cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tcp_listen.c (10212B)


      1/*
      2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
      3 *
      4 * This software is available to you under a choice of one of two
      5 * licenses.  You may choose to be licensed under the terms of the GNU
      6 * General Public License (GPL) Version 2, available from the file
      7 * COPYING in the main directory of this source tree, or the
      8 * OpenIB.org BSD license below:
      9 *
     10 *     Redistribution and use in source and binary forms, with or
     11 *     without modification, are permitted provided that the following
     12 *     conditions are met:
     13 *
     14 *      - Redistributions of source code must retain the above
     15 *        copyright notice, this list of conditions and the following
     16 *        disclaimer.
     17 *
     18 *      - Redistributions in binary form must reproduce the above
     19 *        copyright notice, this list of conditions and the following
     20 *        disclaimer in the documentation and/or other materials
     21 *        provided with the distribution.
     22 *
     23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     30 * SOFTWARE.
     31 *
     32 */
     33#include <linux/kernel.h>
     34#include <linux/gfp.h>
     35#include <linux/in.h>
     36#include <net/tcp.h>
     37
     38#include "rds.h"
     39#include "tcp.h"
     40
     41void rds_tcp_keepalive(struct socket *sock)
     42{
     43	/* values below based on xs_udp_default_timeout */
     44	int keepidle = 5; /* send a probe 'keepidle' secs after last data */
     45	int keepcnt = 5; /* number of unack'ed probes before declaring dead */
     46
     47	sock_set_keepalive(sock->sk);
     48	tcp_sock_set_keepcnt(sock->sk, keepcnt);
     49	tcp_sock_set_keepidle(sock->sk, keepidle);
     50	/* KEEPINTVL is the interval between successive probes. We follow
     51	 * the model in xs_tcp_finish_connecting() and re-use keepidle.
     52	 */
     53	tcp_sock_set_keepintvl(sock->sk, keepidle);
     54}
     55
     56/* rds_tcp_accept_one_path(): if accepting on cp_index > 0, make sure the
     57 * client's ipaddr < server's ipaddr. Otherwise, close the accepted
     58 * socket and force a reconneect from smaller -> larger ip addr. The reason
     59 * we special case cp_index 0 is to allow the rds probe ping itself to itself
     60 * get through efficiently.
     61 * Since reconnects are only initiated from the node with the numerically
     62 * smaller ip address, we recycle conns in RDS_CONN_ERROR on the passive side
     63 * by moving them to CONNECTING in this function.
     64 */
     65static
     66struct rds_tcp_connection *rds_tcp_accept_one_path(struct rds_connection *conn)
     67{
     68	int i;
     69	int npaths = max_t(int, 1, conn->c_npaths);
     70
     71	/* for mprds, all paths MUST be initiated by the peer
     72	 * with the smaller address.
     73	 */
     74	if (rds_addr_cmp(&conn->c_faddr, &conn->c_laddr) >= 0) {
     75		/* Make sure we initiate at least one path if this
     76		 * has not already been done; rds_start_mprds() will
     77		 * take care of additional paths, if necessary.
     78		 */
     79		if (npaths == 1)
     80			rds_conn_path_connect_if_down(&conn->c_path[0]);
     81		return NULL;
     82	}
     83
     84	for (i = 0; i < npaths; i++) {
     85		struct rds_conn_path *cp = &conn->c_path[i];
     86
     87		if (rds_conn_path_transition(cp, RDS_CONN_DOWN,
     88					     RDS_CONN_CONNECTING) ||
     89		    rds_conn_path_transition(cp, RDS_CONN_ERROR,
     90					     RDS_CONN_CONNECTING)) {
     91			return cp->cp_transport_data;
     92		}
     93	}
     94	return NULL;
     95}
     96
     97int rds_tcp_accept_one(struct socket *sock)
     98{
     99	struct socket *new_sock = NULL;
    100	struct rds_connection *conn;
    101	int ret;
    102	struct inet_sock *inet;
    103	struct rds_tcp_connection *rs_tcp = NULL;
    104	int conn_state;
    105	struct rds_conn_path *cp;
    106	struct in6_addr *my_addr, *peer_addr;
    107#if !IS_ENABLED(CONFIG_IPV6)
    108	struct in6_addr saddr, daddr;
    109#endif
    110	int dev_if = 0;
    111
    112	if (!sock) /* module unload or netns delete in progress */
    113		return -ENETUNREACH;
    114
    115	ret = sock_create_lite(sock->sk->sk_family,
    116			       sock->sk->sk_type, sock->sk->sk_protocol,
    117			       &new_sock);
    118	if (ret)
    119		goto out;
    120
    121	ret = sock->ops->accept(sock, new_sock, O_NONBLOCK, true);
    122	if (ret < 0)
    123		goto out;
    124
    125	/* sock_create_lite() does not get a hold on the owner module so we
    126	 * need to do it here.  Note that sock_release() uses sock->ops to
    127	 * determine if it needs to decrement the reference count.  So set
    128	 * sock->ops after calling accept() in case that fails.  And there's
    129	 * no need to do try_module_get() as the listener should have a hold
    130	 * already.
    131	 */
    132	new_sock->ops = sock->ops;
    133	__module_get(new_sock->ops->owner);
    134
    135	rds_tcp_keepalive(new_sock);
    136	if (!rds_tcp_tune(new_sock)) {
    137		ret = -EINVAL;
    138		goto out;
    139	}
    140
    141	inet = inet_sk(new_sock->sk);
    142
    143#if IS_ENABLED(CONFIG_IPV6)
    144	my_addr = &new_sock->sk->sk_v6_rcv_saddr;
    145	peer_addr = &new_sock->sk->sk_v6_daddr;
    146#else
    147	ipv6_addr_set_v4mapped(inet->inet_saddr, &saddr);
    148	ipv6_addr_set_v4mapped(inet->inet_daddr, &daddr);
    149	my_addr = &saddr;
    150	peer_addr = &daddr;
    151#endif
    152	rdsdebug("accepted family %d tcp %pI6c:%u -> %pI6c:%u\n",
    153		 sock->sk->sk_family,
    154		 my_addr, ntohs(inet->inet_sport),
    155		 peer_addr, ntohs(inet->inet_dport));
    156
    157#if IS_ENABLED(CONFIG_IPV6)
    158	/* sk_bound_dev_if is not set if the peer address is not link local
    159	 * address.  In this case, it happens that mcast_oif is set.  So
    160	 * just use it.
    161	 */
    162	if ((ipv6_addr_type(my_addr) & IPV6_ADDR_LINKLOCAL) &&
    163	    !(ipv6_addr_type(peer_addr) & IPV6_ADDR_LINKLOCAL)) {
    164		struct ipv6_pinfo *inet6;
    165
    166		inet6 = inet6_sk(new_sock->sk);
    167		dev_if = inet6->mcast_oif;
    168	} else {
    169		dev_if = new_sock->sk->sk_bound_dev_if;
    170	}
    171#endif
    172
    173	if (!rds_tcp_laddr_check(sock_net(sock->sk), peer_addr, dev_if)) {
    174		/* local address connection is only allowed via loopback */
    175		ret = -EOPNOTSUPP;
    176		goto out;
    177	}
    178
    179	conn = rds_conn_create(sock_net(sock->sk),
    180			       my_addr, peer_addr,
    181			       &rds_tcp_transport, 0, GFP_KERNEL, dev_if);
    182
    183	if (IS_ERR(conn)) {
    184		ret = PTR_ERR(conn);
    185		goto out;
    186	}
    187	/* An incoming SYN request came in, and TCP just accepted it.
    188	 *
    189	 * If the client reboots, this conn will need to be cleaned up.
    190	 * rds_tcp_state_change() will do that cleanup
    191	 */
    192	rs_tcp = rds_tcp_accept_one_path(conn);
    193	if (!rs_tcp)
    194		goto rst_nsk;
    195	mutex_lock(&rs_tcp->t_conn_path_lock);
    196	cp = rs_tcp->t_cpath;
    197	conn_state = rds_conn_path_state(cp);
    198	WARN_ON(conn_state == RDS_CONN_UP);
    199	if (conn_state != RDS_CONN_CONNECTING && conn_state != RDS_CONN_ERROR)
    200		goto rst_nsk;
    201	if (rs_tcp->t_sock) {
    202		/* Duelling SYN has been handled in rds_tcp_accept_one() */
    203		rds_tcp_reset_callbacks(new_sock, cp);
    204		/* rds_connect_path_complete() marks RDS_CONN_UP */
    205		rds_connect_path_complete(cp, RDS_CONN_RESETTING);
    206	} else {
    207		rds_tcp_set_callbacks(new_sock, cp);
    208		rds_connect_path_complete(cp, RDS_CONN_CONNECTING);
    209	}
    210	new_sock = NULL;
    211	ret = 0;
    212	if (conn->c_npaths == 0)
    213		rds_send_ping(cp->cp_conn, cp->cp_index);
    214	goto out;
    215rst_nsk:
    216	/* reset the newly returned accept sock and bail.
    217	 * It is safe to set linger on new_sock because the RDS connection
    218	 * has not been brought up on new_sock, so no RDS-level data could
    219	 * be pending on it. By setting linger, we achieve the side-effect
    220	 * of avoiding TIME_WAIT state on new_sock.
    221	 */
    222	sock_no_linger(new_sock->sk);
    223	kernel_sock_shutdown(new_sock, SHUT_RDWR);
    224	ret = 0;
    225out:
    226	if (rs_tcp)
    227		mutex_unlock(&rs_tcp->t_conn_path_lock);
    228	if (new_sock)
    229		sock_release(new_sock);
    230	return ret;
    231}
    232
    233void rds_tcp_listen_data_ready(struct sock *sk)
    234{
    235	void (*ready)(struct sock *sk);
    236
    237	rdsdebug("listen data ready sk %p\n", sk);
    238
    239	read_lock_bh(&sk->sk_callback_lock);
    240	ready = sk->sk_user_data;
    241	if (!ready) { /* check for teardown race */
    242		ready = sk->sk_data_ready;
    243		goto out;
    244	}
    245
    246	/*
    247	 * ->sk_data_ready is also called for a newly established child socket
    248	 * before it has been accepted and the accepter has set up their
    249	 * data_ready.. we only want to queue listen work for our listening
    250	 * socket
    251	 *
    252	 * (*ready)() may be null if we are racing with netns delete, and
    253	 * the listen socket is being torn down.
    254	 */
    255	if (sk->sk_state == TCP_LISTEN)
    256		rds_tcp_accept_work(sk);
    257	else
    258		ready = rds_tcp_listen_sock_def_readable(sock_net(sk));
    259
    260out:
    261	read_unlock_bh(&sk->sk_callback_lock);
    262	if (ready)
    263		ready(sk);
    264}
    265
    266struct socket *rds_tcp_listen_init(struct net *net, bool isv6)
    267{
    268	struct socket *sock = NULL;
    269	struct sockaddr_storage ss;
    270	struct sockaddr_in6 *sin6;
    271	struct sockaddr_in *sin;
    272	int addr_len;
    273	int ret;
    274
    275	ret = sock_create_kern(net, isv6 ? PF_INET6 : PF_INET, SOCK_STREAM,
    276			       IPPROTO_TCP, &sock);
    277	if (ret < 0) {
    278		rdsdebug("could not create %s listener socket: %d\n",
    279			 isv6 ? "IPv6" : "IPv4", ret);
    280		goto out;
    281	}
    282
    283	sock->sk->sk_reuse = SK_CAN_REUSE;
    284	tcp_sock_set_nodelay(sock->sk);
    285
    286	write_lock_bh(&sock->sk->sk_callback_lock);
    287	sock->sk->sk_user_data = sock->sk->sk_data_ready;
    288	sock->sk->sk_data_ready = rds_tcp_listen_data_ready;
    289	write_unlock_bh(&sock->sk->sk_callback_lock);
    290
    291	if (isv6) {
    292		sin6 = (struct sockaddr_in6 *)&ss;
    293		sin6->sin6_family = PF_INET6;
    294		sin6->sin6_addr = in6addr_any;
    295		sin6->sin6_port = (__force u16)htons(RDS_TCP_PORT);
    296		sin6->sin6_scope_id = 0;
    297		sin6->sin6_flowinfo = 0;
    298		addr_len = sizeof(*sin6);
    299	} else {
    300		sin = (struct sockaddr_in *)&ss;
    301		sin->sin_family = PF_INET;
    302		sin->sin_addr.s_addr = INADDR_ANY;
    303		sin->sin_port = (__force u16)htons(RDS_TCP_PORT);
    304		addr_len = sizeof(*sin);
    305	}
    306
    307	ret = sock->ops->bind(sock, (struct sockaddr *)&ss, addr_len);
    308	if (ret < 0) {
    309		rdsdebug("could not bind %s listener socket: %d\n",
    310			 isv6 ? "IPv6" : "IPv4", ret);
    311		goto out;
    312	}
    313
    314	ret = sock->ops->listen(sock, 64);
    315	if (ret < 0)
    316		goto out;
    317
    318	return sock;
    319out:
    320	if (sock)
    321		sock_release(sock);
    322	return NULL;
    323}
    324
    325void rds_tcp_listen_stop(struct socket *sock, struct work_struct *acceptor)
    326{
    327	struct sock *sk;
    328
    329	if (!sock)
    330		return;
    331
    332	sk = sock->sk;
    333
    334	/* serialize with and prevent further callbacks */
    335	lock_sock(sk);
    336	write_lock_bh(&sk->sk_callback_lock);
    337	if (sk->sk_user_data) {
    338		sk->sk_data_ready = sk->sk_user_data;
    339		sk->sk_user_data = NULL;
    340	}
    341	write_unlock_bh(&sk->sk_callback_lock);
    342	release_sock(sk);
    343
    344	/* wait for accepts to stop and close the socket */
    345	flush_workqueue(rds_wq);
    346	flush_work(acceptor);
    347	sock_release(sock);
    348}