each x : x = b & 0x0f) 785 * 786 * where U() denotes the arbitrary union operation (binary OR of n terms). This 787 * ensures equivalence of the matching results on lookup. 788 */ 789static void pipapo_lt_8b_to_4b(int old_groups, int bsize, 790 unsigned long *old_lt, unsigned long *new_lt) 791{ 792 int g, b, bsrc, i; 793 794 memset(new_lt, 0, old_groups * 2 * NFT_PIPAPO_BUCKETS(4) * bsize * 795 sizeof(unsigned long)); 796 797 for (g = 0; g < old_groups * 2; g += 2) { 798 int src_g = g / 2; 799 800 for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) { 801 for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g; 802 bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1); 803 bsrc++) { 804 if (((bsrc & 0xf0) >> 4) != b) 805 continue; 806 807 for (i = 0; i < bsize; i++) 808 new_lt[i] |= old_lt[bsrc * bsize + i]; 809 } 810 811 new_lt += bsize; 812 } 813 814 for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) { 815 for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g; 816 bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1); 817 bsrc++) { 818 if ((bsrc & 0x0f) != b) 819 continue; 820 821 for (i = 0; i < bsize; i++) 822 new_lt[i] |= old_lt[bsrc * bsize + i]; 823 } 824 825 new_lt += bsize; 826 } 827 } 828} 829 830/** 831 * pipapo_lt_bits_adjust() - Adjust group size for lookup table if needed 832 * @f: Field containing lookup table 833 */ 834static void pipapo_lt_bits_adjust(struct nft_pipapo_field *f) 835{ 836 unsigned long *new_lt; 837 int groups, bb; 838 size_t lt_size; 839 840 lt_size = f->groups * NFT_PIPAPO_BUCKETS(f->bb) * f->bsize * 841 sizeof(*f->lt); 842 843 if (f->bb == NFT_PIPAPO_GROUP_BITS_SMALL_SET && 844 lt_size > NFT_PIPAPO_LT_SIZE_HIGH) { 845 groups = f->groups * 2; 846 bb = NFT_PIPAPO_GROUP_BITS_LARGE_SET; 847 848 lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize * 849 sizeof(*f->lt); 850 } else if (f->bb == NFT_PIPAPO_GROUP_BITS_LARGE_SET && 851 lt_size < NFT_PIPAPO_LT_SIZE_LOW) { 852 groups = f->groups / 2; 853 bb = NFT_PIPAPO_GROUP_BITS_SMALL_SET; 854 855 lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize * 856 sizeof(*f->lt); 857 858 /* Don't increase group width if the resulting lookup table size 859 * would exceed the upper size threshold for a "small" set. 860 */ 861 if (lt_size > NFT_PIPAPO_LT_SIZE_HIGH) 862 return; 863 } else { 864 return; 865 } 866 867 new_lt = kvzalloc(lt_size + NFT_PIPAPO_ALIGN_HEADROOM, GFP_KERNEL); 868 if (!new_lt) 869 return; 870 871 NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4; 872 if (f->bb == 4 && bb == 8) { 873 pipapo_lt_4b_to_8b(f->groups, f->bsize, 874 NFT_PIPAPO_LT_ALIGN(f->lt), 875 NFT_PIPAPO_LT_ALIGN(new_lt)); 876 } else if (f->bb == 8 && bb == 4) { 877 pipapo_lt_8b_to_4b(f->groups, f->bsize, 878 NFT_PIPAPO_LT_ALIGN(f->lt), 879 NFT_PIPAPO_LT_ALIGN(new_lt)); 880 } else { 881 BUG(); 882 } 883 884 f->groups = groups; 885 f->bb = bb; 886 kvfree(f->lt); 887 NFT_PIPAPO_LT_ASSIGN(f, new_lt); 888} 889 890/** 891 * pipapo_insert() - Insert new rule in field given input key and mask length 892 * @f: Field containing lookup table 893 * @k: Input key for classification, without nftables padding 894 * @mask_bits: Length of mask; matches field length for non-ranged entry 895 * 896 * Insert a new rule reference in lookup buckets corresponding to k and 897 * mask_bits. 898 * 899 * Return: 1 on success (one rule inserted), negative error code on failure. 900 */ 901static int pipapo_insert(struct nft_pipapo_field *f, const uint8_t *k, 902 int mask_bits) 903{ 904 int rule = f->rules++, group, ret, bit_offset = 0; 905 906 ret = pipapo_resize(f, f->rules - 1, f->rules); 907 if (ret) 908 return ret; 909 910 for (group = 0; group < f->groups; group++) { 911 int i, v; 912 u8 mask; 913 914 v = k[group / (BITS_PER_BYTE / f->bb)]; 915 v &= GENMASK(BITS_PER_BYTE - bit_offset - 1, 0); 916 v >>= (BITS_PER_BYTE - bit_offset) - f->bb; 917 918 bit_offset += f->bb; 919 bit_offset %= BITS_PER_BYTE; 920 921 if (mask_bits >= (group + 1) * f->bb) { 922 /* Not masked */ 923 pipapo_bucket_set(f, rule, group, v); 924 } else if (mask_bits <= group * f->bb) { 925 /* Completely masked */ 926 for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++) 927 pipapo_bucket_set(f, rule, group, i); 928 } else { 929 /* The mask limit falls on this group */ 930 mask = GENMASK(f->bb - 1, 0); 931 mask >>= mask_bits - group * f->bb; 932 for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++) { 933 if ((i & ~mask) == (v & ~mask)) 934 pipapo_bucket_set(f, rule, group, i); 935 } 936 } 937 } 938 939 pipapo_lt_bits_adjust(f); 940 941 return 1; 942} 943 944/** 945 * pipapo_step_diff() - Check if setting @step bit in netmask would change it 946 * @base: Mask we are expanding 947 * @step: Step bit for given expansion step 948 * @len: Total length of mask space (set and unset bits), bytes 949 * 950 * Convenience function for mask expansion. 951 * 952 * Return: true if step bit changes mask (i.e. isn't set), false otherwise. 953 */ 954static bool pipapo_step_diff(u8 *base, int step, int len) 955{ 956 /* Network order, byte-addressed */ 957#ifdef __BIG_ENDIAN__ 958 return !(BIT(step % BITS_PER_BYTE) & base[step / BITS_PER_BYTE]); 959#else 960 return !(BIT(step % BITS_PER_BYTE) & 961 base[len - 1 - step / BITS_PER_BYTE]); 962#endif 963} 964 965/** 966 * pipapo_step_after_end() - Check if mask exceeds range end with given step 967 * @base: Mask we are expanding 968 * @end: End of range 969 * @step: Step bit for given expansion step, highest bit to be set 970 * @len: Total length of mask space (set and unset bits), bytes 971 * 972 * Convenience function for mask expansion. 973 * 974 * Return: true if mask exceeds range setting step bits, false otherwise. 975 */ 976static bool pipapo_step_after_end(const u8 *base, const u8 *end, int step, 977 int len) 978{ 979 u8 tmp[NFT_PIPAPO_MAX_BYTES]; 980 int i; 981 982 memcpy(tmp, base, len); 983 984 /* Network order, byte-addressed */ 985 for (i = 0; i <= step; i++) 986#ifdef __BIG_ENDIAN__ 987 tmp[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE); 988#else 989 tmp[len - 1 - i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE); 990#endif 991 992 return memcmp(tmp, end, len) > 0; 993} 994 995/** 996 * pipapo_base_sum() - Sum step bit to given len-sized netmask base with carry 997 * @base: Netmask base 998 * @step: Step bit to sum 999 * @len: Netmask length, bytes 1000 */ 1001static void pipapo_base_sum(u8 *base, int step, int len) 1002{ 1003 bool carry = false; 1004 int i; 1005 1006 /* Network order, byte-addressed */ 1007#ifdef __BIG_ENDIAN__ 1008 for (i = step / BITS_PER_BYTE; i < len; i++) { 1009#else 1010 for (i = len - 1 - step / BITS_PER_BYTE; i >= 0; i--) { 1011#endif 1012 if (carry) 1013 base[i]++; 1014 else 1015 base[i] += 1 << (step % BITS_PER_BYTE); 1016 1017 if (base[i]) 1018 break; 1019 1020 carry = true; 1021 } 1022} 1023 1024/** 1025 * pipapo_expand() - Expand to composing netmasks, insert into lookup table 1026 * @f: Field containing lookup table 1027 * @start: Start of range 1028 * @end: End of range 1029 * @len: Length of value in bits 1030 * 1031 * Expand range to composing netmasks and insert corresponding rule references 1032 * in lookup buckets. 1033 * 1034 * Return: number of inserted rules on success, negative error code on failure. 1035 */ 1036static int pipapo_expand(struct nft_pipapo_field *f, 1037 const u8 *start, const u8 *end, int len) 1038{ 1039 int step, masks = 0, bytes = DIV_ROUND_UP(len, BITS_PER_BYTE); 1040 u8 base[NFT_PIPAPO_MAX_BYTES]; 1041 1042 memcpy(base, start, bytes); 1043 while (memcmp(base, end, bytes) <= 0) { 1044 int err; 1045 1046 step = 0; 1047 while (pipapo_step_diff(base, step, bytes)) { 1048 if (pipapo_step_after_end(base, end, step, bytes)) 1049 break; 1050 1051 step++; 1052 if (step >= len) { 1053 if (!masks) { 1054 pipapo_insert(f, base, 0); 1055 masks = 1; 1056 } 1057 goto out; 1058 } 1059 } 1060 1061 err = pipapo_insert(f, base, len - step); 1062 1063 if (err < 0) 1064 return err; 1065 1066 masks++; 1067 pipapo_base_sum(base, step, bytes); 1068 } 1069out: 1070 return masks; 1071} 1072 1073/** 1074 * pipapo_map() - Insert rules in mapping tables, mapping them between fields 1075 * @m: Matching data, including mapping table 1076 * @map: Table of rule maps: array of first rule and amount of rules 1077 * in next field a given rule maps to, for each field 1078 * @e: For last field, nft_set_ext pointer matching rules map to 1079 */ 1080static void pipapo_map(struct nft_pipapo_match *m, 1081 union nft_pipapo_map_bucket map[NFT_PIPAPO_MAX_FIELDS], 1082 struct nft_pipapo_elem *e) 1083{ 1084 struct nft_pipapo_field *f; 1085 int i, j; 1086 1087 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) { 1088 for (j = 0; j < map[i].n; j++) { 1089 f->mt[map[i].to + j].to = map[i + 1].to; 1090 f->mt[map[i].to + j].n = map[i + 1].n; 1091 } 1092 } 1093 1094 /* Last field: map to ext instead of mapping to next field */ 1095 for (j = 0; j < map[i].n; j++) 1096 f->mt[map[i].to + j].e = e; 1097} 1098 1099/** 1100 * pipapo_realloc_scratch() - Reallocate scratch maps for partial match results 1101 * @clone: Copy of matching data with pending insertions and deletions 1102 * @bsize_max: Maximum bucket size, scratch maps cover two buckets 1103 * 1104 * Return: 0 on success, -ENOMEM on failure. 1105 */ 1106static int pipapo_realloc_scratch(struct nft_pipapo_match *clone, 1107 unsigned long bsize_max) 1108{ 1109 int i; 1110 1111 for_each_possible_cpu(i) { 1112 unsigned long *scratch; 1113#ifdef NFT_PIPAPO_ALIGN 1114 unsigned long *scratch_aligned; 1115#endif 1116 1117 scratch = kzalloc_node(bsize_max * sizeof(*scratch) * 2 + 1118 NFT_PIPAPO_ALIGN_HEADROOM, 1119 GFP_KERNEL, cpu_to_node(i)); 1120 if (!scratch) { 1121 /* On failure, there's no need to undo previous 1122 * allocations: this means that some scratch maps have 1123 * a bigger allocated size now (this is only called on 1124 * insertion), but the extra space won't be used by any 1125 * CPU as new elements are not inserted and m->bsize_max 1126 * is not updated. 1127 */ 1128 return -ENOMEM; 1129 } 1130 1131 kfree(*per_cpu_ptr(clone->scratch, i)); 1132 1133 *per_cpu_ptr(clone->scratch, i) = scratch; 1134 1135#ifdef NFT_PIPAPO_ALIGN 1136 scratch_aligned = NFT_PIPAPO_LT_ALIGN(scratch); 1137 *per_cpu_ptr(clone->scratch_aligned, i) = scratch_aligned; 1138#endif 1139 } 1140 1141 return 0; 1142} 1143 1144/** 1145 * nft_pipapo_insert() - Validate and insert ranged elements 1146 * @net: Network namespace 1147 * @set: nftables API set representation 1148 * @elem: nftables API element representation containing key data 1149 * @ext2: Filled with pointer to &struct nft_set_ext in inserted element 1150 * 1151 * Return: 0 on success, error pointer on failure. 1152 */ 1153static int nft_pipapo_insert(const struct net *net, const struct nft_set *set, 1154 const struct nft_set_elem *elem, 1155 struct nft_set_ext **ext2) 1156{ 1157 const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv); 1158 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS]; 1159 const u8 *start = (const u8 *)elem->key.val.data, *end; 1160 struct nft_pipapo_elem *e = elem->priv, *dup; 1161 struct nft_pipapo *priv = nft_set_priv(set); 1162 struct nft_pipapo_match *m = priv->clone; 1163 u8 genmask = nft_genmask_next(net); 1164 struct nft_pipapo_field *f; 1165 int i, bsize_max, err = 0; 1166 1167 if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY_END)) 1168 end = (const u8 *)nft_set_ext_key_end(ext)->data; 1169 else 1170 end = start; 1171 1172 dup = pipapo_get(net, set, start, genmask); 1173 if (!IS_ERR(dup)) { 1174 /* Check if we already have the same exact entry */ 1175 const struct nft_data *dup_key, *dup_end; 1176 1177 dup_key = nft_set_ext_key(&dup->ext); 1178 if (nft_set_ext_exists(&dup->ext, NFT_SET_EXT_KEY_END)) 1179 dup_end = nft_set_ext_key_end(&dup->ext); 1180 else 1181 dup_end = dup_key; 1182 1183 if (!memcmp(start, dup_key->data, sizeof(*dup_key->data)) && 1184 !memcmp(end, dup_end->data, sizeof(*dup_end->data))) { 1185 *ext2 = &dup->ext; 1186 return -EEXIST; 1187 } 1188 1189 return -ENOTEMPTY; 1190 } 1191 1192 if (PTR_ERR(dup) == -ENOENT) { 1193 /* Look for partially overlapping entries */ 1194 dup = pipapo_get(net, set, end, nft_genmask_next(net)); 1195 } 1196 1197 if (PTR_ERR(dup) != -ENOENT) { 1198 if (IS_ERR(dup)) 1199 return PTR_ERR(dup); 1200 *ext2 = &dup->ext; 1201 return -ENOTEMPTY; 1202 } 1203 1204 /* Validate */ 1205 nft_pipapo_for_each_field(f, i, m) { 1206 const u8 *start_p = start, *end_p = end; 1207 1208 if (f->rules >= (unsigned long)NFT_PIPAPO_RULE0_MAX) 1209 return -ENOSPC; 1210 1211 if (memcmp(start_p, end_p, 1212 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) > 0) 1213 return -EINVAL; 1214 1215 start_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f); 1216 end_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f); 1217 } 1218 1219 /* Insert */ 1220 priv->dirty = true; 1221 1222 bsize_max = m->bsize_max; 1223 1224 nft_pipapo_for_each_field(f, i, m) { 1225 int ret; 1226 1227 rulemap[i].to = f->rules; 1228 1229 ret = memcmp(start, end, 1230 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)); 1231 if (!ret) 1232 ret = pipapo_insert(f, start, f->groups * f->bb); 1233 else 1234 ret = pipapo_expand(f, start, end, f->groups * f->bb); 1235 1236 if (f->bsize > bsize_max) 1237 bsize_max = f->bsize; 1238 1239 rulemap[i].n = ret; 1240 1241 start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f); 1242 end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f); 1243 } 1244 1245 if (!*get_cpu_ptr(m->scratch) || bsize_max > m->bsize_max) { 1246 put_cpu_ptr(m->scratch); 1247 1248 err = pipapo_realloc_scratch(m, bsize_max); 1249 if (err) 1250 return err; 1251 1252 m->bsize_max = bsize_max; 1253 } else { 1254 put_cpu_ptr(m->scratch); 1255 } 1256 1257 *ext2 = &e->ext; 1258 1259 pipapo_map(m, rulemap, e); 1260 1261 return 0; 1262} 1263 1264/** 1265 * pipapo_clone() - Clone matching data to create new working copy 1266 * @old: Existing matching data 1267 * 1268 * Return: copy of matching data passed as 'old', error pointer on failure 1269 */ 1270static struct nft_pipapo_match *pipapo_clone(struct nft_pipapo_match *old) 1271{ 1272 struct nft_pipapo_field *dst, *src; 1273 struct nft_pipapo_match *new; 1274 int i; 1275 1276 new = kmalloc(sizeof(*new) + sizeof(*dst) * old->field_count, 1277 GFP_KERNEL); 1278 if (!new) 1279 return ERR_PTR(-ENOMEM); 1280 1281 new->field_count = old->field_count; 1282 new->bsize_max = old->bsize_max; 1283 1284 new->scratch = alloc_percpu(*new->scratch); 1285 if (!new->scratch) 1286 goto out_scratch; 1287 1288#ifdef NFT_PIPAPO_ALIGN 1289 new->scratch_aligned = alloc_percpu(*new->scratch_aligned); 1290 if (!new->scratch_aligned) 1291 goto out_scratch; 1292#endif 1293 for_each_possible_cpu(i) 1294 *per_cpu_ptr(new->scratch, i) = NULL; 1295 1296 if (pipapo_realloc_scratch(new, old->bsize_max)) 1297 goto out_scratch_realloc; 1298 1299 rcu_head_init(&new->rcu); 1300 1301 src = old->f; 1302 dst = new->f; 1303 1304 for (i = 0; i < old->field_count; i++) { 1305 unsigned long *new_lt; 1306 1307 memcpy(dst, src, offsetof(struct nft_pipapo_field, lt)); 1308 1309 new_lt = kvzalloc(src->groups * NFT_PIPAPO_BUCKETS(src->bb) * 1310 src->bsize * sizeof(*dst->lt) + 1311 NFT_PIPAPO_ALIGN_HEADROOM, 1312 GFP_KERNEL); 1313 if (!new_lt) 1314 goto out_lt; 1315 1316 NFT_PIPAPO_LT_ASSIGN(dst, new_lt); 1317 1318 memcpy(NFT_PIPAPO_LT_ALIGN(new_lt), 1319 NFT_PIPAPO_LT_ALIGN(src->lt), 1320 src->bsize * sizeof(*dst->lt) * 1321 src->groups * NFT_PIPAPO_BUCKETS(src->bb)); 1322 1323 dst->mt = kvmalloc(src->rules * sizeof(*src->mt), GFP_KERNEL); 1324 if (!dst->mt) 1325 goto out_mt; 1326 1327 memcpy(dst->mt, src->mt, src->rules * sizeof(*src->mt)); 1328 src++; 1329 dst++; 1330 } 1331 1332 return new; 1333 1334out_mt: 1335 kvfree(dst->lt); 1336out_lt: 1337 for (dst--; i > 0; i--) { 1338 kvfree(dst->mt); 1339 kvfree(dst->lt); 1340 dst--; 1341 } 1342out_scratch_realloc: 1343 for_each_possible_cpu(i) 1344 kfree(*per_cpu_ptr(new->scratch, i)); 1345#ifdef NFT_PIPAPO_ALIGN 1346 free_percpu(new->scratch_aligned); 1347#endif 1348out_scratch: 1349 free_percpu(new->scratch); 1350 kfree(new); 1351 1352 return ERR_PTR(-ENOMEM); 1353} 1354 1355/** 1356 * pipapo_rules_same_key() - Get number of rules originated from the same entry 1357 * @f: Field containing mapping table 1358 * @first: Index of first rule in set of rules mapping to same entry 1359 * 1360 * Using the fact that all rules in a field that originated from the same entry 1361 * will map to the same set of rules in the next field, or to the same element 1362 * reference, return the cardinality of the set of rules that originated from 1363 * the same entry as the rule with index @first, @first rule included. 1364 * 1365 * In pictures: 1366 * rules 1367 * field #0 0 1 2 3 4 1368 * map to: 0 1 2-4 2-4 5-9 1369 * . . ....... . ... 1370 * | | | | \ \ 1371 * | | | | \ \ 1372 * | | | | \ \ 1373 * ' ' ' ' ' \ 1374 * in field #1 0 1 2 3 4 5 ... 1375 * 1376 * if this is called for rule 2 on field #0, it will return 3, as also rules 2 1377 * and 3 in field 0 map to the same set of rules (2, 3, 4) in the next field. 1378 * 1379 * For the last field in a set, we can rely on associated entries to map to the 1380 * same element references. 1381 * 1382 * Return: Number of rules that originated from the same entry as @first. 1383 */ 1384static int pipapo_rules_same_key(struct nft_pipapo_field *f, int first) 1385{ 1386 struct nft_pipapo_elem *e = NULL; /* Keep gcc happy */ 1387 int r; 1388 1389 for (r = first; r < f->rules; r++) { 1390 if (r != first && e != f->mt[r].e) 1391 return r - first; 1392 1393 e = f->mt[r].e; 1394 } 1395 1396 if (r != first) 1397 return r - first; 1398 1399 return 0; 1400} 1401 1402/** 1403 * pipapo_unmap() - Remove rules from mapping tables, renumber remaining ones 1404 * @mt: Mapping array 1405 * @rules: Original amount of rules in mapping table 1406 * @start: First rule index to be removed 1407 * @n: Amount of rules to be removed 1408 * @to_offset: First rule index, in next field, this group of rules maps to 1409 * @is_last: If this is the last field, delete reference from mapping array 1410 * 1411 * This is used to unmap rules from the mapping table for a single field, 1412 * maintaining consistency and compactness for the existing ones. 1413 * 1414 * In pictures: let's assume that we want to delete rules 2 and 3 from the 1415 * following mapping array: 1416 * 1417 * rules 1418 * 0 1 2 3 4 1419 * map to: 4-10 4-10 11-15 11-15 16-18 1420 * 1421 * the result will be: 1422 * 1423 * rules 1424 * 0 1 2 1425 * map to: 4-10 4-10 11-13 1426 * 1427 * for fields before the last one. In case this is the mapping table for the 1428 * last field in a set, and rules map to pointers to &struct nft_pipapo_elem: 1429 * 1430 * rules 1431 * 0 1 2 3 4 1432 * element pointers: 0x42 0x42 0x33 0x33 0x44 1433 * 1434 * the result will be: 1435 * 1436 * rules 1437 * 0 1 2 1438 * element pointers: 0x42 0x42 0x44 1439 */ 1440static void pipapo_unmap(union nft_pipapo_map_bucket *mt, int rules, 1441 int start, int n, int to_offset, bool is_last) 1442{ 1443 int i; 1444 1445 memmove(mt + start, mt + start + n, (rules - start - n) * sizeof(*mt)); 1446 memset(mt + rules - n, 0, n * sizeof(*mt)); 1447 1448 if (is_last) 1449 return; 1450 1451 for (i = start; i < rules - n; i++) 1452 mt[i].to -= to_offset; 1453} 1454 1455/** 1456 * pipapo_drop() - Delete entry from lookup and mapping tables, given rule map 1457 * @m: Matching data 1458 * @rulemap: Table of rule maps, arrays of first rule and amount of rules 1459 * in next field a given entry maps to, for each field 1460 * 1461 * For each rule in lookup table buckets mapping to this set of rules, drop 1462 * all bits set in lookup table mapping. In pictures, assuming we want to drop 1463 * rules 0 and 1 from this lookup table: 1464 * 1465 * bucket 1466 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1467 * 0 0 1,2 1468 * 1 1,2 0 1469 * 2 0 1,2 1470 * 3 0 1,2 1471 * 4 0,1,2 1472 * 5 0 1 2 1473 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1474 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1 1475 * 1476 * rule 2 becomes rule 0, and the result will be: 1477 * 1478 * bucket 1479 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1480 * 0 0 1481 * 1 0 1482 * 2 0 1483 * 3 0 1484 * 4 0 1485 * 5 0 1486 * 6 0 1487 * 7 0 0 1488 * 1489 * once this is done, call unmap() to drop all the corresponding rule references 1490 * from mapping tables. 1491 */ 1492static void pipapo_drop(struct nft_pipapo_match *m, 1493 union nft_pipapo_map_bucket rulemap[]) 1494{ 1495 struct nft_pipapo_field *f; 1496 int i; 1497 1498 nft_pipapo_for_each_field(f, i, m) { 1499 int g; 1500 1501 for (g = 0; g < f->groups; g++) { 1502 unsigned long *pos; 1503 int b; 1504 1505 pos = NFT_PIPAPO_LT_ALIGN(f->lt) + g * 1506 NFT_PIPAPO_BUCKETS(f->bb) * f->bsize; 1507 1508 for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) { 1509 bitmap_cut(pos, pos, rulemap[i].to, 1510 rulemap[i].n, 1511 f->bsize * BITS_PER_LONG); 1512 1513 pos += f->bsize; 1514 } 1515 } 1516 1517 pipapo_unmap(f->mt, f->rules, rulemap[i].to, rulemap[i].n, 1518 rulemap[i + 1].n, i == m->field_count - 1); 1519 if (pipapo_resize(f, f->rules, f->rules - rulemap[i].n)) { 1520 /* We can ignore this, a failure to shrink tables down 1521 * doesn't make tables invalid. 1522 */ 1523 ; 1524 } 1525 f->rules -= rulemap[i].n; 1526 1527 pipapo_lt_bits_adjust(f); 1528 } 1529} 1530 1531/** 1532 * pipapo_gc() - Drop expired entries from set, destroy start and end elements 1533 * @set: nftables API set representation 1534 * @m: Matching data 1535 */ 1536static void pipapo_gc(const struct nft_set *set, struct nft_pipapo_match *m) 1537{ 1538 struct nft_pipapo *priv = nft_set_priv(set); 1539 int rules_f0, first_rule = 0; 1540 struct nft_pipapo_elem *e; 1541 1542 while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) { 1543 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS]; 1544 struct nft_pipapo_field *f; 1545 int i, start, rules_fx; 1546 1547 start = first_rule; 1548 rules_fx = rules_f0; 1549 1550 nft_pipapo_for_each_field(f, i, m) { 1551 rulemap[i].to = start; 1552 rulemap[i].n = rules_fx; 1553 1554 if (i < m->field_count - 1) { 1555 rules_fx = f->mt[start].n; 1556 start = f->mt[start].to; 1557 } 1558 } 1559 1560 /* Pick the last field, and its last index */ 1561 f--; 1562 i--; 1563 e = f->mt[rulemap[i].to].e; 1564 if (nft_set_elem_expired(&e->ext) && 1565 !nft_set_elem_mark_busy(&e->ext)) { 1566 priv->dirty = true; 1567 pipapo_drop(m, rulemap); 1568 1569 rcu_barrier(); 1570 nft_set_elem_destroy(set, e, true); 1571 1572 /* And check again current first rule, which is now the 1573 * first we haven't checked. 1574 */ 1575 } else { 1576 first_rule += rules_f0; 1577 } 1578 } 1579 1580 e = nft_set_catchall_gc(set); 1581 if (e) 1582 nft_set_elem_destroy(set, e, true); 1583 1584 priv->last_gc = jiffies; 1585} 1586 1587/** 1588 * pipapo_free_fields() - Free per-field tables contained in matching data 1589 * @m: Matching data 1590 */ 1591static void pipapo_free_fields(struct nft_pipapo_match *m) 1592{ 1593 struct nft_pipapo_field *f; 1594 int i; 1595 1596 nft_pipapo_for_each_field(f, i, m) { 1597 kvfree(f->lt); 1598 kvfree(f->mt); 1599 } 1600} 1601 1602/** 1603 * pipapo_reclaim_match - RCU callback to free fields from old matching data 1604 * @rcu: RCU head 1605 */ 1606static void pipapo_reclaim_match(struct rcu_head *rcu) 1607{ 1608 struct nft_pipapo_match *m; 1609 int i; 1610 1611 m = container_of(rcu, struct nft_pipapo_match, rcu); 1612 1613 for_each_possible_cpu(i) 1614 kfree(*per_cpu_ptr(m->scratch, i)); 1615 1616#ifdef NFT_PIPAPO_ALIGN 1617 free_percpu(m->scratch_aligned); 1618#endif 1619 free_percpu(m->scratch); 1620 1621 pipapo_free_fields(m); 1622 1623 kfree(m); 1624} 1625 1626/** 1627 * pipapo_commit() - Replace lookup data with current working copy 1628 * @set: nftables API set representation 1629 * 1630 * While at it, check if we should perform garbage collection on the working 1631 * copy before committing it for lookup, and don't replace the table if the 1632 * working copy doesn't have pending changes. 1633 * 1634 * We also need to create a new working copy for subsequent insertions and 1635 * deletions. 1636 */ 1637static void pipapo_commit(const struct nft_set *set) 1638{ 1639 struct nft_pipapo *priv = nft_set_priv(set); 1640 struct nft_pipapo_match *new_clone, *old; 1641 1642 if (time_after_eq(jiffies, priv->last_gc + nft_set_gc_interval(set))) 1643 pipapo_gc(set, priv->clone); 1644 1645 if (!priv->dirty) 1646 return; 1647 1648 new_clone = pipapo_clone(priv->clone); 1649 if (IS_ERR(new_clone)) 1650 return; 1651 1652 priv->dirty = false; 1653 1654 old = rcu_access_pointer(priv->match); 1655 rcu_assign_pointer(priv->match, priv->clone); 1656 if (old) 1657 call_rcu(&old->rcu, pipapo_reclaim_match); 1658 1659 priv->clone = new_clone; 1660} 1661 1662/** 1663 * nft_pipapo_activate() - Mark element reference as active given key, commit 1664 * @net: Network namespace 1665 * @set: nftables API set representation 1666 * @elem: nftables API element representation containing key data 1667 * 1668 * On insertion, elements are added to a copy of the matching data currently 1669 * in use for lookups, and not directly inserted into current lookup data, so 1670 * we'll take care of that by calling pipapo_commit() here. Both 1671 * nft_pipapo_insert() and nft_pipapo_activate() are called once for each 1672 * element, hence we can't purpose either one as a real commit operation. 1673 */ 1674static void nft_pipapo_activate(const struct net *net, 1675 const struct nft_set *set, 1676 const struct nft_set_elem *elem) 1677{ 1678 struct nft_pipapo_elem *e; 1679 1680 e = pipapo_get(net, set, (const u8 *)elem->key.val.data, 0); 1681 if (IS_ERR(e)) 1682 return; 1683 1684 nft_set_elem_change_active(net, set, &e->ext); 1685 nft_set_elem_clear_busy(&e->ext); 1686 1687 pipapo_commit(set); 1688} 1689 1690/** 1691 * pipapo_deactivate() - Check that element is in set, mark as inactive 1692 * @net: Network namespace 1693 * @set: nftables API set representation 1694 * @data: Input key data 1695 * @ext: nftables API extension pointer, used to check for end element 1696 * 1697 * This is a convenience function that can be called from both 1698 * nft_pipapo_deactivate() and nft_pipapo_flush(), as they are in fact the same 1699 * operation. 1700 * 1701 * Return: deactivated element if found, NULL otherwise. 1702 */ 1703static void *pipapo_deactivate(const struct net *net, const struct nft_set *set, 1704 const u8 *data, const struct nft_set_ext *ext) 1705{ 1706 struct nft_pipapo_elem *e; 1707 1708 e = pipapo_get(net, set, data, nft_genmask_next(net)); 1709 if (IS_ERR(e)) 1710 return NULL; 1711 1712 nft_set_elem_change_active(net, set, &e->ext); 1713 1714 return e; 1715} 1716 1717/** 1718 * nft_pipapo_deactivate() - Call pipapo_deactivate() to make element inactive 1719 * @net: Network namespace 1720 * @set: nftables API set representation 1721 * @elem: nftables API element representation containing key data 1722 * 1723 * Return: deactivated element if found, NULL otherwise. 1724 */ 1725static void *nft_pipapo_deactivate(const struct net *net, 1726 const struct nft_set *set, 1727 const struct nft_set_elem *elem) 1728{ 1729 const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv); 1730 1731 return pipapo_deactivate(net, set, (const u8 *)elem->key.val.data, ext); 1732} 1733 1734/** 1735 * nft_pipapo_flush() - Call pipapo_deactivate() to make element inactive 1736 * @net: Network namespace 1737 * @set: nftables API set representation 1738 * @elem: nftables API element representation containing key data 1739 * 1740 * This is functionally the same as nft_pipapo_deactivate(), with a slightly 1741 * different interface, and it's also called once for each element in a set 1742 * being flushed, so we can't implement, strictly speaking, a flush operation, 1743 * which would otherwise be as simple as allocating an empty copy of the 1744 * matching data. 1745 * 1746 * Note that we could in theory do that, mark the set as flushed, and ignore 1747 * subsequent calls, but we would leak all the elements after the first one, 1748 * because they wouldn't then be freed as result of API calls. 1749 * 1750 * Return: true if element was found and deactivated. 1751 */ 1752static bool nft_pipapo_flush(const struct net *net, const struct nft_set *set, 1753 void *elem) 1754{ 1755 struct nft_pipapo_elem *e = elem; 1756 1757 return pipapo_deactivate(net, set, (const u8 *)nft_set_ext_key(&e->ext), 1758 &e->ext); 1759} 1760 1761/** 1762 * pipapo_get_boundaries() - Get byte interval for associated rules 1763 * @f: Field including lookup table 1764 * @first_rule: First rule (lowest index) 1765 * @rule_count: Number of associated rules 1766 * @left: Byte expression for left boundary (start of range) 1767 * @right: Byte expression for right boundary (end of range) 1768 * 1769 * Given the first rule and amount of rules that originated from the same entry, 1770 * build the original range associated with the entry, and calculate the length 1771 * of the originating netmask. 1772 * 1773 * In pictures: 1774 * 1775 * bucket 1776 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1777 * 0 1,2 1778 * 1 1,2 1779 * 2 1,2 1780 * 3 1,2 1781 * 4 1,2 1782 * 5 1 2 1783 * 6 1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1784 * 7 1,2 1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1785 * 1786 * this is the lookup table corresponding to the IPv4 range 1787 * 192.168.1.0-192.168.2.1, which was expanded to the two composing netmasks, 1788 * rule #1: 192.168.1.0/24, and rule #2: 192.168.2.0/31. 1789 * 1790 * This function fills @left and @right with the byte values of the leftmost 1791 * and rightmost bucket indices for the lowest and highest rule indices, 1792 * respectively. If @first_rule is 1 and @rule_count is 2, we obtain, in 1793 * nibbles: 1794 * left: < 12, 0, 10, 8, 0, 1, 0, 0 > 1795 * right: < 12, 0, 10, 8, 0, 2, 2, 1 > 1796 * corresponding to bytes: 1797 * left: < 192, 168, 1, 0 > 1798 * right: < 192, 168, 2, 1 > 1799 * with mask length irrelevant here, unused on return, as the range is already 1800 * defined by its start and end points. The mask length is relevant for a single 1801 * ranged entry instead: if @first_rule is 1 and @rule_count is 1, we ignore 1802 * rule 2 above: @left becomes < 192, 168, 1, 0 >, @right becomes 1803 * < 192, 168, 1, 255 >, and the mask length, calculated from the distances 1804 * between leftmost and rightmost bucket indices for each group, would be 24. 1805 * 1806 * Return: mask length, in bits. 1807 */ 1808static int pipapo_get_boundaries(struct nft_pipapo_field *f, int first_rule, 1809 int rule_count, u8 *left, u8 *right) 1810{ 1811 int g, mask_len = 0, bit_offset = 0; 1812 u8 *l = left, *r = right; 1813 1814 for (g = 0; g < f->groups; g++) { 1815 int b, x0, x1; 1816 1817 x0 = -1; 1818 x1 = -1; 1819 for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) { 1820 unsigned long *pos; 1821 1822 pos = NFT_PIPAPO_LT_ALIGN(f->lt) + 1823 (g * NFT_PIPAPO_BUCKETS(f->bb) + b) * f->bsize; 1824 if (test_bit(first_rule, pos) && x0 == -1) 1825 x0 = b; 1826 if (test_bit(first_rule + rule_count - 1, pos)) 1827 x1 = b; 1828 } 1829 1830 *l |= x0 << (BITS_PER_BYTE - f->bb - bit_offset); 1831 *r |= x1 << (BITS_PER_BYTE - f->bb - bit_offset); 1832 1833 bit_offset += f->bb; 1834 if (bit_offset >= BITS_PER_BYTE) { 1835 bit_offset %= BITS_PER_BYTE; 1836 l++; 1837 r++; 1838 } 1839 1840 if (x1 - x0 == 0) 1841 mask_len += 4; 1842 else if (x1 - x0 == 1) 1843 mask_len += 3; 1844 else if (x1 - x0 == 3) 1845 mask_len += 2; 1846 else if (x1 - x0 == 7) 1847 mask_len += 1; 1848 } 1849 1850 return mask_len; 1851} 1852 1853/** 1854 * pipapo_match_field() - Match rules against byte ranges 1855 * @f: Field including the lookup table 1856 * @first_rule: First of associated rules originating from same entry 1857 * @rule_count: Amount of associated rules 1858 * @start: Start of range to be matched 1859 * @end: End of range to be matched 1860 * 1861 * Return: true on match, false otherwise. 1862 */ 1863static bool pipapo_match_field(struct nft_pipapo_field *f, 1864 int first_rule, int rule_count, 1865 const u8 *start, const u8 *end) 1866{ 1867 u8 right[NFT_PIPAPO_MAX_BYTES] = { 0 }; 1868 u8 left[NFT_PIPAPO_MAX_BYTES] = { 0 }; 1869 1870 pipapo_get_boundaries(f, first_rule, rule_count, left, right); 1871 1872 return !memcmp(start, left, 1873 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) && 1874 !memcmp(end, right, f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)); 1875} 1876 1877/** 1878 * nft_pipapo_remove() - Remove element given key, commit 1879 * @net: Network namespace 1880 * @set: nftables API set representation 1881 * @elem: nftables API element representation containing key data 1882 * 1883 * Similarly to nft_pipapo_activate(), this is used as commit operation by the 1884 * API, but it's called once per element in the pending transaction, so we can't 1885 * implement this as a single commit operation. Closest we can get is to remove 1886 * the matched element here, if any, and commit the updated matching data. 1887 */ 1888static void nft_pipapo_remove(const struct net *net, const struct nft_set *set, 1889 const struct nft_set_elem *elem) 1890{ 1891 struct nft_pipapo *priv = nft_set_priv(set); 1892 struct nft_pipapo_match *m = priv->clone; 1893 struct nft_pipapo_elem *e = elem->priv; 1894 int rules_f0, first_rule = 0; 1895 const u8 *data; 1896 1897 data = (const u8 *)nft_set_ext_key(&e->ext); 1898 1899 e = pipapo_get(net, set, data, 0); 1900 if (IS_ERR(e)) 1901 return; 1902 1903 while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) { 1904 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS]; 1905 const u8 *match_start, *match_end; 1906 struct nft_pipapo_field *f; 1907 int i, start, rules_fx; 1908 1909 match_start = data; 1910 match_end = (const u8 *)nft_set_ext_key_end(&e->ext)->data; 1911 1912 start = first_rule; 1913 rules_fx = rules_f0; 1914 1915 nft_pipapo_for_each_field(f, i, m) { 1916 if (!pipapo_match_field(f, start, rules_fx, 1917 match_start, match_end)) 1918 break; 1919 1920 rulemap[i].to = start; 1921 rulemap[i].n = rules_fx; 1922 1923 rules_fx = f->mt[start].n; 1924 start = f->mt[start].to; 1925 1926 match_start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f); 1927 match_end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f); 1928 } 1929 1930 if (i == m->field_count) { 1931 priv->dirty = true; 1932 pipapo_drop(m, rulemap); 1933 pipapo_commit(set); 1934 return; 1935 } 1936 1937 first_rule += rules_f0; 1938 } 1939} 1940 1941/** 1942 * nft_pipapo_walk() - Walk over elements 1943 * @ctx: nftables API context 1944 * @set: nftables API set representation 1945 * @iter: Iterator 1946 * 1947 * As elements are referenced in the mapping array for the last field, directly 1948 * scan that array: there's no need to follow rule mappings from the first 1949 * field. 1950 */ 1951static void nft_pipapo_walk(const struct nft_ctx *ctx, struct nft_set *set, 1952 struct nft_set_iter *iter) 1953{ 1954 struct nft_pipapo *priv = nft_set_priv(set); 1955 struct nft_pipapo_match *m; 1956 struct nft_pipapo_field *f; 1957 int i, r; 1958 1959 rcu_read_lock(); 1960 m = rcu_dereference(priv->match); 1961 1962 if (unlikely(!m)) 1963 goto out; 1964 1965 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) 1966 ; 1967 1968 for (r = 0; r < f->rules; r++) { 1969 struct nft_pipapo_elem *e; 1970 struct nft_set_elem elem; 1971 1972 if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e) 1973 continue; 1974 1975 if (iter->count < iter->skip) 1976 goto cont; 1977 1978 e = f->mt[r].e; 1979 if (nft_set_elem_expired(&e->ext)) 1980 goto cont; 1981 1982 elem.priv = e; 1983 1984 iter->err = iter->fn(ctx, set, iter, &elem); 1985 if (iter->err < 0) 1986 goto out; 1987 1988cont: 1989 iter->count++; 1990 } 1991 1992out: 1993 rcu_read_unlock(); 1994} 1995 1996/** 1997 * nft_pipapo_privsize() - Return the size of private data for the set 1998 * @nla: netlink attributes, ignored as size doesn't depend on them 1999 * @desc: Set description, ignored as size doesn't depend on it 2000 * 2001 * Return: size of private data for this set implementation, in bytes 2002 */ 2003static u64 nft_pipapo_privsize(const struct nlattr * const nla[], 2004 const struct nft_set_desc *desc) 2005{ 2006 return sizeof(struct nft_pipapo); 2007} 2008 2009/** 2010 * nft_pipapo_estimate() - Set size, space and lookup complexity 2011 * @desc: Set description, element count and field description used 2012 * @features: Flags: NFT_SET_INTERVAL needs to be there 2013 * @est: Storage for estimation data 2014 * 2015 * Return: true if set description is compatible, false otherwise 2016 */ 2017static bool nft_pipapo_estimate(const struct nft_set_desc *desc, u32 features, 2018 struct nft_set_estimate *est) 2019{ 2020 if (!(features & NFT_SET_INTERVAL) || 2021 desc->field_count < NFT_PIPAPO_MIN_FIELDS) 2022 return false; 2023 2024 est->size = pipapo_estimate_size(desc); 2025 if (!est->size) 2026 return false; 2027 2028 est->lookup = NFT_SET_CLASS_O_LOG_N; 2029 2030 est->space = NFT_SET_CLASS_O_N; 2031 2032 return true; 2033} 2034 2035/** 2036 * nft_pipapo_init() - Initialise data for a set instance 2037 * @set: nftables API set representation 2038 * @desc: Set description 2039 * @nla: netlink attributes 2040 * 2041 * Validate number and size of fields passed as NFTA_SET_DESC_CONCAT netlink 2042 * attributes, initialise internal set parameters, current instance of matching 2043 * data and a copy for subsequent insertions. 2044 * 2045 * Return: 0 on success, negative error code on failure. 2046 */ 2047static int nft_pipapo_init(const struct nft_set *set, 2048 const struct nft_set_desc *desc, 2049 const struct nlattr * const nla[]) 2050{ 2051 struct nft_pipapo *priv = nft_set_priv(set); 2052 struct nft_pipapo_match *m; 2053 struct nft_pipapo_field *f; 2054 int err, i, field_count; 2055 2056 field_count = desc->field_count ? : 1; 2057 2058 if (field_count > NFT_PIPAPO_MAX_FIELDS) 2059 return -EINVAL; 2060 2061 m = kmalloc(sizeof(*priv->match) + sizeof(*f) * field_count, 2062 GFP_KERNEL); 2063 if (!m) 2064 return -ENOMEM; 2065 2066 m->field_count = field_count; 2067 m->bsize_max = 0; 2068 2069 m->scratch = alloc_percpu(unsigned long *); 2070 if (!m->scratch) { 2071 err = -ENOMEM; 2072 goto out_scratch; 2073 } 2074 for_each_possible_cpu(i) 2075 *per_cpu_ptr(m->scratch, i) = NULL; 2076 2077#ifdef NFT_PIPAPO_ALIGN 2078 m->scratch_aligned = alloc_percpu(unsigned long *); 2079 if (!m->scratch_aligned) { 2080 err = -ENOMEM; 2081 goto out_free; 2082 } 2083 for_each_possible_cpu(i) 2084 *per_cpu_ptr(m->scratch_aligned, i) = NULL; 2085#endif 2086 2087 rcu_head_init(&m->rcu); 2088 2089 nft_pipapo_for_each_field(f, i, m) { 2090 int len = desc->field_len[i] ? : set->klen; 2091 2092 f->bb = NFT_PIPAPO_GROUP_BITS_INIT; 2093 f->groups = len * NFT_PIPAPO_GROUPS_PER_BYTE(f); 2094 2095 priv->width += round_up(len, sizeof(u32)); 2096 2097 f->bsize = 0; 2098 f->rules = 0; 2099 NFT_PIPAPO_LT_ASSIGN(f, NULL); 2100 f->mt = NULL; 2101 } 2102 2103 /* Create an initial clone of matching data for next insertion */ 2104 priv->clone = pipapo_clone(m); 2105 if (IS_ERR(priv->clone)) { 2106 err = PTR_ERR(priv->clone); 2107 goto out_free; 2108 } 2109 2110 priv->dirty = false; 2111 2112 rcu_assign_pointer(priv->match, m); 2113 2114 return 0; 2115 2116out_free: 2117#ifdef NFT_PIPAPO_ALIGN 2118 free_percpu(m->scratch_aligned); 2119#endif 2120 free_percpu(m->scratch); 2121out_scratch: 2122 kfree(m); 2123 2124 return err; 2125} 2126 2127/** 2128 * nft_set_pipapo_match_destroy() - Destroy elements from key mapping array 2129 * @set: nftables API set representation 2130 * @m: matching data pointing to key mapping array 2131 */ 2132static void nft_set_pipapo_match_destroy(const struct nft_set *set, 2133 struct nft_pipapo_match *m) 2134{ 2135 struct nft_pipapo_field *f; 2136 int i, r; 2137 2138 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) 2139 ; 2140 2141 for (r = 0; r < f->rules; r++) { 2142 struct nft_pipapo_elem *e; 2143 2144 if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e) 2145 continue; 2146 2147 e = f->mt[r].e; 2148 2149 nft_set_elem_destroy(set, e, true); 2150 } 2151} 2152 2153/** 2154 * nft_pipapo_destroy() - Free private data for set and all committed elements 2155 * @set: nftables API set representation 2156 */ 2157static void nft_pipapo_destroy(const struct nft_set *set) 2158{ 2159 struct nft_pipapo *priv = nft_set_priv(set); 2160 struct nft_pipapo_match *m; 2161 int cpu; 2162 2163 m = rcu_dereference_protected(priv->match, true); 2164 if (m) { 2165 rcu_barrier(); 2166 2167 nft_set_pipapo_match_destroy(set, m); 2168 2169#ifdef NFT_PIPAPO_ALIGN 2170 free_percpu(m->scratch_aligned); 2171#endif 2172 for_each_possible_cpu(cpu) 2173 kfree(*per_cpu_ptr(m->scratch, cpu)); 2174 free_percpu(m->scratch); 2175 pipapo_free_fields(m); 2176 kfree(m); 2177 priv->match = NULL; 2178 } 2179 2180 if (priv->clone) { 2181 m = priv->clone; 2182 2183 if (priv->dirty) 2184 nft_set_pipapo_match_destroy(set, m); 2185 2186#ifdef NFT_PIPAPO_ALIGN 2187 free_percpu(priv->clone->scratch_aligned); 2188#endif 2189 for_each_possible_cpu(cpu) 2190 kfree(*per_cpu_ptr(priv->clone->scratch, cpu)); 2191 free_percpu(priv->clone->scratch); 2192 2193 pipapo_free_fields(priv->clone); 2194 kfree(priv->clone); 2195 priv->clone = NULL; 2196 } 2197} 2198 2199/** 2200 * nft_pipapo_gc_init() - Initialise garbage collection 2201 * @set: nftables API set representation 2202 * 2203 * Instead of actually setting up a periodic work for garbage collection, as 2204 * this operation requires a swap of matching data with the working copy, we'll 2205 * do that opportunistically with other commit operations if the interval is 2206 * elapsed, so we just need to set the current jiffies timestamp here. 2207 */ 2208static void nft_pipapo_gc_init(const struct nft_set *set) 2209{ 2210 struct nft_pipapo *priv = nft_set_priv(set); 2211 2212 priv->last_gc = jiffies; 2213} 2214 2215const struct nft_set_type nft_set_pipapo_type = { 2216 .features = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT | 2217 NFT_SET_TIMEOUT, 2218 .ops = { 2219 .lookup = nft_pipapo_lookup, 2220 .insert = nft_pipapo_insert, 2221 .activate = nft_pipapo_activate, 2222 .deactivate = nft_pipapo_deactivate, 2223 .flush = nft_pipapo_flush, 2224 .remove = nft_pipapo_remove, 2225 .walk = nft_pipapo_walk, 2226 .get = nft_pipapo_get, 2227 .privsize = nft_pipapo_privsize, 2228 .estimate = nft_pipapo_estimate, 2229 .init = nft_pipapo_init, 2230 .destroy = nft_pipapo_destroy, 2231 .gc_init = nft_pipapo_gc_init, 2232 .elemsize = offsetof(struct nft_pipapo_elem, ext), 2233 }, 2234}; 2235 2236#if defined(CONFIG_X86_64) && !defined(CONFIG_UML) 2237const struct nft_set_type nft_set_pipapo_avx2_type = { 2238 .features = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT | 2239 NFT_SET_TIMEOUT, 2240 .ops = { 2241 .lookup = nft_pipapo_avx2_lookup, 2242 .insert = nft_pipapo_insert, 2243 .activate = nft_pipapo_activate, 2244 .deactivate = nft_pipapo_deactivate, 2245 .flush = nft_pipapo_flush, 2246 .remove = nft_pipapo_remove, 2247 .walk = nft_pipapo_walk, 2248 .get = nft_pipapo_get, 2249 .privsize = nft_pipapo_privsize, 2250 .estimate = nft_pipapo_avx2_estimate, 2251 .init = nft_pipapo_init, 2252 .destroy = nft_pipapo_destroy, 2253 .gc_init = nft_pipapo_gc_init, 2254 .elemsize = offsetof(struct nft_pipapo_elem, ext), 2255 }, 2256}; 2257#endif