cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

flow.c (29070B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (c) 2007-2014 Nicira, Inc.
      4 */
      5
      6#include <linux/uaccess.h>
      7#include <linux/netdevice.h>
      8#include <linux/etherdevice.h>
      9#include <linux/if_ether.h>
     10#include <linux/if_vlan.h>
     11#include <net/llc_pdu.h>
     12#include <linux/kernel.h>
     13#include <linux/jhash.h>
     14#include <linux/jiffies.h>
     15#include <linux/llc.h>
     16#include <linux/module.h>
     17#include <linux/in.h>
     18#include <linux/rcupdate.h>
     19#include <linux/cpumask.h>
     20#include <linux/if_arp.h>
     21#include <linux/ip.h>
     22#include <linux/ipv6.h>
     23#include <linux/mpls.h>
     24#include <linux/sctp.h>
     25#include <linux/smp.h>
     26#include <linux/tcp.h>
     27#include <linux/udp.h>
     28#include <linux/icmp.h>
     29#include <linux/icmpv6.h>
     30#include <linux/rculist.h>
     31#include <net/ip.h>
     32#include <net/ip_tunnels.h>
     33#include <net/ipv6.h>
     34#include <net/mpls.h>
     35#include <net/ndisc.h>
     36#include <net/nsh.h>
     37#include <net/pkt_cls.h>
     38#include <net/netfilter/nf_conntrack_zones.h>
     39
     40#include "conntrack.h"
     41#include "datapath.h"
     42#include "flow.h"
     43#include "flow_netlink.h"
     44#include "vport.h"
     45
     46u64 ovs_flow_used_time(unsigned long flow_jiffies)
     47{
     48	struct timespec64 cur_ts;
     49	u64 cur_ms, idle_ms;
     50
     51	ktime_get_ts64(&cur_ts);
     52	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
     53	cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC +
     54		 cur_ts.tv_nsec / NSEC_PER_MSEC;
     55
     56	return cur_ms - idle_ms;
     57}
     58
     59#define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
     60
     61void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
     62			   const struct sk_buff *skb)
     63{
     64	struct sw_flow_stats *stats;
     65	unsigned int cpu = smp_processor_id();
     66	int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
     67
     68	stats = rcu_dereference(flow->stats[cpu]);
     69
     70	/* Check if already have CPU-specific stats. */
     71	if (likely(stats)) {
     72		spin_lock(&stats->lock);
     73		/* Mark if we write on the pre-allocated stats. */
     74		if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
     75			flow->stats_last_writer = cpu;
     76	} else {
     77		stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
     78		spin_lock(&stats->lock);
     79
     80		/* If the current CPU is the only writer on the
     81		 * pre-allocated stats keep using them.
     82		 */
     83		if (unlikely(flow->stats_last_writer != cpu)) {
     84			/* A previous locker may have already allocated the
     85			 * stats, so we need to check again.  If CPU-specific
     86			 * stats were already allocated, we update the pre-
     87			 * allocated stats as we have already locked them.
     88			 */
     89			if (likely(flow->stats_last_writer != -1) &&
     90			    likely(!rcu_access_pointer(flow->stats[cpu]))) {
     91				/* Try to allocate CPU-specific stats. */
     92				struct sw_flow_stats *new_stats;
     93
     94				new_stats =
     95					kmem_cache_alloc_node(flow_stats_cache,
     96							      GFP_NOWAIT |
     97							      __GFP_THISNODE |
     98							      __GFP_NOWARN |
     99							      __GFP_NOMEMALLOC,
    100							      numa_node_id());
    101				if (likely(new_stats)) {
    102					new_stats->used = jiffies;
    103					new_stats->packet_count = 1;
    104					new_stats->byte_count = len;
    105					new_stats->tcp_flags = tcp_flags;
    106					spin_lock_init(&new_stats->lock);
    107
    108					rcu_assign_pointer(flow->stats[cpu],
    109							   new_stats);
    110					cpumask_set_cpu(cpu, &flow->cpu_used_mask);
    111					goto unlock;
    112				}
    113			}
    114			flow->stats_last_writer = cpu;
    115		}
    116	}
    117
    118	stats->used = jiffies;
    119	stats->packet_count++;
    120	stats->byte_count += len;
    121	stats->tcp_flags |= tcp_flags;
    122unlock:
    123	spin_unlock(&stats->lock);
    124}
    125
    126/* Must be called with rcu_read_lock or ovs_mutex. */
    127void ovs_flow_stats_get(const struct sw_flow *flow,
    128			struct ovs_flow_stats *ovs_stats,
    129			unsigned long *used, __be16 *tcp_flags)
    130{
    131	int cpu;
    132
    133	*used = 0;
    134	*tcp_flags = 0;
    135	memset(ovs_stats, 0, sizeof(*ovs_stats));
    136
    137	/* We open code this to make sure cpu 0 is always considered */
    138	for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
    139		struct sw_flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
    140
    141		if (stats) {
    142			/* Local CPU may write on non-local stats, so we must
    143			 * block bottom-halves here.
    144			 */
    145			spin_lock_bh(&stats->lock);
    146			if (!*used || time_after(stats->used, *used))
    147				*used = stats->used;
    148			*tcp_flags |= stats->tcp_flags;
    149			ovs_stats->n_packets += stats->packet_count;
    150			ovs_stats->n_bytes += stats->byte_count;
    151			spin_unlock_bh(&stats->lock);
    152		}
    153	}
    154}
    155
    156/* Called with ovs_mutex. */
    157void ovs_flow_stats_clear(struct sw_flow *flow)
    158{
    159	int cpu;
    160
    161	/* We open code this to make sure cpu 0 is always considered */
    162	for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
    163		struct sw_flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
    164
    165		if (stats) {
    166			spin_lock_bh(&stats->lock);
    167			stats->used = 0;
    168			stats->packet_count = 0;
    169			stats->byte_count = 0;
    170			stats->tcp_flags = 0;
    171			spin_unlock_bh(&stats->lock);
    172		}
    173	}
    174}
    175
    176static int check_header(struct sk_buff *skb, int len)
    177{
    178	if (unlikely(skb->len < len))
    179		return -EINVAL;
    180	if (unlikely(!pskb_may_pull(skb, len)))
    181		return -ENOMEM;
    182	return 0;
    183}
    184
    185static bool arphdr_ok(struct sk_buff *skb)
    186{
    187	return pskb_may_pull(skb, skb_network_offset(skb) +
    188				  sizeof(struct arp_eth_header));
    189}
    190
    191static int check_iphdr(struct sk_buff *skb)
    192{
    193	unsigned int nh_ofs = skb_network_offset(skb);
    194	unsigned int ip_len;
    195	int err;
    196
    197	err = check_header(skb, nh_ofs + sizeof(struct iphdr));
    198	if (unlikely(err))
    199		return err;
    200
    201	ip_len = ip_hdrlen(skb);
    202	if (unlikely(ip_len < sizeof(struct iphdr) ||
    203		     skb->len < nh_ofs + ip_len))
    204		return -EINVAL;
    205
    206	skb_set_transport_header(skb, nh_ofs + ip_len);
    207	return 0;
    208}
    209
    210static bool tcphdr_ok(struct sk_buff *skb)
    211{
    212	int th_ofs = skb_transport_offset(skb);
    213	int tcp_len;
    214
    215	if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
    216		return false;
    217
    218	tcp_len = tcp_hdrlen(skb);
    219	if (unlikely(tcp_len < sizeof(struct tcphdr) ||
    220		     skb->len < th_ofs + tcp_len))
    221		return false;
    222
    223	return true;
    224}
    225
    226static bool udphdr_ok(struct sk_buff *skb)
    227{
    228	return pskb_may_pull(skb, skb_transport_offset(skb) +
    229				  sizeof(struct udphdr));
    230}
    231
    232static bool sctphdr_ok(struct sk_buff *skb)
    233{
    234	return pskb_may_pull(skb, skb_transport_offset(skb) +
    235				  sizeof(struct sctphdr));
    236}
    237
    238static bool icmphdr_ok(struct sk_buff *skb)
    239{
    240	return pskb_may_pull(skb, skb_transport_offset(skb) +
    241				  sizeof(struct icmphdr));
    242}
    243
    244/**
    245 * get_ipv6_ext_hdrs() - Parses packet and sets IPv6 extension header flags.
    246 *
    247 * @skb: buffer where extension header data starts in packet
    248 * @nh: ipv6 header
    249 * @ext_hdrs: flags are stored here
    250 *
    251 * OFPIEH12_UNREP is set if more than one of a given IPv6 extension header
    252 * is unexpectedly encountered. (Two destination options headers may be
    253 * expected and would not cause this bit to be set.)
    254 *
    255 * OFPIEH12_UNSEQ is set if IPv6 extension headers were not in the order
    256 * preferred (but not required) by RFC 2460:
    257 *
    258 * When more than one extension header is used in the same packet, it is
    259 * recommended that those headers appear in the following order:
    260 *      IPv6 header
    261 *      Hop-by-Hop Options header
    262 *      Destination Options header
    263 *      Routing header
    264 *      Fragment header
    265 *      Authentication header
    266 *      Encapsulating Security Payload header
    267 *      Destination Options header
    268 *      upper-layer header
    269 */
    270static void get_ipv6_ext_hdrs(struct sk_buff *skb, struct ipv6hdr *nh,
    271			      u16 *ext_hdrs)
    272{
    273	u8 next_type = nh->nexthdr;
    274	unsigned int start = skb_network_offset(skb) + sizeof(struct ipv6hdr);
    275	int dest_options_header_count = 0;
    276
    277	*ext_hdrs = 0;
    278
    279	while (ipv6_ext_hdr(next_type)) {
    280		struct ipv6_opt_hdr _hdr, *hp;
    281
    282		switch (next_type) {
    283		case IPPROTO_NONE:
    284			*ext_hdrs |= OFPIEH12_NONEXT;
    285			/* stop parsing */
    286			return;
    287
    288		case IPPROTO_ESP:
    289			if (*ext_hdrs & OFPIEH12_ESP)
    290				*ext_hdrs |= OFPIEH12_UNREP;
    291			if ((*ext_hdrs & ~(OFPIEH12_HOP | OFPIEH12_DEST |
    292					   OFPIEH12_ROUTER | IPPROTO_FRAGMENT |
    293					   OFPIEH12_AUTH | OFPIEH12_UNREP)) ||
    294			    dest_options_header_count >= 2) {
    295				*ext_hdrs |= OFPIEH12_UNSEQ;
    296			}
    297			*ext_hdrs |= OFPIEH12_ESP;
    298			break;
    299
    300		case IPPROTO_AH:
    301			if (*ext_hdrs & OFPIEH12_AUTH)
    302				*ext_hdrs |= OFPIEH12_UNREP;
    303			if ((*ext_hdrs &
    304			     ~(OFPIEH12_HOP | OFPIEH12_DEST | OFPIEH12_ROUTER |
    305			       IPPROTO_FRAGMENT | OFPIEH12_UNREP)) ||
    306			    dest_options_header_count >= 2) {
    307				*ext_hdrs |= OFPIEH12_UNSEQ;
    308			}
    309			*ext_hdrs |= OFPIEH12_AUTH;
    310			break;
    311
    312		case IPPROTO_DSTOPTS:
    313			if (dest_options_header_count == 0) {
    314				if (*ext_hdrs &
    315				    ~(OFPIEH12_HOP | OFPIEH12_UNREP))
    316					*ext_hdrs |= OFPIEH12_UNSEQ;
    317				*ext_hdrs |= OFPIEH12_DEST;
    318			} else if (dest_options_header_count == 1) {
    319				if (*ext_hdrs &
    320				    ~(OFPIEH12_HOP | OFPIEH12_DEST |
    321				      OFPIEH12_ROUTER | OFPIEH12_FRAG |
    322				      OFPIEH12_AUTH | OFPIEH12_ESP |
    323				      OFPIEH12_UNREP)) {
    324					*ext_hdrs |= OFPIEH12_UNSEQ;
    325				}
    326			} else {
    327				*ext_hdrs |= OFPIEH12_UNREP;
    328			}
    329			dest_options_header_count++;
    330			break;
    331
    332		case IPPROTO_FRAGMENT:
    333			if (*ext_hdrs & OFPIEH12_FRAG)
    334				*ext_hdrs |= OFPIEH12_UNREP;
    335			if ((*ext_hdrs & ~(OFPIEH12_HOP |
    336					   OFPIEH12_DEST |
    337					   OFPIEH12_ROUTER |
    338					   OFPIEH12_UNREP)) ||
    339			    dest_options_header_count >= 2) {
    340				*ext_hdrs |= OFPIEH12_UNSEQ;
    341			}
    342			*ext_hdrs |= OFPIEH12_FRAG;
    343			break;
    344
    345		case IPPROTO_ROUTING:
    346			if (*ext_hdrs & OFPIEH12_ROUTER)
    347				*ext_hdrs |= OFPIEH12_UNREP;
    348			if ((*ext_hdrs & ~(OFPIEH12_HOP |
    349					   OFPIEH12_DEST |
    350					   OFPIEH12_UNREP)) ||
    351			    dest_options_header_count >= 2) {
    352				*ext_hdrs |= OFPIEH12_UNSEQ;
    353			}
    354			*ext_hdrs |= OFPIEH12_ROUTER;
    355			break;
    356
    357		case IPPROTO_HOPOPTS:
    358			if (*ext_hdrs & OFPIEH12_HOP)
    359				*ext_hdrs |= OFPIEH12_UNREP;
    360			/* OFPIEH12_HOP is set to 1 if a hop-by-hop IPv6
    361			 * extension header is present as the first
    362			 * extension header in the packet.
    363			 */
    364			if (*ext_hdrs == 0)
    365				*ext_hdrs |= OFPIEH12_HOP;
    366			else
    367				*ext_hdrs |= OFPIEH12_UNSEQ;
    368			break;
    369
    370		default:
    371			return;
    372		}
    373
    374		hp = skb_header_pointer(skb, start, sizeof(_hdr), &_hdr);
    375		if (!hp)
    376			break;
    377		next_type = hp->nexthdr;
    378		start += ipv6_optlen(hp);
    379	}
    380}
    381
    382static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
    383{
    384	unsigned short frag_off;
    385	unsigned int payload_ofs = 0;
    386	unsigned int nh_ofs = skb_network_offset(skb);
    387	unsigned int nh_len;
    388	struct ipv6hdr *nh;
    389	int err, nexthdr, flags = 0;
    390
    391	err = check_header(skb, nh_ofs + sizeof(*nh));
    392	if (unlikely(err))
    393		return err;
    394
    395	nh = ipv6_hdr(skb);
    396
    397	get_ipv6_ext_hdrs(skb, nh, &key->ipv6.exthdrs);
    398
    399	key->ip.proto = NEXTHDR_NONE;
    400	key->ip.tos = ipv6_get_dsfield(nh);
    401	key->ip.ttl = nh->hop_limit;
    402	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
    403	key->ipv6.addr.src = nh->saddr;
    404	key->ipv6.addr.dst = nh->daddr;
    405
    406	nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
    407	if (flags & IP6_FH_F_FRAG) {
    408		if (frag_off) {
    409			key->ip.frag = OVS_FRAG_TYPE_LATER;
    410			key->ip.proto = NEXTHDR_FRAGMENT;
    411			return 0;
    412		}
    413		key->ip.frag = OVS_FRAG_TYPE_FIRST;
    414	} else {
    415		key->ip.frag = OVS_FRAG_TYPE_NONE;
    416	}
    417
    418	/* Delayed handling of error in ipv6_find_hdr() as it
    419	 * always sets flags and frag_off to a valid value which may be
    420	 * used to set key->ip.frag above.
    421	 */
    422	if (unlikely(nexthdr < 0))
    423		return -EPROTO;
    424
    425	nh_len = payload_ofs - nh_ofs;
    426	skb_set_transport_header(skb, nh_ofs + nh_len);
    427	key->ip.proto = nexthdr;
    428	return nh_len;
    429}
    430
    431static bool icmp6hdr_ok(struct sk_buff *skb)
    432{
    433	return pskb_may_pull(skb, skb_transport_offset(skb) +
    434				  sizeof(struct icmp6hdr));
    435}
    436
    437/**
    438 * parse_vlan_tag - Parse vlan tag from vlan header.
    439 * @skb: skb containing frame to parse
    440 * @key_vh: pointer to parsed vlan tag
    441 * @untag_vlan: should the vlan header be removed from the frame
    442 *
    443 * Return: ERROR on memory error.
    444 * %0 if it encounters a non-vlan or incomplete packet.
    445 * %1 after successfully parsing vlan tag.
    446 */
    447static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
    448			  bool untag_vlan)
    449{
    450	struct vlan_head *vh = (struct vlan_head *)skb->data;
    451
    452	if (likely(!eth_type_vlan(vh->tpid)))
    453		return 0;
    454
    455	if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
    456		return 0;
    457
    458	if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
    459				 sizeof(__be16))))
    460		return -ENOMEM;
    461
    462	vh = (struct vlan_head *)skb->data;
    463	key_vh->tci = vh->tci | htons(VLAN_CFI_MASK);
    464	key_vh->tpid = vh->tpid;
    465
    466	if (unlikely(untag_vlan)) {
    467		int offset = skb->data - skb_mac_header(skb);
    468		u16 tci;
    469		int err;
    470
    471		__skb_push(skb, offset);
    472		err = __skb_vlan_pop(skb, &tci);
    473		__skb_pull(skb, offset);
    474		if (err)
    475			return err;
    476		__vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
    477	} else {
    478		__skb_pull(skb, sizeof(struct vlan_head));
    479	}
    480	return 1;
    481}
    482
    483static void clear_vlan(struct sw_flow_key *key)
    484{
    485	key->eth.vlan.tci = 0;
    486	key->eth.vlan.tpid = 0;
    487	key->eth.cvlan.tci = 0;
    488	key->eth.cvlan.tpid = 0;
    489}
    490
    491static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
    492{
    493	int res;
    494
    495	if (skb_vlan_tag_present(skb)) {
    496		key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK);
    497		key->eth.vlan.tpid = skb->vlan_proto;
    498	} else {
    499		/* Parse outer vlan tag in the non-accelerated case. */
    500		res = parse_vlan_tag(skb, &key->eth.vlan, true);
    501		if (res <= 0)
    502			return res;
    503	}
    504
    505	/* Parse inner vlan tag. */
    506	res = parse_vlan_tag(skb, &key->eth.cvlan, false);
    507	if (res <= 0)
    508		return res;
    509
    510	return 0;
    511}
    512
    513static __be16 parse_ethertype(struct sk_buff *skb)
    514{
    515	struct llc_snap_hdr {
    516		u8  dsap;  /* Always 0xAA */
    517		u8  ssap;  /* Always 0xAA */
    518		u8  ctrl;
    519		u8  oui[3];
    520		__be16 ethertype;
    521	};
    522	struct llc_snap_hdr *llc;
    523	__be16 proto;
    524
    525	proto = *(__be16 *) skb->data;
    526	__skb_pull(skb, sizeof(__be16));
    527
    528	if (eth_proto_is_802_3(proto))
    529		return proto;
    530
    531	if (skb->len < sizeof(struct llc_snap_hdr))
    532		return htons(ETH_P_802_2);
    533
    534	if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
    535		return htons(0);
    536
    537	llc = (struct llc_snap_hdr *) skb->data;
    538	if (llc->dsap != LLC_SAP_SNAP ||
    539	    llc->ssap != LLC_SAP_SNAP ||
    540	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
    541		return htons(ETH_P_802_2);
    542
    543	__skb_pull(skb, sizeof(struct llc_snap_hdr));
    544
    545	if (eth_proto_is_802_3(llc->ethertype))
    546		return llc->ethertype;
    547
    548	return htons(ETH_P_802_2);
    549}
    550
    551static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
    552			int nh_len)
    553{
    554	struct icmp6hdr *icmp = icmp6_hdr(skb);
    555
    556	/* The ICMPv6 type and code fields use the 16-bit transport port
    557	 * fields, so we need to store them in 16-bit network byte order.
    558	 */
    559	key->tp.src = htons(icmp->icmp6_type);
    560	key->tp.dst = htons(icmp->icmp6_code);
    561	memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
    562
    563	if (icmp->icmp6_code == 0 &&
    564	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
    565	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
    566		int icmp_len = skb->len - skb_transport_offset(skb);
    567		struct nd_msg *nd;
    568		int offset;
    569
    570		/* In order to process neighbor discovery options, we need the
    571		 * entire packet.
    572		 */
    573		if (unlikely(icmp_len < sizeof(*nd)))
    574			return 0;
    575
    576		if (unlikely(skb_linearize(skb)))
    577			return -ENOMEM;
    578
    579		nd = (struct nd_msg *)skb_transport_header(skb);
    580		key->ipv6.nd.target = nd->target;
    581
    582		icmp_len -= sizeof(*nd);
    583		offset = 0;
    584		while (icmp_len >= 8) {
    585			struct nd_opt_hdr *nd_opt =
    586				 (struct nd_opt_hdr *)(nd->opt + offset);
    587			int opt_len = nd_opt->nd_opt_len * 8;
    588
    589			if (unlikely(!opt_len || opt_len > icmp_len))
    590				return 0;
    591
    592			/* Store the link layer address if the appropriate
    593			 * option is provided.  It is considered an error if
    594			 * the same link layer option is specified twice.
    595			 */
    596			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
    597			    && opt_len == 8) {
    598				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
    599					goto invalid;
    600				ether_addr_copy(key->ipv6.nd.sll,
    601						&nd->opt[offset+sizeof(*nd_opt)]);
    602			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
    603				   && opt_len == 8) {
    604				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
    605					goto invalid;
    606				ether_addr_copy(key->ipv6.nd.tll,
    607						&nd->opt[offset+sizeof(*nd_opt)]);
    608			}
    609
    610			icmp_len -= opt_len;
    611			offset += opt_len;
    612		}
    613	}
    614
    615	return 0;
    616
    617invalid:
    618	memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
    619	memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
    620	memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
    621
    622	return 0;
    623}
    624
    625static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
    626{
    627	struct nshhdr *nh;
    628	unsigned int nh_ofs = skb_network_offset(skb);
    629	u8 version, length;
    630	int err;
    631
    632	err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
    633	if (unlikely(err))
    634		return err;
    635
    636	nh = nsh_hdr(skb);
    637	version = nsh_get_ver(nh);
    638	length = nsh_hdr_len(nh);
    639
    640	if (version != 0)
    641		return -EINVAL;
    642
    643	err = check_header(skb, nh_ofs + length);
    644	if (unlikely(err))
    645		return err;
    646
    647	nh = nsh_hdr(skb);
    648	key->nsh.base.flags = nsh_get_flags(nh);
    649	key->nsh.base.ttl = nsh_get_ttl(nh);
    650	key->nsh.base.mdtype = nh->mdtype;
    651	key->nsh.base.np = nh->np;
    652	key->nsh.base.path_hdr = nh->path_hdr;
    653	switch (key->nsh.base.mdtype) {
    654	case NSH_M_TYPE1:
    655		if (length != NSH_M_TYPE1_LEN)
    656			return -EINVAL;
    657		memcpy(key->nsh.context, nh->md1.context,
    658		       sizeof(nh->md1));
    659		break;
    660	case NSH_M_TYPE2:
    661		memset(key->nsh.context, 0,
    662		       sizeof(nh->md1));
    663		break;
    664	default:
    665		return -EINVAL;
    666	}
    667
    668	return 0;
    669}
    670
    671/**
    672 * key_extract_l3l4 - extracts L3/L4 header information.
    673 * @skb: sk_buff that contains the frame, with skb->data pointing to the
    674 *       L3 header
    675 * @key: output flow key
    676 *
    677 * Return: %0 if successful, otherwise a negative errno value.
    678 */
    679static int key_extract_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
    680{
    681	int error;
    682
    683	/* Network layer. */
    684	if (key->eth.type == htons(ETH_P_IP)) {
    685		struct iphdr *nh;
    686		__be16 offset;
    687
    688		error = check_iphdr(skb);
    689		if (unlikely(error)) {
    690			memset(&key->ip, 0, sizeof(key->ip));
    691			memset(&key->ipv4, 0, sizeof(key->ipv4));
    692			if (error == -EINVAL) {
    693				skb->transport_header = skb->network_header;
    694				error = 0;
    695			}
    696			return error;
    697		}
    698
    699		nh = ip_hdr(skb);
    700		key->ipv4.addr.src = nh->saddr;
    701		key->ipv4.addr.dst = nh->daddr;
    702
    703		key->ip.proto = nh->protocol;
    704		key->ip.tos = nh->tos;
    705		key->ip.ttl = nh->ttl;
    706
    707		offset = nh->frag_off & htons(IP_OFFSET);
    708		if (offset) {
    709			key->ip.frag = OVS_FRAG_TYPE_LATER;
    710			memset(&key->tp, 0, sizeof(key->tp));
    711			return 0;
    712		}
    713		if (nh->frag_off & htons(IP_MF) ||
    714			skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
    715			key->ip.frag = OVS_FRAG_TYPE_FIRST;
    716		else
    717			key->ip.frag = OVS_FRAG_TYPE_NONE;
    718
    719		/* Transport layer. */
    720		if (key->ip.proto == IPPROTO_TCP) {
    721			if (tcphdr_ok(skb)) {
    722				struct tcphdr *tcp = tcp_hdr(skb);
    723				key->tp.src = tcp->source;
    724				key->tp.dst = tcp->dest;
    725				key->tp.flags = TCP_FLAGS_BE16(tcp);
    726			} else {
    727				memset(&key->tp, 0, sizeof(key->tp));
    728			}
    729
    730		} else if (key->ip.proto == IPPROTO_UDP) {
    731			if (udphdr_ok(skb)) {
    732				struct udphdr *udp = udp_hdr(skb);
    733				key->tp.src = udp->source;
    734				key->tp.dst = udp->dest;
    735			} else {
    736				memset(&key->tp, 0, sizeof(key->tp));
    737			}
    738		} else if (key->ip.proto == IPPROTO_SCTP) {
    739			if (sctphdr_ok(skb)) {
    740				struct sctphdr *sctp = sctp_hdr(skb);
    741				key->tp.src = sctp->source;
    742				key->tp.dst = sctp->dest;
    743			} else {
    744				memset(&key->tp, 0, sizeof(key->tp));
    745			}
    746		} else if (key->ip.proto == IPPROTO_ICMP) {
    747			if (icmphdr_ok(skb)) {
    748				struct icmphdr *icmp = icmp_hdr(skb);
    749				/* The ICMP type and code fields use the 16-bit
    750				 * transport port fields, so we need to store
    751				 * them in 16-bit network byte order. */
    752				key->tp.src = htons(icmp->type);
    753				key->tp.dst = htons(icmp->code);
    754			} else {
    755				memset(&key->tp, 0, sizeof(key->tp));
    756			}
    757		}
    758
    759	} else if (key->eth.type == htons(ETH_P_ARP) ||
    760		   key->eth.type == htons(ETH_P_RARP)) {
    761		struct arp_eth_header *arp;
    762		bool arp_available = arphdr_ok(skb);
    763
    764		arp = (struct arp_eth_header *)skb_network_header(skb);
    765
    766		if (arp_available &&
    767		    arp->ar_hrd == htons(ARPHRD_ETHER) &&
    768		    arp->ar_pro == htons(ETH_P_IP) &&
    769		    arp->ar_hln == ETH_ALEN &&
    770		    arp->ar_pln == 4) {
    771
    772			/* We only match on the lower 8 bits of the opcode. */
    773			if (ntohs(arp->ar_op) <= 0xff)
    774				key->ip.proto = ntohs(arp->ar_op);
    775			else
    776				key->ip.proto = 0;
    777
    778			memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
    779			memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
    780			ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
    781			ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
    782		} else {
    783			memset(&key->ip, 0, sizeof(key->ip));
    784			memset(&key->ipv4, 0, sizeof(key->ipv4));
    785		}
    786	} else if (eth_p_mpls(key->eth.type)) {
    787		u8 label_count = 1;
    788
    789		memset(&key->mpls, 0, sizeof(key->mpls));
    790		skb_set_inner_network_header(skb, skb->mac_len);
    791		while (1) {
    792			__be32 lse;
    793
    794			error = check_header(skb, skb->mac_len +
    795					     label_count * MPLS_HLEN);
    796			if (unlikely(error))
    797				return 0;
    798
    799			memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
    800
    801			if (label_count <= MPLS_LABEL_DEPTH)
    802				memcpy(&key->mpls.lse[label_count - 1], &lse,
    803				       MPLS_HLEN);
    804
    805			skb_set_inner_network_header(skb, skb->mac_len +
    806						     label_count * MPLS_HLEN);
    807			if (lse & htonl(MPLS_LS_S_MASK))
    808				break;
    809
    810			label_count++;
    811		}
    812		if (label_count > MPLS_LABEL_DEPTH)
    813			label_count = MPLS_LABEL_DEPTH;
    814
    815		key->mpls.num_labels_mask = GENMASK(label_count - 1, 0);
    816	} else if (key->eth.type == htons(ETH_P_IPV6)) {
    817		int nh_len;             /* IPv6 Header + Extensions */
    818
    819		nh_len = parse_ipv6hdr(skb, key);
    820		if (unlikely(nh_len < 0)) {
    821			switch (nh_len) {
    822			case -EINVAL:
    823				memset(&key->ip, 0, sizeof(key->ip));
    824				memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
    825				fallthrough;
    826			case -EPROTO:
    827				skb->transport_header = skb->network_header;
    828				error = 0;
    829				break;
    830			default:
    831				error = nh_len;
    832			}
    833			return error;
    834		}
    835
    836		if (key->ip.frag == OVS_FRAG_TYPE_LATER) {
    837			memset(&key->tp, 0, sizeof(key->tp));
    838			return 0;
    839		}
    840		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
    841			key->ip.frag = OVS_FRAG_TYPE_FIRST;
    842
    843		/* Transport layer. */
    844		if (key->ip.proto == NEXTHDR_TCP) {
    845			if (tcphdr_ok(skb)) {
    846				struct tcphdr *tcp = tcp_hdr(skb);
    847				key->tp.src = tcp->source;
    848				key->tp.dst = tcp->dest;
    849				key->tp.flags = TCP_FLAGS_BE16(tcp);
    850			} else {
    851				memset(&key->tp, 0, sizeof(key->tp));
    852			}
    853		} else if (key->ip.proto == NEXTHDR_UDP) {
    854			if (udphdr_ok(skb)) {
    855				struct udphdr *udp = udp_hdr(skb);
    856				key->tp.src = udp->source;
    857				key->tp.dst = udp->dest;
    858			} else {
    859				memset(&key->tp, 0, sizeof(key->tp));
    860			}
    861		} else if (key->ip.proto == NEXTHDR_SCTP) {
    862			if (sctphdr_ok(skb)) {
    863				struct sctphdr *sctp = sctp_hdr(skb);
    864				key->tp.src = sctp->source;
    865				key->tp.dst = sctp->dest;
    866			} else {
    867				memset(&key->tp, 0, sizeof(key->tp));
    868			}
    869		} else if (key->ip.proto == NEXTHDR_ICMP) {
    870			if (icmp6hdr_ok(skb)) {
    871				error = parse_icmpv6(skb, key, nh_len);
    872				if (error)
    873					return error;
    874			} else {
    875				memset(&key->tp, 0, sizeof(key->tp));
    876			}
    877		}
    878	} else if (key->eth.type == htons(ETH_P_NSH)) {
    879		error = parse_nsh(skb, key);
    880		if (error)
    881			return error;
    882	}
    883	return 0;
    884}
    885
    886/**
    887 * key_extract - extracts a flow key from an Ethernet frame.
    888 * @skb: sk_buff that contains the frame, with skb->data pointing to the
    889 * Ethernet header
    890 * @key: output flow key
    891 *
    892 * The caller must ensure that skb->len >= ETH_HLEN.
    893 *
    894 * Initializes @skb header fields as follows:
    895 *
    896 *    - skb->mac_header: the L2 header.
    897 *
    898 *    - skb->network_header: just past the L2 header, or just past the
    899 *      VLAN header, to the first byte of the L2 payload.
    900 *
    901 *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
    902 *      on output, then just past the IP header, if one is present and
    903 *      of a correct length, otherwise the same as skb->network_header.
    904 *      For other key->eth.type values it is left untouched.
    905 *
    906 *    - skb->protocol: the type of the data starting at skb->network_header.
    907 *      Equals to key->eth.type.
    908 *
    909 * Return: %0 if successful, otherwise a negative errno value.
    910 */
    911static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
    912{
    913	struct ethhdr *eth;
    914
    915	/* Flags are always used as part of stats */
    916	key->tp.flags = 0;
    917
    918	skb_reset_mac_header(skb);
    919
    920	/* Link layer. */
    921	clear_vlan(key);
    922	if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
    923		if (unlikely(eth_type_vlan(skb->protocol)))
    924			return -EINVAL;
    925
    926		skb_reset_network_header(skb);
    927		key->eth.type = skb->protocol;
    928	} else {
    929		eth = eth_hdr(skb);
    930		ether_addr_copy(key->eth.src, eth->h_source);
    931		ether_addr_copy(key->eth.dst, eth->h_dest);
    932
    933		__skb_pull(skb, 2 * ETH_ALEN);
    934		/* We are going to push all headers that we pull, so no need to
    935		 * update skb->csum here.
    936		 */
    937
    938		if (unlikely(parse_vlan(skb, key)))
    939			return -ENOMEM;
    940
    941		key->eth.type = parse_ethertype(skb);
    942		if (unlikely(key->eth.type == htons(0)))
    943			return -ENOMEM;
    944
    945		/* Multiple tagged packets need to retain TPID to satisfy
    946		 * skb_vlan_pop(), which will later shift the ethertype into
    947		 * skb->protocol.
    948		 */
    949		if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK))
    950			skb->protocol = key->eth.cvlan.tpid;
    951		else
    952			skb->protocol = key->eth.type;
    953
    954		skb_reset_network_header(skb);
    955		__skb_push(skb, skb->data - skb_mac_header(skb));
    956	}
    957
    958	skb_reset_mac_len(skb);
    959
    960	/* Fill out L3/L4 key info, if any */
    961	return key_extract_l3l4(skb, key);
    962}
    963
    964/* In the case of conntrack fragment handling it expects L3 headers,
    965 * add a helper.
    966 */
    967int ovs_flow_key_update_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
    968{
    969	return key_extract_l3l4(skb, key);
    970}
    971
    972int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
    973{
    974	int res;
    975
    976	res = key_extract(skb, key);
    977	if (!res)
    978		key->mac_proto &= ~SW_FLOW_KEY_INVALID;
    979
    980	return res;
    981}
    982
    983static int key_extract_mac_proto(struct sk_buff *skb)
    984{
    985	switch (skb->dev->type) {
    986	case ARPHRD_ETHER:
    987		return MAC_PROTO_ETHERNET;
    988	case ARPHRD_NONE:
    989		if (skb->protocol == htons(ETH_P_TEB))
    990			return MAC_PROTO_ETHERNET;
    991		return MAC_PROTO_NONE;
    992	}
    993	WARN_ON_ONCE(1);
    994	return -EINVAL;
    995}
    996
    997int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
    998			 struct sk_buff *skb, struct sw_flow_key *key)
    999{
   1000#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
   1001	struct tc_skb_ext *tc_ext;
   1002#endif
   1003	bool post_ct = false, post_ct_snat = false, post_ct_dnat = false;
   1004	int res, err;
   1005	u16 zone = 0;
   1006
   1007	/* Extract metadata from packet. */
   1008	if (tun_info) {
   1009		key->tun_proto = ip_tunnel_info_af(tun_info);
   1010		memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
   1011
   1012		if (tun_info->options_len) {
   1013			BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
   1014						   8)) - 1
   1015					> sizeof(key->tun_opts));
   1016
   1017			ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
   1018						tun_info);
   1019			key->tun_opts_len = tun_info->options_len;
   1020		} else {
   1021			key->tun_opts_len = 0;
   1022		}
   1023	} else  {
   1024		key->tun_proto = 0;
   1025		key->tun_opts_len = 0;
   1026		memset(&key->tun_key, 0, sizeof(key->tun_key));
   1027	}
   1028
   1029	key->phy.priority = skb->priority;
   1030	key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
   1031	key->phy.skb_mark = skb->mark;
   1032	key->ovs_flow_hash = 0;
   1033	res = key_extract_mac_proto(skb);
   1034	if (res < 0)
   1035		return res;
   1036	key->mac_proto = res;
   1037
   1038#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
   1039	if (tc_skb_ext_tc_enabled()) {
   1040		tc_ext = skb_ext_find(skb, TC_SKB_EXT);
   1041		key->recirc_id = tc_ext ? tc_ext->chain : 0;
   1042		OVS_CB(skb)->mru = tc_ext ? tc_ext->mru : 0;
   1043		post_ct = tc_ext ? tc_ext->post_ct : false;
   1044		post_ct_snat = post_ct ? tc_ext->post_ct_snat : false;
   1045		post_ct_dnat = post_ct ? tc_ext->post_ct_dnat : false;
   1046		zone = post_ct ? tc_ext->zone : 0;
   1047	} else {
   1048		key->recirc_id = 0;
   1049	}
   1050#else
   1051	key->recirc_id = 0;
   1052#endif
   1053
   1054	err = key_extract(skb, key);
   1055	if (!err) {
   1056		ovs_ct_fill_key(skb, key, post_ct);   /* Must be after key_extract(). */
   1057		if (post_ct) {
   1058			if (!skb_get_nfct(skb)) {
   1059				key->ct_zone = zone;
   1060			} else {
   1061				if (!post_ct_dnat)
   1062					key->ct_state &= ~OVS_CS_F_DST_NAT;
   1063				if (!post_ct_snat)
   1064					key->ct_state &= ~OVS_CS_F_SRC_NAT;
   1065			}
   1066		}
   1067	}
   1068	return err;
   1069}
   1070
   1071int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
   1072				   struct sk_buff *skb,
   1073				   struct sw_flow_key *key, bool log)
   1074{
   1075	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
   1076	u64 attrs = 0;
   1077	int err;
   1078
   1079	err = parse_flow_nlattrs(attr, a, &attrs, log);
   1080	if (err)
   1081		return -EINVAL;
   1082
   1083	/* Extract metadata from netlink attributes. */
   1084	err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
   1085	if (err)
   1086		return err;
   1087
   1088	/* key_extract assumes that skb->protocol is set-up for
   1089	 * layer 3 packets which is the case for other callers,
   1090	 * in particular packets received from the network stack.
   1091	 * Here the correct value can be set from the metadata
   1092	 * extracted above.
   1093	 * For L2 packet key eth type would be zero. skb protocol
   1094	 * would be set to correct value later during key-extact.
   1095	 */
   1096
   1097	skb->protocol = key->eth.type;
   1098	err = key_extract(skb, key);
   1099	if (err)
   1100		return err;
   1101
   1102	/* Check that we have conntrack original direction tuple metadata only
   1103	 * for packets for which it makes sense.  Otherwise the key may be
   1104	 * corrupted due to overlapping key fields.
   1105	 */
   1106	if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
   1107	    key->eth.type != htons(ETH_P_IP))
   1108		return -EINVAL;
   1109	if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
   1110	    (key->eth.type != htons(ETH_P_IPV6) ||
   1111	     sw_flow_key_is_nd(key)))
   1112		return -EINVAL;
   1113
   1114	return 0;
   1115}