cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sch_hhf.c (22069B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/* net/sched/sch_hhf.c		Heavy-Hitter Filter (HHF)
      3 *
      4 * Copyright (C) 2013 Terry Lam <vtlam@google.com>
      5 * Copyright (C) 2013 Nandita Dukkipati <nanditad@google.com>
      6 */
      7
      8#include <linux/jiffies.h>
      9#include <linux/module.h>
     10#include <linux/skbuff.h>
     11#include <linux/vmalloc.h>
     12#include <linux/siphash.h>
     13#include <net/pkt_sched.h>
     14#include <net/sock.h>
     15
     16/*	Heavy-Hitter Filter (HHF)
     17 *
     18 * Principles :
     19 * Flows are classified into two buckets: non-heavy-hitter and heavy-hitter
     20 * buckets. Initially, a new flow starts as non-heavy-hitter. Once classified
     21 * as heavy-hitter, it is immediately switched to the heavy-hitter bucket.
     22 * The buckets are dequeued by a Weighted Deficit Round Robin (WDRR) scheduler,
     23 * in which the heavy-hitter bucket is served with less weight.
     24 * In other words, non-heavy-hitters (e.g., short bursts of critical traffic)
     25 * are isolated from heavy-hitters (e.g., persistent bulk traffic) and also have
     26 * higher share of bandwidth.
     27 *
     28 * To capture heavy-hitters, we use the "multi-stage filter" algorithm in the
     29 * following paper:
     30 * [EV02] C. Estan and G. Varghese, "New Directions in Traffic Measurement and
     31 * Accounting", in ACM SIGCOMM, 2002.
     32 *
     33 * Conceptually, a multi-stage filter comprises k independent hash functions
     34 * and k counter arrays. Packets are indexed into k counter arrays by k hash
     35 * functions, respectively. The counters are then increased by the packet sizes.
     36 * Therefore,
     37 *    - For a heavy-hitter flow: *all* of its k array counters must be large.
     38 *    - For a non-heavy-hitter flow: some of its k array counters can be large
     39 *      due to hash collision with other small flows; however, with high
     40 *      probability, not *all* k counters are large.
     41 *
     42 * By the design of the multi-stage filter algorithm, the false negative rate
     43 * (heavy-hitters getting away uncaptured) is zero. However, the algorithm is
     44 * susceptible to false positives (non-heavy-hitters mistakenly classified as
     45 * heavy-hitters).
     46 * Therefore, we also implement the following optimizations to reduce false
     47 * positives by avoiding unnecessary increment of the counter values:
     48 *    - Optimization O1: once a heavy-hitter is identified, its bytes are not
     49 *        accounted in the array counters. This technique is called "shielding"
     50 *        in Section 3.3.1 of [EV02].
     51 *    - Optimization O2: conservative update of counters
     52 *                       (Section 3.3.2 of [EV02]),
     53 *        New counter value = max {old counter value,
     54 *                                 smallest counter value + packet bytes}
     55 *
     56 * Finally, we refresh the counters periodically since otherwise the counter
     57 * values will keep accumulating.
     58 *
     59 * Once a flow is classified as heavy-hitter, we also save its per-flow state
     60 * in an exact-matching flow table so that its subsequent packets can be
     61 * dispatched to the heavy-hitter bucket accordingly.
     62 *
     63 *
     64 * At a high level, this qdisc works as follows:
     65 * Given a packet p:
     66 *   - If the flow-id of p (e.g., TCP 5-tuple) is already in the exact-matching
     67 *     heavy-hitter flow table, denoted table T, then send p to the heavy-hitter
     68 *     bucket.
     69 *   - Otherwise, forward p to the multi-stage filter, denoted filter F
     70 *        + If F decides that p belongs to a non-heavy-hitter flow, then send p
     71 *          to the non-heavy-hitter bucket.
     72 *        + Otherwise, if F decides that p belongs to a new heavy-hitter flow,
     73 *          then set up a new flow entry for the flow-id of p in the table T and
     74 *          send p to the heavy-hitter bucket.
     75 *
     76 * In this implementation:
     77 *   - T is a fixed-size hash-table with 1024 entries. Hash collision is
     78 *     resolved by linked-list chaining.
     79 *   - F has four counter arrays, each array containing 1024 32-bit counters.
     80 *     That means 4 * 1024 * 32 bits = 16KB of memory.
     81 *   - Since each array in F contains 1024 counters, 10 bits are sufficient to
     82 *     index into each array.
     83 *     Hence, instead of having four hash functions, we chop the 32-bit
     84 *     skb-hash into three 10-bit chunks, and the remaining 10-bit chunk is
     85 *     computed as XOR sum of those three chunks.
     86 *   - We need to clear the counter arrays periodically; however, directly
     87 *     memsetting 16KB of memory can lead to cache eviction and unwanted delay.
     88 *     So by representing each counter by a valid bit, we only need to reset
     89 *     4K of 1 bit (i.e. 512 bytes) instead of 16KB of memory.
     90 *   - The Deficit Round Robin engine is taken from fq_codel implementation
     91 *     (net/sched/sch_fq_codel.c). Note that wdrr_bucket corresponds to
     92 *     fq_codel_flow in fq_codel implementation.
     93 *
     94 */
     95
     96/* Non-configurable parameters */
     97#define HH_FLOWS_CNT	 1024  /* number of entries in exact-matching table T */
     98#define HHF_ARRAYS_CNT	 4     /* number of arrays in multi-stage filter F */
     99#define HHF_ARRAYS_LEN	 1024  /* number of counters in each array of F */
    100#define HHF_BIT_MASK_LEN 10    /* masking 10 bits */
    101#define HHF_BIT_MASK	 0x3FF /* bitmask of 10 bits */
    102
    103#define WDRR_BUCKET_CNT  2     /* two buckets for Weighted DRR */
    104enum wdrr_bucket_idx {
    105	WDRR_BUCKET_FOR_HH	= 0, /* bucket id for heavy-hitters */
    106	WDRR_BUCKET_FOR_NON_HH	= 1  /* bucket id for non-heavy-hitters */
    107};
    108
    109#define hhf_time_before(a, b)	\
    110	(typecheck(u32, a) && typecheck(u32, b) && ((s32)((a) - (b)) < 0))
    111
    112/* Heavy-hitter per-flow state */
    113struct hh_flow_state {
    114	u32		 hash_id;	/* hash of flow-id (e.g. TCP 5-tuple) */
    115	u32		 hit_timestamp;	/* last time heavy-hitter was seen */
    116	struct list_head flowchain;	/* chaining under hash collision */
    117};
    118
    119/* Weighted Deficit Round Robin (WDRR) scheduler */
    120struct wdrr_bucket {
    121	struct sk_buff	  *head;
    122	struct sk_buff	  *tail;
    123	struct list_head  bucketchain;
    124	int		  deficit;
    125};
    126
    127struct hhf_sched_data {
    128	struct wdrr_bucket buckets[WDRR_BUCKET_CNT];
    129	siphash_key_t	   perturbation;   /* hash perturbation */
    130	u32		   quantum;        /* psched_mtu(qdisc_dev(sch)); */
    131	u32		   drop_overlimit; /* number of times max qdisc packet
    132					    * limit was hit
    133					    */
    134	struct list_head   *hh_flows;       /* table T (currently active HHs) */
    135	u32		   hh_flows_limit;            /* max active HH allocs */
    136	u32		   hh_flows_overlimit; /* num of disallowed HH allocs */
    137	u32		   hh_flows_total_cnt;          /* total admitted HHs */
    138	u32		   hh_flows_current_cnt;        /* total current HHs  */
    139	u32		   *hhf_arrays[HHF_ARRAYS_CNT]; /* HH filter F */
    140	u32		   hhf_arrays_reset_timestamp;  /* last time hhf_arrays
    141							 * was reset
    142							 */
    143	unsigned long	   *hhf_valid_bits[HHF_ARRAYS_CNT]; /* shadow valid bits
    144							     * of hhf_arrays
    145							     */
    146	/* Similar to the "new_flows" vs. "old_flows" concept in fq_codel DRR */
    147	struct list_head   new_buckets; /* list of new buckets */
    148	struct list_head   old_buckets; /* list of old buckets */
    149
    150	/* Configurable HHF parameters */
    151	u32		   hhf_reset_timeout; /* interval to reset counter
    152					       * arrays in filter F
    153					       * (default 40ms)
    154					       */
    155	u32		   hhf_admit_bytes;   /* counter thresh to classify as
    156					       * HH (default 128KB).
    157					       * With these default values,
    158					       * 128KB / 40ms = 25 Mbps
    159					       * i.e., we expect to capture HHs
    160					       * sending > 25 Mbps.
    161					       */
    162	u32		   hhf_evict_timeout; /* aging threshold to evict idle
    163					       * HHs out of table T. This should
    164					       * be large enough to avoid
    165					       * reordering during HH eviction.
    166					       * (default 1s)
    167					       */
    168	u32		   hhf_non_hh_weight; /* WDRR weight for non-HHs
    169					       * (default 2,
    170					       *  i.e., non-HH : HH = 2 : 1)
    171					       */
    172};
    173
    174static u32 hhf_time_stamp(void)
    175{
    176	return jiffies;
    177}
    178
    179/* Looks up a heavy-hitter flow in a chaining list of table T. */
    180static struct hh_flow_state *seek_list(const u32 hash,
    181				       struct list_head *head,
    182				       struct hhf_sched_data *q)
    183{
    184	struct hh_flow_state *flow, *next;
    185	u32 now = hhf_time_stamp();
    186
    187	if (list_empty(head))
    188		return NULL;
    189
    190	list_for_each_entry_safe(flow, next, head, flowchain) {
    191		u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
    192
    193		if (hhf_time_before(prev, now)) {
    194			/* Delete expired heavy-hitters, but preserve one entry
    195			 * to avoid kzalloc() when next time this slot is hit.
    196			 */
    197			if (list_is_last(&flow->flowchain, head))
    198				return NULL;
    199			list_del(&flow->flowchain);
    200			kfree(flow);
    201			q->hh_flows_current_cnt--;
    202		} else if (flow->hash_id == hash) {
    203			return flow;
    204		}
    205	}
    206	return NULL;
    207}
    208
    209/* Returns a flow state entry for a new heavy-hitter.  Either reuses an expired
    210 * entry or dynamically alloc a new entry.
    211 */
    212static struct hh_flow_state *alloc_new_hh(struct list_head *head,
    213					  struct hhf_sched_data *q)
    214{
    215	struct hh_flow_state *flow;
    216	u32 now = hhf_time_stamp();
    217
    218	if (!list_empty(head)) {
    219		/* Find an expired heavy-hitter flow entry. */
    220		list_for_each_entry(flow, head, flowchain) {
    221			u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
    222
    223			if (hhf_time_before(prev, now))
    224				return flow;
    225		}
    226	}
    227
    228	if (q->hh_flows_current_cnt >= q->hh_flows_limit) {
    229		q->hh_flows_overlimit++;
    230		return NULL;
    231	}
    232	/* Create new entry. */
    233	flow = kzalloc(sizeof(struct hh_flow_state), GFP_ATOMIC);
    234	if (!flow)
    235		return NULL;
    236
    237	q->hh_flows_current_cnt++;
    238	INIT_LIST_HEAD(&flow->flowchain);
    239	list_add_tail(&flow->flowchain, head);
    240
    241	return flow;
    242}
    243
    244/* Assigns packets to WDRR buckets.  Implements a multi-stage filter to
    245 * classify heavy-hitters.
    246 */
    247static enum wdrr_bucket_idx hhf_classify(struct sk_buff *skb, struct Qdisc *sch)
    248{
    249	struct hhf_sched_data *q = qdisc_priv(sch);
    250	u32 tmp_hash, hash;
    251	u32 xorsum, filter_pos[HHF_ARRAYS_CNT], flow_pos;
    252	struct hh_flow_state *flow;
    253	u32 pkt_len, min_hhf_val;
    254	int i;
    255	u32 prev;
    256	u32 now = hhf_time_stamp();
    257
    258	/* Reset the HHF counter arrays if this is the right time. */
    259	prev = q->hhf_arrays_reset_timestamp + q->hhf_reset_timeout;
    260	if (hhf_time_before(prev, now)) {
    261		for (i = 0; i < HHF_ARRAYS_CNT; i++)
    262			bitmap_zero(q->hhf_valid_bits[i], HHF_ARRAYS_LEN);
    263		q->hhf_arrays_reset_timestamp = now;
    264	}
    265
    266	/* Get hashed flow-id of the skb. */
    267	hash = skb_get_hash_perturb(skb, &q->perturbation);
    268
    269	/* Check if this packet belongs to an already established HH flow. */
    270	flow_pos = hash & HHF_BIT_MASK;
    271	flow = seek_list(hash, &q->hh_flows[flow_pos], q);
    272	if (flow) { /* found its HH flow */
    273		flow->hit_timestamp = now;
    274		return WDRR_BUCKET_FOR_HH;
    275	}
    276
    277	/* Now pass the packet through the multi-stage filter. */
    278	tmp_hash = hash;
    279	xorsum = 0;
    280	for (i = 0; i < HHF_ARRAYS_CNT - 1; i++) {
    281		/* Split the skb_hash into three 10-bit chunks. */
    282		filter_pos[i] = tmp_hash & HHF_BIT_MASK;
    283		xorsum ^= filter_pos[i];
    284		tmp_hash >>= HHF_BIT_MASK_LEN;
    285	}
    286	/* The last chunk is computed as XOR sum of other chunks. */
    287	filter_pos[HHF_ARRAYS_CNT - 1] = xorsum ^ tmp_hash;
    288
    289	pkt_len = qdisc_pkt_len(skb);
    290	min_hhf_val = ~0U;
    291	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
    292		u32 val;
    293
    294		if (!test_bit(filter_pos[i], q->hhf_valid_bits[i])) {
    295			q->hhf_arrays[i][filter_pos[i]] = 0;
    296			__set_bit(filter_pos[i], q->hhf_valid_bits[i]);
    297		}
    298
    299		val = q->hhf_arrays[i][filter_pos[i]] + pkt_len;
    300		if (min_hhf_val > val)
    301			min_hhf_val = val;
    302	}
    303
    304	/* Found a new HH iff all counter values > HH admit threshold. */
    305	if (min_hhf_val > q->hhf_admit_bytes) {
    306		/* Just captured a new heavy-hitter. */
    307		flow = alloc_new_hh(&q->hh_flows[flow_pos], q);
    308		if (!flow) /* memory alloc problem */
    309			return WDRR_BUCKET_FOR_NON_HH;
    310		flow->hash_id = hash;
    311		flow->hit_timestamp = now;
    312		q->hh_flows_total_cnt++;
    313
    314		/* By returning without updating counters in q->hhf_arrays,
    315		 * we implicitly implement "shielding" (see Optimization O1).
    316		 */
    317		return WDRR_BUCKET_FOR_HH;
    318	}
    319
    320	/* Conservative update of HHF arrays (see Optimization O2). */
    321	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
    322		if (q->hhf_arrays[i][filter_pos[i]] < min_hhf_val)
    323			q->hhf_arrays[i][filter_pos[i]] = min_hhf_val;
    324	}
    325	return WDRR_BUCKET_FOR_NON_HH;
    326}
    327
    328/* Removes one skb from head of bucket. */
    329static struct sk_buff *dequeue_head(struct wdrr_bucket *bucket)
    330{
    331	struct sk_buff *skb = bucket->head;
    332
    333	bucket->head = skb->next;
    334	skb_mark_not_on_list(skb);
    335	return skb;
    336}
    337
    338/* Tail-adds skb to bucket. */
    339static void bucket_add(struct wdrr_bucket *bucket, struct sk_buff *skb)
    340{
    341	if (bucket->head == NULL)
    342		bucket->head = skb;
    343	else
    344		bucket->tail->next = skb;
    345	bucket->tail = skb;
    346	skb->next = NULL;
    347}
    348
    349static unsigned int hhf_drop(struct Qdisc *sch, struct sk_buff **to_free)
    350{
    351	struct hhf_sched_data *q = qdisc_priv(sch);
    352	struct wdrr_bucket *bucket;
    353
    354	/* Always try to drop from heavy-hitters first. */
    355	bucket = &q->buckets[WDRR_BUCKET_FOR_HH];
    356	if (!bucket->head)
    357		bucket = &q->buckets[WDRR_BUCKET_FOR_NON_HH];
    358
    359	if (bucket->head) {
    360		struct sk_buff *skb = dequeue_head(bucket);
    361
    362		sch->q.qlen--;
    363		qdisc_qstats_backlog_dec(sch, skb);
    364		qdisc_drop(skb, sch, to_free);
    365	}
    366
    367	/* Return id of the bucket from which the packet was dropped. */
    368	return bucket - q->buckets;
    369}
    370
    371static int hhf_enqueue(struct sk_buff *skb, struct Qdisc *sch,
    372		       struct sk_buff **to_free)
    373{
    374	struct hhf_sched_data *q = qdisc_priv(sch);
    375	enum wdrr_bucket_idx idx;
    376	struct wdrr_bucket *bucket;
    377	unsigned int prev_backlog;
    378
    379	idx = hhf_classify(skb, sch);
    380
    381	bucket = &q->buckets[idx];
    382	bucket_add(bucket, skb);
    383	qdisc_qstats_backlog_inc(sch, skb);
    384
    385	if (list_empty(&bucket->bucketchain)) {
    386		unsigned int weight;
    387
    388		/* The logic of new_buckets vs. old_buckets is the same as
    389		 * new_flows vs. old_flows in the implementation of fq_codel,
    390		 * i.e., short bursts of non-HHs should have strict priority.
    391		 */
    392		if (idx == WDRR_BUCKET_FOR_HH) {
    393			/* Always move heavy-hitters to old bucket. */
    394			weight = 1;
    395			list_add_tail(&bucket->bucketchain, &q->old_buckets);
    396		} else {
    397			weight = q->hhf_non_hh_weight;
    398			list_add_tail(&bucket->bucketchain, &q->new_buckets);
    399		}
    400		bucket->deficit = weight * q->quantum;
    401	}
    402	if (++sch->q.qlen <= sch->limit)
    403		return NET_XMIT_SUCCESS;
    404
    405	prev_backlog = sch->qstats.backlog;
    406	q->drop_overlimit++;
    407	/* Return Congestion Notification only if we dropped a packet from this
    408	 * bucket.
    409	 */
    410	if (hhf_drop(sch, to_free) == idx)
    411		return NET_XMIT_CN;
    412
    413	/* As we dropped a packet, better let upper stack know this. */
    414	qdisc_tree_reduce_backlog(sch, 1, prev_backlog - sch->qstats.backlog);
    415	return NET_XMIT_SUCCESS;
    416}
    417
    418static struct sk_buff *hhf_dequeue(struct Qdisc *sch)
    419{
    420	struct hhf_sched_data *q = qdisc_priv(sch);
    421	struct sk_buff *skb = NULL;
    422	struct wdrr_bucket *bucket;
    423	struct list_head *head;
    424
    425begin:
    426	head = &q->new_buckets;
    427	if (list_empty(head)) {
    428		head = &q->old_buckets;
    429		if (list_empty(head))
    430			return NULL;
    431	}
    432	bucket = list_first_entry(head, struct wdrr_bucket, bucketchain);
    433
    434	if (bucket->deficit <= 0) {
    435		int weight = (bucket - q->buckets == WDRR_BUCKET_FOR_HH) ?
    436			      1 : q->hhf_non_hh_weight;
    437
    438		bucket->deficit += weight * q->quantum;
    439		list_move_tail(&bucket->bucketchain, &q->old_buckets);
    440		goto begin;
    441	}
    442
    443	if (bucket->head) {
    444		skb = dequeue_head(bucket);
    445		sch->q.qlen--;
    446		qdisc_qstats_backlog_dec(sch, skb);
    447	}
    448
    449	if (!skb) {
    450		/* Force a pass through old_buckets to prevent starvation. */
    451		if ((head == &q->new_buckets) && !list_empty(&q->old_buckets))
    452			list_move_tail(&bucket->bucketchain, &q->old_buckets);
    453		else
    454			list_del_init(&bucket->bucketchain);
    455		goto begin;
    456	}
    457	qdisc_bstats_update(sch, skb);
    458	bucket->deficit -= qdisc_pkt_len(skb);
    459
    460	return skb;
    461}
    462
    463static void hhf_reset(struct Qdisc *sch)
    464{
    465	struct sk_buff *skb;
    466
    467	while ((skb = hhf_dequeue(sch)) != NULL)
    468		rtnl_kfree_skbs(skb, skb);
    469}
    470
    471static void hhf_destroy(struct Qdisc *sch)
    472{
    473	int i;
    474	struct hhf_sched_data *q = qdisc_priv(sch);
    475
    476	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
    477		kvfree(q->hhf_arrays[i]);
    478		kvfree(q->hhf_valid_bits[i]);
    479	}
    480
    481	if (!q->hh_flows)
    482		return;
    483
    484	for (i = 0; i < HH_FLOWS_CNT; i++) {
    485		struct hh_flow_state *flow, *next;
    486		struct list_head *head = &q->hh_flows[i];
    487
    488		if (list_empty(head))
    489			continue;
    490		list_for_each_entry_safe(flow, next, head, flowchain) {
    491			list_del(&flow->flowchain);
    492			kfree(flow);
    493		}
    494	}
    495	kvfree(q->hh_flows);
    496}
    497
    498static const struct nla_policy hhf_policy[TCA_HHF_MAX + 1] = {
    499	[TCA_HHF_BACKLOG_LIMIT]	 = { .type = NLA_U32 },
    500	[TCA_HHF_QUANTUM]	 = { .type = NLA_U32 },
    501	[TCA_HHF_HH_FLOWS_LIMIT] = { .type = NLA_U32 },
    502	[TCA_HHF_RESET_TIMEOUT]	 = { .type = NLA_U32 },
    503	[TCA_HHF_ADMIT_BYTES]	 = { .type = NLA_U32 },
    504	[TCA_HHF_EVICT_TIMEOUT]	 = { .type = NLA_U32 },
    505	[TCA_HHF_NON_HH_WEIGHT]	 = { .type = NLA_U32 },
    506};
    507
    508static int hhf_change(struct Qdisc *sch, struct nlattr *opt,
    509		      struct netlink_ext_ack *extack)
    510{
    511	struct hhf_sched_data *q = qdisc_priv(sch);
    512	struct nlattr *tb[TCA_HHF_MAX + 1];
    513	unsigned int qlen, prev_backlog;
    514	int err;
    515	u64 non_hh_quantum;
    516	u32 new_quantum = q->quantum;
    517	u32 new_hhf_non_hh_weight = q->hhf_non_hh_weight;
    518
    519	if (!opt)
    520		return -EINVAL;
    521
    522	err = nla_parse_nested_deprecated(tb, TCA_HHF_MAX, opt, hhf_policy,
    523					  NULL);
    524	if (err < 0)
    525		return err;
    526
    527	if (tb[TCA_HHF_QUANTUM])
    528		new_quantum = nla_get_u32(tb[TCA_HHF_QUANTUM]);
    529
    530	if (tb[TCA_HHF_NON_HH_WEIGHT])
    531		new_hhf_non_hh_weight = nla_get_u32(tb[TCA_HHF_NON_HH_WEIGHT]);
    532
    533	non_hh_quantum = (u64)new_quantum * new_hhf_non_hh_weight;
    534	if (non_hh_quantum == 0 || non_hh_quantum > INT_MAX)
    535		return -EINVAL;
    536
    537	sch_tree_lock(sch);
    538
    539	if (tb[TCA_HHF_BACKLOG_LIMIT])
    540		sch->limit = nla_get_u32(tb[TCA_HHF_BACKLOG_LIMIT]);
    541
    542	q->quantum = new_quantum;
    543	q->hhf_non_hh_weight = new_hhf_non_hh_weight;
    544
    545	if (tb[TCA_HHF_HH_FLOWS_LIMIT])
    546		q->hh_flows_limit = nla_get_u32(tb[TCA_HHF_HH_FLOWS_LIMIT]);
    547
    548	if (tb[TCA_HHF_RESET_TIMEOUT]) {
    549		u32 us = nla_get_u32(tb[TCA_HHF_RESET_TIMEOUT]);
    550
    551		q->hhf_reset_timeout = usecs_to_jiffies(us);
    552	}
    553
    554	if (tb[TCA_HHF_ADMIT_BYTES])
    555		q->hhf_admit_bytes = nla_get_u32(tb[TCA_HHF_ADMIT_BYTES]);
    556
    557	if (tb[TCA_HHF_EVICT_TIMEOUT]) {
    558		u32 us = nla_get_u32(tb[TCA_HHF_EVICT_TIMEOUT]);
    559
    560		q->hhf_evict_timeout = usecs_to_jiffies(us);
    561	}
    562
    563	qlen = sch->q.qlen;
    564	prev_backlog = sch->qstats.backlog;
    565	while (sch->q.qlen > sch->limit) {
    566		struct sk_buff *skb = hhf_dequeue(sch);
    567
    568		rtnl_kfree_skbs(skb, skb);
    569	}
    570	qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen,
    571				  prev_backlog - sch->qstats.backlog);
    572
    573	sch_tree_unlock(sch);
    574	return 0;
    575}
    576
    577static int hhf_init(struct Qdisc *sch, struct nlattr *opt,
    578		    struct netlink_ext_ack *extack)
    579{
    580	struct hhf_sched_data *q = qdisc_priv(sch);
    581	int i;
    582
    583	sch->limit = 1000;
    584	q->quantum = psched_mtu(qdisc_dev(sch));
    585	get_random_bytes(&q->perturbation, sizeof(q->perturbation));
    586	INIT_LIST_HEAD(&q->new_buckets);
    587	INIT_LIST_HEAD(&q->old_buckets);
    588
    589	/* Configurable HHF parameters */
    590	q->hhf_reset_timeout = HZ / 25; /* 40  ms */
    591	q->hhf_admit_bytes = 131072;    /* 128 KB */
    592	q->hhf_evict_timeout = HZ;      /* 1  sec */
    593	q->hhf_non_hh_weight = 2;
    594
    595	if (opt) {
    596		int err = hhf_change(sch, opt, extack);
    597
    598		if (err)
    599			return err;
    600	}
    601
    602	if (!q->hh_flows) {
    603		/* Initialize heavy-hitter flow table. */
    604		q->hh_flows = kvcalloc(HH_FLOWS_CNT, sizeof(struct list_head),
    605				       GFP_KERNEL);
    606		if (!q->hh_flows)
    607			return -ENOMEM;
    608		for (i = 0; i < HH_FLOWS_CNT; i++)
    609			INIT_LIST_HEAD(&q->hh_flows[i]);
    610
    611		/* Cap max active HHs at twice len of hh_flows table. */
    612		q->hh_flows_limit = 2 * HH_FLOWS_CNT;
    613		q->hh_flows_overlimit = 0;
    614		q->hh_flows_total_cnt = 0;
    615		q->hh_flows_current_cnt = 0;
    616
    617		/* Initialize heavy-hitter filter arrays. */
    618		for (i = 0; i < HHF_ARRAYS_CNT; i++) {
    619			q->hhf_arrays[i] = kvcalloc(HHF_ARRAYS_LEN,
    620						    sizeof(u32),
    621						    GFP_KERNEL);
    622			if (!q->hhf_arrays[i]) {
    623				/* Note: hhf_destroy() will be called
    624				 * by our caller.
    625				 */
    626				return -ENOMEM;
    627			}
    628		}
    629		q->hhf_arrays_reset_timestamp = hhf_time_stamp();
    630
    631		/* Initialize valid bits of heavy-hitter filter arrays. */
    632		for (i = 0; i < HHF_ARRAYS_CNT; i++) {
    633			q->hhf_valid_bits[i] = kvzalloc(HHF_ARRAYS_LEN /
    634							  BITS_PER_BYTE, GFP_KERNEL);
    635			if (!q->hhf_valid_bits[i]) {
    636				/* Note: hhf_destroy() will be called
    637				 * by our caller.
    638				 */
    639				return -ENOMEM;
    640			}
    641		}
    642
    643		/* Initialize Weighted DRR buckets. */
    644		for (i = 0; i < WDRR_BUCKET_CNT; i++) {
    645			struct wdrr_bucket *bucket = q->buckets + i;
    646
    647			INIT_LIST_HEAD(&bucket->bucketchain);
    648		}
    649	}
    650
    651	return 0;
    652}
    653
    654static int hhf_dump(struct Qdisc *sch, struct sk_buff *skb)
    655{
    656	struct hhf_sched_data *q = qdisc_priv(sch);
    657	struct nlattr *opts;
    658
    659	opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
    660	if (opts == NULL)
    661		goto nla_put_failure;
    662
    663	if (nla_put_u32(skb, TCA_HHF_BACKLOG_LIMIT, sch->limit) ||
    664	    nla_put_u32(skb, TCA_HHF_QUANTUM, q->quantum) ||
    665	    nla_put_u32(skb, TCA_HHF_HH_FLOWS_LIMIT, q->hh_flows_limit) ||
    666	    nla_put_u32(skb, TCA_HHF_RESET_TIMEOUT,
    667			jiffies_to_usecs(q->hhf_reset_timeout)) ||
    668	    nla_put_u32(skb, TCA_HHF_ADMIT_BYTES, q->hhf_admit_bytes) ||
    669	    nla_put_u32(skb, TCA_HHF_EVICT_TIMEOUT,
    670			jiffies_to_usecs(q->hhf_evict_timeout)) ||
    671	    nla_put_u32(skb, TCA_HHF_NON_HH_WEIGHT, q->hhf_non_hh_weight))
    672		goto nla_put_failure;
    673
    674	return nla_nest_end(skb, opts);
    675
    676nla_put_failure:
    677	return -1;
    678}
    679
    680static int hhf_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
    681{
    682	struct hhf_sched_data *q = qdisc_priv(sch);
    683	struct tc_hhf_xstats st = {
    684		.drop_overlimit = q->drop_overlimit,
    685		.hh_overlimit	= q->hh_flows_overlimit,
    686		.hh_tot_count	= q->hh_flows_total_cnt,
    687		.hh_cur_count	= q->hh_flows_current_cnt,
    688	};
    689
    690	return gnet_stats_copy_app(d, &st, sizeof(st));
    691}
    692
    693static struct Qdisc_ops hhf_qdisc_ops __read_mostly = {
    694	.id		=	"hhf",
    695	.priv_size	=	sizeof(struct hhf_sched_data),
    696
    697	.enqueue	=	hhf_enqueue,
    698	.dequeue	=	hhf_dequeue,
    699	.peek		=	qdisc_peek_dequeued,
    700	.init		=	hhf_init,
    701	.reset		=	hhf_reset,
    702	.destroy	=	hhf_destroy,
    703	.change		=	hhf_change,
    704	.dump		=	hhf_dump,
    705	.dump_stats	=	hhf_dump_stats,
    706	.owner		=	THIS_MODULE,
    707};
    708
    709static int __init hhf_module_init(void)
    710{
    711	return register_qdisc(&hhf_qdisc_ops);
    712}
    713
    714static void __exit hhf_module_exit(void)
    715{
    716	unregister_qdisc(&hhf_qdisc_ops);
    717}
    718
    719module_init(hhf_module_init)
    720module_exit(hhf_module_exit)
    721MODULE_AUTHOR("Terry Lam");
    722MODULE_AUTHOR("Nandita Dukkipati");
    723MODULE_LICENSE("GPL");
    724MODULE_DESCRIPTION("Heavy-Hitter Filter (HHF)");