cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ib_recv.c (31712B)


      1/*
      2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
      3 *
      4 * This software is available to you under a choice of one of two
      5 * licenses.  You may choose to be licensed under the terms of the GNU
      6 * General Public License (GPL) Version 2, available from the file
      7 * COPYING in the main directory of this source tree, or the
      8 * OpenIB.org BSD license below:
      9 *
     10 *     Redistribution and use in source and binary forms, with or
     11 *     without modification, are permitted provided that the following
     12 *     conditions are met:
     13 *
     14 *      - Redistributions of source code must retain the above
     15 *        copyright notice, this list of conditions and the following
     16 *        disclaimer.
     17 *
     18 *      - Redistributions in binary form must reproduce the above
     19 *        copyright notice, this list of conditions and the following
     20 *        disclaimer in the documentation and/or other materials
     21 *        provided with the distribution.
     22 *
     23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     30 * SOFTWARE.
     31 *
     32 */
     33#include <linux/kernel.h>
     34#include <linux/slab.h>
     35#include <linux/pci.h>
     36#include <linux/dma-mapping.h>
     37#include <rdma/rdma_cm.h>
     38
     39#include "rds_single_path.h"
     40#include "rds.h"
     41#include "ib.h"
     42
     43static struct kmem_cache *rds_ib_incoming_slab;
     44static struct kmem_cache *rds_ib_frag_slab;
     45static atomic_t	rds_ib_allocation = ATOMIC_INIT(0);
     46
     47void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
     48{
     49	struct rds_ib_recv_work *recv;
     50	u32 i;
     51
     52	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
     53		struct ib_sge *sge;
     54
     55		recv->r_ibinc = NULL;
     56		recv->r_frag = NULL;
     57
     58		recv->r_wr.next = NULL;
     59		recv->r_wr.wr_id = i;
     60		recv->r_wr.sg_list = recv->r_sge;
     61		recv->r_wr.num_sge = RDS_IB_RECV_SGE;
     62
     63		sge = &recv->r_sge[0];
     64		sge->addr = ic->i_recv_hdrs_dma[i];
     65		sge->length = sizeof(struct rds_header);
     66		sge->lkey = ic->i_pd->local_dma_lkey;
     67
     68		sge = &recv->r_sge[1];
     69		sge->addr = 0;
     70		sge->length = RDS_FRAG_SIZE;
     71		sge->lkey = ic->i_pd->local_dma_lkey;
     72	}
     73}
     74
     75/*
     76 * The entire 'from' list, including the from element itself, is put on
     77 * to the tail of the 'to' list.
     78 */
     79static void list_splice_entire_tail(struct list_head *from,
     80				    struct list_head *to)
     81{
     82	struct list_head *from_last = from->prev;
     83
     84	list_splice_tail(from_last, to);
     85	list_add_tail(from_last, to);
     86}
     87
     88static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
     89{
     90	struct list_head *tmp;
     91
     92	tmp = xchg(&cache->xfer, NULL);
     93	if (tmp) {
     94		if (cache->ready)
     95			list_splice_entire_tail(tmp, cache->ready);
     96		else
     97			cache->ready = tmp;
     98	}
     99}
    100
    101static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp)
    102{
    103	struct rds_ib_cache_head *head;
    104	int cpu;
    105
    106	cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp);
    107	if (!cache->percpu)
    108	       return -ENOMEM;
    109
    110	for_each_possible_cpu(cpu) {
    111		head = per_cpu_ptr(cache->percpu, cpu);
    112		head->first = NULL;
    113		head->count = 0;
    114	}
    115	cache->xfer = NULL;
    116	cache->ready = NULL;
    117
    118	return 0;
    119}
    120
    121int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp)
    122{
    123	int ret;
    124
    125	ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp);
    126	if (!ret) {
    127		ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp);
    128		if (ret)
    129			free_percpu(ic->i_cache_incs.percpu);
    130	}
    131
    132	return ret;
    133}
    134
    135static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
    136					  struct list_head *caller_list)
    137{
    138	struct rds_ib_cache_head *head;
    139	int cpu;
    140
    141	for_each_possible_cpu(cpu) {
    142		head = per_cpu_ptr(cache->percpu, cpu);
    143		if (head->first) {
    144			list_splice_entire_tail(head->first, caller_list);
    145			head->first = NULL;
    146		}
    147	}
    148
    149	if (cache->ready) {
    150		list_splice_entire_tail(cache->ready, caller_list);
    151		cache->ready = NULL;
    152	}
    153}
    154
    155void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
    156{
    157	struct rds_ib_incoming *inc;
    158	struct rds_ib_incoming *inc_tmp;
    159	struct rds_page_frag *frag;
    160	struct rds_page_frag *frag_tmp;
    161	LIST_HEAD(list);
    162
    163	rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
    164	rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
    165	free_percpu(ic->i_cache_incs.percpu);
    166
    167	list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
    168		list_del(&inc->ii_cache_entry);
    169		WARN_ON(!list_empty(&inc->ii_frags));
    170		kmem_cache_free(rds_ib_incoming_slab, inc);
    171		atomic_dec(&rds_ib_allocation);
    172	}
    173
    174	rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
    175	rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
    176	free_percpu(ic->i_cache_frags.percpu);
    177
    178	list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
    179		list_del(&frag->f_cache_entry);
    180		WARN_ON(!list_empty(&frag->f_item));
    181		kmem_cache_free(rds_ib_frag_slab, frag);
    182	}
    183}
    184
    185/* fwd decl */
    186static void rds_ib_recv_cache_put(struct list_head *new_item,
    187				  struct rds_ib_refill_cache *cache);
    188static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
    189
    190
    191/* Recycle frag and attached recv buffer f_sg */
    192static void rds_ib_frag_free(struct rds_ib_connection *ic,
    193			     struct rds_page_frag *frag)
    194{
    195	rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
    196
    197	rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
    198	atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
    199	rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
    200}
    201
    202/* Recycle inc after freeing attached frags */
    203void rds_ib_inc_free(struct rds_incoming *inc)
    204{
    205	struct rds_ib_incoming *ibinc;
    206	struct rds_page_frag *frag;
    207	struct rds_page_frag *pos;
    208	struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
    209
    210	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
    211
    212	/* Free attached frags */
    213	list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
    214		list_del_init(&frag->f_item);
    215		rds_ib_frag_free(ic, frag);
    216	}
    217	BUG_ON(!list_empty(&ibinc->ii_frags));
    218
    219	rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
    220	rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
    221}
    222
    223static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
    224				  struct rds_ib_recv_work *recv)
    225{
    226	if (recv->r_ibinc) {
    227		rds_inc_put(&recv->r_ibinc->ii_inc);
    228		recv->r_ibinc = NULL;
    229	}
    230	if (recv->r_frag) {
    231		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
    232		rds_ib_frag_free(ic, recv->r_frag);
    233		recv->r_frag = NULL;
    234	}
    235}
    236
    237void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
    238{
    239	u32 i;
    240
    241	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
    242		rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
    243}
    244
    245static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
    246						     gfp_t slab_mask)
    247{
    248	struct rds_ib_incoming *ibinc;
    249	struct list_head *cache_item;
    250	int avail_allocs;
    251
    252	cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
    253	if (cache_item) {
    254		ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
    255	} else {
    256		avail_allocs = atomic_add_unless(&rds_ib_allocation,
    257						 1, rds_ib_sysctl_max_recv_allocation);
    258		if (!avail_allocs) {
    259			rds_ib_stats_inc(s_ib_rx_alloc_limit);
    260			return NULL;
    261		}
    262		ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
    263		if (!ibinc) {
    264			atomic_dec(&rds_ib_allocation);
    265			return NULL;
    266		}
    267		rds_ib_stats_inc(s_ib_rx_total_incs);
    268	}
    269	INIT_LIST_HEAD(&ibinc->ii_frags);
    270	rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr);
    271
    272	return ibinc;
    273}
    274
    275static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
    276						    gfp_t slab_mask, gfp_t page_mask)
    277{
    278	struct rds_page_frag *frag;
    279	struct list_head *cache_item;
    280	int ret;
    281
    282	cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
    283	if (cache_item) {
    284		frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
    285		atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
    286		rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
    287	} else {
    288		frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
    289		if (!frag)
    290			return NULL;
    291
    292		sg_init_table(&frag->f_sg, 1);
    293		ret = rds_page_remainder_alloc(&frag->f_sg,
    294					       RDS_FRAG_SIZE, page_mask);
    295		if (ret) {
    296			kmem_cache_free(rds_ib_frag_slab, frag);
    297			return NULL;
    298		}
    299		rds_ib_stats_inc(s_ib_rx_total_frags);
    300	}
    301
    302	INIT_LIST_HEAD(&frag->f_item);
    303
    304	return frag;
    305}
    306
    307static int rds_ib_recv_refill_one(struct rds_connection *conn,
    308				  struct rds_ib_recv_work *recv, gfp_t gfp)
    309{
    310	struct rds_ib_connection *ic = conn->c_transport_data;
    311	struct ib_sge *sge;
    312	int ret = -ENOMEM;
    313	gfp_t slab_mask = gfp;
    314	gfp_t page_mask = gfp;
    315
    316	if (gfp & __GFP_DIRECT_RECLAIM) {
    317		slab_mask = GFP_KERNEL;
    318		page_mask = GFP_HIGHUSER;
    319	}
    320
    321	if (!ic->i_cache_incs.ready)
    322		rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
    323	if (!ic->i_cache_frags.ready)
    324		rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
    325
    326	/*
    327	 * ibinc was taken from recv if recv contained the start of a message.
    328	 * recvs that were continuations will still have this allocated.
    329	 */
    330	if (!recv->r_ibinc) {
    331		recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
    332		if (!recv->r_ibinc)
    333			goto out;
    334	}
    335
    336	WARN_ON(recv->r_frag); /* leak! */
    337	recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
    338	if (!recv->r_frag)
    339		goto out;
    340
    341	ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
    342			    1, DMA_FROM_DEVICE);
    343	WARN_ON(ret != 1);
    344
    345	sge = &recv->r_sge[0];
    346	sge->addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs];
    347	sge->length = sizeof(struct rds_header);
    348
    349	sge = &recv->r_sge[1];
    350	sge->addr = sg_dma_address(&recv->r_frag->f_sg);
    351	sge->length = sg_dma_len(&recv->r_frag->f_sg);
    352
    353	ret = 0;
    354out:
    355	return ret;
    356}
    357
    358static int acquire_refill(struct rds_connection *conn)
    359{
    360	return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
    361}
    362
    363static void release_refill(struct rds_connection *conn)
    364{
    365	clear_bit(RDS_RECV_REFILL, &conn->c_flags);
    366
    367	/* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
    368	 * hot path and finding waiters is very rare.  We don't want to walk
    369	 * the system-wide hashed waitqueue buckets in the fast path only to
    370	 * almost never find waiters.
    371	 */
    372	if (waitqueue_active(&conn->c_waitq))
    373		wake_up_all(&conn->c_waitq);
    374}
    375
    376/*
    377 * This tries to allocate and post unused work requests after making sure that
    378 * they have all the allocations they need to queue received fragments into
    379 * sockets.
    380 */
    381void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
    382{
    383	struct rds_ib_connection *ic = conn->c_transport_data;
    384	struct rds_ib_recv_work *recv;
    385	unsigned int posted = 0;
    386	int ret = 0;
    387	bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
    388	bool must_wake = false;
    389	u32 pos;
    390
    391	/* the goal here is to just make sure that someone, somewhere
    392	 * is posting buffers.  If we can't get the refill lock,
    393	 * let them do their thing
    394	 */
    395	if (!acquire_refill(conn))
    396		return;
    397
    398	while ((prefill || rds_conn_up(conn)) &&
    399	       rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
    400		if (pos >= ic->i_recv_ring.w_nr) {
    401			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
    402					pos);
    403			break;
    404		}
    405
    406		recv = &ic->i_recvs[pos];
    407		ret = rds_ib_recv_refill_one(conn, recv, gfp);
    408		if (ret) {
    409			must_wake = true;
    410			break;
    411		}
    412
    413		rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv,
    414			 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
    415			 (long)sg_dma_address(&recv->r_frag->f_sg));
    416
    417		/* XXX when can this fail? */
    418		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, NULL);
    419		if (ret) {
    420			rds_ib_conn_error(conn, "recv post on "
    421			       "%pI6c returned %d, disconnecting and "
    422			       "reconnecting\n", &conn->c_faddr,
    423			       ret);
    424			break;
    425		}
    426
    427		posted++;
    428
    429		if ((posted > 128 && need_resched()) || posted > 8192) {
    430			must_wake = true;
    431			break;
    432		}
    433	}
    434
    435	/* We're doing flow control - update the window. */
    436	if (ic->i_flowctl && posted)
    437		rds_ib_advertise_credits(conn, posted);
    438
    439	if (ret)
    440		rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
    441
    442	release_refill(conn);
    443
    444	/* if we're called from the softirq handler, we'll be GFP_NOWAIT.
    445	 * in this case the ring being low is going to lead to more interrupts
    446	 * and we can safely let the softirq code take care of it unless the
    447	 * ring is completely empty.
    448	 *
    449	 * if we're called from krdsd, we'll be GFP_KERNEL.  In this case
    450	 * we might have raced with the softirq code while we had the refill
    451	 * lock held.  Use rds_ib_ring_low() instead of ring_empty to decide
    452	 * if we should requeue.
    453	 */
    454	if (rds_conn_up(conn) &&
    455	    (must_wake ||
    456	    (can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
    457	    rds_ib_ring_empty(&ic->i_recv_ring))) {
    458		queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
    459	}
    460	if (can_wait)
    461		cond_resched();
    462}
    463
    464/*
    465 * We want to recycle several types of recv allocations, like incs and frags.
    466 * To use this, the *_free() function passes in the ptr to a list_head within
    467 * the recyclee, as well as the cache to put it on.
    468 *
    469 * First, we put the memory on a percpu list. When this reaches a certain size,
    470 * We move it to an intermediate non-percpu list in a lockless manner, with some
    471 * xchg/compxchg wizardry.
    472 *
    473 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
    474 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
    475 * list_empty() will return true with one element is actually present.
    476 */
    477static void rds_ib_recv_cache_put(struct list_head *new_item,
    478				 struct rds_ib_refill_cache *cache)
    479{
    480	unsigned long flags;
    481	struct list_head *old, *chpfirst;
    482
    483	local_irq_save(flags);
    484
    485	chpfirst = __this_cpu_read(cache->percpu->first);
    486	if (!chpfirst)
    487		INIT_LIST_HEAD(new_item);
    488	else /* put on front */
    489		list_add_tail(new_item, chpfirst);
    490
    491	__this_cpu_write(cache->percpu->first, new_item);
    492	__this_cpu_inc(cache->percpu->count);
    493
    494	if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
    495		goto end;
    496
    497	/*
    498	 * Return our per-cpu first list to the cache's xfer by atomically
    499	 * grabbing the current xfer list, appending it to our per-cpu list,
    500	 * and then atomically returning that entire list back to the
    501	 * cache's xfer list as long as it's still empty.
    502	 */
    503	do {
    504		old = xchg(&cache->xfer, NULL);
    505		if (old)
    506			list_splice_entire_tail(old, chpfirst);
    507		old = cmpxchg(&cache->xfer, NULL, chpfirst);
    508	} while (old);
    509
    510
    511	__this_cpu_write(cache->percpu->first, NULL);
    512	__this_cpu_write(cache->percpu->count, 0);
    513end:
    514	local_irq_restore(flags);
    515}
    516
    517static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
    518{
    519	struct list_head *head = cache->ready;
    520
    521	if (head) {
    522		if (!list_empty(head)) {
    523			cache->ready = head->next;
    524			list_del_init(head);
    525		} else
    526			cache->ready = NULL;
    527	}
    528
    529	return head;
    530}
    531
    532int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
    533{
    534	struct rds_ib_incoming *ibinc;
    535	struct rds_page_frag *frag;
    536	unsigned long to_copy;
    537	unsigned long frag_off = 0;
    538	int copied = 0;
    539	int ret;
    540	u32 len;
    541
    542	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
    543	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
    544	len = be32_to_cpu(inc->i_hdr.h_len);
    545
    546	while (iov_iter_count(to) && copied < len) {
    547		if (frag_off == RDS_FRAG_SIZE) {
    548			frag = list_entry(frag->f_item.next,
    549					  struct rds_page_frag, f_item);
    550			frag_off = 0;
    551		}
    552		to_copy = min_t(unsigned long, iov_iter_count(to),
    553				RDS_FRAG_SIZE - frag_off);
    554		to_copy = min_t(unsigned long, to_copy, len - copied);
    555
    556		/* XXX needs + offset for multiple recvs per page */
    557		rds_stats_add(s_copy_to_user, to_copy);
    558		ret = copy_page_to_iter(sg_page(&frag->f_sg),
    559					frag->f_sg.offset + frag_off,
    560					to_copy,
    561					to);
    562		if (ret != to_copy)
    563			return -EFAULT;
    564
    565		frag_off += to_copy;
    566		copied += to_copy;
    567	}
    568
    569	return copied;
    570}
    571
    572/* ic starts out kzalloc()ed */
    573void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
    574{
    575	struct ib_send_wr *wr = &ic->i_ack_wr;
    576	struct ib_sge *sge = &ic->i_ack_sge;
    577
    578	sge->addr = ic->i_ack_dma;
    579	sge->length = sizeof(struct rds_header);
    580	sge->lkey = ic->i_pd->local_dma_lkey;
    581
    582	wr->sg_list = sge;
    583	wr->num_sge = 1;
    584	wr->opcode = IB_WR_SEND;
    585	wr->wr_id = RDS_IB_ACK_WR_ID;
    586	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
    587}
    588
    589/*
    590 * You'd think that with reliable IB connections you wouldn't need to ack
    591 * messages that have been received.  The problem is that IB hardware generates
    592 * an ack message before it has DMAed the message into memory.  This creates a
    593 * potential message loss if the HCA is disabled for any reason between when it
    594 * sends the ack and before the message is DMAed and processed.  This is only a
    595 * potential issue if another HCA is available for fail-over.
    596 *
    597 * When the remote host receives our ack they'll free the sent message from
    598 * their send queue.  To decrease the latency of this we always send an ack
    599 * immediately after we've received messages.
    600 *
    601 * For simplicity, we only have one ack in flight at a time.  This puts
    602 * pressure on senders to have deep enough send queues to absorb the latency of
    603 * a single ack frame being in flight.  This might not be good enough.
    604 *
    605 * This is implemented by have a long-lived send_wr and sge which point to a
    606 * statically allocated ack frame.  This ack wr does not fall under the ring
    607 * accounting that the tx and rx wrs do.  The QP attribute specifically makes
    608 * room for it beyond the ring size.  Send completion notices its special
    609 * wr_id and avoids working with the ring in that case.
    610 */
    611#ifndef KERNEL_HAS_ATOMIC64
    612void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
    613{
    614	unsigned long flags;
    615
    616	spin_lock_irqsave(&ic->i_ack_lock, flags);
    617	ic->i_ack_next = seq;
    618	if (ack_required)
    619		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
    620	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
    621}
    622
    623static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
    624{
    625	unsigned long flags;
    626	u64 seq;
    627
    628	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
    629
    630	spin_lock_irqsave(&ic->i_ack_lock, flags);
    631	seq = ic->i_ack_next;
    632	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
    633
    634	return seq;
    635}
    636#else
    637void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
    638{
    639	atomic64_set(&ic->i_ack_next, seq);
    640	if (ack_required) {
    641		smp_mb__before_atomic();
    642		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
    643	}
    644}
    645
    646static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
    647{
    648	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
    649	smp_mb__after_atomic();
    650
    651	return atomic64_read(&ic->i_ack_next);
    652}
    653#endif
    654
    655
    656static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
    657{
    658	struct rds_header *hdr = ic->i_ack;
    659	u64 seq;
    660	int ret;
    661
    662	seq = rds_ib_get_ack(ic);
    663
    664	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
    665
    666	ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev, ic->i_ack_dma,
    667				   sizeof(*hdr), DMA_TO_DEVICE);
    668	rds_message_populate_header(hdr, 0, 0, 0);
    669	hdr->h_ack = cpu_to_be64(seq);
    670	hdr->h_credit = adv_credits;
    671	rds_message_make_checksum(hdr);
    672	ib_dma_sync_single_for_device(ic->rds_ibdev->dev, ic->i_ack_dma,
    673				      sizeof(*hdr), DMA_TO_DEVICE);
    674
    675	ic->i_ack_queued = jiffies;
    676
    677	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, NULL);
    678	if (unlikely(ret)) {
    679		/* Failed to send. Release the WR, and
    680		 * force another ACK.
    681		 */
    682		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
    683		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
    684
    685		rds_ib_stats_inc(s_ib_ack_send_failure);
    686
    687		rds_ib_conn_error(ic->conn, "sending ack failed\n");
    688	} else
    689		rds_ib_stats_inc(s_ib_ack_sent);
    690}
    691
    692/*
    693 * There are 3 ways of getting acknowledgements to the peer:
    694 *  1.	We call rds_ib_attempt_ack from the recv completion handler
    695 *	to send an ACK-only frame.
    696 *	However, there can be only one such frame in the send queue
    697 *	at any time, so we may have to postpone it.
    698 *  2.	When another (data) packet is transmitted while there's
    699 *	an ACK in the queue, we piggyback the ACK sequence number
    700 *	on the data packet.
    701 *  3.	If the ACK WR is done sending, we get called from the
    702 *	send queue completion handler, and check whether there's
    703 *	another ACK pending (postponed because the WR was on the
    704 *	queue). If so, we transmit it.
    705 *
    706 * We maintain 2 variables:
    707 *  -	i_ack_flags, which keeps track of whether the ACK WR
    708 *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
    709 *  -	i_ack_next, which is the last sequence number we received
    710 *
    711 * Potentially, send queue and receive queue handlers can run concurrently.
    712 * It would be nice to not have to use a spinlock to synchronize things,
    713 * but the one problem that rules this out is that 64bit updates are
    714 * not atomic on all platforms. Things would be a lot simpler if
    715 * we had atomic64 or maybe cmpxchg64 everywhere.
    716 *
    717 * Reconnecting complicates this picture just slightly. When we
    718 * reconnect, we may be seeing duplicate packets. The peer
    719 * is retransmitting them, because it hasn't seen an ACK for
    720 * them. It is important that we ACK these.
    721 *
    722 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
    723 * this flag set *MUST* be acknowledged immediately.
    724 */
    725
    726/*
    727 * When we get here, we're called from the recv queue handler.
    728 * Check whether we ought to transmit an ACK.
    729 */
    730void rds_ib_attempt_ack(struct rds_ib_connection *ic)
    731{
    732	unsigned int adv_credits;
    733
    734	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
    735		return;
    736
    737	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
    738		rds_ib_stats_inc(s_ib_ack_send_delayed);
    739		return;
    740	}
    741
    742	/* Can we get a send credit? */
    743	if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
    744		rds_ib_stats_inc(s_ib_tx_throttle);
    745		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
    746		return;
    747	}
    748
    749	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
    750	rds_ib_send_ack(ic, adv_credits);
    751}
    752
    753/*
    754 * We get here from the send completion handler, when the
    755 * adapter tells us the ACK frame was sent.
    756 */
    757void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
    758{
    759	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
    760	rds_ib_attempt_ack(ic);
    761}
    762
    763/*
    764 * This is called by the regular xmit code when it wants to piggyback
    765 * an ACK on an outgoing frame.
    766 */
    767u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
    768{
    769	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
    770		rds_ib_stats_inc(s_ib_ack_send_piggybacked);
    771	return rds_ib_get_ack(ic);
    772}
    773
    774/*
    775 * It's kind of lame that we're copying from the posted receive pages into
    776 * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
    777 * them.  But receiving new congestion bitmaps should be a *rare* event, so
    778 * hopefully we won't need to invest that complexity in making it more
    779 * efficient.  By copying we can share a simpler core with TCP which has to
    780 * copy.
    781 */
    782static void rds_ib_cong_recv(struct rds_connection *conn,
    783			      struct rds_ib_incoming *ibinc)
    784{
    785	struct rds_cong_map *map;
    786	unsigned int map_off;
    787	unsigned int map_page;
    788	struct rds_page_frag *frag;
    789	unsigned long frag_off;
    790	unsigned long to_copy;
    791	unsigned long copied;
    792	__le64 uncongested = 0;
    793	void *addr;
    794
    795	/* catch completely corrupt packets */
    796	if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
    797		return;
    798
    799	map = conn->c_fcong;
    800	map_page = 0;
    801	map_off = 0;
    802
    803	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
    804	frag_off = 0;
    805
    806	copied = 0;
    807
    808	while (copied < RDS_CONG_MAP_BYTES) {
    809		__le64 *src, *dst;
    810		unsigned int k;
    811
    812		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
    813		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
    814
    815		addr = kmap_atomic(sg_page(&frag->f_sg));
    816
    817		src = addr + frag->f_sg.offset + frag_off;
    818		dst = (void *)map->m_page_addrs[map_page] + map_off;
    819		for (k = 0; k < to_copy; k += 8) {
    820			/* Record ports that became uncongested, ie
    821			 * bits that changed from 0 to 1. */
    822			uncongested |= ~(*src) & *dst;
    823			*dst++ = *src++;
    824		}
    825		kunmap_atomic(addr);
    826
    827		copied += to_copy;
    828
    829		map_off += to_copy;
    830		if (map_off == PAGE_SIZE) {
    831			map_off = 0;
    832			map_page++;
    833		}
    834
    835		frag_off += to_copy;
    836		if (frag_off == RDS_FRAG_SIZE) {
    837			frag = list_entry(frag->f_item.next,
    838					  struct rds_page_frag, f_item);
    839			frag_off = 0;
    840		}
    841	}
    842
    843	/* the congestion map is in little endian order */
    844	rds_cong_map_updated(map, le64_to_cpu(uncongested));
    845}
    846
    847static void rds_ib_process_recv(struct rds_connection *conn,
    848				struct rds_ib_recv_work *recv, u32 data_len,
    849				struct rds_ib_ack_state *state)
    850{
    851	struct rds_ib_connection *ic = conn->c_transport_data;
    852	struct rds_ib_incoming *ibinc = ic->i_ibinc;
    853	struct rds_header *ihdr, *hdr;
    854	dma_addr_t dma_addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs];
    855
    856	/* XXX shut down the connection if port 0,0 are seen? */
    857
    858	rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
    859		 data_len);
    860
    861	if (data_len < sizeof(struct rds_header)) {
    862		rds_ib_conn_error(conn, "incoming message "
    863		       "from %pI6c didn't include a "
    864		       "header, disconnecting and "
    865		       "reconnecting\n",
    866		       &conn->c_faddr);
    867		return;
    868	}
    869	data_len -= sizeof(struct rds_header);
    870
    871	ihdr = ic->i_recv_hdrs[recv - ic->i_recvs];
    872
    873	ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev, dma_addr,
    874				   sizeof(*ihdr), DMA_FROM_DEVICE);
    875	/* Validate the checksum. */
    876	if (!rds_message_verify_checksum(ihdr)) {
    877		rds_ib_conn_error(conn, "incoming message "
    878		       "from %pI6c has corrupted header - "
    879		       "forcing a reconnect\n",
    880		       &conn->c_faddr);
    881		rds_stats_inc(s_recv_drop_bad_checksum);
    882		goto done;
    883	}
    884
    885	/* Process the ACK sequence which comes with every packet */
    886	state->ack_recv = be64_to_cpu(ihdr->h_ack);
    887	state->ack_recv_valid = 1;
    888
    889	/* Process the credits update if there was one */
    890	if (ihdr->h_credit)
    891		rds_ib_send_add_credits(conn, ihdr->h_credit);
    892
    893	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
    894		/* This is an ACK-only packet. The fact that it gets
    895		 * special treatment here is that historically, ACKs
    896		 * were rather special beasts.
    897		 */
    898		rds_ib_stats_inc(s_ib_ack_received);
    899
    900		/*
    901		 * Usually the frags make their way on to incs and are then freed as
    902		 * the inc is freed.  We don't go that route, so we have to drop the
    903		 * page ref ourselves.  We can't just leave the page on the recv
    904		 * because that confuses the dma mapping of pages and each recv's use
    905		 * of a partial page.
    906		 *
    907		 * FIXME: Fold this into the code path below.
    908		 */
    909		rds_ib_frag_free(ic, recv->r_frag);
    910		recv->r_frag = NULL;
    911		goto done;
    912	}
    913
    914	/*
    915	 * If we don't already have an inc on the connection then this
    916	 * fragment has a header and starts a message.. copy its header
    917	 * into the inc and save the inc so we can hang upcoming fragments
    918	 * off its list.
    919	 */
    920	if (!ibinc) {
    921		ibinc = recv->r_ibinc;
    922		recv->r_ibinc = NULL;
    923		ic->i_ibinc = ibinc;
    924
    925		hdr = &ibinc->ii_inc.i_hdr;
    926		ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] =
    927				local_clock();
    928		memcpy(hdr, ihdr, sizeof(*hdr));
    929		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
    930		ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] =
    931				local_clock();
    932
    933		rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
    934			 ic->i_recv_data_rem, hdr->h_flags);
    935	} else {
    936		hdr = &ibinc->ii_inc.i_hdr;
    937		/* We can't just use memcmp here; fragments of a
    938		 * single message may carry different ACKs */
    939		if (hdr->h_sequence != ihdr->h_sequence ||
    940		    hdr->h_len != ihdr->h_len ||
    941		    hdr->h_sport != ihdr->h_sport ||
    942		    hdr->h_dport != ihdr->h_dport) {
    943			rds_ib_conn_error(conn,
    944				"fragment header mismatch; forcing reconnect\n");
    945			goto done;
    946		}
    947	}
    948
    949	list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
    950	recv->r_frag = NULL;
    951
    952	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
    953		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
    954	else {
    955		ic->i_recv_data_rem = 0;
    956		ic->i_ibinc = NULL;
    957
    958		if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) {
    959			rds_ib_cong_recv(conn, ibinc);
    960		} else {
    961			rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr,
    962					  &ibinc->ii_inc, GFP_ATOMIC);
    963			state->ack_next = be64_to_cpu(hdr->h_sequence);
    964			state->ack_next_valid = 1;
    965		}
    966
    967		/* Evaluate the ACK_REQUIRED flag *after* we received
    968		 * the complete frame, and after bumping the next_rx
    969		 * sequence. */
    970		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
    971			rds_stats_inc(s_recv_ack_required);
    972			state->ack_required = 1;
    973		}
    974
    975		rds_inc_put(&ibinc->ii_inc);
    976	}
    977done:
    978	ib_dma_sync_single_for_device(ic->rds_ibdev->dev, dma_addr,
    979				      sizeof(*ihdr), DMA_FROM_DEVICE);
    980}
    981
    982void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
    983			     struct ib_wc *wc,
    984			     struct rds_ib_ack_state *state)
    985{
    986	struct rds_connection *conn = ic->conn;
    987	struct rds_ib_recv_work *recv;
    988
    989	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
    990		 (unsigned long long)wc->wr_id, wc->status,
    991		 ib_wc_status_msg(wc->status), wc->byte_len,
    992		 be32_to_cpu(wc->ex.imm_data));
    993
    994	rds_ib_stats_inc(s_ib_rx_cq_event);
    995	recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
    996	ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
    997			DMA_FROM_DEVICE);
    998
    999	/* Also process recvs in connecting state because it is possible
   1000	 * to get a recv completion _before_ the rdmacm ESTABLISHED
   1001	 * event is processed.
   1002	 */
   1003	if (wc->status == IB_WC_SUCCESS) {
   1004		rds_ib_process_recv(conn, recv, wc->byte_len, state);
   1005	} else {
   1006		/* We expect errors as the qp is drained during shutdown */
   1007		if (rds_conn_up(conn) || rds_conn_connecting(conn))
   1008			rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c, %d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n",
   1009					  &conn->c_laddr, &conn->c_faddr,
   1010					  conn->c_tos, wc->status,
   1011					  ib_wc_status_msg(wc->status),
   1012					  wc->vendor_err);
   1013	}
   1014
   1015	/* rds_ib_process_recv() doesn't always consume the frag, and
   1016	 * we might not have called it at all if the wc didn't indicate
   1017	 * success. We already unmapped the frag's pages, though, and
   1018	 * the following rds_ib_ring_free() call tells the refill path
   1019	 * that it will not find an allocated frag here. Make sure we
   1020	 * keep that promise by freeing a frag that's still on the ring.
   1021	 */
   1022	if (recv->r_frag) {
   1023		rds_ib_frag_free(ic, recv->r_frag);
   1024		recv->r_frag = NULL;
   1025	}
   1026	rds_ib_ring_free(&ic->i_recv_ring, 1);
   1027
   1028	/* If we ever end up with a really empty receive ring, we're
   1029	 * in deep trouble, as the sender will definitely see RNR
   1030	 * timeouts. */
   1031	if (rds_ib_ring_empty(&ic->i_recv_ring))
   1032		rds_ib_stats_inc(s_ib_rx_ring_empty);
   1033
   1034	if (rds_ib_ring_low(&ic->i_recv_ring)) {
   1035		rds_ib_recv_refill(conn, 0, GFP_NOWAIT | __GFP_NOWARN);
   1036		rds_ib_stats_inc(s_ib_rx_refill_from_cq);
   1037	}
   1038}
   1039
   1040int rds_ib_recv_path(struct rds_conn_path *cp)
   1041{
   1042	struct rds_connection *conn = cp->cp_conn;
   1043	struct rds_ib_connection *ic = conn->c_transport_data;
   1044
   1045	rdsdebug("conn %p\n", conn);
   1046	if (rds_conn_up(conn)) {
   1047		rds_ib_attempt_ack(ic);
   1048		rds_ib_recv_refill(conn, 0, GFP_KERNEL);
   1049		rds_ib_stats_inc(s_ib_rx_refill_from_thread);
   1050	}
   1051
   1052	return 0;
   1053}
   1054
   1055int rds_ib_recv_init(void)
   1056{
   1057	struct sysinfo si;
   1058	int ret = -ENOMEM;
   1059
   1060	/* Default to 30% of all available RAM for recv memory */
   1061	si_meminfo(&si);
   1062	rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
   1063
   1064	rds_ib_incoming_slab =
   1065		kmem_cache_create_usercopy("rds_ib_incoming",
   1066					   sizeof(struct rds_ib_incoming),
   1067					   0, SLAB_HWCACHE_ALIGN,
   1068					   offsetof(struct rds_ib_incoming,
   1069						    ii_inc.i_usercopy),
   1070					   sizeof(struct rds_inc_usercopy),
   1071					   NULL);
   1072	if (!rds_ib_incoming_slab)
   1073		goto out;
   1074
   1075	rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
   1076					sizeof(struct rds_page_frag),
   1077					0, SLAB_HWCACHE_ALIGN, NULL);
   1078	if (!rds_ib_frag_slab) {
   1079		kmem_cache_destroy(rds_ib_incoming_slab);
   1080		rds_ib_incoming_slab = NULL;
   1081	} else
   1082		ret = 0;
   1083out:
   1084	return ret;
   1085}
   1086
   1087void rds_ib_recv_exit(void)
   1088{
   1089	WARN_ON(atomic_read(&rds_ib_allocation));
   1090
   1091	kmem_cache_destroy(rds_ib_incoming_slab);
   1092	kmem_cache_destroy(rds_ib_frag_slab);
   1093}