cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

auth.c (27261B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/* SCTP kernel implementation
      3 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
      4 *
      5 * This file is part of the SCTP kernel implementation
      6 *
      7 * Please send any bug reports or fixes you make to the
      8 * email address(es):
      9 *    lksctp developers <linux-sctp@vger.kernel.org>
     10 *
     11 * Written or modified by:
     12 *   Vlad Yasevich     <vladislav.yasevich@hp.com>
     13 */
     14
     15#include <crypto/hash.h>
     16#include <linux/slab.h>
     17#include <linux/types.h>
     18#include <linux/scatterlist.h>
     19#include <net/sctp/sctp.h>
     20#include <net/sctp/auth.h>
     21
     22static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
     23	{
     24		/* id 0 is reserved.  as all 0 */
     25		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
     26	},
     27	{
     28		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
     29		.hmac_name = "hmac(sha1)",
     30		.hmac_len = SCTP_SHA1_SIG_SIZE,
     31	},
     32	{
     33		/* id 2 is reserved as well */
     34		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
     35	},
     36#if IS_ENABLED(CONFIG_CRYPTO_SHA256)
     37	{
     38		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
     39		.hmac_name = "hmac(sha256)",
     40		.hmac_len = SCTP_SHA256_SIG_SIZE,
     41	}
     42#endif
     43};
     44
     45
     46void sctp_auth_key_put(struct sctp_auth_bytes *key)
     47{
     48	if (!key)
     49		return;
     50
     51	if (refcount_dec_and_test(&key->refcnt)) {
     52		kfree_sensitive(key);
     53		SCTP_DBG_OBJCNT_DEC(keys);
     54	}
     55}
     56
     57/* Create a new key structure of a given length */
     58static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
     59{
     60	struct sctp_auth_bytes *key;
     61
     62	/* Verify that we are not going to overflow INT_MAX */
     63	if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
     64		return NULL;
     65
     66	/* Allocate the shared key */
     67	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
     68	if (!key)
     69		return NULL;
     70
     71	key->len = key_len;
     72	refcount_set(&key->refcnt, 1);
     73	SCTP_DBG_OBJCNT_INC(keys);
     74
     75	return key;
     76}
     77
     78/* Create a new shared key container with a give key id */
     79struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
     80{
     81	struct sctp_shared_key *new;
     82
     83	/* Allocate the shared key container */
     84	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
     85	if (!new)
     86		return NULL;
     87
     88	INIT_LIST_HEAD(&new->key_list);
     89	refcount_set(&new->refcnt, 1);
     90	new->key_id = key_id;
     91
     92	return new;
     93}
     94
     95/* Free the shared key structure */
     96static void sctp_auth_shkey_destroy(struct sctp_shared_key *sh_key)
     97{
     98	BUG_ON(!list_empty(&sh_key->key_list));
     99	sctp_auth_key_put(sh_key->key);
    100	sh_key->key = NULL;
    101	kfree(sh_key);
    102}
    103
    104void sctp_auth_shkey_release(struct sctp_shared_key *sh_key)
    105{
    106	if (refcount_dec_and_test(&sh_key->refcnt))
    107		sctp_auth_shkey_destroy(sh_key);
    108}
    109
    110void sctp_auth_shkey_hold(struct sctp_shared_key *sh_key)
    111{
    112	refcount_inc(&sh_key->refcnt);
    113}
    114
    115/* Destroy the entire key list.  This is done during the
    116 * associon and endpoint free process.
    117 */
    118void sctp_auth_destroy_keys(struct list_head *keys)
    119{
    120	struct sctp_shared_key *ep_key;
    121	struct sctp_shared_key *tmp;
    122
    123	if (list_empty(keys))
    124		return;
    125
    126	key_for_each_safe(ep_key, tmp, keys) {
    127		list_del_init(&ep_key->key_list);
    128		sctp_auth_shkey_release(ep_key);
    129	}
    130}
    131
    132/* Compare two byte vectors as numbers.  Return values
    133 * are:
    134 * 	  0 - vectors are equal
    135 * 	< 0 - vector 1 is smaller than vector2
    136 * 	> 0 - vector 1 is greater than vector2
    137 *
    138 * Algorithm is:
    139 * 	This is performed by selecting the numerically smaller key vector...
    140 *	If the key vectors are equal as numbers but differ in length ...
    141 *	the shorter vector is considered smaller
    142 *
    143 * Examples (with small values):
    144 * 	000123456789 > 123456789 (first number is longer)
    145 * 	000123456789 < 234567891 (second number is larger numerically)
    146 * 	123456789 > 2345678 	 (first number is both larger & longer)
    147 */
    148static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
    149			      struct sctp_auth_bytes *vector2)
    150{
    151	int diff;
    152	int i;
    153	const __u8 *longer;
    154
    155	diff = vector1->len - vector2->len;
    156	if (diff) {
    157		longer = (diff > 0) ? vector1->data : vector2->data;
    158
    159		/* Check to see if the longer number is
    160		 * lead-zero padded.  If it is not, it
    161		 * is automatically larger numerically.
    162		 */
    163		for (i = 0; i < abs(diff); i++) {
    164			if (longer[i] != 0)
    165				return diff;
    166		}
    167	}
    168
    169	/* lengths are the same, compare numbers */
    170	return memcmp(vector1->data, vector2->data, vector1->len);
    171}
    172
    173/*
    174 * Create a key vector as described in SCTP-AUTH, Section 6.1
    175 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
    176 *    parameter sent by each endpoint are concatenated as byte vectors.
    177 *    These parameters include the parameter type, parameter length, and
    178 *    the parameter value, but padding is omitted; all padding MUST be
    179 *    removed from this concatenation before proceeding with further
    180 *    computation of keys.  Parameters which were not sent are simply
    181 *    omitted from the concatenation process.  The resulting two vectors
    182 *    are called the two key vectors.
    183 */
    184static struct sctp_auth_bytes *sctp_auth_make_key_vector(
    185			struct sctp_random_param *random,
    186			struct sctp_chunks_param *chunks,
    187			struct sctp_hmac_algo_param *hmacs,
    188			gfp_t gfp)
    189{
    190	struct sctp_auth_bytes *new;
    191	__u32	len;
    192	__u32	offset = 0;
    193	__u16	random_len, hmacs_len, chunks_len = 0;
    194
    195	random_len = ntohs(random->param_hdr.length);
    196	hmacs_len = ntohs(hmacs->param_hdr.length);
    197	if (chunks)
    198		chunks_len = ntohs(chunks->param_hdr.length);
    199
    200	len = random_len + hmacs_len + chunks_len;
    201
    202	new = sctp_auth_create_key(len, gfp);
    203	if (!new)
    204		return NULL;
    205
    206	memcpy(new->data, random, random_len);
    207	offset += random_len;
    208
    209	if (chunks) {
    210		memcpy(new->data + offset, chunks, chunks_len);
    211		offset += chunks_len;
    212	}
    213
    214	memcpy(new->data + offset, hmacs, hmacs_len);
    215
    216	return new;
    217}
    218
    219
    220/* Make a key vector based on our local parameters */
    221static struct sctp_auth_bytes *sctp_auth_make_local_vector(
    222				    const struct sctp_association *asoc,
    223				    gfp_t gfp)
    224{
    225	return sctp_auth_make_key_vector(
    226			(struct sctp_random_param *)asoc->c.auth_random,
    227			(struct sctp_chunks_param *)asoc->c.auth_chunks,
    228			(struct sctp_hmac_algo_param *)asoc->c.auth_hmacs, gfp);
    229}
    230
    231/* Make a key vector based on peer's parameters */
    232static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
    233				    const struct sctp_association *asoc,
    234				    gfp_t gfp)
    235{
    236	return sctp_auth_make_key_vector(asoc->peer.peer_random,
    237					 asoc->peer.peer_chunks,
    238					 asoc->peer.peer_hmacs,
    239					 gfp);
    240}
    241
    242
    243/* Set the value of the association shared key base on the parameters
    244 * given.  The algorithm is:
    245 *    From the endpoint pair shared keys and the key vectors the
    246 *    association shared keys are computed.  This is performed by selecting
    247 *    the numerically smaller key vector and concatenating it to the
    248 *    endpoint pair shared key, and then concatenating the numerically
    249 *    larger key vector to that.  The result of the concatenation is the
    250 *    association shared key.
    251 */
    252static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
    253			struct sctp_shared_key *ep_key,
    254			struct sctp_auth_bytes *first_vector,
    255			struct sctp_auth_bytes *last_vector,
    256			gfp_t gfp)
    257{
    258	struct sctp_auth_bytes *secret;
    259	__u32 offset = 0;
    260	__u32 auth_len;
    261
    262	auth_len = first_vector->len + last_vector->len;
    263	if (ep_key->key)
    264		auth_len += ep_key->key->len;
    265
    266	secret = sctp_auth_create_key(auth_len, gfp);
    267	if (!secret)
    268		return NULL;
    269
    270	if (ep_key->key) {
    271		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
    272		offset += ep_key->key->len;
    273	}
    274
    275	memcpy(secret->data + offset, first_vector->data, first_vector->len);
    276	offset += first_vector->len;
    277
    278	memcpy(secret->data + offset, last_vector->data, last_vector->len);
    279
    280	return secret;
    281}
    282
    283/* Create an association shared key.  Follow the algorithm
    284 * described in SCTP-AUTH, Section 6.1
    285 */
    286static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
    287				 const struct sctp_association *asoc,
    288				 struct sctp_shared_key *ep_key,
    289				 gfp_t gfp)
    290{
    291	struct sctp_auth_bytes *local_key_vector;
    292	struct sctp_auth_bytes *peer_key_vector;
    293	struct sctp_auth_bytes	*first_vector,
    294				*last_vector;
    295	struct sctp_auth_bytes	*secret = NULL;
    296	int	cmp;
    297
    298
    299	/* Now we need to build the key vectors
    300	 * SCTP-AUTH , Section 6.1
    301	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
    302	 *    parameter sent by each endpoint are concatenated as byte vectors.
    303	 *    These parameters include the parameter type, parameter length, and
    304	 *    the parameter value, but padding is omitted; all padding MUST be
    305	 *    removed from this concatenation before proceeding with further
    306	 *    computation of keys.  Parameters which were not sent are simply
    307	 *    omitted from the concatenation process.  The resulting two vectors
    308	 *    are called the two key vectors.
    309	 */
    310
    311	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
    312	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
    313
    314	if (!peer_key_vector || !local_key_vector)
    315		goto out;
    316
    317	/* Figure out the order in which the key_vectors will be
    318	 * added to the endpoint shared key.
    319	 * SCTP-AUTH, Section 6.1:
    320	 *   This is performed by selecting the numerically smaller key
    321	 *   vector and concatenating it to the endpoint pair shared
    322	 *   key, and then concatenating the numerically larger key
    323	 *   vector to that.  If the key vectors are equal as numbers
    324	 *   but differ in length, then the concatenation order is the
    325	 *   endpoint shared key, followed by the shorter key vector,
    326	 *   followed by the longer key vector.  Otherwise, the key
    327	 *   vectors are identical, and may be concatenated to the
    328	 *   endpoint pair key in any order.
    329	 */
    330	cmp = sctp_auth_compare_vectors(local_key_vector,
    331					peer_key_vector);
    332	if (cmp < 0) {
    333		first_vector = local_key_vector;
    334		last_vector = peer_key_vector;
    335	} else {
    336		first_vector = peer_key_vector;
    337		last_vector = local_key_vector;
    338	}
    339
    340	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
    341					    gfp);
    342out:
    343	sctp_auth_key_put(local_key_vector);
    344	sctp_auth_key_put(peer_key_vector);
    345
    346	return secret;
    347}
    348
    349/*
    350 * Populate the association overlay list with the list
    351 * from the endpoint.
    352 */
    353int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
    354				struct sctp_association *asoc,
    355				gfp_t gfp)
    356{
    357	struct sctp_shared_key *sh_key;
    358	struct sctp_shared_key *new;
    359
    360	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
    361
    362	key_for_each(sh_key, &ep->endpoint_shared_keys) {
    363		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
    364		if (!new)
    365			goto nomem;
    366
    367		new->key = sh_key->key;
    368		sctp_auth_key_hold(new->key);
    369		list_add(&new->key_list, &asoc->endpoint_shared_keys);
    370	}
    371
    372	return 0;
    373
    374nomem:
    375	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
    376	return -ENOMEM;
    377}
    378
    379
    380/* Public interface to create the association shared key.
    381 * See code above for the algorithm.
    382 */
    383int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
    384{
    385	struct sctp_auth_bytes	*secret;
    386	struct sctp_shared_key *ep_key;
    387	struct sctp_chunk *chunk;
    388
    389	/* If we don't support AUTH, or peer is not capable
    390	 * we don't need to do anything.
    391	 */
    392	if (!asoc->peer.auth_capable)
    393		return 0;
    394
    395	/* If the key_id is non-zero and we couldn't find an
    396	 * endpoint pair shared key, we can't compute the
    397	 * secret.
    398	 * For key_id 0, endpoint pair shared key is a NULL key.
    399	 */
    400	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
    401	BUG_ON(!ep_key);
    402
    403	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
    404	if (!secret)
    405		return -ENOMEM;
    406
    407	sctp_auth_key_put(asoc->asoc_shared_key);
    408	asoc->asoc_shared_key = secret;
    409	asoc->shkey = ep_key;
    410
    411	/* Update send queue in case any chunk already in there now
    412	 * needs authenticating
    413	 */
    414	list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
    415		if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc)) {
    416			chunk->auth = 1;
    417			if (!chunk->shkey) {
    418				chunk->shkey = asoc->shkey;
    419				sctp_auth_shkey_hold(chunk->shkey);
    420			}
    421		}
    422	}
    423
    424	return 0;
    425}
    426
    427
    428/* Find the endpoint pair shared key based on the key_id */
    429struct sctp_shared_key *sctp_auth_get_shkey(
    430				const struct sctp_association *asoc,
    431				__u16 key_id)
    432{
    433	struct sctp_shared_key *key;
    434
    435	/* First search associations set of endpoint pair shared keys */
    436	key_for_each(key, &asoc->endpoint_shared_keys) {
    437		if (key->key_id == key_id) {
    438			if (!key->deactivated)
    439				return key;
    440			break;
    441		}
    442	}
    443
    444	return NULL;
    445}
    446
    447/*
    448 * Initialize all the possible digest transforms that we can use.  Right
    449 * now, the supported digests are SHA1 and SHA256.  We do this here once
    450 * because of the restrictiong that transforms may only be allocated in
    451 * user context.  This forces us to pre-allocated all possible transforms
    452 * at the endpoint init time.
    453 */
    454int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
    455{
    456	struct crypto_shash *tfm = NULL;
    457	__u16   id;
    458
    459	/* If the transforms are already allocated, we are done */
    460	if (ep->auth_hmacs)
    461		return 0;
    462
    463	/* Allocated the array of pointers to transorms */
    464	ep->auth_hmacs = kcalloc(SCTP_AUTH_NUM_HMACS,
    465				 sizeof(struct crypto_shash *),
    466				 gfp);
    467	if (!ep->auth_hmacs)
    468		return -ENOMEM;
    469
    470	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
    471
    472		/* See is we support the id.  Supported IDs have name and
    473		 * length fields set, so that we can allocated and use
    474		 * them.  We can safely just check for name, for without the
    475		 * name, we can't allocate the TFM.
    476		 */
    477		if (!sctp_hmac_list[id].hmac_name)
    478			continue;
    479
    480		/* If this TFM has been allocated, we are all set */
    481		if (ep->auth_hmacs[id])
    482			continue;
    483
    484		/* Allocate the ID */
    485		tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0);
    486		if (IS_ERR(tfm))
    487			goto out_err;
    488
    489		ep->auth_hmacs[id] = tfm;
    490	}
    491
    492	return 0;
    493
    494out_err:
    495	/* Clean up any successful allocations */
    496	sctp_auth_destroy_hmacs(ep->auth_hmacs);
    497	ep->auth_hmacs = NULL;
    498	return -ENOMEM;
    499}
    500
    501/* Destroy the hmac tfm array */
    502void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[])
    503{
    504	int i;
    505
    506	if (!auth_hmacs)
    507		return;
    508
    509	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
    510		crypto_free_shash(auth_hmacs[i]);
    511	}
    512	kfree(auth_hmacs);
    513}
    514
    515
    516struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
    517{
    518	return &sctp_hmac_list[hmac_id];
    519}
    520
    521/* Get an hmac description information that we can use to build
    522 * the AUTH chunk
    523 */
    524struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
    525{
    526	struct sctp_hmac_algo_param *hmacs;
    527	__u16 n_elt;
    528	__u16 id = 0;
    529	int i;
    530
    531	/* If we have a default entry, use it */
    532	if (asoc->default_hmac_id)
    533		return &sctp_hmac_list[asoc->default_hmac_id];
    534
    535	/* Since we do not have a default entry, find the first entry
    536	 * we support and return that.  Do not cache that id.
    537	 */
    538	hmacs = asoc->peer.peer_hmacs;
    539	if (!hmacs)
    540		return NULL;
    541
    542	n_elt = (ntohs(hmacs->param_hdr.length) -
    543		 sizeof(struct sctp_paramhdr)) >> 1;
    544	for (i = 0; i < n_elt; i++) {
    545		id = ntohs(hmacs->hmac_ids[i]);
    546
    547		/* Check the id is in the supported range. And
    548		 * see if we support the id.  Supported IDs have name and
    549		 * length fields set, so that we can allocate and use
    550		 * them.  We can safely just check for name, for without the
    551		 * name, we can't allocate the TFM.
    552		 */
    553		if (id > SCTP_AUTH_HMAC_ID_MAX ||
    554		    !sctp_hmac_list[id].hmac_name) {
    555			id = 0;
    556			continue;
    557		}
    558
    559		break;
    560	}
    561
    562	if (id == 0)
    563		return NULL;
    564
    565	return &sctp_hmac_list[id];
    566}
    567
    568static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
    569{
    570	int  found = 0;
    571	int  i;
    572
    573	for (i = 0; i < n_elts; i++) {
    574		if (hmac_id == hmacs[i]) {
    575			found = 1;
    576			break;
    577		}
    578	}
    579
    580	return found;
    581}
    582
    583/* See if the HMAC_ID is one that we claim as supported */
    584int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
    585				    __be16 hmac_id)
    586{
    587	struct sctp_hmac_algo_param *hmacs;
    588	__u16 n_elt;
    589
    590	if (!asoc)
    591		return 0;
    592
    593	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
    594	n_elt = (ntohs(hmacs->param_hdr.length) -
    595		 sizeof(struct sctp_paramhdr)) >> 1;
    596
    597	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
    598}
    599
    600
    601/* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
    602 * Section 6.1:
    603 *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
    604 *   algorithm it supports.
    605 */
    606void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
    607				     struct sctp_hmac_algo_param *hmacs)
    608{
    609	struct sctp_endpoint *ep;
    610	__u16   id;
    611	int	i;
    612	int	n_params;
    613
    614	/* if the default id is already set, use it */
    615	if (asoc->default_hmac_id)
    616		return;
    617
    618	n_params = (ntohs(hmacs->param_hdr.length) -
    619		    sizeof(struct sctp_paramhdr)) >> 1;
    620	ep = asoc->ep;
    621	for (i = 0; i < n_params; i++) {
    622		id = ntohs(hmacs->hmac_ids[i]);
    623
    624		/* Check the id is in the supported range */
    625		if (id > SCTP_AUTH_HMAC_ID_MAX)
    626			continue;
    627
    628		/* If this TFM has been allocated, use this id */
    629		if (ep->auth_hmacs[id]) {
    630			asoc->default_hmac_id = id;
    631			break;
    632		}
    633	}
    634}
    635
    636
    637/* Check to see if the given chunk is supposed to be authenticated */
    638static int __sctp_auth_cid(enum sctp_cid chunk, struct sctp_chunks_param *param)
    639{
    640	unsigned short len;
    641	int found = 0;
    642	int i;
    643
    644	if (!param || param->param_hdr.length == 0)
    645		return 0;
    646
    647	len = ntohs(param->param_hdr.length) - sizeof(struct sctp_paramhdr);
    648
    649	/* SCTP-AUTH, Section 3.2
    650	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
    651	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
    652	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
    653	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
    654	 */
    655	for (i = 0; !found && i < len; i++) {
    656		switch (param->chunks[i]) {
    657		case SCTP_CID_INIT:
    658		case SCTP_CID_INIT_ACK:
    659		case SCTP_CID_SHUTDOWN_COMPLETE:
    660		case SCTP_CID_AUTH:
    661			break;
    662
    663		default:
    664			if (param->chunks[i] == chunk)
    665				found = 1;
    666			break;
    667		}
    668	}
    669
    670	return found;
    671}
    672
    673/* Check if peer requested that this chunk is authenticated */
    674int sctp_auth_send_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
    675{
    676	if (!asoc)
    677		return 0;
    678
    679	if (!asoc->peer.auth_capable)
    680		return 0;
    681
    682	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
    683}
    684
    685/* Check if we requested that peer authenticate this chunk. */
    686int sctp_auth_recv_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
    687{
    688	if (!asoc)
    689		return 0;
    690
    691	if (!asoc->peer.auth_capable)
    692		return 0;
    693
    694	return __sctp_auth_cid(chunk,
    695			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
    696}
    697
    698/* SCTP-AUTH: Section 6.2:
    699 *    The sender MUST calculate the MAC as described in RFC2104 [2] using
    700 *    the hash function H as described by the MAC Identifier and the shared
    701 *    association key K based on the endpoint pair shared key described by
    702 *    the shared key identifier.  The 'data' used for the computation of
    703 *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
    704 *    zero (as shown in Figure 6) followed by all chunks that are placed
    705 *    after the AUTH chunk in the SCTP packet.
    706 */
    707void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
    708			      struct sk_buff *skb, struct sctp_auth_chunk *auth,
    709			      struct sctp_shared_key *ep_key, gfp_t gfp)
    710{
    711	struct sctp_auth_bytes *asoc_key;
    712	struct crypto_shash *tfm;
    713	__u16 key_id, hmac_id;
    714	unsigned char *end;
    715	int free_key = 0;
    716	__u8 *digest;
    717
    718	/* Extract the info we need:
    719	 * - hmac id
    720	 * - key id
    721	 */
    722	key_id = ntohs(auth->auth_hdr.shkey_id);
    723	hmac_id = ntohs(auth->auth_hdr.hmac_id);
    724
    725	if (key_id == asoc->active_key_id)
    726		asoc_key = asoc->asoc_shared_key;
    727	else {
    728		/* ep_key can't be NULL here */
    729		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
    730		if (!asoc_key)
    731			return;
    732
    733		free_key = 1;
    734	}
    735
    736	/* set up scatter list */
    737	end = skb_tail_pointer(skb);
    738
    739	tfm = asoc->ep->auth_hmacs[hmac_id];
    740
    741	digest = auth->auth_hdr.hmac;
    742	if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len))
    743		goto free;
    744
    745	crypto_shash_tfm_digest(tfm, (u8 *)auth, end - (unsigned char *)auth,
    746				digest);
    747
    748free:
    749	if (free_key)
    750		sctp_auth_key_put(asoc_key);
    751}
    752
    753/* API Helpers */
    754
    755/* Add a chunk to the endpoint authenticated chunk list */
    756int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
    757{
    758	struct sctp_chunks_param *p = ep->auth_chunk_list;
    759	__u16 nchunks;
    760	__u16 param_len;
    761
    762	/* If this chunk is already specified, we are done */
    763	if (__sctp_auth_cid(chunk_id, p))
    764		return 0;
    765
    766	/* Check if we can add this chunk to the array */
    767	param_len = ntohs(p->param_hdr.length);
    768	nchunks = param_len - sizeof(struct sctp_paramhdr);
    769	if (nchunks == SCTP_NUM_CHUNK_TYPES)
    770		return -EINVAL;
    771
    772	p->chunks[nchunks] = chunk_id;
    773	p->param_hdr.length = htons(param_len + 1);
    774	return 0;
    775}
    776
    777/* Add hmac identifires to the endpoint list of supported hmac ids */
    778int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
    779			   struct sctp_hmacalgo *hmacs)
    780{
    781	int has_sha1 = 0;
    782	__u16 id;
    783	int i;
    784
    785	/* Scan the list looking for unsupported id.  Also make sure that
    786	 * SHA1 is specified.
    787	 */
    788	for (i = 0; i < hmacs->shmac_num_idents; i++) {
    789		id = hmacs->shmac_idents[i];
    790
    791		if (id > SCTP_AUTH_HMAC_ID_MAX)
    792			return -EOPNOTSUPP;
    793
    794		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
    795			has_sha1 = 1;
    796
    797		if (!sctp_hmac_list[id].hmac_name)
    798			return -EOPNOTSUPP;
    799	}
    800
    801	if (!has_sha1)
    802		return -EINVAL;
    803
    804	for (i = 0; i < hmacs->shmac_num_idents; i++)
    805		ep->auth_hmacs_list->hmac_ids[i] =
    806				htons(hmacs->shmac_idents[i]);
    807	ep->auth_hmacs_list->param_hdr.length =
    808			htons(sizeof(struct sctp_paramhdr) +
    809			hmacs->shmac_num_idents * sizeof(__u16));
    810	return 0;
    811}
    812
    813/* Set a new shared key on either endpoint or association.  If the
    814 * key with a same ID already exists, replace the key (remove the
    815 * old key and add a new one).
    816 */
    817int sctp_auth_set_key(struct sctp_endpoint *ep,
    818		      struct sctp_association *asoc,
    819		      struct sctp_authkey *auth_key)
    820{
    821	struct sctp_shared_key *cur_key, *shkey;
    822	struct sctp_auth_bytes *key;
    823	struct list_head *sh_keys;
    824	int replace = 0;
    825
    826	/* Try to find the given key id to see if
    827	 * we are doing a replace, or adding a new key
    828	 */
    829	if (asoc) {
    830		if (!asoc->peer.auth_capable)
    831			return -EACCES;
    832		sh_keys = &asoc->endpoint_shared_keys;
    833	} else {
    834		if (!ep->auth_enable)
    835			return -EACCES;
    836		sh_keys = &ep->endpoint_shared_keys;
    837	}
    838
    839	key_for_each(shkey, sh_keys) {
    840		if (shkey->key_id == auth_key->sca_keynumber) {
    841			replace = 1;
    842			break;
    843		}
    844	}
    845
    846	cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, GFP_KERNEL);
    847	if (!cur_key)
    848		return -ENOMEM;
    849
    850	/* Create a new key data based on the info passed in */
    851	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
    852	if (!key) {
    853		kfree(cur_key);
    854		return -ENOMEM;
    855	}
    856
    857	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
    858	cur_key->key = key;
    859
    860	if (!replace) {
    861		list_add(&cur_key->key_list, sh_keys);
    862		return 0;
    863	}
    864
    865	list_del_init(&shkey->key_list);
    866	sctp_auth_shkey_release(shkey);
    867	list_add(&cur_key->key_list, sh_keys);
    868
    869	if (asoc && asoc->active_key_id == auth_key->sca_keynumber)
    870		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
    871
    872	return 0;
    873}
    874
    875int sctp_auth_set_active_key(struct sctp_endpoint *ep,
    876			     struct sctp_association *asoc,
    877			     __u16  key_id)
    878{
    879	struct sctp_shared_key *key;
    880	struct list_head *sh_keys;
    881	int found = 0;
    882
    883	/* The key identifier MUST correst to an existing key */
    884	if (asoc) {
    885		if (!asoc->peer.auth_capable)
    886			return -EACCES;
    887		sh_keys = &asoc->endpoint_shared_keys;
    888	} else {
    889		if (!ep->auth_enable)
    890			return -EACCES;
    891		sh_keys = &ep->endpoint_shared_keys;
    892	}
    893
    894	key_for_each(key, sh_keys) {
    895		if (key->key_id == key_id) {
    896			found = 1;
    897			break;
    898		}
    899	}
    900
    901	if (!found || key->deactivated)
    902		return -EINVAL;
    903
    904	if (asoc) {
    905		asoc->active_key_id = key_id;
    906		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
    907	} else
    908		ep->active_key_id = key_id;
    909
    910	return 0;
    911}
    912
    913int sctp_auth_del_key_id(struct sctp_endpoint *ep,
    914			 struct sctp_association *asoc,
    915			 __u16  key_id)
    916{
    917	struct sctp_shared_key *key;
    918	struct list_head *sh_keys;
    919	int found = 0;
    920
    921	/* The key identifier MUST NOT be the current active key
    922	 * The key identifier MUST correst to an existing key
    923	 */
    924	if (asoc) {
    925		if (!asoc->peer.auth_capable)
    926			return -EACCES;
    927		if (asoc->active_key_id == key_id)
    928			return -EINVAL;
    929
    930		sh_keys = &asoc->endpoint_shared_keys;
    931	} else {
    932		if (!ep->auth_enable)
    933			return -EACCES;
    934		if (ep->active_key_id == key_id)
    935			return -EINVAL;
    936
    937		sh_keys = &ep->endpoint_shared_keys;
    938	}
    939
    940	key_for_each(key, sh_keys) {
    941		if (key->key_id == key_id) {
    942			found = 1;
    943			break;
    944		}
    945	}
    946
    947	if (!found)
    948		return -EINVAL;
    949
    950	/* Delete the shared key */
    951	list_del_init(&key->key_list);
    952	sctp_auth_shkey_release(key);
    953
    954	return 0;
    955}
    956
    957int sctp_auth_deact_key_id(struct sctp_endpoint *ep,
    958			   struct sctp_association *asoc, __u16  key_id)
    959{
    960	struct sctp_shared_key *key;
    961	struct list_head *sh_keys;
    962	int found = 0;
    963
    964	/* The key identifier MUST NOT be the current active key
    965	 * The key identifier MUST correst to an existing key
    966	 */
    967	if (asoc) {
    968		if (!asoc->peer.auth_capable)
    969			return -EACCES;
    970		if (asoc->active_key_id == key_id)
    971			return -EINVAL;
    972
    973		sh_keys = &asoc->endpoint_shared_keys;
    974	} else {
    975		if (!ep->auth_enable)
    976			return -EACCES;
    977		if (ep->active_key_id == key_id)
    978			return -EINVAL;
    979
    980		sh_keys = &ep->endpoint_shared_keys;
    981	}
    982
    983	key_for_each(key, sh_keys) {
    984		if (key->key_id == key_id) {
    985			found = 1;
    986			break;
    987		}
    988	}
    989
    990	if (!found)
    991		return -EINVAL;
    992
    993	/* refcnt == 1 and !list_empty mean it's not being used anywhere
    994	 * and deactivated will be set, so it's time to notify userland
    995	 * that this shkey can be freed.
    996	 */
    997	if (asoc && !list_empty(&key->key_list) &&
    998	    refcount_read(&key->refcnt) == 1) {
    999		struct sctp_ulpevent *ev;
   1000
   1001		ev = sctp_ulpevent_make_authkey(asoc, key->key_id,
   1002						SCTP_AUTH_FREE_KEY, GFP_KERNEL);
   1003		if (ev)
   1004			asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
   1005	}
   1006
   1007	key->deactivated = 1;
   1008
   1009	return 0;
   1010}
   1011
   1012int sctp_auth_init(struct sctp_endpoint *ep, gfp_t gfp)
   1013{
   1014	int err = -ENOMEM;
   1015
   1016	/* Allocate space for HMACS and CHUNKS authentication
   1017	 * variables.  There are arrays that we encode directly
   1018	 * into parameters to make the rest of the operations easier.
   1019	 */
   1020	if (!ep->auth_hmacs_list) {
   1021		struct sctp_hmac_algo_param *auth_hmacs;
   1022
   1023		auth_hmacs = kzalloc(struct_size(auth_hmacs, hmac_ids,
   1024						 SCTP_AUTH_NUM_HMACS), gfp);
   1025		if (!auth_hmacs)
   1026			goto nomem;
   1027		/* Initialize the HMACS parameter.
   1028		 * SCTP-AUTH: Section 3.3
   1029		 *    Every endpoint supporting SCTP chunk authentication MUST
   1030		 *    support the HMAC based on the SHA-1 algorithm.
   1031		 */
   1032		auth_hmacs->param_hdr.type = SCTP_PARAM_HMAC_ALGO;
   1033		auth_hmacs->param_hdr.length =
   1034				htons(sizeof(struct sctp_paramhdr) + 2);
   1035		auth_hmacs->hmac_ids[0] = htons(SCTP_AUTH_HMAC_ID_SHA1);
   1036		ep->auth_hmacs_list = auth_hmacs;
   1037	}
   1038
   1039	if (!ep->auth_chunk_list) {
   1040		struct sctp_chunks_param *auth_chunks;
   1041
   1042		auth_chunks = kzalloc(sizeof(*auth_chunks) +
   1043				      SCTP_NUM_CHUNK_TYPES, gfp);
   1044		if (!auth_chunks)
   1045			goto nomem;
   1046		/* Initialize the CHUNKS parameter */
   1047		auth_chunks->param_hdr.type = SCTP_PARAM_CHUNKS;
   1048		auth_chunks->param_hdr.length =
   1049				htons(sizeof(struct sctp_paramhdr));
   1050		ep->auth_chunk_list = auth_chunks;
   1051	}
   1052
   1053	/* Allocate and initialize transorms arrays for supported
   1054	 * HMACs.
   1055	 */
   1056	err = sctp_auth_init_hmacs(ep, gfp);
   1057	if (err)
   1058		goto nomem;
   1059
   1060	return 0;
   1061
   1062nomem:
   1063	/* Free all allocations */
   1064	kfree(ep->auth_hmacs_list);
   1065	kfree(ep->auth_chunk_list);
   1066	ep->auth_hmacs_list = NULL;
   1067	ep->auth_chunk_list = NULL;
   1068	return err;
   1069}
   1070
   1071void sctp_auth_free(struct sctp_endpoint *ep)
   1072{
   1073	kfree(ep->auth_hmacs_list);
   1074	kfree(ep->auth_chunk_list);
   1075	ep->auth_hmacs_list = NULL;
   1076	ep->auth_chunk_list = NULL;
   1077	sctp_auth_destroy_hmacs(ep->auth_hmacs);
   1078	ep->auth_hmacs = NULL;
   1079}