cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sch_fq_pie.c (14857B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/* Flow Queue PIE discipline
      3 *
      4 * Copyright (C) 2019 Mohit P. Tahiliani <tahiliani@nitk.edu.in>
      5 * Copyright (C) 2019 Sachin D. Patil <sdp.sachin@gmail.com>
      6 * Copyright (C) 2019 V. Saicharan <vsaicharan1998@gmail.com>
      7 * Copyright (C) 2019 Mohit Bhasi <mohitbhasi1998@gmail.com>
      8 * Copyright (C) 2019 Leslie Monis <lesliemonis@gmail.com>
      9 * Copyright (C) 2019 Gautam Ramakrishnan <gautamramk@gmail.com>
     10 */
     11
     12#include <linux/jhash.h>
     13#include <linux/sizes.h>
     14#include <linux/vmalloc.h>
     15#include <net/pkt_cls.h>
     16#include <net/pie.h>
     17
     18/* Flow Queue PIE
     19 *
     20 * Principles:
     21 *   - Packets are classified on flows.
     22 *   - This is a Stochastic model (as we use a hash, several flows might
     23 *                                 be hashed to the same slot)
     24 *   - Each flow has a PIE managed queue.
     25 *   - Flows are linked onto two (Round Robin) lists,
     26 *     so that new flows have priority on old ones.
     27 *   - For a given flow, packets are not reordered.
     28 *   - Drops during enqueue only.
     29 *   - ECN capability is off by default.
     30 *   - ECN threshold (if ECN is enabled) is at 10% by default.
     31 *   - Uses timestamps to calculate queue delay by default.
     32 */
     33
     34/**
     35 * struct fq_pie_flow - contains data for each flow
     36 * @vars:	pie vars associated with the flow
     37 * @deficit:	number of remaining byte credits
     38 * @backlog:	size of data in the flow
     39 * @qlen:	number of packets in the flow
     40 * @flowchain:	flowchain for the flow
     41 * @head:	first packet in the flow
     42 * @tail:	last packet in the flow
     43 */
     44struct fq_pie_flow {
     45	struct pie_vars vars;
     46	s32 deficit;
     47	u32 backlog;
     48	u32 qlen;
     49	struct list_head flowchain;
     50	struct sk_buff *head;
     51	struct sk_buff *tail;
     52};
     53
     54struct fq_pie_sched_data {
     55	struct tcf_proto __rcu *filter_list; /* optional external classifier */
     56	struct tcf_block *block;
     57	struct fq_pie_flow *flows;
     58	struct Qdisc *sch;
     59	struct list_head old_flows;
     60	struct list_head new_flows;
     61	struct pie_params p_params;
     62	u32 ecn_prob;
     63	u32 flows_cnt;
     64	u32 quantum;
     65	u32 memory_limit;
     66	u32 new_flow_count;
     67	u32 memory_usage;
     68	u32 overmemory;
     69	struct pie_stats stats;
     70	struct timer_list adapt_timer;
     71};
     72
     73static unsigned int fq_pie_hash(const struct fq_pie_sched_data *q,
     74				struct sk_buff *skb)
     75{
     76	return reciprocal_scale(skb_get_hash(skb), q->flows_cnt);
     77}
     78
     79static unsigned int fq_pie_classify(struct sk_buff *skb, struct Qdisc *sch,
     80				    int *qerr)
     81{
     82	struct fq_pie_sched_data *q = qdisc_priv(sch);
     83	struct tcf_proto *filter;
     84	struct tcf_result res;
     85	int result;
     86
     87	if (TC_H_MAJ(skb->priority) == sch->handle &&
     88	    TC_H_MIN(skb->priority) > 0 &&
     89	    TC_H_MIN(skb->priority) <= q->flows_cnt)
     90		return TC_H_MIN(skb->priority);
     91
     92	filter = rcu_dereference_bh(q->filter_list);
     93	if (!filter)
     94		return fq_pie_hash(q, skb) + 1;
     95
     96	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
     97	result = tcf_classify(skb, NULL, filter, &res, false);
     98	if (result >= 0) {
     99#ifdef CONFIG_NET_CLS_ACT
    100		switch (result) {
    101		case TC_ACT_STOLEN:
    102		case TC_ACT_QUEUED:
    103		case TC_ACT_TRAP:
    104			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
    105			fallthrough;
    106		case TC_ACT_SHOT:
    107			return 0;
    108		}
    109#endif
    110		if (TC_H_MIN(res.classid) <= q->flows_cnt)
    111			return TC_H_MIN(res.classid);
    112	}
    113	return 0;
    114}
    115
    116/* add skb to flow queue (tail add) */
    117static inline void flow_queue_add(struct fq_pie_flow *flow,
    118				  struct sk_buff *skb)
    119{
    120	if (!flow->head)
    121		flow->head = skb;
    122	else
    123		flow->tail->next = skb;
    124	flow->tail = skb;
    125	skb->next = NULL;
    126}
    127
    128static int fq_pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch,
    129				struct sk_buff **to_free)
    130{
    131	struct fq_pie_sched_data *q = qdisc_priv(sch);
    132	struct fq_pie_flow *sel_flow;
    133	int ret;
    134	u8 memory_limited = false;
    135	u8 enqueue = false;
    136	u32 pkt_len;
    137	u32 idx;
    138
    139	/* Classifies packet into corresponding flow */
    140	idx = fq_pie_classify(skb, sch, &ret);
    141	if (idx == 0) {
    142		if (ret & __NET_XMIT_BYPASS)
    143			qdisc_qstats_drop(sch);
    144		__qdisc_drop(skb, to_free);
    145		return ret;
    146	}
    147	idx--;
    148
    149	sel_flow = &q->flows[idx];
    150	/* Checks whether adding a new packet would exceed memory limit */
    151	get_pie_cb(skb)->mem_usage = skb->truesize;
    152	memory_limited = q->memory_usage > q->memory_limit + skb->truesize;
    153
    154	/* Checks if the qdisc is full */
    155	if (unlikely(qdisc_qlen(sch) >= sch->limit)) {
    156		q->stats.overlimit++;
    157		goto out;
    158	} else if (unlikely(memory_limited)) {
    159		q->overmemory++;
    160	}
    161
    162	if (!pie_drop_early(sch, &q->p_params, &sel_flow->vars,
    163			    sel_flow->backlog, skb->len)) {
    164		enqueue = true;
    165	} else if (q->p_params.ecn &&
    166		   sel_flow->vars.prob <= (MAX_PROB / 100) * q->ecn_prob &&
    167		   INET_ECN_set_ce(skb)) {
    168		/* If packet is ecn capable, mark it if drop probability
    169		 * is lower than the parameter ecn_prob, else drop it.
    170		 */
    171		q->stats.ecn_mark++;
    172		enqueue = true;
    173	}
    174	if (enqueue) {
    175		/* Set enqueue time only when dq_rate_estimator is disabled. */
    176		if (!q->p_params.dq_rate_estimator)
    177			pie_set_enqueue_time(skb);
    178
    179		pkt_len = qdisc_pkt_len(skb);
    180		q->stats.packets_in++;
    181		q->memory_usage += skb->truesize;
    182		sch->qstats.backlog += pkt_len;
    183		sch->q.qlen++;
    184		flow_queue_add(sel_flow, skb);
    185		if (list_empty(&sel_flow->flowchain)) {
    186			list_add_tail(&sel_flow->flowchain, &q->new_flows);
    187			q->new_flow_count++;
    188			sel_flow->deficit = q->quantum;
    189			sel_flow->qlen = 0;
    190			sel_flow->backlog = 0;
    191		}
    192		sel_flow->qlen++;
    193		sel_flow->backlog += pkt_len;
    194		return NET_XMIT_SUCCESS;
    195	}
    196out:
    197	q->stats.dropped++;
    198	sel_flow->vars.accu_prob = 0;
    199	__qdisc_drop(skb, to_free);
    200	qdisc_qstats_drop(sch);
    201	return NET_XMIT_CN;
    202}
    203
    204static const struct nla_policy fq_pie_policy[TCA_FQ_PIE_MAX + 1] = {
    205	[TCA_FQ_PIE_LIMIT]		= {.type = NLA_U32},
    206	[TCA_FQ_PIE_FLOWS]		= {.type = NLA_U32},
    207	[TCA_FQ_PIE_TARGET]		= {.type = NLA_U32},
    208	[TCA_FQ_PIE_TUPDATE]		= {.type = NLA_U32},
    209	[TCA_FQ_PIE_ALPHA]		= {.type = NLA_U32},
    210	[TCA_FQ_PIE_BETA]		= {.type = NLA_U32},
    211	[TCA_FQ_PIE_QUANTUM]		= {.type = NLA_U32},
    212	[TCA_FQ_PIE_MEMORY_LIMIT]	= {.type = NLA_U32},
    213	[TCA_FQ_PIE_ECN_PROB]		= {.type = NLA_U32},
    214	[TCA_FQ_PIE_ECN]		= {.type = NLA_U32},
    215	[TCA_FQ_PIE_BYTEMODE]		= {.type = NLA_U32},
    216	[TCA_FQ_PIE_DQ_RATE_ESTIMATOR]	= {.type = NLA_U32},
    217};
    218
    219static inline struct sk_buff *dequeue_head(struct fq_pie_flow *flow)
    220{
    221	struct sk_buff *skb = flow->head;
    222
    223	flow->head = skb->next;
    224	skb->next = NULL;
    225	return skb;
    226}
    227
    228static struct sk_buff *fq_pie_qdisc_dequeue(struct Qdisc *sch)
    229{
    230	struct fq_pie_sched_data *q = qdisc_priv(sch);
    231	struct sk_buff *skb = NULL;
    232	struct fq_pie_flow *flow;
    233	struct list_head *head;
    234	u32 pkt_len;
    235
    236begin:
    237	head = &q->new_flows;
    238	if (list_empty(head)) {
    239		head = &q->old_flows;
    240		if (list_empty(head))
    241			return NULL;
    242	}
    243
    244	flow = list_first_entry(head, struct fq_pie_flow, flowchain);
    245	/* Flow has exhausted all its credits */
    246	if (flow->deficit <= 0) {
    247		flow->deficit += q->quantum;
    248		list_move_tail(&flow->flowchain, &q->old_flows);
    249		goto begin;
    250	}
    251
    252	if (flow->head) {
    253		skb = dequeue_head(flow);
    254		pkt_len = qdisc_pkt_len(skb);
    255		sch->qstats.backlog -= pkt_len;
    256		sch->q.qlen--;
    257		qdisc_bstats_update(sch, skb);
    258	}
    259
    260	if (!skb) {
    261		/* force a pass through old_flows to prevent starvation */
    262		if (head == &q->new_flows && !list_empty(&q->old_flows))
    263			list_move_tail(&flow->flowchain, &q->old_flows);
    264		else
    265			list_del_init(&flow->flowchain);
    266		goto begin;
    267	}
    268
    269	flow->qlen--;
    270	flow->deficit -= pkt_len;
    271	flow->backlog -= pkt_len;
    272	q->memory_usage -= get_pie_cb(skb)->mem_usage;
    273	pie_process_dequeue(skb, &q->p_params, &flow->vars, flow->backlog);
    274	return skb;
    275}
    276
    277static int fq_pie_change(struct Qdisc *sch, struct nlattr *opt,
    278			 struct netlink_ext_ack *extack)
    279{
    280	struct fq_pie_sched_data *q = qdisc_priv(sch);
    281	struct nlattr *tb[TCA_FQ_PIE_MAX + 1];
    282	unsigned int len_dropped = 0;
    283	unsigned int num_dropped = 0;
    284	int err;
    285
    286	if (!opt)
    287		return -EINVAL;
    288
    289	err = nla_parse_nested(tb, TCA_FQ_PIE_MAX, opt, fq_pie_policy, extack);
    290	if (err < 0)
    291		return err;
    292
    293	sch_tree_lock(sch);
    294	if (tb[TCA_FQ_PIE_LIMIT]) {
    295		u32 limit = nla_get_u32(tb[TCA_FQ_PIE_LIMIT]);
    296
    297		q->p_params.limit = limit;
    298		sch->limit = limit;
    299	}
    300	if (tb[TCA_FQ_PIE_FLOWS]) {
    301		if (q->flows) {
    302			NL_SET_ERR_MSG_MOD(extack,
    303					   "Number of flows cannot be changed");
    304			goto flow_error;
    305		}
    306		q->flows_cnt = nla_get_u32(tb[TCA_FQ_PIE_FLOWS]);
    307		if (!q->flows_cnt || q->flows_cnt > 65536) {
    308			NL_SET_ERR_MSG_MOD(extack,
    309					   "Number of flows must range in [1..65536]");
    310			goto flow_error;
    311		}
    312	}
    313
    314	/* convert from microseconds to pschedtime */
    315	if (tb[TCA_FQ_PIE_TARGET]) {
    316		/* target is in us */
    317		u32 target = nla_get_u32(tb[TCA_FQ_PIE_TARGET]);
    318
    319		/* convert to pschedtime */
    320		q->p_params.target =
    321			PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC);
    322	}
    323
    324	/* tupdate is in jiffies */
    325	if (tb[TCA_FQ_PIE_TUPDATE])
    326		q->p_params.tupdate =
    327			usecs_to_jiffies(nla_get_u32(tb[TCA_FQ_PIE_TUPDATE]));
    328
    329	if (tb[TCA_FQ_PIE_ALPHA])
    330		q->p_params.alpha = nla_get_u32(tb[TCA_FQ_PIE_ALPHA]);
    331
    332	if (tb[TCA_FQ_PIE_BETA])
    333		q->p_params.beta = nla_get_u32(tb[TCA_FQ_PIE_BETA]);
    334
    335	if (tb[TCA_FQ_PIE_QUANTUM])
    336		q->quantum = nla_get_u32(tb[TCA_FQ_PIE_QUANTUM]);
    337
    338	if (tb[TCA_FQ_PIE_MEMORY_LIMIT])
    339		q->memory_limit = nla_get_u32(tb[TCA_FQ_PIE_MEMORY_LIMIT]);
    340
    341	if (tb[TCA_FQ_PIE_ECN_PROB])
    342		q->ecn_prob = nla_get_u32(tb[TCA_FQ_PIE_ECN_PROB]);
    343
    344	if (tb[TCA_FQ_PIE_ECN])
    345		q->p_params.ecn = nla_get_u32(tb[TCA_FQ_PIE_ECN]);
    346
    347	if (tb[TCA_FQ_PIE_BYTEMODE])
    348		q->p_params.bytemode = nla_get_u32(tb[TCA_FQ_PIE_BYTEMODE]);
    349
    350	if (tb[TCA_FQ_PIE_DQ_RATE_ESTIMATOR])
    351		q->p_params.dq_rate_estimator =
    352			nla_get_u32(tb[TCA_FQ_PIE_DQ_RATE_ESTIMATOR]);
    353
    354	/* Drop excess packets if new limit is lower */
    355	while (sch->q.qlen > sch->limit) {
    356		struct sk_buff *skb = fq_pie_qdisc_dequeue(sch);
    357
    358		len_dropped += qdisc_pkt_len(skb);
    359		num_dropped += 1;
    360		rtnl_kfree_skbs(skb, skb);
    361	}
    362	qdisc_tree_reduce_backlog(sch, num_dropped, len_dropped);
    363
    364	sch_tree_unlock(sch);
    365	return 0;
    366
    367flow_error:
    368	sch_tree_unlock(sch);
    369	return -EINVAL;
    370}
    371
    372static void fq_pie_timer(struct timer_list *t)
    373{
    374	struct fq_pie_sched_data *q = from_timer(q, t, adapt_timer);
    375	struct Qdisc *sch = q->sch;
    376	spinlock_t *root_lock; /* to lock qdisc for probability calculations */
    377	u32 idx;
    378
    379	root_lock = qdisc_lock(qdisc_root_sleeping(sch));
    380	spin_lock(root_lock);
    381
    382	for (idx = 0; idx < q->flows_cnt; idx++)
    383		pie_calculate_probability(&q->p_params, &q->flows[idx].vars,
    384					  q->flows[idx].backlog);
    385
    386	/* reset the timer to fire after 'tupdate' jiffies. */
    387	if (q->p_params.tupdate)
    388		mod_timer(&q->adapt_timer, jiffies + q->p_params.tupdate);
    389
    390	spin_unlock(root_lock);
    391}
    392
    393static int fq_pie_init(struct Qdisc *sch, struct nlattr *opt,
    394		       struct netlink_ext_ack *extack)
    395{
    396	struct fq_pie_sched_data *q = qdisc_priv(sch);
    397	int err;
    398	u32 idx;
    399
    400	pie_params_init(&q->p_params);
    401	sch->limit = 10 * 1024;
    402	q->p_params.limit = sch->limit;
    403	q->quantum = psched_mtu(qdisc_dev(sch));
    404	q->sch = sch;
    405	q->ecn_prob = 10;
    406	q->flows_cnt = 1024;
    407	q->memory_limit = SZ_32M;
    408
    409	INIT_LIST_HEAD(&q->new_flows);
    410	INIT_LIST_HEAD(&q->old_flows);
    411	timer_setup(&q->adapt_timer, fq_pie_timer, 0);
    412
    413	if (opt) {
    414		err = fq_pie_change(sch, opt, extack);
    415
    416		if (err)
    417			return err;
    418	}
    419
    420	err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
    421	if (err)
    422		goto init_failure;
    423
    424	q->flows = kvcalloc(q->flows_cnt, sizeof(struct fq_pie_flow),
    425			    GFP_KERNEL);
    426	if (!q->flows) {
    427		err = -ENOMEM;
    428		goto init_failure;
    429	}
    430	for (idx = 0; idx < q->flows_cnt; idx++) {
    431		struct fq_pie_flow *flow = q->flows + idx;
    432
    433		INIT_LIST_HEAD(&flow->flowchain);
    434		pie_vars_init(&flow->vars);
    435	}
    436
    437	mod_timer(&q->adapt_timer, jiffies + HZ / 2);
    438
    439	return 0;
    440
    441init_failure:
    442	q->flows_cnt = 0;
    443
    444	return err;
    445}
    446
    447static int fq_pie_dump(struct Qdisc *sch, struct sk_buff *skb)
    448{
    449	struct fq_pie_sched_data *q = qdisc_priv(sch);
    450	struct nlattr *opts;
    451
    452	opts = nla_nest_start(skb, TCA_OPTIONS);
    453	if (!opts)
    454		return -EMSGSIZE;
    455
    456	/* convert target from pschedtime to us */
    457	if (nla_put_u32(skb, TCA_FQ_PIE_LIMIT, sch->limit) ||
    458	    nla_put_u32(skb, TCA_FQ_PIE_FLOWS, q->flows_cnt) ||
    459	    nla_put_u32(skb, TCA_FQ_PIE_TARGET,
    460			((u32)PSCHED_TICKS2NS(q->p_params.target)) /
    461			NSEC_PER_USEC) ||
    462	    nla_put_u32(skb, TCA_FQ_PIE_TUPDATE,
    463			jiffies_to_usecs(q->p_params.tupdate)) ||
    464	    nla_put_u32(skb, TCA_FQ_PIE_ALPHA, q->p_params.alpha) ||
    465	    nla_put_u32(skb, TCA_FQ_PIE_BETA, q->p_params.beta) ||
    466	    nla_put_u32(skb, TCA_FQ_PIE_QUANTUM, q->quantum) ||
    467	    nla_put_u32(skb, TCA_FQ_PIE_MEMORY_LIMIT, q->memory_limit) ||
    468	    nla_put_u32(skb, TCA_FQ_PIE_ECN_PROB, q->ecn_prob) ||
    469	    nla_put_u32(skb, TCA_FQ_PIE_ECN, q->p_params.ecn) ||
    470	    nla_put_u32(skb, TCA_FQ_PIE_BYTEMODE, q->p_params.bytemode) ||
    471	    nla_put_u32(skb, TCA_FQ_PIE_DQ_RATE_ESTIMATOR,
    472			q->p_params.dq_rate_estimator))
    473		goto nla_put_failure;
    474
    475	return nla_nest_end(skb, opts);
    476
    477nla_put_failure:
    478	nla_nest_cancel(skb, opts);
    479	return -EMSGSIZE;
    480}
    481
    482static int fq_pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
    483{
    484	struct fq_pie_sched_data *q = qdisc_priv(sch);
    485	struct tc_fq_pie_xstats st = {
    486		.packets_in	= q->stats.packets_in,
    487		.overlimit	= q->stats.overlimit,
    488		.overmemory	= q->overmemory,
    489		.dropped	= q->stats.dropped,
    490		.ecn_mark	= q->stats.ecn_mark,
    491		.new_flow_count = q->new_flow_count,
    492		.memory_usage   = q->memory_usage,
    493	};
    494	struct list_head *pos;
    495
    496	sch_tree_lock(sch);
    497	list_for_each(pos, &q->new_flows)
    498		st.new_flows_len++;
    499
    500	list_for_each(pos, &q->old_flows)
    501		st.old_flows_len++;
    502	sch_tree_unlock(sch);
    503
    504	return gnet_stats_copy_app(d, &st, sizeof(st));
    505}
    506
    507static void fq_pie_reset(struct Qdisc *sch)
    508{
    509	struct fq_pie_sched_data *q = qdisc_priv(sch);
    510	u32 idx;
    511
    512	INIT_LIST_HEAD(&q->new_flows);
    513	INIT_LIST_HEAD(&q->old_flows);
    514	for (idx = 0; idx < q->flows_cnt; idx++) {
    515		struct fq_pie_flow *flow = q->flows + idx;
    516
    517		/* Removes all packets from flow */
    518		rtnl_kfree_skbs(flow->head, flow->tail);
    519		flow->head = NULL;
    520
    521		INIT_LIST_HEAD(&flow->flowchain);
    522		pie_vars_init(&flow->vars);
    523	}
    524
    525	sch->q.qlen = 0;
    526	sch->qstats.backlog = 0;
    527}
    528
    529static void fq_pie_destroy(struct Qdisc *sch)
    530{
    531	struct fq_pie_sched_data *q = qdisc_priv(sch);
    532
    533	tcf_block_put(q->block);
    534	q->p_params.tupdate = 0;
    535	del_timer_sync(&q->adapt_timer);
    536	kvfree(q->flows);
    537}
    538
    539static struct Qdisc_ops fq_pie_qdisc_ops __read_mostly = {
    540	.id		= "fq_pie",
    541	.priv_size	= sizeof(struct fq_pie_sched_data),
    542	.enqueue	= fq_pie_qdisc_enqueue,
    543	.dequeue	= fq_pie_qdisc_dequeue,
    544	.peek		= qdisc_peek_dequeued,
    545	.init		= fq_pie_init,
    546	.destroy	= fq_pie_destroy,
    547	.reset		= fq_pie_reset,
    548	.change		= fq_pie_change,
    549	.dump		= fq_pie_dump,
    550	.dump_stats	= fq_pie_dump_stats,
    551	.owner		= THIS_MODULE,
    552};
    553
    554static int __init fq_pie_module_init(void)
    555{
    556	return register_qdisc(&fq_pie_qdisc_ops);
    557}
    558
    559static void __exit fq_pie_module_exit(void)
    560{
    561	unregister_qdisc(&fq_pie_qdisc_ops);
    562}
    563
    564module_init(fq_pie_module_init);
    565module_exit(fq_pie_module_exit);
    566
    567MODULE_DESCRIPTION("Flow Queue Proportional Integral controller Enhanced (FQ-PIE)");
    568MODULE_AUTHOR("Mohit P. Tahiliani");
    569MODULE_LICENSE("GPL");