cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

input.c (36606B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/* SCTP kernel implementation
      3 * Copyright (c) 1999-2000 Cisco, Inc.
      4 * Copyright (c) 1999-2001 Motorola, Inc.
      5 * Copyright (c) 2001-2003 International Business Machines, Corp.
      6 * Copyright (c) 2001 Intel Corp.
      7 * Copyright (c) 2001 Nokia, Inc.
      8 * Copyright (c) 2001 La Monte H.P. Yarroll
      9 *
     10 * This file is part of the SCTP kernel implementation
     11 *
     12 * These functions handle all input from the IP layer into SCTP.
     13 *
     14 * Please send any bug reports or fixes you make to the
     15 * email address(es):
     16 *    lksctp developers <linux-sctp@vger.kernel.org>
     17 *
     18 * Written or modified by:
     19 *    La Monte H.P. Yarroll <piggy@acm.org>
     20 *    Karl Knutson <karl@athena.chicago.il.us>
     21 *    Xingang Guo <xingang.guo@intel.com>
     22 *    Jon Grimm <jgrimm@us.ibm.com>
     23 *    Hui Huang <hui.huang@nokia.com>
     24 *    Daisy Chang <daisyc@us.ibm.com>
     25 *    Sridhar Samudrala <sri@us.ibm.com>
     26 *    Ardelle Fan <ardelle.fan@intel.com>
     27 */
     28
     29#include <linux/types.h>
     30#include <linux/list.h> /* For struct list_head */
     31#include <linux/socket.h>
     32#include <linux/ip.h>
     33#include <linux/time.h> /* For struct timeval */
     34#include <linux/slab.h>
     35#include <net/ip.h>
     36#include <net/icmp.h>
     37#include <net/snmp.h>
     38#include <net/sock.h>
     39#include <net/xfrm.h>
     40#include <net/sctp/sctp.h>
     41#include <net/sctp/sm.h>
     42#include <net/sctp/checksum.h>
     43#include <net/net_namespace.h>
     44#include <linux/rhashtable.h>
     45#include <net/sock_reuseport.h>
     46
     47/* Forward declarations for internal helpers. */
     48static int sctp_rcv_ootb(struct sk_buff *);
     49static struct sctp_association *__sctp_rcv_lookup(struct net *net,
     50				      struct sk_buff *skb,
     51				      const union sctp_addr *paddr,
     52				      const union sctp_addr *laddr,
     53				      struct sctp_transport **transportp);
     54static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
     55					struct net *net, struct sk_buff *skb,
     56					const union sctp_addr *laddr,
     57					const union sctp_addr *daddr);
     58static struct sctp_association *__sctp_lookup_association(
     59					struct net *net,
     60					const union sctp_addr *local,
     61					const union sctp_addr *peer,
     62					struct sctp_transport **pt);
     63
     64static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
     65
     66
     67/* Calculate the SCTP checksum of an SCTP packet.  */
     68static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
     69{
     70	struct sctphdr *sh = sctp_hdr(skb);
     71	__le32 cmp = sh->checksum;
     72	__le32 val = sctp_compute_cksum(skb, 0);
     73
     74	if (val != cmp) {
     75		/* CRC failure, dump it. */
     76		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
     77		return -1;
     78	}
     79	return 0;
     80}
     81
     82/*
     83 * This is the routine which IP calls when receiving an SCTP packet.
     84 */
     85int sctp_rcv(struct sk_buff *skb)
     86{
     87	struct sock *sk;
     88	struct sctp_association *asoc;
     89	struct sctp_endpoint *ep = NULL;
     90	struct sctp_ep_common *rcvr;
     91	struct sctp_transport *transport = NULL;
     92	struct sctp_chunk *chunk;
     93	union sctp_addr src;
     94	union sctp_addr dest;
     95	int bound_dev_if;
     96	int family;
     97	struct sctp_af *af;
     98	struct net *net = dev_net(skb->dev);
     99	bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
    100
    101	if (skb->pkt_type != PACKET_HOST)
    102		goto discard_it;
    103
    104	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
    105
    106	/* If packet is too small to contain a single chunk, let's not
    107	 * waste time on it anymore.
    108	 */
    109	if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
    110		       skb_transport_offset(skb))
    111		goto discard_it;
    112
    113	/* If the packet is fragmented and we need to do crc checking,
    114	 * it's better to just linearize it otherwise crc computing
    115	 * takes longer.
    116	 */
    117	if ((!is_gso && skb_linearize(skb)) ||
    118	    !pskb_may_pull(skb, sizeof(struct sctphdr)))
    119		goto discard_it;
    120
    121	/* Pull up the IP header. */
    122	__skb_pull(skb, skb_transport_offset(skb));
    123
    124	skb->csum_valid = 0; /* Previous value not applicable */
    125	if (skb_csum_unnecessary(skb))
    126		__skb_decr_checksum_unnecessary(skb);
    127	else if (!sctp_checksum_disable &&
    128		 !is_gso &&
    129		 sctp_rcv_checksum(net, skb) < 0)
    130		goto discard_it;
    131	skb->csum_valid = 1;
    132
    133	__skb_pull(skb, sizeof(struct sctphdr));
    134
    135	family = ipver2af(ip_hdr(skb)->version);
    136	af = sctp_get_af_specific(family);
    137	if (unlikely(!af))
    138		goto discard_it;
    139	SCTP_INPUT_CB(skb)->af = af;
    140
    141	/* Initialize local addresses for lookups. */
    142	af->from_skb(&src, skb, 1);
    143	af->from_skb(&dest, skb, 0);
    144
    145	/* If the packet is to or from a non-unicast address,
    146	 * silently discard the packet.
    147	 *
    148	 * This is not clearly defined in the RFC except in section
    149	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
    150	 * Transmission Protocol" 2.1, "It is important to note that the
    151	 * IP address of an SCTP transport address must be a routable
    152	 * unicast address.  In other words, IP multicast addresses and
    153	 * IP broadcast addresses cannot be used in an SCTP transport
    154	 * address."
    155	 */
    156	if (!af->addr_valid(&src, NULL, skb) ||
    157	    !af->addr_valid(&dest, NULL, skb))
    158		goto discard_it;
    159
    160	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
    161
    162	if (!asoc)
    163		ep = __sctp_rcv_lookup_endpoint(net, skb, &dest, &src);
    164
    165	/* Retrieve the common input handling substructure. */
    166	rcvr = asoc ? &asoc->base : &ep->base;
    167	sk = rcvr->sk;
    168
    169	/*
    170	 * If a frame arrives on an interface and the receiving socket is
    171	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
    172	 */
    173	bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
    174	if (bound_dev_if && (bound_dev_if != af->skb_iif(skb))) {
    175		if (transport) {
    176			sctp_transport_put(transport);
    177			asoc = NULL;
    178			transport = NULL;
    179		} else {
    180			sctp_endpoint_put(ep);
    181			ep = NULL;
    182		}
    183		sk = net->sctp.ctl_sock;
    184		ep = sctp_sk(sk)->ep;
    185		sctp_endpoint_hold(ep);
    186		rcvr = &ep->base;
    187	}
    188
    189	/*
    190	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
    191	 * An SCTP packet is called an "out of the blue" (OOTB)
    192	 * packet if it is correctly formed, i.e., passed the
    193	 * receiver's checksum check, but the receiver is not
    194	 * able to identify the association to which this
    195	 * packet belongs.
    196	 */
    197	if (!asoc) {
    198		if (sctp_rcv_ootb(skb)) {
    199			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
    200			goto discard_release;
    201		}
    202	}
    203
    204	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
    205		goto discard_release;
    206	nf_reset_ct(skb);
    207
    208	if (sk_filter(sk, skb))
    209		goto discard_release;
    210
    211	/* Create an SCTP packet structure. */
    212	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
    213	if (!chunk)
    214		goto discard_release;
    215	SCTP_INPUT_CB(skb)->chunk = chunk;
    216
    217	/* Remember what endpoint is to handle this packet. */
    218	chunk->rcvr = rcvr;
    219
    220	/* Remember the SCTP header. */
    221	chunk->sctp_hdr = sctp_hdr(skb);
    222
    223	/* Set the source and destination addresses of the incoming chunk.  */
    224	sctp_init_addrs(chunk, &src, &dest);
    225
    226	/* Remember where we came from.  */
    227	chunk->transport = transport;
    228
    229	/* Acquire access to the sock lock. Note: We are safe from other
    230	 * bottom halves on this lock, but a user may be in the lock too,
    231	 * so check if it is busy.
    232	 */
    233	bh_lock_sock(sk);
    234
    235	if (sk != rcvr->sk) {
    236		/* Our cached sk is different from the rcvr->sk.  This is
    237		 * because migrate()/accept() may have moved the association
    238		 * to a new socket and released all the sockets.  So now we
    239		 * are holding a lock on the old socket while the user may
    240		 * be doing something with the new socket.  Switch our veiw
    241		 * of the current sk.
    242		 */
    243		bh_unlock_sock(sk);
    244		sk = rcvr->sk;
    245		bh_lock_sock(sk);
    246	}
    247
    248	if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
    249		if (sctp_add_backlog(sk, skb)) {
    250			bh_unlock_sock(sk);
    251			sctp_chunk_free(chunk);
    252			skb = NULL; /* sctp_chunk_free already freed the skb */
    253			goto discard_release;
    254		}
    255		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
    256	} else {
    257		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
    258		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
    259	}
    260
    261	bh_unlock_sock(sk);
    262
    263	/* Release the asoc/ep ref we took in the lookup calls. */
    264	if (transport)
    265		sctp_transport_put(transport);
    266	else
    267		sctp_endpoint_put(ep);
    268
    269	return 0;
    270
    271discard_it:
    272	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
    273	kfree_skb(skb);
    274	return 0;
    275
    276discard_release:
    277	/* Release the asoc/ep ref we took in the lookup calls. */
    278	if (transport)
    279		sctp_transport_put(transport);
    280	else
    281		sctp_endpoint_put(ep);
    282
    283	goto discard_it;
    284}
    285
    286/* Process the backlog queue of the socket.  Every skb on
    287 * the backlog holds a ref on an association or endpoint.
    288 * We hold this ref throughout the state machine to make
    289 * sure that the structure we need is still around.
    290 */
    291int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
    292{
    293	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
    294	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
    295	struct sctp_transport *t = chunk->transport;
    296	struct sctp_ep_common *rcvr = NULL;
    297	int backloged = 0;
    298
    299	rcvr = chunk->rcvr;
    300
    301	/* If the rcvr is dead then the association or endpoint
    302	 * has been deleted and we can safely drop the chunk
    303	 * and refs that we are holding.
    304	 */
    305	if (rcvr->dead) {
    306		sctp_chunk_free(chunk);
    307		goto done;
    308	}
    309
    310	if (unlikely(rcvr->sk != sk)) {
    311		/* In this case, the association moved from one socket to
    312		 * another.  We are currently sitting on the backlog of the
    313		 * old socket, so we need to move.
    314		 * However, since we are here in the process context we
    315		 * need to take make sure that the user doesn't own
    316		 * the new socket when we process the packet.
    317		 * If the new socket is user-owned, queue the chunk to the
    318		 * backlog of the new socket without dropping any refs.
    319		 * Otherwise, we can safely push the chunk on the inqueue.
    320		 */
    321
    322		sk = rcvr->sk;
    323		local_bh_disable();
    324		bh_lock_sock(sk);
    325
    326		if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
    327			if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)))
    328				sctp_chunk_free(chunk);
    329			else
    330				backloged = 1;
    331		} else
    332			sctp_inq_push(inqueue, chunk);
    333
    334		bh_unlock_sock(sk);
    335		local_bh_enable();
    336
    337		/* If the chunk was backloged again, don't drop refs */
    338		if (backloged)
    339			return 0;
    340	} else {
    341		if (!sctp_newsk_ready(sk)) {
    342			if (!sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)))
    343				return 0;
    344			sctp_chunk_free(chunk);
    345		} else {
    346			sctp_inq_push(inqueue, chunk);
    347		}
    348	}
    349
    350done:
    351	/* Release the refs we took in sctp_add_backlog */
    352	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
    353		sctp_transport_put(t);
    354	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
    355		sctp_endpoint_put(sctp_ep(rcvr));
    356	else
    357		BUG();
    358
    359	return 0;
    360}
    361
    362static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
    363{
    364	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
    365	struct sctp_transport *t = chunk->transport;
    366	struct sctp_ep_common *rcvr = chunk->rcvr;
    367	int ret;
    368
    369	ret = sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf));
    370	if (!ret) {
    371		/* Hold the assoc/ep while hanging on the backlog queue.
    372		 * This way, we know structures we need will not disappear
    373		 * from us
    374		 */
    375		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
    376			sctp_transport_hold(t);
    377		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
    378			sctp_endpoint_hold(sctp_ep(rcvr));
    379		else
    380			BUG();
    381	}
    382	return ret;
    383
    384}
    385
    386/* Handle icmp frag needed error. */
    387void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
    388			   struct sctp_transport *t, __u32 pmtu)
    389{
    390	if (!t ||
    391	    (t->pathmtu <= pmtu &&
    392	     t->pl.probe_size + sctp_transport_pl_hlen(t) <= pmtu))
    393		return;
    394
    395	if (sock_owned_by_user(sk)) {
    396		atomic_set(&t->mtu_info, pmtu);
    397		asoc->pmtu_pending = 1;
    398		t->pmtu_pending = 1;
    399		return;
    400	}
    401
    402	if (!(t->param_flags & SPP_PMTUD_ENABLE))
    403		/* We can't allow retransmitting in such case, as the
    404		 * retransmission would be sized just as before, and thus we
    405		 * would get another icmp, and retransmit again.
    406		 */
    407		return;
    408
    409	/* Update transports view of the MTU. Return if no update was needed.
    410	 * If an update wasn't needed/possible, it also doesn't make sense to
    411	 * try to retransmit now.
    412	 */
    413	if (!sctp_transport_update_pmtu(t, pmtu))
    414		return;
    415
    416	/* Update association pmtu. */
    417	sctp_assoc_sync_pmtu(asoc);
    418
    419	/* Retransmit with the new pmtu setting. */
    420	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
    421}
    422
    423void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
    424			struct sk_buff *skb)
    425{
    426	struct dst_entry *dst;
    427
    428	if (sock_owned_by_user(sk) || !t)
    429		return;
    430	dst = sctp_transport_dst_check(t);
    431	if (dst)
    432		dst->ops->redirect(dst, sk, skb);
    433}
    434
    435/*
    436 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
    437 *
    438 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
    439 *        or a "Protocol Unreachable" treat this message as an abort
    440 *        with the T bit set.
    441 *
    442 * This function sends an event to the state machine, which will abort the
    443 * association.
    444 *
    445 */
    446void sctp_icmp_proto_unreachable(struct sock *sk,
    447			   struct sctp_association *asoc,
    448			   struct sctp_transport *t)
    449{
    450	if (sock_owned_by_user(sk)) {
    451		if (timer_pending(&t->proto_unreach_timer))
    452			return;
    453		else {
    454			if (!mod_timer(&t->proto_unreach_timer,
    455						jiffies + (HZ/20)))
    456				sctp_transport_hold(t);
    457		}
    458	} else {
    459		struct net *net = sock_net(sk);
    460
    461		pr_debug("%s: unrecognized next header type "
    462			 "encountered!\n", __func__);
    463
    464		if (del_timer(&t->proto_unreach_timer))
    465			sctp_transport_put(t);
    466
    467		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
    468			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
    469			   asoc->state, asoc->ep, asoc, t,
    470			   GFP_ATOMIC);
    471	}
    472}
    473
    474/* Common lookup code for icmp/icmpv6 error handler. */
    475struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
    476			     struct sctphdr *sctphdr,
    477			     struct sctp_association **app,
    478			     struct sctp_transport **tpp)
    479{
    480	struct sctp_init_chunk *chunkhdr, _chunkhdr;
    481	union sctp_addr saddr;
    482	union sctp_addr daddr;
    483	struct sctp_af *af;
    484	struct sock *sk = NULL;
    485	struct sctp_association *asoc;
    486	struct sctp_transport *transport = NULL;
    487	__u32 vtag = ntohl(sctphdr->vtag);
    488
    489	*app = NULL; *tpp = NULL;
    490
    491	af = sctp_get_af_specific(family);
    492	if (unlikely(!af)) {
    493		return NULL;
    494	}
    495
    496	/* Initialize local addresses for lookups. */
    497	af->from_skb(&saddr, skb, 1);
    498	af->from_skb(&daddr, skb, 0);
    499
    500	/* Look for an association that matches the incoming ICMP error
    501	 * packet.
    502	 */
    503	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
    504	if (!asoc)
    505		return NULL;
    506
    507	sk = asoc->base.sk;
    508
    509	/* RFC 4960, Appendix C. ICMP Handling
    510	 *
    511	 * ICMP6) An implementation MUST validate that the Verification Tag
    512	 * contained in the ICMP message matches the Verification Tag of
    513	 * the peer.  If the Verification Tag is not 0 and does NOT
    514	 * match, discard the ICMP message.  If it is 0 and the ICMP
    515	 * message contains enough bytes to verify that the chunk type is
    516	 * an INIT chunk and that the Initiate Tag matches the tag of the
    517	 * peer, continue with ICMP7.  If the ICMP message is too short
    518	 * or the chunk type or the Initiate Tag does not match, silently
    519	 * discard the packet.
    520	 */
    521	if (vtag == 0) {
    522		/* chunk header + first 4 octects of init header */
    523		chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
    524					      sizeof(struct sctphdr),
    525					      sizeof(struct sctp_chunkhdr) +
    526					      sizeof(__be32), &_chunkhdr);
    527		if (!chunkhdr ||
    528		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
    529		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
    530			goto out;
    531
    532	} else if (vtag != asoc->c.peer_vtag) {
    533		goto out;
    534	}
    535
    536	bh_lock_sock(sk);
    537
    538	/* If too many ICMPs get dropped on busy
    539	 * servers this needs to be solved differently.
    540	 */
    541	if (sock_owned_by_user(sk))
    542		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
    543
    544	*app = asoc;
    545	*tpp = transport;
    546	return sk;
    547
    548out:
    549	sctp_transport_put(transport);
    550	return NULL;
    551}
    552
    553/* Common cleanup code for icmp/icmpv6 error handler. */
    554void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
    555	__releases(&((__sk)->sk_lock.slock))
    556{
    557	bh_unlock_sock(sk);
    558	sctp_transport_put(t);
    559}
    560
    561static void sctp_v4_err_handle(struct sctp_transport *t, struct sk_buff *skb,
    562			       __u8 type, __u8 code, __u32 info)
    563{
    564	struct sctp_association *asoc = t->asoc;
    565	struct sock *sk = asoc->base.sk;
    566	int err = 0;
    567
    568	switch (type) {
    569	case ICMP_PARAMETERPROB:
    570		err = EPROTO;
    571		break;
    572	case ICMP_DEST_UNREACH:
    573		if (code > NR_ICMP_UNREACH)
    574			return;
    575		if (code == ICMP_FRAG_NEEDED) {
    576			sctp_icmp_frag_needed(sk, asoc, t, SCTP_TRUNC4(info));
    577			return;
    578		}
    579		if (code == ICMP_PROT_UNREACH) {
    580			sctp_icmp_proto_unreachable(sk, asoc, t);
    581			return;
    582		}
    583		err = icmp_err_convert[code].errno;
    584		break;
    585	case ICMP_TIME_EXCEEDED:
    586		if (code == ICMP_EXC_FRAGTIME)
    587			return;
    588
    589		err = EHOSTUNREACH;
    590		break;
    591	case ICMP_REDIRECT:
    592		sctp_icmp_redirect(sk, t, skb);
    593		return;
    594	default:
    595		return;
    596	}
    597	if (!sock_owned_by_user(sk) && inet_sk(sk)->recverr) {
    598		sk->sk_err = err;
    599		sk_error_report(sk);
    600	} else {  /* Only an error on timeout */
    601		sk->sk_err_soft = err;
    602	}
    603}
    604
    605/*
    606 * This routine is called by the ICMP module when it gets some
    607 * sort of error condition.  If err < 0 then the socket should
    608 * be closed and the error returned to the user.  If err > 0
    609 * it's just the icmp type << 8 | icmp code.  After adjustment
    610 * header points to the first 8 bytes of the sctp header.  We need
    611 * to find the appropriate port.
    612 *
    613 * The locking strategy used here is very "optimistic". When
    614 * someone else accesses the socket the ICMP is just dropped
    615 * and for some paths there is no check at all.
    616 * A more general error queue to queue errors for later handling
    617 * is probably better.
    618 *
    619 */
    620int sctp_v4_err(struct sk_buff *skb, __u32 info)
    621{
    622	const struct iphdr *iph = (const struct iphdr *)skb->data;
    623	const int type = icmp_hdr(skb)->type;
    624	const int code = icmp_hdr(skb)->code;
    625	struct net *net = dev_net(skb->dev);
    626	struct sctp_transport *transport;
    627	struct sctp_association *asoc;
    628	__u16 saveip, savesctp;
    629	struct sock *sk;
    630
    631	/* Fix up skb to look at the embedded net header. */
    632	saveip = skb->network_header;
    633	savesctp = skb->transport_header;
    634	skb_reset_network_header(skb);
    635	skb_set_transport_header(skb, iph->ihl * 4);
    636	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
    637	/* Put back, the original values. */
    638	skb->network_header = saveip;
    639	skb->transport_header = savesctp;
    640	if (!sk) {
    641		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
    642		return -ENOENT;
    643	}
    644
    645	sctp_v4_err_handle(transport, skb, type, code, info);
    646	sctp_err_finish(sk, transport);
    647
    648	return 0;
    649}
    650
    651int sctp_udp_v4_err(struct sock *sk, struct sk_buff *skb)
    652{
    653	struct net *net = dev_net(skb->dev);
    654	struct sctp_association *asoc;
    655	struct sctp_transport *t;
    656	struct icmphdr *hdr;
    657	__u32 info = 0;
    658
    659	skb->transport_header += sizeof(struct udphdr);
    660	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &t);
    661	if (!sk) {
    662		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
    663		return -ENOENT;
    664	}
    665
    666	skb->transport_header -= sizeof(struct udphdr);
    667	hdr = (struct icmphdr *)(skb_network_header(skb) - sizeof(struct icmphdr));
    668	if (hdr->type == ICMP_REDIRECT) {
    669		/* can't be handled without outer iphdr known, leave it to udp_err */
    670		sctp_err_finish(sk, t);
    671		return 0;
    672	}
    673	if (hdr->type == ICMP_DEST_UNREACH && hdr->code == ICMP_FRAG_NEEDED)
    674		info = ntohs(hdr->un.frag.mtu);
    675	sctp_v4_err_handle(t, skb, hdr->type, hdr->code, info);
    676
    677	sctp_err_finish(sk, t);
    678	return 1;
    679}
    680
    681/*
    682 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
    683 *
    684 * This function scans all the chunks in the OOTB packet to determine if
    685 * the packet should be discarded right away.  If a response might be needed
    686 * for this packet, or, if further processing is possible, the packet will
    687 * be queued to a proper inqueue for the next phase of handling.
    688 *
    689 * Output:
    690 * Return 0 - If further processing is needed.
    691 * Return 1 - If the packet can be discarded right away.
    692 */
    693static int sctp_rcv_ootb(struct sk_buff *skb)
    694{
    695	struct sctp_chunkhdr *ch, _ch;
    696	int ch_end, offset = 0;
    697
    698	/* Scan through all the chunks in the packet.  */
    699	do {
    700		/* Make sure we have at least the header there */
    701		if (offset + sizeof(_ch) > skb->len)
    702			break;
    703
    704		ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
    705
    706		/* Break out if chunk length is less then minimal. */
    707		if (!ch || ntohs(ch->length) < sizeof(_ch))
    708			break;
    709
    710		ch_end = offset + SCTP_PAD4(ntohs(ch->length));
    711		if (ch_end > skb->len)
    712			break;
    713
    714		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
    715		 * receiver MUST silently discard the OOTB packet and take no
    716		 * further action.
    717		 */
    718		if (SCTP_CID_ABORT == ch->type)
    719			goto discard;
    720
    721		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
    722		 * chunk, the receiver should silently discard the packet
    723		 * and take no further action.
    724		 */
    725		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
    726			goto discard;
    727
    728		/* RFC 4460, 2.11.2
    729		 * This will discard packets with INIT chunk bundled as
    730		 * subsequent chunks in the packet.  When INIT is first,
    731		 * the normal INIT processing will discard the chunk.
    732		 */
    733		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
    734			goto discard;
    735
    736		offset = ch_end;
    737	} while (ch_end < skb->len);
    738
    739	return 0;
    740
    741discard:
    742	return 1;
    743}
    744
    745/* Insert endpoint into the hash table.  */
    746static int __sctp_hash_endpoint(struct sctp_endpoint *ep)
    747{
    748	struct sock *sk = ep->base.sk;
    749	struct net *net = sock_net(sk);
    750	struct sctp_hashbucket *head;
    751
    752	ep->hashent = sctp_ep_hashfn(net, ep->base.bind_addr.port);
    753	head = &sctp_ep_hashtable[ep->hashent];
    754
    755	if (sk->sk_reuseport) {
    756		bool any = sctp_is_ep_boundall(sk);
    757		struct sctp_endpoint *ep2;
    758		struct list_head *list;
    759		int cnt = 0, err = 1;
    760
    761		list_for_each(list, &ep->base.bind_addr.address_list)
    762			cnt++;
    763
    764		sctp_for_each_hentry(ep2, &head->chain) {
    765			struct sock *sk2 = ep2->base.sk;
    766
    767			if (!net_eq(sock_net(sk2), net) || sk2 == sk ||
    768			    !uid_eq(sock_i_uid(sk2), sock_i_uid(sk)) ||
    769			    !sk2->sk_reuseport)
    770				continue;
    771
    772			err = sctp_bind_addrs_check(sctp_sk(sk2),
    773						    sctp_sk(sk), cnt);
    774			if (!err) {
    775				err = reuseport_add_sock(sk, sk2, any);
    776				if (err)
    777					return err;
    778				break;
    779			} else if (err < 0) {
    780				return err;
    781			}
    782		}
    783
    784		if (err) {
    785			err = reuseport_alloc(sk, any);
    786			if (err)
    787				return err;
    788		}
    789	}
    790
    791	write_lock(&head->lock);
    792	hlist_add_head(&ep->node, &head->chain);
    793	write_unlock(&head->lock);
    794	return 0;
    795}
    796
    797/* Add an endpoint to the hash. Local BH-safe. */
    798int sctp_hash_endpoint(struct sctp_endpoint *ep)
    799{
    800	int err;
    801
    802	local_bh_disable();
    803	err = __sctp_hash_endpoint(ep);
    804	local_bh_enable();
    805
    806	return err;
    807}
    808
    809/* Remove endpoint from the hash table.  */
    810static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
    811{
    812	struct sock *sk = ep->base.sk;
    813	struct sctp_hashbucket *head;
    814
    815	ep->hashent = sctp_ep_hashfn(sock_net(sk), ep->base.bind_addr.port);
    816
    817	head = &sctp_ep_hashtable[ep->hashent];
    818
    819	if (rcu_access_pointer(sk->sk_reuseport_cb))
    820		reuseport_detach_sock(sk);
    821
    822	write_lock(&head->lock);
    823	hlist_del_init(&ep->node);
    824	write_unlock(&head->lock);
    825}
    826
    827/* Remove endpoint from the hash.  Local BH-safe. */
    828void sctp_unhash_endpoint(struct sctp_endpoint *ep)
    829{
    830	local_bh_disable();
    831	__sctp_unhash_endpoint(ep);
    832	local_bh_enable();
    833}
    834
    835static inline __u32 sctp_hashfn(const struct net *net, __be16 lport,
    836				const union sctp_addr *paddr, __u32 seed)
    837{
    838	__u32 addr;
    839
    840	if (paddr->sa.sa_family == AF_INET6)
    841		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
    842	else
    843		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
    844
    845	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
    846			     (__force __u32)lport, net_hash_mix(net), seed);
    847}
    848
    849/* Look up an endpoint. */
    850static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
    851					struct net *net, struct sk_buff *skb,
    852					const union sctp_addr *laddr,
    853					const union sctp_addr *paddr)
    854{
    855	struct sctp_hashbucket *head;
    856	struct sctp_endpoint *ep;
    857	struct sock *sk;
    858	__be16 lport;
    859	int hash;
    860
    861	lport = laddr->v4.sin_port;
    862	hash = sctp_ep_hashfn(net, ntohs(lport));
    863	head = &sctp_ep_hashtable[hash];
    864	read_lock(&head->lock);
    865	sctp_for_each_hentry(ep, &head->chain) {
    866		if (sctp_endpoint_is_match(ep, net, laddr))
    867			goto hit;
    868	}
    869
    870	ep = sctp_sk(net->sctp.ctl_sock)->ep;
    871
    872hit:
    873	sk = ep->base.sk;
    874	if (sk->sk_reuseport) {
    875		__u32 phash = sctp_hashfn(net, lport, paddr, 0);
    876
    877		sk = reuseport_select_sock(sk, phash, skb,
    878					   sizeof(struct sctphdr));
    879		if (sk)
    880			ep = sctp_sk(sk)->ep;
    881	}
    882	sctp_endpoint_hold(ep);
    883	read_unlock(&head->lock);
    884	return ep;
    885}
    886
    887/* rhashtable for transport */
    888struct sctp_hash_cmp_arg {
    889	const union sctp_addr	*paddr;
    890	const struct net	*net;
    891	__be16			lport;
    892};
    893
    894static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
    895				const void *ptr)
    896{
    897	struct sctp_transport *t = (struct sctp_transport *)ptr;
    898	const struct sctp_hash_cmp_arg *x = arg->key;
    899	int err = 1;
    900
    901	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
    902		return err;
    903	if (!sctp_transport_hold(t))
    904		return err;
    905
    906	if (!net_eq(t->asoc->base.net, x->net))
    907		goto out;
    908	if (x->lport != htons(t->asoc->base.bind_addr.port))
    909		goto out;
    910
    911	err = 0;
    912out:
    913	sctp_transport_put(t);
    914	return err;
    915}
    916
    917static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
    918{
    919	const struct sctp_transport *t = data;
    920
    921	return sctp_hashfn(t->asoc->base.net,
    922			   htons(t->asoc->base.bind_addr.port),
    923			   &t->ipaddr, seed);
    924}
    925
    926static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
    927{
    928	const struct sctp_hash_cmp_arg *x = data;
    929
    930	return sctp_hashfn(x->net, x->lport, x->paddr, seed);
    931}
    932
    933static const struct rhashtable_params sctp_hash_params = {
    934	.head_offset		= offsetof(struct sctp_transport, node),
    935	.hashfn			= sctp_hash_key,
    936	.obj_hashfn		= sctp_hash_obj,
    937	.obj_cmpfn		= sctp_hash_cmp,
    938	.automatic_shrinking	= true,
    939};
    940
    941int sctp_transport_hashtable_init(void)
    942{
    943	return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
    944}
    945
    946void sctp_transport_hashtable_destroy(void)
    947{
    948	rhltable_destroy(&sctp_transport_hashtable);
    949}
    950
    951int sctp_hash_transport(struct sctp_transport *t)
    952{
    953	struct sctp_transport *transport;
    954	struct rhlist_head *tmp, *list;
    955	struct sctp_hash_cmp_arg arg;
    956	int err;
    957
    958	if (t->asoc->temp)
    959		return 0;
    960
    961	arg.net   = t->asoc->base.net;
    962	arg.paddr = &t->ipaddr;
    963	arg.lport = htons(t->asoc->base.bind_addr.port);
    964
    965	rcu_read_lock();
    966	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
    967			       sctp_hash_params);
    968
    969	rhl_for_each_entry_rcu(transport, tmp, list, node)
    970		if (transport->asoc->ep == t->asoc->ep) {
    971			rcu_read_unlock();
    972			return -EEXIST;
    973		}
    974	rcu_read_unlock();
    975
    976	err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
    977				  &t->node, sctp_hash_params);
    978	if (err)
    979		pr_err_once("insert transport fail, errno %d\n", err);
    980
    981	return err;
    982}
    983
    984void sctp_unhash_transport(struct sctp_transport *t)
    985{
    986	if (t->asoc->temp)
    987		return;
    988
    989	rhltable_remove(&sctp_transport_hashtable, &t->node,
    990			sctp_hash_params);
    991}
    992
    993/* return a transport with holding it */
    994struct sctp_transport *sctp_addrs_lookup_transport(
    995				struct net *net,
    996				const union sctp_addr *laddr,
    997				const union sctp_addr *paddr)
    998{
    999	struct rhlist_head *tmp, *list;
   1000	struct sctp_transport *t;
   1001	struct sctp_hash_cmp_arg arg = {
   1002		.paddr = paddr,
   1003		.net   = net,
   1004		.lport = laddr->v4.sin_port,
   1005	};
   1006
   1007	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
   1008			       sctp_hash_params);
   1009
   1010	rhl_for_each_entry_rcu(t, tmp, list, node) {
   1011		if (!sctp_transport_hold(t))
   1012			continue;
   1013
   1014		if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
   1015					 laddr, sctp_sk(t->asoc->base.sk)))
   1016			return t;
   1017		sctp_transport_put(t);
   1018	}
   1019
   1020	return NULL;
   1021}
   1022
   1023/* return a transport without holding it, as it's only used under sock lock */
   1024struct sctp_transport *sctp_epaddr_lookup_transport(
   1025				const struct sctp_endpoint *ep,
   1026				const union sctp_addr *paddr)
   1027{
   1028	struct rhlist_head *tmp, *list;
   1029	struct sctp_transport *t;
   1030	struct sctp_hash_cmp_arg arg = {
   1031		.paddr = paddr,
   1032		.net   = ep->base.net,
   1033		.lport = htons(ep->base.bind_addr.port),
   1034	};
   1035
   1036	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
   1037			       sctp_hash_params);
   1038
   1039	rhl_for_each_entry_rcu(t, tmp, list, node)
   1040		if (ep == t->asoc->ep)
   1041			return t;
   1042
   1043	return NULL;
   1044}
   1045
   1046/* Look up an association. */
   1047static struct sctp_association *__sctp_lookup_association(
   1048					struct net *net,
   1049					const union sctp_addr *local,
   1050					const union sctp_addr *peer,
   1051					struct sctp_transport **pt)
   1052{
   1053	struct sctp_transport *t;
   1054	struct sctp_association *asoc = NULL;
   1055
   1056	t = sctp_addrs_lookup_transport(net, local, peer);
   1057	if (!t)
   1058		goto out;
   1059
   1060	asoc = t->asoc;
   1061	*pt = t;
   1062
   1063out:
   1064	return asoc;
   1065}
   1066
   1067/* Look up an association. protected by RCU read lock */
   1068static
   1069struct sctp_association *sctp_lookup_association(struct net *net,
   1070						 const union sctp_addr *laddr,
   1071						 const union sctp_addr *paddr,
   1072						 struct sctp_transport **transportp)
   1073{
   1074	struct sctp_association *asoc;
   1075
   1076	rcu_read_lock();
   1077	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
   1078	rcu_read_unlock();
   1079
   1080	return asoc;
   1081}
   1082
   1083/* Is there an association matching the given local and peer addresses? */
   1084bool sctp_has_association(struct net *net,
   1085			  const union sctp_addr *laddr,
   1086			  const union sctp_addr *paddr)
   1087{
   1088	struct sctp_transport *transport;
   1089
   1090	if (sctp_lookup_association(net, laddr, paddr, &transport)) {
   1091		sctp_transport_put(transport);
   1092		return true;
   1093	}
   1094
   1095	return false;
   1096}
   1097
   1098/*
   1099 * SCTP Implementors Guide, 2.18 Handling of address
   1100 * parameters within the INIT or INIT-ACK.
   1101 *
   1102 * D) When searching for a matching TCB upon reception of an INIT
   1103 *    or INIT-ACK chunk the receiver SHOULD use not only the
   1104 *    source address of the packet (containing the INIT or
   1105 *    INIT-ACK) but the receiver SHOULD also use all valid
   1106 *    address parameters contained within the chunk.
   1107 *
   1108 * 2.18.3 Solution description
   1109 *
   1110 * This new text clearly specifies to an implementor the need
   1111 * to look within the INIT or INIT-ACK. Any implementation that
   1112 * does not do this, may not be able to establish associations
   1113 * in certain circumstances.
   1114 *
   1115 */
   1116static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
   1117	struct sk_buff *skb,
   1118	const union sctp_addr *laddr, struct sctp_transport **transportp)
   1119{
   1120	struct sctp_association *asoc;
   1121	union sctp_addr addr;
   1122	union sctp_addr *paddr = &addr;
   1123	struct sctphdr *sh = sctp_hdr(skb);
   1124	union sctp_params params;
   1125	struct sctp_init_chunk *init;
   1126	struct sctp_af *af;
   1127
   1128	/*
   1129	 * This code will NOT touch anything inside the chunk--it is
   1130	 * strictly READ-ONLY.
   1131	 *
   1132	 * RFC 2960 3  SCTP packet Format
   1133	 *
   1134	 * Multiple chunks can be bundled into one SCTP packet up to
   1135	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
   1136	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
   1137	 * other chunk in a packet.  See Section 6.10 for more details
   1138	 * on chunk bundling.
   1139	 */
   1140
   1141	/* Find the start of the TLVs and the end of the chunk.  This is
   1142	 * the region we search for address parameters.
   1143	 */
   1144	init = (struct sctp_init_chunk *)skb->data;
   1145
   1146	/* Walk the parameters looking for embedded addresses. */
   1147	sctp_walk_params(params, init, init_hdr.params) {
   1148
   1149		/* Note: Ignoring hostname addresses. */
   1150		af = sctp_get_af_specific(param_type2af(params.p->type));
   1151		if (!af)
   1152			continue;
   1153
   1154		if (!af->from_addr_param(paddr, params.addr, sh->source, 0))
   1155			continue;
   1156
   1157		asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
   1158		if (asoc)
   1159			return asoc;
   1160	}
   1161
   1162	return NULL;
   1163}
   1164
   1165/* ADD-IP, Section 5.2
   1166 * When an endpoint receives an ASCONF Chunk from the remote peer
   1167 * special procedures may be needed to identify the association the
   1168 * ASCONF Chunk is associated with. To properly find the association
   1169 * the following procedures SHOULD be followed:
   1170 *
   1171 * D2) If the association is not found, use the address found in the
   1172 * Address Parameter TLV combined with the port number found in the
   1173 * SCTP common header. If found proceed to rule D4.
   1174 *
   1175 * D2-ext) If more than one ASCONF Chunks are packed together, use the
   1176 * address found in the ASCONF Address Parameter TLV of each of the
   1177 * subsequent ASCONF Chunks. If found, proceed to rule D4.
   1178 */
   1179static struct sctp_association *__sctp_rcv_asconf_lookup(
   1180					struct net *net,
   1181					struct sctp_chunkhdr *ch,
   1182					const union sctp_addr *laddr,
   1183					__be16 peer_port,
   1184					struct sctp_transport **transportp)
   1185{
   1186	struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
   1187	struct sctp_af *af;
   1188	union sctp_addr_param *param;
   1189	union sctp_addr paddr;
   1190
   1191	if (ntohs(ch->length) < sizeof(*asconf) + sizeof(struct sctp_paramhdr))
   1192		return NULL;
   1193
   1194	/* Skip over the ADDIP header and find the Address parameter */
   1195	param = (union sctp_addr_param *)(asconf + 1);
   1196
   1197	af = sctp_get_af_specific(param_type2af(param->p.type));
   1198	if (unlikely(!af))
   1199		return NULL;
   1200
   1201	if (!af->from_addr_param(&paddr, param, peer_port, 0))
   1202		return NULL;
   1203
   1204	return __sctp_lookup_association(net, laddr, &paddr, transportp);
   1205}
   1206
   1207
   1208/* SCTP-AUTH, Section 6.3:
   1209*    If the receiver does not find a STCB for a packet containing an AUTH
   1210*    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
   1211*    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
   1212*    association.
   1213*
   1214* This means that any chunks that can help us identify the association need
   1215* to be looked at to find this association.
   1216*/
   1217static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
   1218				      struct sk_buff *skb,
   1219				      const union sctp_addr *laddr,
   1220				      struct sctp_transport **transportp)
   1221{
   1222	struct sctp_association *asoc = NULL;
   1223	struct sctp_chunkhdr *ch;
   1224	int have_auth = 0;
   1225	unsigned int chunk_num = 1;
   1226	__u8 *ch_end;
   1227
   1228	/* Walk through the chunks looking for AUTH or ASCONF chunks
   1229	 * to help us find the association.
   1230	 */
   1231	ch = (struct sctp_chunkhdr *)skb->data;
   1232	do {
   1233		/* Break out if chunk length is less then minimal. */
   1234		if (ntohs(ch->length) < sizeof(*ch))
   1235			break;
   1236
   1237		ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
   1238		if (ch_end > skb_tail_pointer(skb))
   1239			break;
   1240
   1241		switch (ch->type) {
   1242		case SCTP_CID_AUTH:
   1243			have_auth = chunk_num;
   1244			break;
   1245
   1246		case SCTP_CID_COOKIE_ECHO:
   1247			/* If a packet arrives containing an AUTH chunk as
   1248			 * a first chunk, a COOKIE-ECHO chunk as the second
   1249			 * chunk, and possibly more chunks after them, and
   1250			 * the receiver does not have an STCB for that
   1251			 * packet, then authentication is based on
   1252			 * the contents of the COOKIE- ECHO chunk.
   1253			 */
   1254			if (have_auth == 1 && chunk_num == 2)
   1255				return NULL;
   1256			break;
   1257
   1258		case SCTP_CID_ASCONF:
   1259			if (have_auth || net->sctp.addip_noauth)
   1260				asoc = __sctp_rcv_asconf_lookup(
   1261						net, ch, laddr,
   1262						sctp_hdr(skb)->source,
   1263						transportp);
   1264			break;
   1265		default:
   1266			break;
   1267		}
   1268
   1269		if (asoc)
   1270			break;
   1271
   1272		ch = (struct sctp_chunkhdr *)ch_end;
   1273		chunk_num++;
   1274	} while (ch_end + sizeof(*ch) < skb_tail_pointer(skb));
   1275
   1276	return asoc;
   1277}
   1278
   1279/*
   1280 * There are circumstances when we need to look inside the SCTP packet
   1281 * for information to help us find the association.   Examples
   1282 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
   1283 * chunks.
   1284 */
   1285static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
   1286				      struct sk_buff *skb,
   1287				      const union sctp_addr *laddr,
   1288				      struct sctp_transport **transportp)
   1289{
   1290	struct sctp_chunkhdr *ch;
   1291
   1292	/* We do not allow GSO frames here as we need to linearize and
   1293	 * then cannot guarantee frame boundaries. This shouldn't be an
   1294	 * issue as packets hitting this are mostly INIT or INIT-ACK and
   1295	 * those cannot be on GSO-style anyway.
   1296	 */
   1297	if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
   1298		return NULL;
   1299
   1300	ch = (struct sctp_chunkhdr *)skb->data;
   1301
   1302	/* The code below will attempt to walk the chunk and extract
   1303	 * parameter information.  Before we do that, we need to verify
   1304	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
   1305	 * walk off the end.
   1306	 */
   1307	if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
   1308		return NULL;
   1309
   1310	/* If this is INIT/INIT-ACK look inside the chunk too. */
   1311	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
   1312		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
   1313
   1314	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
   1315}
   1316
   1317/* Lookup an association for an inbound skb. */
   1318static struct sctp_association *__sctp_rcv_lookup(struct net *net,
   1319				      struct sk_buff *skb,
   1320				      const union sctp_addr *paddr,
   1321				      const union sctp_addr *laddr,
   1322				      struct sctp_transport **transportp)
   1323{
   1324	struct sctp_association *asoc;
   1325
   1326	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
   1327	if (asoc)
   1328		goto out;
   1329
   1330	/* Further lookup for INIT/INIT-ACK packets.
   1331	 * SCTP Implementors Guide, 2.18 Handling of address
   1332	 * parameters within the INIT or INIT-ACK.
   1333	 */
   1334	asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
   1335	if (asoc)
   1336		goto out;
   1337
   1338	if (paddr->sa.sa_family == AF_INET)
   1339		pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
   1340			 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
   1341			 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
   1342	else
   1343		pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
   1344			 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
   1345			 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
   1346
   1347out:
   1348	return asoc;
   1349}