cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ib_send.c (30719B)


      1/*
      2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
      3 *
      4 * This software is available to you under a choice of one of two
      5 * licenses.  You may choose to be licensed under the terms of the GNU
      6 * General Public License (GPL) Version 2, available from the file
      7 * COPYING in the main directory of this source tree, or the
      8 * OpenIB.org BSD license below:
      9 *
     10 *     Redistribution and use in source and binary forms, with or
     11 *     without modification, are permitted provided that the following
     12 *     conditions are met:
     13 *
     14 *      - Redistributions of source code must retain the above
     15 *        copyright notice, this list of conditions and the following
     16 *        disclaimer.
     17 *
     18 *      - Redistributions in binary form must reproduce the above
     19 *        copyright notice, this list of conditions and the following
     20 *        disclaimer in the documentation and/or other materials
     21 *        provided with the distribution.
     22 *
     23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     30 * SOFTWARE.
     31 *
     32 */
     33#include <linux/kernel.h>
     34#include <linux/in.h>
     35#include <linux/device.h>
     36#include <linux/dmapool.h>
     37#include <linux/ratelimit.h>
     38
     39#include "rds_single_path.h"
     40#include "rds.h"
     41#include "ib.h"
     42#include "ib_mr.h"
     43
     44/*
     45 * Convert IB-specific error message to RDS error message and call core
     46 * completion handler.
     47 */
     48static void rds_ib_send_complete(struct rds_message *rm,
     49				 int wc_status,
     50				 void (*complete)(struct rds_message *rm, int status))
     51{
     52	int notify_status;
     53
     54	switch (wc_status) {
     55	case IB_WC_WR_FLUSH_ERR:
     56		return;
     57
     58	case IB_WC_SUCCESS:
     59		notify_status = RDS_RDMA_SUCCESS;
     60		break;
     61
     62	case IB_WC_REM_ACCESS_ERR:
     63		notify_status = RDS_RDMA_REMOTE_ERROR;
     64		break;
     65
     66	default:
     67		notify_status = RDS_RDMA_OTHER_ERROR;
     68		break;
     69	}
     70	complete(rm, notify_status);
     71}
     72
     73static void rds_ib_send_unmap_data(struct rds_ib_connection *ic,
     74				   struct rm_data_op *op,
     75				   int wc_status)
     76{
     77	if (op->op_nents)
     78		ib_dma_unmap_sg(ic->i_cm_id->device,
     79				op->op_sg, op->op_nents,
     80				DMA_TO_DEVICE);
     81}
     82
     83static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic,
     84				   struct rm_rdma_op *op,
     85				   int wc_status)
     86{
     87	if (op->op_mapped) {
     88		ib_dma_unmap_sg(ic->i_cm_id->device,
     89				op->op_sg, op->op_nents,
     90				op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
     91		op->op_mapped = 0;
     92	}
     93
     94	/* If the user asked for a completion notification on this
     95	 * message, we can implement three different semantics:
     96	 *  1.	Notify when we received the ACK on the RDS message
     97	 *	that was queued with the RDMA. This provides reliable
     98	 *	notification of RDMA status at the expense of a one-way
     99	 *	packet delay.
    100	 *  2.	Notify when the IB stack gives us the completion event for
    101	 *	the RDMA operation.
    102	 *  3.	Notify when the IB stack gives us the completion event for
    103	 *	the accompanying RDS messages.
    104	 * Here, we implement approach #3. To implement approach #2,
    105	 * we would need to take an event for the rdma WR. To implement #1,
    106	 * don't call rds_rdma_send_complete at all, and fall back to the notify
    107	 * handling in the ACK processing code.
    108	 *
    109	 * Note: There's no need to explicitly sync any RDMA buffers using
    110	 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
    111	 * operation itself unmapped the RDMA buffers, which takes care
    112	 * of synching.
    113	 */
    114	rds_ib_send_complete(container_of(op, struct rds_message, rdma),
    115			     wc_status, rds_rdma_send_complete);
    116
    117	if (op->op_write)
    118		rds_stats_add(s_send_rdma_bytes, op->op_bytes);
    119	else
    120		rds_stats_add(s_recv_rdma_bytes, op->op_bytes);
    121}
    122
    123static void rds_ib_send_unmap_atomic(struct rds_ib_connection *ic,
    124				     struct rm_atomic_op *op,
    125				     int wc_status)
    126{
    127	/* unmap atomic recvbuf */
    128	if (op->op_mapped) {
    129		ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, 1,
    130				DMA_FROM_DEVICE);
    131		op->op_mapped = 0;
    132	}
    133
    134	rds_ib_send_complete(container_of(op, struct rds_message, atomic),
    135			     wc_status, rds_atomic_send_complete);
    136
    137	if (op->op_type == RDS_ATOMIC_TYPE_CSWP)
    138		rds_ib_stats_inc(s_ib_atomic_cswp);
    139	else
    140		rds_ib_stats_inc(s_ib_atomic_fadd);
    141}
    142
    143/*
    144 * Unmap the resources associated with a struct send_work.
    145 *
    146 * Returns the rm for no good reason other than it is unobtainable
    147 * other than by switching on wr.opcode, currently, and the caller,
    148 * the event handler, needs it.
    149 */
    150static struct rds_message *rds_ib_send_unmap_op(struct rds_ib_connection *ic,
    151						struct rds_ib_send_work *send,
    152						int wc_status)
    153{
    154	struct rds_message *rm = NULL;
    155
    156	/* In the error case, wc.opcode sometimes contains garbage */
    157	switch (send->s_wr.opcode) {
    158	case IB_WR_SEND:
    159		if (send->s_op) {
    160			rm = container_of(send->s_op, struct rds_message, data);
    161			rds_ib_send_unmap_data(ic, send->s_op, wc_status);
    162		}
    163		break;
    164	case IB_WR_RDMA_WRITE:
    165	case IB_WR_RDMA_READ:
    166		if (send->s_op) {
    167			rm = container_of(send->s_op, struct rds_message, rdma);
    168			rds_ib_send_unmap_rdma(ic, send->s_op, wc_status);
    169		}
    170		break;
    171	case IB_WR_ATOMIC_FETCH_AND_ADD:
    172	case IB_WR_ATOMIC_CMP_AND_SWP:
    173		if (send->s_op) {
    174			rm = container_of(send->s_op, struct rds_message, atomic);
    175			rds_ib_send_unmap_atomic(ic, send->s_op, wc_status);
    176		}
    177		break;
    178	default:
    179		printk_ratelimited(KERN_NOTICE
    180			       "RDS/IB: %s: unexpected opcode 0x%x in WR!\n",
    181			       __func__, send->s_wr.opcode);
    182		break;
    183	}
    184
    185	send->s_wr.opcode = 0xdead;
    186
    187	return rm;
    188}
    189
    190void rds_ib_send_init_ring(struct rds_ib_connection *ic)
    191{
    192	struct rds_ib_send_work *send;
    193	u32 i;
    194
    195	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
    196		struct ib_sge *sge;
    197
    198		send->s_op = NULL;
    199
    200		send->s_wr.wr_id = i;
    201		send->s_wr.sg_list = send->s_sge;
    202		send->s_wr.ex.imm_data = 0;
    203
    204		sge = &send->s_sge[0];
    205		sge->addr = ic->i_send_hdrs_dma[i];
    206
    207		sge->length = sizeof(struct rds_header);
    208		sge->lkey = ic->i_pd->local_dma_lkey;
    209
    210		send->s_sge[1].lkey = ic->i_pd->local_dma_lkey;
    211	}
    212}
    213
    214void rds_ib_send_clear_ring(struct rds_ib_connection *ic)
    215{
    216	struct rds_ib_send_work *send;
    217	u32 i;
    218
    219	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
    220		if (send->s_op && send->s_wr.opcode != 0xdead)
    221			rds_ib_send_unmap_op(ic, send, IB_WC_WR_FLUSH_ERR);
    222	}
    223}
    224
    225/*
    226 * The only fast path caller always has a non-zero nr, so we don't
    227 * bother testing nr before performing the atomic sub.
    228 */
    229static void rds_ib_sub_signaled(struct rds_ib_connection *ic, int nr)
    230{
    231	if ((atomic_sub_return(nr, &ic->i_signaled_sends) == 0) &&
    232	    waitqueue_active(&rds_ib_ring_empty_wait))
    233		wake_up(&rds_ib_ring_empty_wait);
    234	BUG_ON(atomic_read(&ic->i_signaled_sends) < 0);
    235}
    236
    237/*
    238 * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
    239 * operations performed in the send path.  As the sender allocs and potentially
    240 * unallocs the next free entry in the ring it doesn't alter which is
    241 * the next to be freed, which is what this is concerned with.
    242 */
    243void rds_ib_send_cqe_handler(struct rds_ib_connection *ic, struct ib_wc *wc)
    244{
    245	struct rds_message *rm = NULL;
    246	struct rds_connection *conn = ic->conn;
    247	struct rds_ib_send_work *send;
    248	u32 completed;
    249	u32 oldest;
    250	u32 i = 0;
    251	int nr_sig = 0;
    252
    253
    254	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
    255		 (unsigned long long)wc->wr_id, wc->status,
    256		 ib_wc_status_msg(wc->status), wc->byte_len,
    257		 be32_to_cpu(wc->ex.imm_data));
    258	rds_ib_stats_inc(s_ib_tx_cq_event);
    259
    260	if (wc->wr_id == RDS_IB_ACK_WR_ID) {
    261		if (time_after(jiffies, ic->i_ack_queued + HZ / 2))
    262			rds_ib_stats_inc(s_ib_tx_stalled);
    263		rds_ib_ack_send_complete(ic);
    264		return;
    265	}
    266
    267	oldest = rds_ib_ring_oldest(&ic->i_send_ring);
    268
    269	completed = rds_ib_ring_completed(&ic->i_send_ring, wc->wr_id, oldest);
    270
    271	for (i = 0; i < completed; i++) {
    272		send = &ic->i_sends[oldest];
    273		if (send->s_wr.send_flags & IB_SEND_SIGNALED)
    274			nr_sig++;
    275
    276		rm = rds_ib_send_unmap_op(ic, send, wc->status);
    277
    278		if (time_after(jiffies, send->s_queued + HZ / 2))
    279			rds_ib_stats_inc(s_ib_tx_stalled);
    280
    281		if (send->s_op) {
    282			if (send->s_op == rm->m_final_op) {
    283				/* If anyone waited for this message to get
    284				 * flushed out, wake them up now
    285				 */
    286				rds_message_unmapped(rm);
    287			}
    288			rds_message_put(rm);
    289			send->s_op = NULL;
    290		}
    291
    292		oldest = (oldest + 1) % ic->i_send_ring.w_nr;
    293	}
    294
    295	rds_ib_ring_free(&ic->i_send_ring, completed);
    296	rds_ib_sub_signaled(ic, nr_sig);
    297
    298	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
    299	    test_bit(0, &conn->c_map_queued))
    300		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
    301
    302	/* We expect errors as the qp is drained during shutdown */
    303	if (wc->status != IB_WC_SUCCESS && rds_conn_up(conn)) {
    304		rds_ib_conn_error(conn, "send completion on <%pI6c,%pI6c,%d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n",
    305				  &conn->c_laddr, &conn->c_faddr,
    306				  conn->c_tos, wc->status,
    307				  ib_wc_status_msg(wc->status), wc->vendor_err);
    308	}
    309}
    310
    311/*
    312 * This is the main function for allocating credits when sending
    313 * messages.
    314 *
    315 * Conceptually, we have two counters:
    316 *  -	send credits: this tells us how many WRs we're allowed
    317 *	to submit without overruning the receiver's queue. For
    318 *	each SEND WR we post, we decrement this by one.
    319 *
    320 *  -	posted credits: this tells us how many WRs we recently
    321 *	posted to the receive queue. This value is transferred
    322 *	to the peer as a "credit update" in a RDS header field.
    323 *	Every time we transmit credits to the peer, we subtract
    324 *	the amount of transferred credits from this counter.
    325 *
    326 * It is essential that we avoid situations where both sides have
    327 * exhausted their send credits, and are unable to send new credits
    328 * to the peer. We achieve this by requiring that we send at least
    329 * one credit update to the peer before exhausting our credits.
    330 * When new credits arrive, we subtract one credit that is withheld
    331 * until we've posted new buffers and are ready to transmit these
    332 * credits (see rds_ib_send_add_credits below).
    333 *
    334 * The RDS send code is essentially single-threaded; rds_send_xmit
    335 * sets RDS_IN_XMIT to ensure exclusive access to the send ring.
    336 * However, the ACK sending code is independent and can race with
    337 * message SENDs.
    338 *
    339 * In the send path, we need to update the counters for send credits
    340 * and the counter of posted buffers atomically - when we use the
    341 * last available credit, we cannot allow another thread to race us
    342 * and grab the posted credits counter.  Hence, we have to use a
    343 * spinlock to protect the credit counter, or use atomics.
    344 *
    345 * Spinlocks shared between the send and the receive path are bad,
    346 * because they create unnecessary delays. An early implementation
    347 * using a spinlock showed a 5% degradation in throughput at some
    348 * loads.
    349 *
    350 * This implementation avoids spinlocks completely, putting both
    351 * counters into a single atomic, and updating that atomic using
    352 * atomic_add (in the receive path, when receiving fresh credits),
    353 * and using atomic_cmpxchg when updating the two counters.
    354 */
    355int rds_ib_send_grab_credits(struct rds_ib_connection *ic,
    356			     u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
    357{
    358	unsigned int avail, posted, got = 0, advertise;
    359	long oldval, newval;
    360
    361	*adv_credits = 0;
    362	if (!ic->i_flowctl)
    363		return wanted;
    364
    365try_again:
    366	advertise = 0;
    367	oldval = newval = atomic_read(&ic->i_credits);
    368	posted = IB_GET_POST_CREDITS(oldval);
    369	avail = IB_GET_SEND_CREDITS(oldval);
    370
    371	rdsdebug("wanted=%u credits=%u posted=%u\n",
    372			wanted, avail, posted);
    373
    374	/* The last credit must be used to send a credit update. */
    375	if (avail && !posted)
    376		avail--;
    377
    378	if (avail < wanted) {
    379		struct rds_connection *conn = ic->i_cm_id->context;
    380
    381		/* Oops, there aren't that many credits left! */
    382		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
    383		got = avail;
    384	} else {
    385		/* Sometimes you get what you want, lalala. */
    386		got = wanted;
    387	}
    388	newval -= IB_SET_SEND_CREDITS(got);
    389
    390	/*
    391	 * If need_posted is non-zero, then the caller wants
    392	 * the posted regardless of whether any send credits are
    393	 * available.
    394	 */
    395	if (posted && (got || need_posted)) {
    396		advertise = min_t(unsigned int, posted, max_posted);
    397		newval -= IB_SET_POST_CREDITS(advertise);
    398	}
    399
    400	/* Finally bill everything */
    401	if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
    402		goto try_again;
    403
    404	*adv_credits = advertise;
    405	return got;
    406}
    407
    408void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits)
    409{
    410	struct rds_ib_connection *ic = conn->c_transport_data;
    411
    412	if (credits == 0)
    413		return;
    414
    415	rdsdebug("credits=%u current=%u%s\n",
    416			credits,
    417			IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
    418			test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
    419
    420	atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
    421	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
    422		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
    423
    424	WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
    425
    426	rds_ib_stats_inc(s_ib_rx_credit_updates);
    427}
    428
    429void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted)
    430{
    431	struct rds_ib_connection *ic = conn->c_transport_data;
    432
    433	if (posted == 0)
    434		return;
    435
    436	atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
    437
    438	/* Decide whether to send an update to the peer now.
    439	 * If we would send a credit update for every single buffer we
    440	 * post, we would end up with an ACK storm (ACK arrives,
    441	 * consumes buffer, we refill the ring, send ACK to remote
    442	 * advertising the newly posted buffer... ad inf)
    443	 *
    444	 * Performance pretty much depends on how often we send
    445	 * credit updates - too frequent updates mean lots of ACKs.
    446	 * Too infrequent updates, and the peer will run out of
    447	 * credits and has to throttle.
    448	 * For the time being, 16 seems to be a good compromise.
    449	 */
    450	if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
    451		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
    452}
    453
    454static inline int rds_ib_set_wr_signal_state(struct rds_ib_connection *ic,
    455					     struct rds_ib_send_work *send,
    456					     bool notify)
    457{
    458	/*
    459	 * We want to delay signaling completions just enough to get
    460	 * the batching benefits but not so much that we create dead time
    461	 * on the wire.
    462	 */
    463	if (ic->i_unsignaled_wrs-- == 0 || notify) {
    464		ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
    465		send->s_wr.send_flags |= IB_SEND_SIGNALED;
    466		return 1;
    467	}
    468	return 0;
    469}
    470
    471/*
    472 * This can be called multiple times for a given message.  The first time
    473 * we see a message we map its scatterlist into the IB device so that
    474 * we can provide that mapped address to the IB scatter gather entries
    475 * in the IB work requests.  We translate the scatterlist into a series
    476 * of work requests that fragment the message.  These work requests complete
    477 * in order so we pass ownership of the message to the completion handler
    478 * once we send the final fragment.
    479 *
    480 * The RDS core uses the c_send_lock to only enter this function once
    481 * per connection.  This makes sure that the tx ring alloc/unalloc pairs
    482 * don't get out of sync and confuse the ring.
    483 */
    484int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm,
    485		unsigned int hdr_off, unsigned int sg, unsigned int off)
    486{
    487	struct rds_ib_connection *ic = conn->c_transport_data;
    488	struct ib_device *dev = ic->i_cm_id->device;
    489	struct rds_ib_send_work *send = NULL;
    490	struct rds_ib_send_work *first;
    491	struct rds_ib_send_work *prev;
    492	const struct ib_send_wr *failed_wr;
    493	struct scatterlist *scat;
    494	u32 pos;
    495	u32 i;
    496	u32 work_alloc;
    497	u32 credit_alloc = 0;
    498	u32 posted;
    499	u32 adv_credits = 0;
    500	int send_flags = 0;
    501	int bytes_sent = 0;
    502	int ret;
    503	int flow_controlled = 0;
    504	int nr_sig = 0;
    505
    506	BUG_ON(off % RDS_FRAG_SIZE);
    507	BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
    508
    509	/* Do not send cong updates to IB loopback */
    510	if (conn->c_loopback
    511	    && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) {
    512		rds_cong_map_updated(conn->c_fcong, ~(u64) 0);
    513		scat = &rm->data.op_sg[sg];
    514		ret = max_t(int, RDS_CONG_MAP_BYTES, scat->length);
    515		return sizeof(struct rds_header) + ret;
    516	}
    517
    518	/* FIXME we may overallocate here */
    519	if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
    520		i = 1;
    521	else
    522		i = DIV_ROUND_UP(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
    523
    524	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
    525	if (work_alloc == 0) {
    526		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
    527		rds_ib_stats_inc(s_ib_tx_ring_full);
    528		ret = -ENOMEM;
    529		goto out;
    530	}
    531
    532	if (ic->i_flowctl) {
    533		credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
    534		adv_credits += posted;
    535		if (credit_alloc < work_alloc) {
    536			rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
    537			work_alloc = credit_alloc;
    538			flow_controlled = 1;
    539		}
    540		if (work_alloc == 0) {
    541			set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
    542			rds_ib_stats_inc(s_ib_tx_throttle);
    543			ret = -ENOMEM;
    544			goto out;
    545		}
    546	}
    547
    548	/* map the message the first time we see it */
    549	if (!ic->i_data_op) {
    550		if (rm->data.op_nents) {
    551			rm->data.op_count = ib_dma_map_sg(dev,
    552							  rm->data.op_sg,
    553							  rm->data.op_nents,
    554							  DMA_TO_DEVICE);
    555			rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count);
    556			if (rm->data.op_count == 0) {
    557				rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
    558				rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
    559				ret = -ENOMEM; /* XXX ? */
    560				goto out;
    561			}
    562		} else {
    563			rm->data.op_count = 0;
    564		}
    565
    566		rds_message_addref(rm);
    567		rm->data.op_dmasg = 0;
    568		rm->data.op_dmaoff = 0;
    569		ic->i_data_op = &rm->data;
    570
    571		/* Finalize the header */
    572		if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
    573			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
    574		if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
    575			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
    576
    577		/* If it has a RDMA op, tell the peer we did it. This is
    578		 * used by the peer to release use-once RDMA MRs. */
    579		if (rm->rdma.op_active) {
    580			struct rds_ext_header_rdma ext_hdr;
    581
    582			ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey);
    583			rds_message_add_extension(&rm->m_inc.i_hdr,
    584					RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
    585		}
    586		if (rm->m_rdma_cookie) {
    587			rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
    588					rds_rdma_cookie_key(rm->m_rdma_cookie),
    589					rds_rdma_cookie_offset(rm->m_rdma_cookie));
    590		}
    591
    592		/* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so
    593		 * we should not do this unless we have a chance of at least
    594		 * sticking the header into the send ring. Which is why we
    595		 * should call rds_ib_ring_alloc first. */
    596		rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic));
    597		rds_message_make_checksum(&rm->m_inc.i_hdr);
    598
    599		/*
    600		 * Update adv_credits since we reset the ACK_REQUIRED bit.
    601		 */
    602		if (ic->i_flowctl) {
    603			rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
    604			adv_credits += posted;
    605			BUG_ON(adv_credits > 255);
    606		}
    607	}
    608
    609	/* Sometimes you want to put a fence between an RDMA
    610	 * READ and the following SEND.
    611	 * We could either do this all the time
    612	 * or when requested by the user. Right now, we let
    613	 * the application choose.
    614	 */
    615	if (rm->rdma.op_active && rm->rdma.op_fence)
    616		send_flags = IB_SEND_FENCE;
    617
    618	/* Each frag gets a header. Msgs may be 0 bytes */
    619	send = &ic->i_sends[pos];
    620	first = send;
    621	prev = NULL;
    622	scat = &ic->i_data_op->op_sg[rm->data.op_dmasg];
    623	i = 0;
    624	do {
    625		unsigned int len = 0;
    626
    627		/* Set up the header */
    628		send->s_wr.send_flags = send_flags;
    629		send->s_wr.opcode = IB_WR_SEND;
    630		send->s_wr.num_sge = 1;
    631		send->s_wr.next = NULL;
    632		send->s_queued = jiffies;
    633		send->s_op = NULL;
    634
    635		send->s_sge[0].addr = ic->i_send_hdrs_dma[pos];
    636
    637		send->s_sge[0].length = sizeof(struct rds_header);
    638		send->s_sge[0].lkey = ic->i_pd->local_dma_lkey;
    639
    640		ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev,
    641					   ic->i_send_hdrs_dma[pos],
    642					   sizeof(struct rds_header),
    643					   DMA_TO_DEVICE);
    644		memcpy(ic->i_send_hdrs[pos], &rm->m_inc.i_hdr,
    645		       sizeof(struct rds_header));
    646
    647
    648		/* Set up the data, if present */
    649		if (i < work_alloc
    650		    && scat != &rm->data.op_sg[rm->data.op_count]) {
    651			len = min(RDS_FRAG_SIZE,
    652				  sg_dma_len(scat) - rm->data.op_dmaoff);
    653			send->s_wr.num_sge = 2;
    654
    655			send->s_sge[1].addr = sg_dma_address(scat);
    656			send->s_sge[1].addr += rm->data.op_dmaoff;
    657			send->s_sge[1].length = len;
    658			send->s_sge[1].lkey = ic->i_pd->local_dma_lkey;
    659
    660			bytes_sent += len;
    661			rm->data.op_dmaoff += len;
    662			if (rm->data.op_dmaoff == sg_dma_len(scat)) {
    663				scat++;
    664				rm->data.op_dmasg++;
    665				rm->data.op_dmaoff = 0;
    666			}
    667		}
    668
    669		rds_ib_set_wr_signal_state(ic, send, false);
    670
    671		/*
    672		 * Always signal the last one if we're stopping due to flow control.
    673		 */
    674		if (ic->i_flowctl && flow_controlled && i == (work_alloc - 1)) {
    675			rds_ib_set_wr_signal_state(ic, send, true);
    676			send->s_wr.send_flags |= IB_SEND_SOLICITED;
    677		}
    678
    679		if (send->s_wr.send_flags & IB_SEND_SIGNALED)
    680			nr_sig++;
    681
    682		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
    683			 &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
    684
    685		if (ic->i_flowctl && adv_credits) {
    686			struct rds_header *hdr = ic->i_send_hdrs[pos];
    687
    688			/* add credit and redo the header checksum */
    689			hdr->h_credit = adv_credits;
    690			rds_message_make_checksum(hdr);
    691			adv_credits = 0;
    692			rds_ib_stats_inc(s_ib_tx_credit_updates);
    693		}
    694		ib_dma_sync_single_for_device(ic->rds_ibdev->dev,
    695					      ic->i_send_hdrs_dma[pos],
    696					      sizeof(struct rds_header),
    697					      DMA_TO_DEVICE);
    698
    699		if (prev)
    700			prev->s_wr.next = &send->s_wr;
    701		prev = send;
    702
    703		pos = (pos + 1) % ic->i_send_ring.w_nr;
    704		send = &ic->i_sends[pos];
    705		i++;
    706
    707	} while (i < work_alloc
    708		 && scat != &rm->data.op_sg[rm->data.op_count]);
    709
    710	/* Account the RDS header in the number of bytes we sent, but just once.
    711	 * The caller has no concept of fragmentation. */
    712	if (hdr_off == 0)
    713		bytes_sent += sizeof(struct rds_header);
    714
    715	/* if we finished the message then send completion owns it */
    716	if (scat == &rm->data.op_sg[rm->data.op_count]) {
    717		prev->s_op = ic->i_data_op;
    718		prev->s_wr.send_flags |= IB_SEND_SOLICITED;
    719		if (!(prev->s_wr.send_flags & IB_SEND_SIGNALED))
    720			nr_sig += rds_ib_set_wr_signal_state(ic, prev, true);
    721		ic->i_data_op = NULL;
    722	}
    723
    724	/* Put back wrs & credits we didn't use */
    725	if (i < work_alloc) {
    726		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
    727		work_alloc = i;
    728	}
    729	if (ic->i_flowctl && i < credit_alloc)
    730		rds_ib_send_add_credits(conn, credit_alloc - i);
    731
    732	if (nr_sig)
    733		atomic_add(nr_sig, &ic->i_signaled_sends);
    734
    735	/* XXX need to worry about failed_wr and partial sends. */
    736	failed_wr = &first->s_wr;
    737	ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
    738	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
    739		 first, &first->s_wr, ret, failed_wr);
    740	BUG_ON(failed_wr != &first->s_wr);
    741	if (ret) {
    742		printk(KERN_WARNING "RDS/IB: ib_post_send to %pI6c "
    743		       "returned %d\n", &conn->c_faddr, ret);
    744		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
    745		rds_ib_sub_signaled(ic, nr_sig);
    746		if (prev->s_op) {
    747			ic->i_data_op = prev->s_op;
    748			prev->s_op = NULL;
    749		}
    750
    751		rds_ib_conn_error(ic->conn, "ib_post_send failed\n");
    752		goto out;
    753	}
    754
    755	ret = bytes_sent;
    756out:
    757	BUG_ON(adv_credits);
    758	return ret;
    759}
    760
    761/*
    762 * Issue atomic operation.
    763 * A simplified version of the rdma case, we always map 1 SG, and
    764 * only 8 bytes, for the return value from the atomic operation.
    765 */
    766int rds_ib_xmit_atomic(struct rds_connection *conn, struct rm_atomic_op *op)
    767{
    768	struct rds_ib_connection *ic = conn->c_transport_data;
    769	struct rds_ib_send_work *send = NULL;
    770	const struct ib_send_wr *failed_wr;
    771	u32 pos;
    772	u32 work_alloc;
    773	int ret;
    774	int nr_sig = 0;
    775
    776	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, 1, &pos);
    777	if (work_alloc != 1) {
    778		rds_ib_stats_inc(s_ib_tx_ring_full);
    779		ret = -ENOMEM;
    780		goto out;
    781	}
    782
    783	/* address of send request in ring */
    784	send = &ic->i_sends[pos];
    785	send->s_queued = jiffies;
    786
    787	if (op->op_type == RDS_ATOMIC_TYPE_CSWP) {
    788		send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_CMP_AND_SWP;
    789		send->s_atomic_wr.compare_add = op->op_m_cswp.compare;
    790		send->s_atomic_wr.swap = op->op_m_cswp.swap;
    791		send->s_atomic_wr.compare_add_mask = op->op_m_cswp.compare_mask;
    792		send->s_atomic_wr.swap_mask = op->op_m_cswp.swap_mask;
    793	} else { /* FADD */
    794		send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_FETCH_AND_ADD;
    795		send->s_atomic_wr.compare_add = op->op_m_fadd.add;
    796		send->s_atomic_wr.swap = 0;
    797		send->s_atomic_wr.compare_add_mask = op->op_m_fadd.nocarry_mask;
    798		send->s_atomic_wr.swap_mask = 0;
    799	}
    800	send->s_wr.send_flags = 0;
    801	nr_sig = rds_ib_set_wr_signal_state(ic, send, op->op_notify);
    802	send->s_atomic_wr.wr.num_sge = 1;
    803	send->s_atomic_wr.wr.next = NULL;
    804	send->s_atomic_wr.remote_addr = op->op_remote_addr;
    805	send->s_atomic_wr.rkey = op->op_rkey;
    806	send->s_op = op;
    807	rds_message_addref(container_of(send->s_op, struct rds_message, atomic));
    808
    809	/* map 8 byte retval buffer to the device */
    810	ret = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE);
    811	rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic, op, ret);
    812	if (ret != 1) {
    813		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
    814		rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
    815		ret = -ENOMEM; /* XXX ? */
    816		goto out;
    817	}
    818
    819	/* Convert our struct scatterlist to struct ib_sge */
    820	send->s_sge[0].addr = sg_dma_address(op->op_sg);
    821	send->s_sge[0].length = sg_dma_len(op->op_sg);
    822	send->s_sge[0].lkey = ic->i_pd->local_dma_lkey;
    823
    824	rdsdebug("rva %Lx rpa %Lx len %u\n", op->op_remote_addr,
    825		 send->s_sge[0].addr, send->s_sge[0].length);
    826
    827	if (nr_sig)
    828		atomic_add(nr_sig, &ic->i_signaled_sends);
    829
    830	failed_wr = &send->s_atomic_wr.wr;
    831	ret = ib_post_send(ic->i_cm_id->qp, &send->s_atomic_wr.wr, &failed_wr);
    832	rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic,
    833		 send, &send->s_atomic_wr, ret, failed_wr);
    834	BUG_ON(failed_wr != &send->s_atomic_wr.wr);
    835	if (ret) {
    836		printk(KERN_WARNING "RDS/IB: atomic ib_post_send to %pI6c "
    837		       "returned %d\n", &conn->c_faddr, ret);
    838		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
    839		rds_ib_sub_signaled(ic, nr_sig);
    840		goto out;
    841	}
    842
    843	if (unlikely(failed_wr != &send->s_atomic_wr.wr)) {
    844		printk(KERN_WARNING "RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
    845		BUG_ON(failed_wr != &send->s_atomic_wr.wr);
    846	}
    847
    848out:
    849	return ret;
    850}
    851
    852int rds_ib_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op)
    853{
    854	struct rds_ib_connection *ic = conn->c_transport_data;
    855	struct rds_ib_send_work *send = NULL;
    856	struct rds_ib_send_work *first;
    857	struct rds_ib_send_work *prev;
    858	const struct ib_send_wr *failed_wr;
    859	struct scatterlist *scat;
    860	unsigned long len;
    861	u64 remote_addr = op->op_remote_addr;
    862	u32 max_sge = ic->rds_ibdev->max_sge;
    863	u32 pos;
    864	u32 work_alloc;
    865	u32 i;
    866	u32 j;
    867	int sent;
    868	int ret;
    869	int num_sge;
    870	int nr_sig = 0;
    871	u64 odp_addr = op->op_odp_addr;
    872	u32 odp_lkey = 0;
    873
    874	/* map the op the first time we see it */
    875	if (!op->op_odp_mr) {
    876		if (!op->op_mapped) {
    877			op->op_count =
    878				ib_dma_map_sg(ic->i_cm_id->device, op->op_sg,
    879					      op->op_nents,
    880					      (op->op_write) ? DMA_TO_DEVICE :
    881							       DMA_FROM_DEVICE);
    882			rdsdebug("ic %p mapping op %p: %d\n", ic, op,
    883				 op->op_count);
    884			if (op->op_count == 0) {
    885				rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
    886				ret = -ENOMEM; /* XXX ? */
    887				goto out;
    888			}
    889			op->op_mapped = 1;
    890		}
    891	} else {
    892		op->op_count = op->op_nents;
    893		odp_lkey = rds_ib_get_lkey(op->op_odp_mr->r_trans_private);
    894	}
    895
    896	/*
    897	 * Instead of knowing how to return a partial rdma read/write we insist that there
    898	 * be enough work requests to send the entire message.
    899	 */
    900	i = DIV_ROUND_UP(op->op_count, max_sge);
    901
    902	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
    903	if (work_alloc != i) {
    904		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
    905		rds_ib_stats_inc(s_ib_tx_ring_full);
    906		ret = -ENOMEM;
    907		goto out;
    908	}
    909
    910	send = &ic->i_sends[pos];
    911	first = send;
    912	prev = NULL;
    913	scat = &op->op_sg[0];
    914	sent = 0;
    915	num_sge = op->op_count;
    916
    917	for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) {
    918		send->s_wr.send_flags = 0;
    919		send->s_queued = jiffies;
    920		send->s_op = NULL;
    921
    922		if (!op->op_notify)
    923			nr_sig += rds_ib_set_wr_signal_state(ic, send,
    924							     op->op_notify);
    925
    926		send->s_wr.opcode = op->op_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ;
    927		send->s_rdma_wr.remote_addr = remote_addr;
    928		send->s_rdma_wr.rkey = op->op_rkey;
    929
    930		if (num_sge > max_sge) {
    931			send->s_rdma_wr.wr.num_sge = max_sge;
    932			num_sge -= max_sge;
    933		} else {
    934			send->s_rdma_wr.wr.num_sge = num_sge;
    935		}
    936
    937		send->s_rdma_wr.wr.next = NULL;
    938
    939		if (prev)
    940			prev->s_rdma_wr.wr.next = &send->s_rdma_wr.wr;
    941
    942		for (j = 0; j < send->s_rdma_wr.wr.num_sge &&
    943		     scat != &op->op_sg[op->op_count]; j++) {
    944			len = sg_dma_len(scat);
    945			if (!op->op_odp_mr) {
    946				send->s_sge[j].addr = sg_dma_address(scat);
    947				send->s_sge[j].lkey = ic->i_pd->local_dma_lkey;
    948			} else {
    949				send->s_sge[j].addr = odp_addr;
    950				send->s_sge[j].lkey = odp_lkey;
    951			}
    952			send->s_sge[j].length = len;
    953
    954			sent += len;
    955			rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
    956
    957			remote_addr += len;
    958			odp_addr += len;
    959			scat++;
    960		}
    961
    962		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
    963			&send->s_rdma_wr.wr,
    964			send->s_rdma_wr.wr.num_sge,
    965			send->s_rdma_wr.wr.next);
    966
    967		prev = send;
    968		if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
    969			send = ic->i_sends;
    970	}
    971
    972	/* give a reference to the last op */
    973	if (scat == &op->op_sg[op->op_count]) {
    974		prev->s_op = op;
    975		rds_message_addref(container_of(op, struct rds_message, rdma));
    976	}
    977
    978	if (i < work_alloc) {
    979		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
    980		work_alloc = i;
    981	}
    982
    983	if (nr_sig)
    984		atomic_add(nr_sig, &ic->i_signaled_sends);
    985
    986	failed_wr = &first->s_rdma_wr.wr;
    987	ret = ib_post_send(ic->i_cm_id->qp, &first->s_rdma_wr.wr, &failed_wr);
    988	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
    989		 first, &first->s_rdma_wr.wr, ret, failed_wr);
    990	BUG_ON(failed_wr != &first->s_rdma_wr.wr);
    991	if (ret) {
    992		printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI6c "
    993		       "returned %d\n", &conn->c_faddr, ret);
    994		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
    995		rds_ib_sub_signaled(ic, nr_sig);
    996		goto out;
    997	}
    998
    999	if (unlikely(failed_wr != &first->s_rdma_wr.wr)) {
   1000		printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
   1001		BUG_ON(failed_wr != &first->s_rdma_wr.wr);
   1002	}
   1003
   1004
   1005out:
   1006	return ret;
   1007}
   1008
   1009void rds_ib_xmit_path_complete(struct rds_conn_path *cp)
   1010{
   1011	struct rds_connection *conn = cp->cp_conn;
   1012	struct rds_ib_connection *ic = conn->c_transport_data;
   1013
   1014	/* We may have a pending ACK or window update we were unable
   1015	 * to send previously (due to flow control). Try again. */
   1016	rds_ib_attempt_ack(ic);
   1017}