cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

threads.c (9055B)


      1/*
      2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
      3 *
      4 * This software is available to you under a choice of one of two
      5 * licenses.  You may choose to be licensed under the terms of the GNU
      6 * General Public License (GPL) Version 2, available from the file
      7 * COPYING in the main directory of this source tree, or the
      8 * OpenIB.org BSD license below:
      9 *
     10 *     Redistribution and use in source and binary forms, with or
     11 *     without modification, are permitted provided that the following
     12 *     conditions are met:
     13 *
     14 *      - Redistributions of source code must retain the above
     15 *        copyright notice, this list of conditions and the following
     16 *        disclaimer.
     17 *
     18 *      - Redistributions in binary form must reproduce the above
     19 *        copyright notice, this list of conditions and the following
     20 *        disclaimer in the documentation and/or other materials
     21 *        provided with the distribution.
     22 *
     23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     30 * SOFTWARE.
     31 *
     32 */
     33#include <linux/kernel.h>
     34#include <linux/random.h>
     35#include <linux/export.h>
     36
     37#include "rds.h"
     38
     39/*
     40 * All of connection management is simplified by serializing it through
     41 * work queues that execute in a connection managing thread.
     42 *
     43 * TCP wants to send acks through sendpage() in response to data_ready(),
     44 * but it needs a process context to do so.
     45 *
     46 * The receive paths need to allocate but can't drop packets (!) so we have
     47 * a thread around to block allocating if the receive fast path sees an
     48 * allocation failure.
     49 */
     50
     51/* Grand Unified Theory of connection life cycle:
     52 * At any point in time, the connection can be in one of these states:
     53 * DOWN, CONNECTING, UP, DISCONNECTING, ERROR
     54 *
     55 * The following transitions are possible:
     56 *  ANY		  -> ERROR
     57 *  UP		  -> DISCONNECTING
     58 *  ERROR	  -> DISCONNECTING
     59 *  DISCONNECTING -> DOWN
     60 *  DOWN	  -> CONNECTING
     61 *  CONNECTING	  -> UP
     62 *
     63 * Transition to state DISCONNECTING/DOWN:
     64 *  -	Inside the shutdown worker; synchronizes with xmit path
     65 *	through RDS_IN_XMIT, and with connection management callbacks
     66 *	via c_cm_lock.
     67 *
     68 *	For receive callbacks, we rely on the underlying transport
     69 *	(TCP, IB/RDMA) to provide the necessary synchronisation.
     70 */
     71struct workqueue_struct *rds_wq;
     72EXPORT_SYMBOL_GPL(rds_wq);
     73
     74void rds_connect_path_complete(struct rds_conn_path *cp, int curr)
     75{
     76	if (!rds_conn_path_transition(cp, curr, RDS_CONN_UP)) {
     77		printk(KERN_WARNING "%s: Cannot transition to state UP, "
     78				"current state is %d\n",
     79				__func__,
     80				atomic_read(&cp->cp_state));
     81		rds_conn_path_drop(cp, false);
     82		return;
     83	}
     84
     85	rdsdebug("conn %p for %pI6c to %pI6c complete\n",
     86		 cp->cp_conn, &cp->cp_conn->c_laddr, &cp->cp_conn->c_faddr);
     87
     88	cp->cp_reconnect_jiffies = 0;
     89	set_bit(0, &cp->cp_conn->c_map_queued);
     90	rcu_read_lock();
     91	if (!rds_destroy_pending(cp->cp_conn)) {
     92		queue_delayed_work(rds_wq, &cp->cp_send_w, 0);
     93		queue_delayed_work(rds_wq, &cp->cp_recv_w, 0);
     94	}
     95	rcu_read_unlock();
     96	cp->cp_conn->c_proposed_version = RDS_PROTOCOL_VERSION;
     97}
     98EXPORT_SYMBOL_GPL(rds_connect_path_complete);
     99
    100void rds_connect_complete(struct rds_connection *conn)
    101{
    102	rds_connect_path_complete(&conn->c_path[0], RDS_CONN_CONNECTING);
    103}
    104EXPORT_SYMBOL_GPL(rds_connect_complete);
    105
    106/*
    107 * This random exponential backoff is relied on to eventually resolve racing
    108 * connects.
    109 *
    110 * If connect attempts race then both parties drop both connections and come
    111 * here to wait for a random amount of time before trying again.  Eventually
    112 * the backoff range will be so much greater than the time it takes to
    113 * establish a connection that one of the pair will establish the connection
    114 * before the other's random delay fires.
    115 *
    116 * Connection attempts that arrive while a connection is already established
    117 * are also considered to be racing connects.  This lets a connection from
    118 * a rebooted machine replace an existing stale connection before the transport
    119 * notices that the connection has failed.
    120 *
    121 * We should *always* start with a random backoff; otherwise a broken connection
    122 * will always take several iterations to be re-established.
    123 */
    124void rds_queue_reconnect(struct rds_conn_path *cp)
    125{
    126	unsigned long rand;
    127	struct rds_connection *conn = cp->cp_conn;
    128
    129	rdsdebug("conn %p for %pI6c to %pI6c reconnect jiffies %lu\n",
    130		 conn, &conn->c_laddr, &conn->c_faddr,
    131		 cp->cp_reconnect_jiffies);
    132
    133	/* let peer with smaller addr initiate reconnect, to avoid duels */
    134	if (conn->c_trans->t_type == RDS_TRANS_TCP &&
    135	    rds_addr_cmp(&conn->c_laddr, &conn->c_faddr) >= 0)
    136		return;
    137
    138	set_bit(RDS_RECONNECT_PENDING, &cp->cp_flags);
    139	if (cp->cp_reconnect_jiffies == 0) {
    140		cp->cp_reconnect_jiffies = rds_sysctl_reconnect_min_jiffies;
    141		rcu_read_lock();
    142		if (!rds_destroy_pending(cp->cp_conn))
    143			queue_delayed_work(rds_wq, &cp->cp_conn_w, 0);
    144		rcu_read_unlock();
    145		return;
    146	}
    147
    148	get_random_bytes(&rand, sizeof(rand));
    149	rdsdebug("%lu delay %lu ceil conn %p for %pI6c -> %pI6c\n",
    150		 rand % cp->cp_reconnect_jiffies, cp->cp_reconnect_jiffies,
    151		 conn, &conn->c_laddr, &conn->c_faddr);
    152	rcu_read_lock();
    153	if (!rds_destroy_pending(cp->cp_conn))
    154		queue_delayed_work(rds_wq, &cp->cp_conn_w,
    155				   rand % cp->cp_reconnect_jiffies);
    156	rcu_read_unlock();
    157
    158	cp->cp_reconnect_jiffies = min(cp->cp_reconnect_jiffies * 2,
    159					rds_sysctl_reconnect_max_jiffies);
    160}
    161
    162void rds_connect_worker(struct work_struct *work)
    163{
    164	struct rds_conn_path *cp = container_of(work,
    165						struct rds_conn_path,
    166						cp_conn_w.work);
    167	struct rds_connection *conn = cp->cp_conn;
    168	int ret;
    169
    170	if (cp->cp_index > 0 &&
    171	    rds_addr_cmp(&cp->cp_conn->c_laddr, &cp->cp_conn->c_faddr) >= 0)
    172		return;
    173	clear_bit(RDS_RECONNECT_PENDING, &cp->cp_flags);
    174	ret = rds_conn_path_transition(cp, RDS_CONN_DOWN, RDS_CONN_CONNECTING);
    175	if (ret) {
    176		ret = conn->c_trans->conn_path_connect(cp);
    177		rdsdebug("conn %p for %pI6c to %pI6c dispatched, ret %d\n",
    178			 conn, &conn->c_laddr, &conn->c_faddr, ret);
    179
    180		if (ret) {
    181			if (rds_conn_path_transition(cp,
    182						     RDS_CONN_CONNECTING,
    183						     RDS_CONN_DOWN))
    184				rds_queue_reconnect(cp);
    185			else
    186				rds_conn_path_error(cp, "connect failed\n");
    187		}
    188	}
    189}
    190
    191void rds_send_worker(struct work_struct *work)
    192{
    193	struct rds_conn_path *cp = container_of(work,
    194						struct rds_conn_path,
    195						cp_send_w.work);
    196	int ret;
    197
    198	if (rds_conn_path_state(cp) == RDS_CONN_UP) {
    199		clear_bit(RDS_LL_SEND_FULL, &cp->cp_flags);
    200		ret = rds_send_xmit(cp);
    201		cond_resched();
    202		rdsdebug("conn %p ret %d\n", cp->cp_conn, ret);
    203		switch (ret) {
    204		case -EAGAIN:
    205			rds_stats_inc(s_send_immediate_retry);
    206			queue_delayed_work(rds_wq, &cp->cp_send_w, 0);
    207			break;
    208		case -ENOMEM:
    209			rds_stats_inc(s_send_delayed_retry);
    210			queue_delayed_work(rds_wq, &cp->cp_send_w, 2);
    211			break;
    212		default:
    213			break;
    214		}
    215	}
    216}
    217
    218void rds_recv_worker(struct work_struct *work)
    219{
    220	struct rds_conn_path *cp = container_of(work,
    221						struct rds_conn_path,
    222						cp_recv_w.work);
    223	int ret;
    224
    225	if (rds_conn_path_state(cp) == RDS_CONN_UP) {
    226		ret = cp->cp_conn->c_trans->recv_path(cp);
    227		rdsdebug("conn %p ret %d\n", cp->cp_conn, ret);
    228		switch (ret) {
    229		case -EAGAIN:
    230			rds_stats_inc(s_recv_immediate_retry);
    231			queue_delayed_work(rds_wq, &cp->cp_recv_w, 0);
    232			break;
    233		case -ENOMEM:
    234			rds_stats_inc(s_recv_delayed_retry);
    235			queue_delayed_work(rds_wq, &cp->cp_recv_w, 2);
    236			break;
    237		default:
    238			break;
    239		}
    240	}
    241}
    242
    243void rds_shutdown_worker(struct work_struct *work)
    244{
    245	struct rds_conn_path *cp = container_of(work,
    246						struct rds_conn_path,
    247						cp_down_w);
    248
    249	rds_conn_shutdown(cp);
    250}
    251
    252void rds_threads_exit(void)
    253{
    254	destroy_workqueue(rds_wq);
    255}
    256
    257int rds_threads_init(void)
    258{
    259	rds_wq = create_singlethread_workqueue("krdsd");
    260	if (!rds_wq)
    261		return -ENOMEM;
    262
    263	return 0;
    264}
    265
    266/* Compare two IPv6 addresses.  Return 0 if the two addresses are equal.
    267 * Return 1 if the first is greater.  Return -1 if the second is greater.
    268 */
    269int rds_addr_cmp(const struct in6_addr *addr1,
    270		 const struct in6_addr *addr2)
    271{
    272#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
    273	const __be64 *a1, *a2;
    274	u64 x, y;
    275
    276	a1 = (__be64 *)addr1;
    277	a2 = (__be64 *)addr2;
    278
    279	if (*a1 != *a2) {
    280		if (be64_to_cpu(*a1) < be64_to_cpu(*a2))
    281			return -1;
    282		else
    283			return 1;
    284	} else {
    285		x = be64_to_cpu(*++a1);
    286		y = be64_to_cpu(*++a2);
    287		if (x < y)
    288			return -1;
    289		else if (x > y)
    290			return 1;
    291		else
    292			return 0;
    293	}
    294#else
    295	u32 a, b;
    296	int i;
    297
    298	for (i = 0; i < 4; i++) {
    299		if (addr1->s6_addr32[i] != addr2->s6_addr32[i]) {
    300			a = ntohl(addr1->s6_addr32[i]);
    301			b = ntohl(addr2->s6_addr32[i]);
    302			if (a < b)
    303				return -1;
    304			else if (a > b)
    305				return 1;
    306		}
    307	}
    308	return 0;
    309#endif
    310}
    311EXPORT_SYMBOL_GPL(rds_addr_cmp);