cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

socket.c (90999B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * NET		An implementation of the SOCKET network access protocol.
      4 *
      5 * Version:	@(#)socket.c	1.1.93	18/02/95
      6 *
      7 * Authors:	Orest Zborowski, <obz@Kodak.COM>
      8 *		Ross Biro
      9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
     10 *
     11 * Fixes:
     12 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
     13 *					shutdown()
     14 *		Alan Cox	:	verify_area() fixes
     15 *		Alan Cox	:	Removed DDI
     16 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
     17 *		Alan Cox	:	Moved a load of checks to the very
     18 *					top level.
     19 *		Alan Cox	:	Move address structures to/from user
     20 *					mode above the protocol layers.
     21 *		Rob Janssen	:	Allow 0 length sends.
     22 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
     23 *					tty drivers).
     24 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
     25 *		Jeff Uphoff	:	Made max number of sockets command-line
     26 *					configurable.
     27 *		Matti Aarnio	:	Made the number of sockets dynamic,
     28 *					to be allocated when needed, and mr.
     29 *					Uphoff's max is used as max to be
     30 *					allowed to allocate.
     31 *		Linus		:	Argh. removed all the socket allocation
     32 *					altogether: it's in the inode now.
     33 *		Alan Cox	:	Made sock_alloc()/sock_release() public
     34 *					for NetROM and future kernel nfsd type
     35 *					stuff.
     36 *		Alan Cox	:	sendmsg/recvmsg basics.
     37 *		Tom Dyas	:	Export net symbols.
     38 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
     39 *		Alan Cox	:	Added thread locking to sys_* calls
     40 *					for sockets. May have errors at the
     41 *					moment.
     42 *		Kevin Buhr	:	Fixed the dumb errors in the above.
     43 *		Andi Kleen	:	Some small cleanups, optimizations,
     44 *					and fixed a copy_from_user() bug.
     45 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
     46 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
     47 *					protocol-independent
     48 *
     49 *	This module is effectively the top level interface to the BSD socket
     50 *	paradigm.
     51 *
     52 *	Based upon Swansea University Computer Society NET3.039
     53 */
     54
     55#include <linux/bpf-cgroup.h>
     56#include <linux/ethtool.h>
     57#include <linux/mm.h>
     58#include <linux/socket.h>
     59#include <linux/file.h>
     60#include <linux/net.h>
     61#include <linux/interrupt.h>
     62#include <linux/thread_info.h>
     63#include <linux/rcupdate.h>
     64#include <linux/netdevice.h>
     65#include <linux/proc_fs.h>
     66#include <linux/seq_file.h>
     67#include <linux/mutex.h>
     68#include <linux/if_bridge.h>
     69#include <linux/if_vlan.h>
     70#include <linux/ptp_classify.h>
     71#include <linux/init.h>
     72#include <linux/poll.h>
     73#include <linux/cache.h>
     74#include <linux/module.h>
     75#include <linux/highmem.h>
     76#include <linux/mount.h>
     77#include <linux/pseudo_fs.h>
     78#include <linux/security.h>
     79#include <linux/syscalls.h>
     80#include <linux/compat.h>
     81#include <linux/kmod.h>
     82#include <linux/audit.h>
     83#include <linux/wireless.h>
     84#include <linux/nsproxy.h>
     85#include <linux/magic.h>
     86#include <linux/slab.h>
     87#include <linux/xattr.h>
     88#include <linux/nospec.h>
     89#include <linux/indirect_call_wrapper.h>
     90
     91#include <linux/uaccess.h>
     92#include <asm/unistd.h>
     93
     94#include <net/compat.h>
     95#include <net/wext.h>
     96#include <net/cls_cgroup.h>
     97
     98#include <net/sock.h>
     99#include <linux/netfilter.h>
    100
    101#include <linux/if_tun.h>
    102#include <linux/ipv6_route.h>
    103#include <linux/route.h>
    104#include <linux/termios.h>
    105#include <linux/sockios.h>
    106#include <net/busy_poll.h>
    107#include <linux/errqueue.h>
    108#include <linux/ptp_clock_kernel.h>
    109
    110#ifdef CONFIG_NET_RX_BUSY_POLL
    111unsigned int sysctl_net_busy_read __read_mostly;
    112unsigned int sysctl_net_busy_poll __read_mostly;
    113#endif
    114
    115static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
    116static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
    117static int sock_mmap(struct file *file, struct vm_area_struct *vma);
    118
    119static int sock_close(struct inode *inode, struct file *file);
    120static __poll_t sock_poll(struct file *file,
    121			      struct poll_table_struct *wait);
    122static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
    123#ifdef CONFIG_COMPAT
    124static long compat_sock_ioctl(struct file *file,
    125			      unsigned int cmd, unsigned long arg);
    126#endif
    127static int sock_fasync(int fd, struct file *filp, int on);
    128static ssize_t sock_sendpage(struct file *file, struct page *page,
    129			     int offset, size_t size, loff_t *ppos, int more);
    130static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
    131				struct pipe_inode_info *pipe, size_t len,
    132				unsigned int flags);
    133
    134#ifdef CONFIG_PROC_FS
    135static void sock_show_fdinfo(struct seq_file *m, struct file *f)
    136{
    137	struct socket *sock = f->private_data;
    138
    139	if (sock->ops->show_fdinfo)
    140		sock->ops->show_fdinfo(m, sock);
    141}
    142#else
    143#define sock_show_fdinfo NULL
    144#endif
    145
    146/*
    147 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
    148 *	in the operation structures but are done directly via the socketcall() multiplexor.
    149 */
    150
    151static const struct file_operations socket_file_ops = {
    152	.owner =	THIS_MODULE,
    153	.llseek =	no_llseek,
    154	.read_iter =	sock_read_iter,
    155	.write_iter =	sock_write_iter,
    156	.poll =		sock_poll,
    157	.unlocked_ioctl = sock_ioctl,
    158#ifdef CONFIG_COMPAT
    159	.compat_ioctl = compat_sock_ioctl,
    160#endif
    161	.mmap =		sock_mmap,
    162	.release =	sock_close,
    163	.fasync =	sock_fasync,
    164	.sendpage =	sock_sendpage,
    165	.splice_write = generic_splice_sendpage,
    166	.splice_read =	sock_splice_read,
    167	.show_fdinfo =	sock_show_fdinfo,
    168};
    169
    170static const char * const pf_family_names[] = {
    171	[PF_UNSPEC]	= "PF_UNSPEC",
    172	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
    173	[PF_INET]	= "PF_INET",
    174	[PF_AX25]	= "PF_AX25",
    175	[PF_IPX]	= "PF_IPX",
    176	[PF_APPLETALK]	= "PF_APPLETALK",
    177	[PF_NETROM]	= "PF_NETROM",
    178	[PF_BRIDGE]	= "PF_BRIDGE",
    179	[PF_ATMPVC]	= "PF_ATMPVC",
    180	[PF_X25]	= "PF_X25",
    181	[PF_INET6]	= "PF_INET6",
    182	[PF_ROSE]	= "PF_ROSE",
    183	[PF_DECnet]	= "PF_DECnet",
    184	[PF_NETBEUI]	= "PF_NETBEUI",
    185	[PF_SECURITY]	= "PF_SECURITY",
    186	[PF_KEY]	= "PF_KEY",
    187	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
    188	[PF_PACKET]	= "PF_PACKET",
    189	[PF_ASH]	= "PF_ASH",
    190	[PF_ECONET]	= "PF_ECONET",
    191	[PF_ATMSVC]	= "PF_ATMSVC",
    192	[PF_RDS]	= "PF_RDS",
    193	[PF_SNA]	= "PF_SNA",
    194	[PF_IRDA]	= "PF_IRDA",
    195	[PF_PPPOX]	= "PF_PPPOX",
    196	[PF_WANPIPE]	= "PF_WANPIPE",
    197	[PF_LLC]	= "PF_LLC",
    198	[PF_IB]		= "PF_IB",
    199	[PF_MPLS]	= "PF_MPLS",
    200	[PF_CAN]	= "PF_CAN",
    201	[PF_TIPC]	= "PF_TIPC",
    202	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
    203	[PF_IUCV]	= "PF_IUCV",
    204	[PF_RXRPC]	= "PF_RXRPC",
    205	[PF_ISDN]	= "PF_ISDN",
    206	[PF_PHONET]	= "PF_PHONET",
    207	[PF_IEEE802154]	= "PF_IEEE802154",
    208	[PF_CAIF]	= "PF_CAIF",
    209	[PF_ALG]	= "PF_ALG",
    210	[PF_NFC]	= "PF_NFC",
    211	[PF_VSOCK]	= "PF_VSOCK",
    212	[PF_KCM]	= "PF_KCM",
    213	[PF_QIPCRTR]	= "PF_QIPCRTR",
    214	[PF_SMC]	= "PF_SMC",
    215	[PF_XDP]	= "PF_XDP",
    216	[PF_MCTP]	= "PF_MCTP",
    217};
    218
    219/*
    220 *	The protocol list. Each protocol is registered in here.
    221 */
    222
    223static DEFINE_SPINLOCK(net_family_lock);
    224static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
    225
    226/*
    227 * Support routines.
    228 * Move socket addresses back and forth across the kernel/user
    229 * divide and look after the messy bits.
    230 */
    231
    232/**
    233 *	move_addr_to_kernel	-	copy a socket address into kernel space
    234 *	@uaddr: Address in user space
    235 *	@kaddr: Address in kernel space
    236 *	@ulen: Length in user space
    237 *
    238 *	The address is copied into kernel space. If the provided address is
    239 *	too long an error code of -EINVAL is returned. If the copy gives
    240 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
    241 */
    242
    243int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
    244{
    245	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
    246		return -EINVAL;
    247	if (ulen == 0)
    248		return 0;
    249	if (copy_from_user(kaddr, uaddr, ulen))
    250		return -EFAULT;
    251	return audit_sockaddr(ulen, kaddr);
    252}
    253
    254/**
    255 *	move_addr_to_user	-	copy an address to user space
    256 *	@kaddr: kernel space address
    257 *	@klen: length of address in kernel
    258 *	@uaddr: user space address
    259 *	@ulen: pointer to user length field
    260 *
    261 *	The value pointed to by ulen on entry is the buffer length available.
    262 *	This is overwritten with the buffer space used. -EINVAL is returned
    263 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
    264 *	is returned if either the buffer or the length field are not
    265 *	accessible.
    266 *	After copying the data up to the limit the user specifies, the true
    267 *	length of the data is written over the length limit the user
    268 *	specified. Zero is returned for a success.
    269 */
    270
    271static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
    272			     void __user *uaddr, int __user *ulen)
    273{
    274	int err;
    275	int len;
    276
    277	BUG_ON(klen > sizeof(struct sockaddr_storage));
    278	err = get_user(len, ulen);
    279	if (err)
    280		return err;
    281	if (len > klen)
    282		len = klen;
    283	if (len < 0)
    284		return -EINVAL;
    285	if (len) {
    286		if (audit_sockaddr(klen, kaddr))
    287			return -ENOMEM;
    288		if (copy_to_user(uaddr, kaddr, len))
    289			return -EFAULT;
    290	}
    291	/*
    292	 *      "fromlen shall refer to the value before truncation.."
    293	 *                      1003.1g
    294	 */
    295	return __put_user(klen, ulen);
    296}
    297
    298static struct kmem_cache *sock_inode_cachep __ro_after_init;
    299
    300static struct inode *sock_alloc_inode(struct super_block *sb)
    301{
    302	struct socket_alloc *ei;
    303
    304	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
    305	if (!ei)
    306		return NULL;
    307	init_waitqueue_head(&ei->socket.wq.wait);
    308	ei->socket.wq.fasync_list = NULL;
    309	ei->socket.wq.flags = 0;
    310
    311	ei->socket.state = SS_UNCONNECTED;
    312	ei->socket.flags = 0;
    313	ei->socket.ops = NULL;
    314	ei->socket.sk = NULL;
    315	ei->socket.file = NULL;
    316
    317	return &ei->vfs_inode;
    318}
    319
    320static void sock_free_inode(struct inode *inode)
    321{
    322	struct socket_alloc *ei;
    323
    324	ei = container_of(inode, struct socket_alloc, vfs_inode);
    325	kmem_cache_free(sock_inode_cachep, ei);
    326}
    327
    328static void init_once(void *foo)
    329{
    330	struct socket_alloc *ei = (struct socket_alloc *)foo;
    331
    332	inode_init_once(&ei->vfs_inode);
    333}
    334
    335static void init_inodecache(void)
    336{
    337	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
    338					      sizeof(struct socket_alloc),
    339					      0,
    340					      (SLAB_HWCACHE_ALIGN |
    341					       SLAB_RECLAIM_ACCOUNT |
    342					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
    343					      init_once);
    344	BUG_ON(sock_inode_cachep == NULL);
    345}
    346
    347static const struct super_operations sockfs_ops = {
    348	.alloc_inode	= sock_alloc_inode,
    349	.free_inode	= sock_free_inode,
    350	.statfs		= simple_statfs,
    351};
    352
    353/*
    354 * sockfs_dname() is called from d_path().
    355 */
    356static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
    357{
    358	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
    359				d_inode(dentry)->i_ino);
    360}
    361
    362static const struct dentry_operations sockfs_dentry_operations = {
    363	.d_dname  = sockfs_dname,
    364};
    365
    366static int sockfs_xattr_get(const struct xattr_handler *handler,
    367			    struct dentry *dentry, struct inode *inode,
    368			    const char *suffix, void *value, size_t size)
    369{
    370	if (value) {
    371		if (dentry->d_name.len + 1 > size)
    372			return -ERANGE;
    373		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
    374	}
    375	return dentry->d_name.len + 1;
    376}
    377
    378#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
    379#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
    380#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
    381
    382static const struct xattr_handler sockfs_xattr_handler = {
    383	.name = XATTR_NAME_SOCKPROTONAME,
    384	.get = sockfs_xattr_get,
    385};
    386
    387static int sockfs_security_xattr_set(const struct xattr_handler *handler,
    388				     struct user_namespace *mnt_userns,
    389				     struct dentry *dentry, struct inode *inode,
    390				     const char *suffix, const void *value,
    391				     size_t size, int flags)
    392{
    393	/* Handled by LSM. */
    394	return -EAGAIN;
    395}
    396
    397static const struct xattr_handler sockfs_security_xattr_handler = {
    398	.prefix = XATTR_SECURITY_PREFIX,
    399	.set = sockfs_security_xattr_set,
    400};
    401
    402static const struct xattr_handler *sockfs_xattr_handlers[] = {
    403	&sockfs_xattr_handler,
    404	&sockfs_security_xattr_handler,
    405	NULL
    406};
    407
    408static int sockfs_init_fs_context(struct fs_context *fc)
    409{
    410	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
    411	if (!ctx)
    412		return -ENOMEM;
    413	ctx->ops = &sockfs_ops;
    414	ctx->dops = &sockfs_dentry_operations;
    415	ctx->xattr = sockfs_xattr_handlers;
    416	return 0;
    417}
    418
    419static struct vfsmount *sock_mnt __read_mostly;
    420
    421static struct file_system_type sock_fs_type = {
    422	.name =		"sockfs",
    423	.init_fs_context = sockfs_init_fs_context,
    424	.kill_sb =	kill_anon_super,
    425};
    426
    427/*
    428 *	Obtains the first available file descriptor and sets it up for use.
    429 *
    430 *	These functions create file structures and maps them to fd space
    431 *	of the current process. On success it returns file descriptor
    432 *	and file struct implicitly stored in sock->file.
    433 *	Note that another thread may close file descriptor before we return
    434 *	from this function. We use the fact that now we do not refer
    435 *	to socket after mapping. If one day we will need it, this
    436 *	function will increment ref. count on file by 1.
    437 *
    438 *	In any case returned fd MAY BE not valid!
    439 *	This race condition is unavoidable
    440 *	with shared fd spaces, we cannot solve it inside kernel,
    441 *	but we take care of internal coherence yet.
    442 */
    443
    444/**
    445 *	sock_alloc_file - Bind a &socket to a &file
    446 *	@sock: socket
    447 *	@flags: file status flags
    448 *	@dname: protocol name
    449 *
    450 *	Returns the &file bound with @sock, implicitly storing it
    451 *	in sock->file. If dname is %NULL, sets to "".
    452 *	On failure the return is a ERR pointer (see linux/err.h).
    453 *	This function uses GFP_KERNEL internally.
    454 */
    455
    456struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
    457{
    458	struct file *file;
    459
    460	if (!dname)
    461		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
    462
    463	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
    464				O_RDWR | (flags & O_NONBLOCK),
    465				&socket_file_ops);
    466	if (IS_ERR(file)) {
    467		sock_release(sock);
    468		return file;
    469	}
    470
    471	sock->file = file;
    472	file->private_data = sock;
    473	stream_open(SOCK_INODE(sock), file);
    474	return file;
    475}
    476EXPORT_SYMBOL(sock_alloc_file);
    477
    478static int sock_map_fd(struct socket *sock, int flags)
    479{
    480	struct file *newfile;
    481	int fd = get_unused_fd_flags(flags);
    482	if (unlikely(fd < 0)) {
    483		sock_release(sock);
    484		return fd;
    485	}
    486
    487	newfile = sock_alloc_file(sock, flags, NULL);
    488	if (!IS_ERR(newfile)) {
    489		fd_install(fd, newfile);
    490		return fd;
    491	}
    492
    493	put_unused_fd(fd);
    494	return PTR_ERR(newfile);
    495}
    496
    497/**
    498 *	sock_from_file - Return the &socket bounded to @file.
    499 *	@file: file
    500 *
    501 *	On failure returns %NULL.
    502 */
    503
    504struct socket *sock_from_file(struct file *file)
    505{
    506	if (file->f_op == &socket_file_ops)
    507		return file->private_data;	/* set in sock_alloc_file */
    508
    509	return NULL;
    510}
    511EXPORT_SYMBOL(sock_from_file);
    512
    513/**
    514 *	sockfd_lookup - Go from a file number to its socket slot
    515 *	@fd: file handle
    516 *	@err: pointer to an error code return
    517 *
    518 *	The file handle passed in is locked and the socket it is bound
    519 *	to is returned. If an error occurs the err pointer is overwritten
    520 *	with a negative errno code and NULL is returned. The function checks
    521 *	for both invalid handles and passing a handle which is not a socket.
    522 *
    523 *	On a success the socket object pointer is returned.
    524 */
    525
    526struct socket *sockfd_lookup(int fd, int *err)
    527{
    528	struct file *file;
    529	struct socket *sock;
    530
    531	file = fget(fd);
    532	if (!file) {
    533		*err = -EBADF;
    534		return NULL;
    535	}
    536
    537	sock = sock_from_file(file);
    538	if (!sock) {
    539		*err = -ENOTSOCK;
    540		fput(file);
    541	}
    542	return sock;
    543}
    544EXPORT_SYMBOL(sockfd_lookup);
    545
    546static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
    547{
    548	struct fd f = fdget(fd);
    549	struct socket *sock;
    550
    551	*err = -EBADF;
    552	if (f.file) {
    553		sock = sock_from_file(f.file);
    554		if (likely(sock)) {
    555			*fput_needed = f.flags & FDPUT_FPUT;
    556			return sock;
    557		}
    558		*err = -ENOTSOCK;
    559		fdput(f);
    560	}
    561	return NULL;
    562}
    563
    564static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
    565				size_t size)
    566{
    567	ssize_t len;
    568	ssize_t used = 0;
    569
    570	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
    571	if (len < 0)
    572		return len;
    573	used += len;
    574	if (buffer) {
    575		if (size < used)
    576			return -ERANGE;
    577		buffer += len;
    578	}
    579
    580	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
    581	used += len;
    582	if (buffer) {
    583		if (size < used)
    584			return -ERANGE;
    585		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
    586		buffer += len;
    587	}
    588
    589	return used;
    590}
    591
    592static int sockfs_setattr(struct user_namespace *mnt_userns,
    593			  struct dentry *dentry, struct iattr *iattr)
    594{
    595	int err = simple_setattr(&init_user_ns, dentry, iattr);
    596
    597	if (!err && (iattr->ia_valid & ATTR_UID)) {
    598		struct socket *sock = SOCKET_I(d_inode(dentry));
    599
    600		if (sock->sk)
    601			sock->sk->sk_uid = iattr->ia_uid;
    602		else
    603			err = -ENOENT;
    604	}
    605
    606	return err;
    607}
    608
    609static const struct inode_operations sockfs_inode_ops = {
    610	.listxattr = sockfs_listxattr,
    611	.setattr = sockfs_setattr,
    612};
    613
    614/**
    615 *	sock_alloc - allocate a socket
    616 *
    617 *	Allocate a new inode and socket object. The two are bound together
    618 *	and initialised. The socket is then returned. If we are out of inodes
    619 *	NULL is returned. This functions uses GFP_KERNEL internally.
    620 */
    621
    622struct socket *sock_alloc(void)
    623{
    624	struct inode *inode;
    625	struct socket *sock;
    626
    627	inode = new_inode_pseudo(sock_mnt->mnt_sb);
    628	if (!inode)
    629		return NULL;
    630
    631	sock = SOCKET_I(inode);
    632
    633	inode->i_ino = get_next_ino();
    634	inode->i_mode = S_IFSOCK | S_IRWXUGO;
    635	inode->i_uid = current_fsuid();
    636	inode->i_gid = current_fsgid();
    637	inode->i_op = &sockfs_inode_ops;
    638
    639	return sock;
    640}
    641EXPORT_SYMBOL(sock_alloc);
    642
    643static void __sock_release(struct socket *sock, struct inode *inode)
    644{
    645	if (sock->ops) {
    646		struct module *owner = sock->ops->owner;
    647
    648		if (inode)
    649			inode_lock(inode);
    650		sock->ops->release(sock);
    651		sock->sk = NULL;
    652		if (inode)
    653			inode_unlock(inode);
    654		sock->ops = NULL;
    655		module_put(owner);
    656	}
    657
    658	if (sock->wq.fasync_list)
    659		pr_err("%s: fasync list not empty!\n", __func__);
    660
    661	if (!sock->file) {
    662		iput(SOCK_INODE(sock));
    663		return;
    664	}
    665	sock->file = NULL;
    666}
    667
    668/**
    669 *	sock_release - close a socket
    670 *	@sock: socket to close
    671 *
    672 *	The socket is released from the protocol stack if it has a release
    673 *	callback, and the inode is then released if the socket is bound to
    674 *	an inode not a file.
    675 */
    676void sock_release(struct socket *sock)
    677{
    678	__sock_release(sock, NULL);
    679}
    680EXPORT_SYMBOL(sock_release);
    681
    682void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
    683{
    684	u8 flags = *tx_flags;
    685
    686	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
    687		flags |= SKBTX_HW_TSTAMP;
    688
    689		/* PTP hardware clocks can provide a free running cycle counter
    690		 * as a time base for virtual clocks. Tell driver to use the
    691		 * free running cycle counter for timestamp if socket is bound
    692		 * to virtual clock.
    693		 */
    694		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
    695			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
    696	}
    697
    698	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
    699		flags |= SKBTX_SW_TSTAMP;
    700
    701	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
    702		flags |= SKBTX_SCHED_TSTAMP;
    703
    704	*tx_flags = flags;
    705}
    706EXPORT_SYMBOL(__sock_tx_timestamp);
    707
    708INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
    709					   size_t));
    710INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
    711					    size_t));
    712static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
    713{
    714	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
    715				     inet_sendmsg, sock, msg,
    716				     msg_data_left(msg));
    717	BUG_ON(ret == -EIOCBQUEUED);
    718	return ret;
    719}
    720
    721/**
    722 *	sock_sendmsg - send a message through @sock
    723 *	@sock: socket
    724 *	@msg: message to send
    725 *
    726 *	Sends @msg through @sock, passing through LSM.
    727 *	Returns the number of bytes sent, or an error code.
    728 */
    729int sock_sendmsg(struct socket *sock, struct msghdr *msg)
    730{
    731	int err = security_socket_sendmsg(sock, msg,
    732					  msg_data_left(msg));
    733
    734	return err ?: sock_sendmsg_nosec(sock, msg);
    735}
    736EXPORT_SYMBOL(sock_sendmsg);
    737
    738/**
    739 *	kernel_sendmsg - send a message through @sock (kernel-space)
    740 *	@sock: socket
    741 *	@msg: message header
    742 *	@vec: kernel vec
    743 *	@num: vec array length
    744 *	@size: total message data size
    745 *
    746 *	Builds the message data with @vec and sends it through @sock.
    747 *	Returns the number of bytes sent, or an error code.
    748 */
    749
    750int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
    751		   struct kvec *vec, size_t num, size_t size)
    752{
    753	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
    754	return sock_sendmsg(sock, msg);
    755}
    756EXPORT_SYMBOL(kernel_sendmsg);
    757
    758/**
    759 *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
    760 *	@sk: sock
    761 *	@msg: message header
    762 *	@vec: output s/g array
    763 *	@num: output s/g array length
    764 *	@size: total message data size
    765 *
    766 *	Builds the message data with @vec and sends it through @sock.
    767 *	Returns the number of bytes sent, or an error code.
    768 *	Caller must hold @sk.
    769 */
    770
    771int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
    772			  struct kvec *vec, size_t num, size_t size)
    773{
    774	struct socket *sock = sk->sk_socket;
    775
    776	if (!sock->ops->sendmsg_locked)
    777		return sock_no_sendmsg_locked(sk, msg, size);
    778
    779	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
    780
    781	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
    782}
    783EXPORT_SYMBOL(kernel_sendmsg_locked);
    784
    785static bool skb_is_err_queue(const struct sk_buff *skb)
    786{
    787	/* pkt_type of skbs enqueued on the error queue are set to
    788	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
    789	 * in recvmsg, since skbs received on a local socket will never
    790	 * have a pkt_type of PACKET_OUTGOING.
    791	 */
    792	return skb->pkt_type == PACKET_OUTGOING;
    793}
    794
    795/* On transmit, software and hardware timestamps are returned independently.
    796 * As the two skb clones share the hardware timestamp, which may be updated
    797 * before the software timestamp is received, a hardware TX timestamp may be
    798 * returned only if there is no software TX timestamp. Ignore false software
    799 * timestamps, which may be made in the __sock_recv_timestamp() call when the
    800 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
    801 * hardware timestamp.
    802 */
    803static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
    804{
    805	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
    806}
    807
    808static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
    809{
    810	bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC;
    811	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
    812	struct net_device *orig_dev;
    813	ktime_t hwtstamp;
    814
    815	rcu_read_lock();
    816	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
    817	if (orig_dev) {
    818		*if_index = orig_dev->ifindex;
    819		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
    820	} else {
    821		hwtstamp = shhwtstamps->hwtstamp;
    822	}
    823	rcu_read_unlock();
    824
    825	return hwtstamp;
    826}
    827
    828static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
    829			   int if_index)
    830{
    831	struct scm_ts_pktinfo ts_pktinfo;
    832	struct net_device *orig_dev;
    833
    834	if (!skb_mac_header_was_set(skb))
    835		return;
    836
    837	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
    838
    839	if (!if_index) {
    840		rcu_read_lock();
    841		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
    842		if (orig_dev)
    843			if_index = orig_dev->ifindex;
    844		rcu_read_unlock();
    845	}
    846	ts_pktinfo.if_index = if_index;
    847
    848	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
    849	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
    850		 sizeof(ts_pktinfo), &ts_pktinfo);
    851}
    852
    853/*
    854 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
    855 */
    856void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
    857	struct sk_buff *skb)
    858{
    859	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
    860	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
    861	struct scm_timestamping_internal tss;
    862
    863	int empty = 1, false_tstamp = 0;
    864	struct skb_shared_hwtstamps *shhwtstamps =
    865		skb_hwtstamps(skb);
    866	int if_index;
    867	ktime_t hwtstamp;
    868
    869	/* Race occurred between timestamp enabling and packet
    870	   receiving.  Fill in the current time for now. */
    871	if (need_software_tstamp && skb->tstamp == 0) {
    872		__net_timestamp(skb);
    873		false_tstamp = 1;
    874	}
    875
    876	if (need_software_tstamp) {
    877		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
    878			if (new_tstamp) {
    879				struct __kernel_sock_timeval tv;
    880
    881				skb_get_new_timestamp(skb, &tv);
    882				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
    883					 sizeof(tv), &tv);
    884			} else {
    885				struct __kernel_old_timeval tv;
    886
    887				skb_get_timestamp(skb, &tv);
    888				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
    889					 sizeof(tv), &tv);
    890			}
    891		} else {
    892			if (new_tstamp) {
    893				struct __kernel_timespec ts;
    894
    895				skb_get_new_timestampns(skb, &ts);
    896				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
    897					 sizeof(ts), &ts);
    898			} else {
    899				struct __kernel_old_timespec ts;
    900
    901				skb_get_timestampns(skb, &ts);
    902				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
    903					 sizeof(ts), &ts);
    904			}
    905		}
    906	}
    907
    908	memset(&tss, 0, sizeof(tss));
    909	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
    910	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
    911		empty = 0;
    912	if (shhwtstamps &&
    913	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
    914	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
    915		if_index = 0;
    916		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
    917			hwtstamp = get_timestamp(sk, skb, &if_index);
    918		else
    919			hwtstamp = shhwtstamps->hwtstamp;
    920
    921		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
    922			hwtstamp = ptp_convert_timestamp(&hwtstamp,
    923							 sk->sk_bind_phc);
    924
    925		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
    926			empty = 0;
    927
    928			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
    929			    !skb_is_err_queue(skb))
    930				put_ts_pktinfo(msg, skb, if_index);
    931		}
    932	}
    933	if (!empty) {
    934		if (sock_flag(sk, SOCK_TSTAMP_NEW))
    935			put_cmsg_scm_timestamping64(msg, &tss);
    936		else
    937			put_cmsg_scm_timestamping(msg, &tss);
    938
    939		if (skb_is_err_queue(skb) && skb->len &&
    940		    SKB_EXT_ERR(skb)->opt_stats)
    941			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
    942				 skb->len, skb->data);
    943	}
    944}
    945EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
    946
    947void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
    948	struct sk_buff *skb)
    949{
    950	int ack;
    951
    952	if (!sock_flag(sk, SOCK_WIFI_STATUS))
    953		return;
    954	if (!skb->wifi_acked_valid)
    955		return;
    956
    957	ack = skb->wifi_acked;
    958
    959	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
    960}
    961EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
    962
    963static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
    964				   struct sk_buff *skb)
    965{
    966	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
    967		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
    968			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
    969}
    970
    971static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
    972			   struct sk_buff *skb)
    973{
    974	if (sock_flag(sk, SOCK_RCVMARK) && skb)
    975		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32),
    976			 &skb->mark);
    977}
    978
    979void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
    980		       struct sk_buff *skb)
    981{
    982	sock_recv_timestamp(msg, sk, skb);
    983	sock_recv_drops(msg, sk, skb);
    984	sock_recv_mark(msg, sk, skb);
    985}
    986EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
    987
    988INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
    989					   size_t, int));
    990INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
    991					    size_t, int));
    992static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
    993				     int flags)
    994{
    995	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
    996				  inet_recvmsg, sock, msg, msg_data_left(msg),
    997				  flags);
    998}
    999
   1000/**
   1001 *	sock_recvmsg - receive a message from @sock
   1002 *	@sock: socket
   1003 *	@msg: message to receive
   1004 *	@flags: message flags
   1005 *
   1006 *	Receives @msg from @sock, passing through LSM. Returns the total number
   1007 *	of bytes received, or an error.
   1008 */
   1009int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
   1010{
   1011	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
   1012
   1013	return err ?: sock_recvmsg_nosec(sock, msg, flags);
   1014}
   1015EXPORT_SYMBOL(sock_recvmsg);
   1016
   1017/**
   1018 *	kernel_recvmsg - Receive a message from a socket (kernel space)
   1019 *	@sock: The socket to receive the message from
   1020 *	@msg: Received message
   1021 *	@vec: Input s/g array for message data
   1022 *	@num: Size of input s/g array
   1023 *	@size: Number of bytes to read
   1024 *	@flags: Message flags (MSG_DONTWAIT, etc...)
   1025 *
   1026 *	On return the msg structure contains the scatter/gather array passed in the
   1027 *	vec argument. The array is modified so that it consists of the unfilled
   1028 *	portion of the original array.
   1029 *
   1030 *	The returned value is the total number of bytes received, or an error.
   1031 */
   1032
   1033int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
   1034		   struct kvec *vec, size_t num, size_t size, int flags)
   1035{
   1036	msg->msg_control_is_user = false;
   1037	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
   1038	return sock_recvmsg(sock, msg, flags);
   1039}
   1040EXPORT_SYMBOL(kernel_recvmsg);
   1041
   1042static ssize_t sock_sendpage(struct file *file, struct page *page,
   1043			     int offset, size_t size, loff_t *ppos, int more)
   1044{
   1045	struct socket *sock;
   1046	int flags;
   1047
   1048	sock = file->private_data;
   1049
   1050	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
   1051	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
   1052	flags |= more;
   1053
   1054	return kernel_sendpage(sock, page, offset, size, flags);
   1055}
   1056
   1057static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
   1058				struct pipe_inode_info *pipe, size_t len,
   1059				unsigned int flags)
   1060{
   1061	struct socket *sock = file->private_data;
   1062
   1063	if (unlikely(!sock->ops->splice_read))
   1064		return generic_file_splice_read(file, ppos, pipe, len, flags);
   1065
   1066	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
   1067}
   1068
   1069static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
   1070{
   1071	struct file *file = iocb->ki_filp;
   1072	struct socket *sock = file->private_data;
   1073	struct msghdr msg = {.msg_iter = *to,
   1074			     .msg_iocb = iocb};
   1075	ssize_t res;
   1076
   1077	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
   1078		msg.msg_flags = MSG_DONTWAIT;
   1079
   1080	if (iocb->ki_pos != 0)
   1081		return -ESPIPE;
   1082
   1083	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
   1084		return 0;
   1085
   1086	res = sock_recvmsg(sock, &msg, msg.msg_flags);
   1087	*to = msg.msg_iter;
   1088	return res;
   1089}
   1090
   1091static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
   1092{
   1093	struct file *file = iocb->ki_filp;
   1094	struct socket *sock = file->private_data;
   1095	struct msghdr msg = {.msg_iter = *from,
   1096			     .msg_iocb = iocb};
   1097	ssize_t res;
   1098
   1099	if (iocb->ki_pos != 0)
   1100		return -ESPIPE;
   1101
   1102	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
   1103		msg.msg_flags = MSG_DONTWAIT;
   1104
   1105	if (sock->type == SOCK_SEQPACKET)
   1106		msg.msg_flags |= MSG_EOR;
   1107
   1108	res = sock_sendmsg(sock, &msg);
   1109	*from = msg.msg_iter;
   1110	return res;
   1111}
   1112
   1113/*
   1114 * Atomic setting of ioctl hooks to avoid race
   1115 * with module unload.
   1116 */
   1117
   1118static DEFINE_MUTEX(br_ioctl_mutex);
   1119static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
   1120			    unsigned int cmd, struct ifreq *ifr,
   1121			    void __user *uarg);
   1122
   1123void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
   1124			     unsigned int cmd, struct ifreq *ifr,
   1125			     void __user *uarg))
   1126{
   1127	mutex_lock(&br_ioctl_mutex);
   1128	br_ioctl_hook = hook;
   1129	mutex_unlock(&br_ioctl_mutex);
   1130}
   1131EXPORT_SYMBOL(brioctl_set);
   1132
   1133int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
   1134		  struct ifreq *ifr, void __user *uarg)
   1135{
   1136	int err = -ENOPKG;
   1137
   1138	if (!br_ioctl_hook)
   1139		request_module("bridge");
   1140
   1141	mutex_lock(&br_ioctl_mutex);
   1142	if (br_ioctl_hook)
   1143		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
   1144	mutex_unlock(&br_ioctl_mutex);
   1145
   1146	return err;
   1147}
   1148
   1149static DEFINE_MUTEX(vlan_ioctl_mutex);
   1150static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
   1151
   1152void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
   1153{
   1154	mutex_lock(&vlan_ioctl_mutex);
   1155	vlan_ioctl_hook = hook;
   1156	mutex_unlock(&vlan_ioctl_mutex);
   1157}
   1158EXPORT_SYMBOL(vlan_ioctl_set);
   1159
   1160static long sock_do_ioctl(struct net *net, struct socket *sock,
   1161			  unsigned int cmd, unsigned long arg)
   1162{
   1163	struct ifreq ifr;
   1164	bool need_copyout;
   1165	int err;
   1166	void __user *argp = (void __user *)arg;
   1167	void __user *data;
   1168
   1169	err = sock->ops->ioctl(sock, cmd, arg);
   1170
   1171	/*
   1172	 * If this ioctl is unknown try to hand it down
   1173	 * to the NIC driver.
   1174	 */
   1175	if (err != -ENOIOCTLCMD)
   1176		return err;
   1177
   1178	if (!is_socket_ioctl_cmd(cmd))
   1179		return -ENOTTY;
   1180
   1181	if (get_user_ifreq(&ifr, &data, argp))
   1182		return -EFAULT;
   1183	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
   1184	if (!err && need_copyout)
   1185		if (put_user_ifreq(&ifr, argp))
   1186			return -EFAULT;
   1187
   1188	return err;
   1189}
   1190
   1191/*
   1192 *	With an ioctl, arg may well be a user mode pointer, but we don't know
   1193 *	what to do with it - that's up to the protocol still.
   1194 */
   1195
   1196static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
   1197{
   1198	struct socket *sock;
   1199	struct sock *sk;
   1200	void __user *argp = (void __user *)arg;
   1201	int pid, err;
   1202	struct net *net;
   1203
   1204	sock = file->private_data;
   1205	sk = sock->sk;
   1206	net = sock_net(sk);
   1207	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
   1208		struct ifreq ifr;
   1209		void __user *data;
   1210		bool need_copyout;
   1211		if (get_user_ifreq(&ifr, &data, argp))
   1212			return -EFAULT;
   1213		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
   1214		if (!err && need_copyout)
   1215			if (put_user_ifreq(&ifr, argp))
   1216				return -EFAULT;
   1217	} else
   1218#ifdef CONFIG_WEXT_CORE
   1219	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
   1220		err = wext_handle_ioctl(net, cmd, argp);
   1221	} else
   1222#endif
   1223		switch (cmd) {
   1224		case FIOSETOWN:
   1225		case SIOCSPGRP:
   1226			err = -EFAULT;
   1227			if (get_user(pid, (int __user *)argp))
   1228				break;
   1229			err = f_setown(sock->file, pid, 1);
   1230			break;
   1231		case FIOGETOWN:
   1232		case SIOCGPGRP:
   1233			err = put_user(f_getown(sock->file),
   1234				       (int __user *)argp);
   1235			break;
   1236		case SIOCGIFBR:
   1237		case SIOCSIFBR:
   1238		case SIOCBRADDBR:
   1239		case SIOCBRDELBR:
   1240			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
   1241			break;
   1242		case SIOCGIFVLAN:
   1243		case SIOCSIFVLAN:
   1244			err = -ENOPKG;
   1245			if (!vlan_ioctl_hook)
   1246				request_module("8021q");
   1247
   1248			mutex_lock(&vlan_ioctl_mutex);
   1249			if (vlan_ioctl_hook)
   1250				err = vlan_ioctl_hook(net, argp);
   1251			mutex_unlock(&vlan_ioctl_mutex);
   1252			break;
   1253		case SIOCGSKNS:
   1254			err = -EPERM;
   1255			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
   1256				break;
   1257
   1258			err = open_related_ns(&net->ns, get_net_ns);
   1259			break;
   1260		case SIOCGSTAMP_OLD:
   1261		case SIOCGSTAMPNS_OLD:
   1262			if (!sock->ops->gettstamp) {
   1263				err = -ENOIOCTLCMD;
   1264				break;
   1265			}
   1266			err = sock->ops->gettstamp(sock, argp,
   1267						   cmd == SIOCGSTAMP_OLD,
   1268						   !IS_ENABLED(CONFIG_64BIT));
   1269			break;
   1270		case SIOCGSTAMP_NEW:
   1271		case SIOCGSTAMPNS_NEW:
   1272			if (!sock->ops->gettstamp) {
   1273				err = -ENOIOCTLCMD;
   1274				break;
   1275			}
   1276			err = sock->ops->gettstamp(sock, argp,
   1277						   cmd == SIOCGSTAMP_NEW,
   1278						   false);
   1279			break;
   1280
   1281		case SIOCGIFCONF:
   1282			err = dev_ifconf(net, argp);
   1283			break;
   1284
   1285		default:
   1286			err = sock_do_ioctl(net, sock, cmd, arg);
   1287			break;
   1288		}
   1289	return err;
   1290}
   1291
   1292/**
   1293 *	sock_create_lite - creates a socket
   1294 *	@family: protocol family (AF_INET, ...)
   1295 *	@type: communication type (SOCK_STREAM, ...)
   1296 *	@protocol: protocol (0, ...)
   1297 *	@res: new socket
   1298 *
   1299 *	Creates a new socket and assigns it to @res, passing through LSM.
   1300 *	The new socket initialization is not complete, see kernel_accept().
   1301 *	Returns 0 or an error. On failure @res is set to %NULL.
   1302 *	This function internally uses GFP_KERNEL.
   1303 */
   1304
   1305int sock_create_lite(int family, int type, int protocol, struct socket **res)
   1306{
   1307	int err;
   1308	struct socket *sock = NULL;
   1309
   1310	err = security_socket_create(family, type, protocol, 1);
   1311	if (err)
   1312		goto out;
   1313
   1314	sock = sock_alloc();
   1315	if (!sock) {
   1316		err = -ENOMEM;
   1317		goto out;
   1318	}
   1319
   1320	sock->type = type;
   1321	err = security_socket_post_create(sock, family, type, protocol, 1);
   1322	if (err)
   1323		goto out_release;
   1324
   1325out:
   1326	*res = sock;
   1327	return err;
   1328out_release:
   1329	sock_release(sock);
   1330	sock = NULL;
   1331	goto out;
   1332}
   1333EXPORT_SYMBOL(sock_create_lite);
   1334
   1335/* No kernel lock held - perfect */
   1336static __poll_t sock_poll(struct file *file, poll_table *wait)
   1337{
   1338	struct socket *sock = file->private_data;
   1339	__poll_t events = poll_requested_events(wait), flag = 0;
   1340
   1341	if (!sock->ops->poll)
   1342		return 0;
   1343
   1344	if (sk_can_busy_loop(sock->sk)) {
   1345		/* poll once if requested by the syscall */
   1346		if (events & POLL_BUSY_LOOP)
   1347			sk_busy_loop(sock->sk, 1);
   1348
   1349		/* if this socket can poll_ll, tell the system call */
   1350		flag = POLL_BUSY_LOOP;
   1351	}
   1352
   1353	return sock->ops->poll(file, sock, wait) | flag;
   1354}
   1355
   1356static int sock_mmap(struct file *file, struct vm_area_struct *vma)
   1357{
   1358	struct socket *sock = file->private_data;
   1359
   1360	return sock->ops->mmap(file, sock, vma);
   1361}
   1362
   1363static int sock_close(struct inode *inode, struct file *filp)
   1364{
   1365	__sock_release(SOCKET_I(inode), inode);
   1366	return 0;
   1367}
   1368
   1369/*
   1370 *	Update the socket async list
   1371 *
   1372 *	Fasync_list locking strategy.
   1373 *
   1374 *	1. fasync_list is modified only under process context socket lock
   1375 *	   i.e. under semaphore.
   1376 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
   1377 *	   or under socket lock
   1378 */
   1379
   1380static int sock_fasync(int fd, struct file *filp, int on)
   1381{
   1382	struct socket *sock = filp->private_data;
   1383	struct sock *sk = sock->sk;
   1384	struct socket_wq *wq = &sock->wq;
   1385
   1386	if (sk == NULL)
   1387		return -EINVAL;
   1388
   1389	lock_sock(sk);
   1390	fasync_helper(fd, filp, on, &wq->fasync_list);
   1391
   1392	if (!wq->fasync_list)
   1393		sock_reset_flag(sk, SOCK_FASYNC);
   1394	else
   1395		sock_set_flag(sk, SOCK_FASYNC);
   1396
   1397	release_sock(sk);
   1398	return 0;
   1399}
   1400
   1401/* This function may be called only under rcu_lock */
   1402
   1403int sock_wake_async(struct socket_wq *wq, int how, int band)
   1404{
   1405	if (!wq || !wq->fasync_list)
   1406		return -1;
   1407
   1408	switch (how) {
   1409	case SOCK_WAKE_WAITD:
   1410		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
   1411			break;
   1412		goto call_kill;
   1413	case SOCK_WAKE_SPACE:
   1414		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
   1415			break;
   1416		fallthrough;
   1417	case SOCK_WAKE_IO:
   1418call_kill:
   1419		kill_fasync(&wq->fasync_list, SIGIO, band);
   1420		break;
   1421	case SOCK_WAKE_URG:
   1422		kill_fasync(&wq->fasync_list, SIGURG, band);
   1423	}
   1424
   1425	return 0;
   1426}
   1427EXPORT_SYMBOL(sock_wake_async);
   1428
   1429/**
   1430 *	__sock_create - creates a socket
   1431 *	@net: net namespace
   1432 *	@family: protocol family (AF_INET, ...)
   1433 *	@type: communication type (SOCK_STREAM, ...)
   1434 *	@protocol: protocol (0, ...)
   1435 *	@res: new socket
   1436 *	@kern: boolean for kernel space sockets
   1437 *
   1438 *	Creates a new socket and assigns it to @res, passing through LSM.
   1439 *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
   1440 *	be set to true if the socket resides in kernel space.
   1441 *	This function internally uses GFP_KERNEL.
   1442 */
   1443
   1444int __sock_create(struct net *net, int family, int type, int protocol,
   1445			 struct socket **res, int kern)
   1446{
   1447	int err;
   1448	struct socket *sock;
   1449	const struct net_proto_family *pf;
   1450
   1451	/*
   1452	 *      Check protocol is in range
   1453	 */
   1454	if (family < 0 || family >= NPROTO)
   1455		return -EAFNOSUPPORT;
   1456	if (type < 0 || type >= SOCK_MAX)
   1457		return -EINVAL;
   1458
   1459	/* Compatibility.
   1460
   1461	   This uglymoron is moved from INET layer to here to avoid
   1462	   deadlock in module load.
   1463	 */
   1464	if (family == PF_INET && type == SOCK_PACKET) {
   1465		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
   1466			     current->comm);
   1467		family = PF_PACKET;
   1468	}
   1469
   1470	err = security_socket_create(family, type, protocol, kern);
   1471	if (err)
   1472		return err;
   1473
   1474	/*
   1475	 *	Allocate the socket and allow the family to set things up. if
   1476	 *	the protocol is 0, the family is instructed to select an appropriate
   1477	 *	default.
   1478	 */
   1479	sock = sock_alloc();
   1480	if (!sock) {
   1481		net_warn_ratelimited("socket: no more sockets\n");
   1482		return -ENFILE;	/* Not exactly a match, but its the
   1483				   closest posix thing */
   1484	}
   1485
   1486	sock->type = type;
   1487
   1488#ifdef CONFIG_MODULES
   1489	/* Attempt to load a protocol module if the find failed.
   1490	 *
   1491	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
   1492	 * requested real, full-featured networking support upon configuration.
   1493	 * Otherwise module support will break!
   1494	 */
   1495	if (rcu_access_pointer(net_families[family]) == NULL)
   1496		request_module("net-pf-%d", family);
   1497#endif
   1498
   1499	rcu_read_lock();
   1500	pf = rcu_dereference(net_families[family]);
   1501	err = -EAFNOSUPPORT;
   1502	if (!pf)
   1503		goto out_release;
   1504
   1505	/*
   1506	 * We will call the ->create function, that possibly is in a loadable
   1507	 * module, so we have to bump that loadable module refcnt first.
   1508	 */
   1509	if (!try_module_get(pf->owner))
   1510		goto out_release;
   1511
   1512	/* Now protected by module ref count */
   1513	rcu_read_unlock();
   1514
   1515	err = pf->create(net, sock, protocol, kern);
   1516	if (err < 0)
   1517		goto out_module_put;
   1518
   1519	/*
   1520	 * Now to bump the refcnt of the [loadable] module that owns this
   1521	 * socket at sock_release time we decrement its refcnt.
   1522	 */
   1523	if (!try_module_get(sock->ops->owner))
   1524		goto out_module_busy;
   1525
   1526	/*
   1527	 * Now that we're done with the ->create function, the [loadable]
   1528	 * module can have its refcnt decremented
   1529	 */
   1530	module_put(pf->owner);
   1531	err = security_socket_post_create(sock, family, type, protocol, kern);
   1532	if (err)
   1533		goto out_sock_release;
   1534	*res = sock;
   1535
   1536	return 0;
   1537
   1538out_module_busy:
   1539	err = -EAFNOSUPPORT;
   1540out_module_put:
   1541	sock->ops = NULL;
   1542	module_put(pf->owner);
   1543out_sock_release:
   1544	sock_release(sock);
   1545	return err;
   1546
   1547out_release:
   1548	rcu_read_unlock();
   1549	goto out_sock_release;
   1550}
   1551EXPORT_SYMBOL(__sock_create);
   1552
   1553/**
   1554 *	sock_create - creates a socket
   1555 *	@family: protocol family (AF_INET, ...)
   1556 *	@type: communication type (SOCK_STREAM, ...)
   1557 *	@protocol: protocol (0, ...)
   1558 *	@res: new socket
   1559 *
   1560 *	A wrapper around __sock_create().
   1561 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
   1562 */
   1563
   1564int sock_create(int family, int type, int protocol, struct socket **res)
   1565{
   1566	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
   1567}
   1568EXPORT_SYMBOL(sock_create);
   1569
   1570/**
   1571 *	sock_create_kern - creates a socket (kernel space)
   1572 *	@net: net namespace
   1573 *	@family: protocol family (AF_INET, ...)
   1574 *	@type: communication type (SOCK_STREAM, ...)
   1575 *	@protocol: protocol (0, ...)
   1576 *	@res: new socket
   1577 *
   1578 *	A wrapper around __sock_create().
   1579 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
   1580 */
   1581
   1582int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
   1583{
   1584	return __sock_create(net, family, type, protocol, res, 1);
   1585}
   1586EXPORT_SYMBOL(sock_create_kern);
   1587
   1588static struct socket *__sys_socket_create(int family, int type, int protocol)
   1589{
   1590	struct socket *sock;
   1591	int retval;
   1592
   1593	/* Check the SOCK_* constants for consistency.  */
   1594	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
   1595	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
   1596	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
   1597	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
   1598
   1599	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
   1600		return ERR_PTR(-EINVAL);
   1601	type &= SOCK_TYPE_MASK;
   1602
   1603	retval = sock_create(family, type, protocol, &sock);
   1604	if (retval < 0)
   1605		return ERR_PTR(retval);
   1606
   1607	return sock;
   1608}
   1609
   1610struct file *__sys_socket_file(int family, int type, int protocol)
   1611{
   1612	struct socket *sock;
   1613	struct file *file;
   1614	int flags;
   1615
   1616	sock = __sys_socket_create(family, type, protocol);
   1617	if (IS_ERR(sock))
   1618		return ERR_CAST(sock);
   1619
   1620	flags = type & ~SOCK_TYPE_MASK;
   1621	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
   1622		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
   1623
   1624	file = sock_alloc_file(sock, flags, NULL);
   1625	if (IS_ERR(file))
   1626		sock_release(sock);
   1627
   1628	return file;
   1629}
   1630
   1631int __sys_socket(int family, int type, int protocol)
   1632{
   1633	struct socket *sock;
   1634	int flags;
   1635
   1636	sock = __sys_socket_create(family, type, protocol);
   1637	if (IS_ERR(sock))
   1638		return PTR_ERR(sock);
   1639
   1640	flags = type & ~SOCK_TYPE_MASK;
   1641	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
   1642		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
   1643
   1644	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
   1645}
   1646
   1647SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
   1648{
   1649	return __sys_socket(family, type, protocol);
   1650}
   1651
   1652/*
   1653 *	Create a pair of connected sockets.
   1654 */
   1655
   1656int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
   1657{
   1658	struct socket *sock1, *sock2;
   1659	int fd1, fd2, err;
   1660	struct file *newfile1, *newfile2;
   1661	int flags;
   1662
   1663	flags = type & ~SOCK_TYPE_MASK;
   1664	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
   1665		return -EINVAL;
   1666	type &= SOCK_TYPE_MASK;
   1667
   1668	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
   1669		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
   1670
   1671	/*
   1672	 * reserve descriptors and make sure we won't fail
   1673	 * to return them to userland.
   1674	 */
   1675	fd1 = get_unused_fd_flags(flags);
   1676	if (unlikely(fd1 < 0))
   1677		return fd1;
   1678
   1679	fd2 = get_unused_fd_flags(flags);
   1680	if (unlikely(fd2 < 0)) {
   1681		put_unused_fd(fd1);
   1682		return fd2;
   1683	}
   1684
   1685	err = put_user(fd1, &usockvec[0]);
   1686	if (err)
   1687		goto out;
   1688
   1689	err = put_user(fd2, &usockvec[1]);
   1690	if (err)
   1691		goto out;
   1692
   1693	/*
   1694	 * Obtain the first socket and check if the underlying protocol
   1695	 * supports the socketpair call.
   1696	 */
   1697
   1698	err = sock_create(family, type, protocol, &sock1);
   1699	if (unlikely(err < 0))
   1700		goto out;
   1701
   1702	err = sock_create(family, type, protocol, &sock2);
   1703	if (unlikely(err < 0)) {
   1704		sock_release(sock1);
   1705		goto out;
   1706	}
   1707
   1708	err = security_socket_socketpair(sock1, sock2);
   1709	if (unlikely(err)) {
   1710		sock_release(sock2);
   1711		sock_release(sock1);
   1712		goto out;
   1713	}
   1714
   1715	err = sock1->ops->socketpair(sock1, sock2);
   1716	if (unlikely(err < 0)) {
   1717		sock_release(sock2);
   1718		sock_release(sock1);
   1719		goto out;
   1720	}
   1721
   1722	newfile1 = sock_alloc_file(sock1, flags, NULL);
   1723	if (IS_ERR(newfile1)) {
   1724		err = PTR_ERR(newfile1);
   1725		sock_release(sock2);
   1726		goto out;
   1727	}
   1728
   1729	newfile2 = sock_alloc_file(sock2, flags, NULL);
   1730	if (IS_ERR(newfile2)) {
   1731		err = PTR_ERR(newfile2);
   1732		fput(newfile1);
   1733		goto out;
   1734	}
   1735
   1736	audit_fd_pair(fd1, fd2);
   1737
   1738	fd_install(fd1, newfile1);
   1739	fd_install(fd2, newfile2);
   1740	return 0;
   1741
   1742out:
   1743	put_unused_fd(fd2);
   1744	put_unused_fd(fd1);
   1745	return err;
   1746}
   1747
   1748SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
   1749		int __user *, usockvec)
   1750{
   1751	return __sys_socketpair(family, type, protocol, usockvec);
   1752}
   1753
   1754/*
   1755 *	Bind a name to a socket. Nothing much to do here since it's
   1756 *	the protocol's responsibility to handle the local address.
   1757 *
   1758 *	We move the socket address to kernel space before we call
   1759 *	the protocol layer (having also checked the address is ok).
   1760 */
   1761
   1762int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
   1763{
   1764	struct socket *sock;
   1765	struct sockaddr_storage address;
   1766	int err, fput_needed;
   1767
   1768	sock = sockfd_lookup_light(fd, &err, &fput_needed);
   1769	if (sock) {
   1770		err = move_addr_to_kernel(umyaddr, addrlen, &address);
   1771		if (!err) {
   1772			err = security_socket_bind(sock,
   1773						   (struct sockaddr *)&address,
   1774						   addrlen);
   1775			if (!err)
   1776				err = sock->ops->bind(sock,
   1777						      (struct sockaddr *)
   1778						      &address, addrlen);
   1779		}
   1780		fput_light(sock->file, fput_needed);
   1781	}
   1782	return err;
   1783}
   1784
   1785SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
   1786{
   1787	return __sys_bind(fd, umyaddr, addrlen);
   1788}
   1789
   1790/*
   1791 *	Perform a listen. Basically, we allow the protocol to do anything
   1792 *	necessary for a listen, and if that works, we mark the socket as
   1793 *	ready for listening.
   1794 */
   1795
   1796int __sys_listen(int fd, int backlog)
   1797{
   1798	struct socket *sock;
   1799	int err, fput_needed;
   1800	int somaxconn;
   1801
   1802	sock = sockfd_lookup_light(fd, &err, &fput_needed);
   1803	if (sock) {
   1804		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
   1805		if ((unsigned int)backlog > somaxconn)
   1806			backlog = somaxconn;
   1807
   1808		err = security_socket_listen(sock, backlog);
   1809		if (!err)
   1810			err = sock->ops->listen(sock, backlog);
   1811
   1812		fput_light(sock->file, fput_needed);
   1813	}
   1814	return err;
   1815}
   1816
   1817SYSCALL_DEFINE2(listen, int, fd, int, backlog)
   1818{
   1819	return __sys_listen(fd, backlog);
   1820}
   1821
   1822struct file *do_accept(struct file *file, unsigned file_flags,
   1823		       struct sockaddr __user *upeer_sockaddr,
   1824		       int __user *upeer_addrlen, int flags)
   1825{
   1826	struct socket *sock, *newsock;
   1827	struct file *newfile;
   1828	int err, len;
   1829	struct sockaddr_storage address;
   1830
   1831	sock = sock_from_file(file);
   1832	if (!sock)
   1833		return ERR_PTR(-ENOTSOCK);
   1834
   1835	newsock = sock_alloc();
   1836	if (!newsock)
   1837		return ERR_PTR(-ENFILE);
   1838
   1839	newsock->type = sock->type;
   1840	newsock->ops = sock->ops;
   1841
   1842	/*
   1843	 * We don't need try_module_get here, as the listening socket (sock)
   1844	 * has the protocol module (sock->ops->owner) held.
   1845	 */
   1846	__module_get(newsock->ops->owner);
   1847
   1848	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
   1849	if (IS_ERR(newfile))
   1850		return newfile;
   1851
   1852	err = security_socket_accept(sock, newsock);
   1853	if (err)
   1854		goto out_fd;
   1855
   1856	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
   1857					false);
   1858	if (err < 0)
   1859		goto out_fd;
   1860
   1861	if (upeer_sockaddr) {
   1862		len = newsock->ops->getname(newsock,
   1863					(struct sockaddr *)&address, 2);
   1864		if (len < 0) {
   1865			err = -ECONNABORTED;
   1866			goto out_fd;
   1867		}
   1868		err = move_addr_to_user(&address,
   1869					len, upeer_sockaddr, upeer_addrlen);
   1870		if (err < 0)
   1871			goto out_fd;
   1872	}
   1873
   1874	/* File flags are not inherited via accept() unlike another OSes. */
   1875	return newfile;
   1876out_fd:
   1877	fput(newfile);
   1878	return ERR_PTR(err);
   1879}
   1880
   1881int __sys_accept4_file(struct file *file, unsigned file_flags,
   1882		       struct sockaddr __user *upeer_sockaddr,
   1883		       int __user *upeer_addrlen, int flags,
   1884		       unsigned long nofile)
   1885{
   1886	struct file *newfile;
   1887	int newfd;
   1888
   1889	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
   1890		return -EINVAL;
   1891
   1892	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
   1893		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
   1894
   1895	newfd = __get_unused_fd_flags(flags, nofile);
   1896	if (unlikely(newfd < 0))
   1897		return newfd;
   1898
   1899	newfile = do_accept(file, file_flags, upeer_sockaddr, upeer_addrlen,
   1900			    flags);
   1901	if (IS_ERR(newfile)) {
   1902		put_unused_fd(newfd);
   1903		return PTR_ERR(newfile);
   1904	}
   1905	fd_install(newfd, newfile);
   1906	return newfd;
   1907}
   1908
   1909/*
   1910 *	For accept, we attempt to create a new socket, set up the link
   1911 *	with the client, wake up the client, then return the new
   1912 *	connected fd. We collect the address of the connector in kernel
   1913 *	space and move it to user at the very end. This is unclean because
   1914 *	we open the socket then return an error.
   1915 *
   1916 *	1003.1g adds the ability to recvmsg() to query connection pending
   1917 *	status to recvmsg. We need to add that support in a way thats
   1918 *	clean when we restructure accept also.
   1919 */
   1920
   1921int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
   1922		  int __user *upeer_addrlen, int flags)
   1923{
   1924	int ret = -EBADF;
   1925	struct fd f;
   1926
   1927	f = fdget(fd);
   1928	if (f.file) {
   1929		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
   1930						upeer_addrlen, flags,
   1931						rlimit(RLIMIT_NOFILE));
   1932		fdput(f);
   1933	}
   1934
   1935	return ret;
   1936}
   1937
   1938SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
   1939		int __user *, upeer_addrlen, int, flags)
   1940{
   1941	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
   1942}
   1943
   1944SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
   1945		int __user *, upeer_addrlen)
   1946{
   1947	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
   1948}
   1949
   1950/*
   1951 *	Attempt to connect to a socket with the server address.  The address
   1952 *	is in user space so we verify it is OK and move it to kernel space.
   1953 *
   1954 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
   1955 *	break bindings
   1956 *
   1957 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
   1958 *	other SEQPACKET protocols that take time to connect() as it doesn't
   1959 *	include the -EINPROGRESS status for such sockets.
   1960 */
   1961
   1962int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
   1963		       int addrlen, int file_flags)
   1964{
   1965	struct socket *sock;
   1966	int err;
   1967
   1968	sock = sock_from_file(file);
   1969	if (!sock) {
   1970		err = -ENOTSOCK;
   1971		goto out;
   1972	}
   1973
   1974	err =
   1975	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
   1976	if (err)
   1977		goto out;
   1978
   1979	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
   1980				 sock->file->f_flags | file_flags);
   1981out:
   1982	return err;
   1983}
   1984
   1985int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
   1986{
   1987	int ret = -EBADF;
   1988	struct fd f;
   1989
   1990	f = fdget(fd);
   1991	if (f.file) {
   1992		struct sockaddr_storage address;
   1993
   1994		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
   1995		if (!ret)
   1996			ret = __sys_connect_file(f.file, &address, addrlen, 0);
   1997		fdput(f);
   1998	}
   1999
   2000	return ret;
   2001}
   2002
   2003SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
   2004		int, addrlen)
   2005{
   2006	return __sys_connect(fd, uservaddr, addrlen);
   2007}
   2008
   2009/*
   2010 *	Get the local address ('name') of a socket object. Move the obtained
   2011 *	name to user space.
   2012 */
   2013
   2014int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
   2015		      int __user *usockaddr_len)
   2016{
   2017	struct socket *sock;
   2018	struct sockaddr_storage address;
   2019	int err, fput_needed;
   2020
   2021	sock = sockfd_lookup_light(fd, &err, &fput_needed);
   2022	if (!sock)
   2023		goto out;
   2024
   2025	err = security_socket_getsockname(sock);
   2026	if (err)
   2027		goto out_put;
   2028
   2029	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
   2030	if (err < 0)
   2031		goto out_put;
   2032	/* "err" is actually length in this case */
   2033	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
   2034
   2035out_put:
   2036	fput_light(sock->file, fput_needed);
   2037out:
   2038	return err;
   2039}
   2040
   2041SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
   2042		int __user *, usockaddr_len)
   2043{
   2044	return __sys_getsockname(fd, usockaddr, usockaddr_len);
   2045}
   2046
   2047/*
   2048 *	Get the remote address ('name') of a socket object. Move the obtained
   2049 *	name to user space.
   2050 */
   2051
   2052int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
   2053		      int __user *usockaddr_len)
   2054{
   2055	struct socket *sock;
   2056	struct sockaddr_storage address;
   2057	int err, fput_needed;
   2058
   2059	sock = sockfd_lookup_light(fd, &err, &fput_needed);
   2060	if (sock != NULL) {
   2061		err = security_socket_getpeername(sock);
   2062		if (err) {
   2063			fput_light(sock->file, fput_needed);
   2064			return err;
   2065		}
   2066
   2067		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
   2068		if (err >= 0)
   2069			/* "err" is actually length in this case */
   2070			err = move_addr_to_user(&address, err, usockaddr,
   2071						usockaddr_len);
   2072		fput_light(sock->file, fput_needed);
   2073	}
   2074	return err;
   2075}
   2076
   2077SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
   2078		int __user *, usockaddr_len)
   2079{
   2080	return __sys_getpeername(fd, usockaddr, usockaddr_len);
   2081}
   2082
   2083/*
   2084 *	Send a datagram to a given address. We move the address into kernel
   2085 *	space and check the user space data area is readable before invoking
   2086 *	the protocol.
   2087 */
   2088int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
   2089		 struct sockaddr __user *addr,  int addr_len)
   2090{
   2091	struct socket *sock;
   2092	struct sockaddr_storage address;
   2093	int err;
   2094	struct msghdr msg;
   2095	struct iovec iov;
   2096	int fput_needed;
   2097
   2098	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
   2099	if (unlikely(err))
   2100		return err;
   2101	sock = sockfd_lookup_light(fd, &err, &fput_needed);
   2102	if (!sock)
   2103		goto out;
   2104
   2105	msg.msg_name = NULL;
   2106	msg.msg_control = NULL;
   2107	msg.msg_controllen = 0;
   2108	msg.msg_namelen = 0;
   2109	if (addr) {
   2110		err = move_addr_to_kernel(addr, addr_len, &address);
   2111		if (err < 0)
   2112			goto out_put;
   2113		msg.msg_name = (struct sockaddr *)&address;
   2114		msg.msg_namelen = addr_len;
   2115	}
   2116	if (sock->file->f_flags & O_NONBLOCK)
   2117		flags |= MSG_DONTWAIT;
   2118	msg.msg_flags = flags;
   2119	err = sock_sendmsg(sock, &msg);
   2120
   2121out_put:
   2122	fput_light(sock->file, fput_needed);
   2123out:
   2124	return err;
   2125}
   2126
   2127SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
   2128		unsigned int, flags, struct sockaddr __user *, addr,
   2129		int, addr_len)
   2130{
   2131	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
   2132}
   2133
   2134/*
   2135 *	Send a datagram down a socket.
   2136 */
   2137
   2138SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
   2139		unsigned int, flags)
   2140{
   2141	return __sys_sendto(fd, buff, len, flags, NULL, 0);
   2142}
   2143
   2144/*
   2145 *	Receive a frame from the socket and optionally record the address of the
   2146 *	sender. We verify the buffers are writable and if needed move the
   2147 *	sender address from kernel to user space.
   2148 */
   2149int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
   2150		   struct sockaddr __user *addr, int __user *addr_len)
   2151{
   2152	struct sockaddr_storage address;
   2153	struct msghdr msg = {
   2154		/* Save some cycles and don't copy the address if not needed */
   2155		.msg_name = addr ? (struct sockaddr *)&address : NULL,
   2156	};
   2157	struct socket *sock;
   2158	struct iovec iov;
   2159	int err, err2;
   2160	int fput_needed;
   2161
   2162	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
   2163	if (unlikely(err))
   2164		return err;
   2165	sock = sockfd_lookup_light(fd, &err, &fput_needed);
   2166	if (!sock)
   2167		goto out;
   2168
   2169	if (sock->file->f_flags & O_NONBLOCK)
   2170		flags |= MSG_DONTWAIT;
   2171	err = sock_recvmsg(sock, &msg, flags);
   2172
   2173	if (err >= 0 && addr != NULL) {
   2174		err2 = move_addr_to_user(&address,
   2175					 msg.msg_namelen, addr, addr_len);
   2176		if (err2 < 0)
   2177			err = err2;
   2178	}
   2179
   2180	fput_light(sock->file, fput_needed);
   2181out:
   2182	return err;
   2183}
   2184
   2185SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
   2186		unsigned int, flags, struct sockaddr __user *, addr,
   2187		int __user *, addr_len)
   2188{
   2189	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
   2190}
   2191
   2192/*
   2193 *	Receive a datagram from a socket.
   2194 */
   2195
   2196SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
   2197		unsigned int, flags)
   2198{
   2199	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
   2200}
   2201
   2202static bool sock_use_custom_sol_socket(const struct socket *sock)
   2203{
   2204	const struct sock *sk = sock->sk;
   2205
   2206	/* Use sock->ops->setsockopt() for MPTCP */
   2207	return IS_ENABLED(CONFIG_MPTCP) &&
   2208	       sk->sk_protocol == IPPROTO_MPTCP &&
   2209	       sk->sk_type == SOCK_STREAM &&
   2210	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
   2211}
   2212
   2213/*
   2214 *	Set a socket option. Because we don't know the option lengths we have
   2215 *	to pass the user mode parameter for the protocols to sort out.
   2216 */
   2217int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
   2218		int optlen)
   2219{
   2220	sockptr_t optval = USER_SOCKPTR(user_optval);
   2221	char *kernel_optval = NULL;
   2222	int err, fput_needed;
   2223	struct socket *sock;
   2224
   2225	if (optlen < 0)
   2226		return -EINVAL;
   2227
   2228	sock = sockfd_lookup_light(fd, &err, &fput_needed);
   2229	if (!sock)
   2230		return err;
   2231
   2232	err = security_socket_setsockopt(sock, level, optname);
   2233	if (err)
   2234		goto out_put;
   2235
   2236	if (!in_compat_syscall())
   2237		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
   2238						     user_optval, &optlen,
   2239						     &kernel_optval);
   2240	if (err < 0)
   2241		goto out_put;
   2242	if (err > 0) {
   2243		err = 0;
   2244		goto out_put;
   2245	}
   2246
   2247	if (kernel_optval)
   2248		optval = KERNEL_SOCKPTR(kernel_optval);
   2249	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
   2250		err = sock_setsockopt(sock, level, optname, optval, optlen);
   2251	else if (unlikely(!sock->ops->setsockopt))
   2252		err = -EOPNOTSUPP;
   2253	else
   2254		err = sock->ops->setsockopt(sock, level, optname, optval,
   2255					    optlen);
   2256	kfree(kernel_optval);
   2257out_put:
   2258	fput_light(sock->file, fput_needed);
   2259	return err;
   2260}
   2261
   2262SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
   2263		char __user *, optval, int, optlen)
   2264{
   2265	return __sys_setsockopt(fd, level, optname, optval, optlen);
   2266}
   2267
   2268INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
   2269							 int optname));
   2270
   2271/*
   2272 *	Get a socket option. Because we don't know the option lengths we have
   2273 *	to pass a user mode parameter for the protocols to sort out.
   2274 */
   2275int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
   2276		int __user *optlen)
   2277{
   2278	int err, fput_needed;
   2279	struct socket *sock;
   2280	int max_optlen;
   2281
   2282	sock = sockfd_lookup_light(fd, &err, &fput_needed);
   2283	if (!sock)
   2284		return err;
   2285
   2286	err = security_socket_getsockopt(sock, level, optname);
   2287	if (err)
   2288		goto out_put;
   2289
   2290	if (!in_compat_syscall())
   2291		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
   2292
   2293	if (level == SOL_SOCKET)
   2294		err = sock_getsockopt(sock, level, optname, optval, optlen);
   2295	else if (unlikely(!sock->ops->getsockopt))
   2296		err = -EOPNOTSUPP;
   2297	else
   2298		err = sock->ops->getsockopt(sock, level, optname, optval,
   2299					    optlen);
   2300
   2301	if (!in_compat_syscall())
   2302		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
   2303						     optval, optlen, max_optlen,
   2304						     err);
   2305out_put:
   2306	fput_light(sock->file, fput_needed);
   2307	return err;
   2308}
   2309
   2310SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
   2311		char __user *, optval, int __user *, optlen)
   2312{
   2313	return __sys_getsockopt(fd, level, optname, optval, optlen);
   2314}
   2315
   2316/*
   2317 *	Shutdown a socket.
   2318 */
   2319
   2320int __sys_shutdown_sock(struct socket *sock, int how)
   2321{
   2322	int err;
   2323
   2324	err = security_socket_shutdown(sock, how);
   2325	if (!err)
   2326		err = sock->ops->shutdown(sock, how);
   2327
   2328	return err;
   2329}
   2330
   2331int __sys_shutdown(int fd, int how)
   2332{
   2333	int err, fput_needed;
   2334	struct socket *sock;
   2335
   2336	sock = sockfd_lookup_light(fd, &err, &fput_needed);
   2337	if (sock != NULL) {
   2338		err = __sys_shutdown_sock(sock, how);
   2339		fput_light(sock->file, fput_needed);
   2340	}
   2341	return err;
   2342}
   2343
   2344SYSCALL_DEFINE2(shutdown, int, fd, int, how)
   2345{
   2346	return __sys_shutdown(fd, how);
   2347}
   2348
   2349/* A couple of helpful macros for getting the address of the 32/64 bit
   2350 * fields which are the same type (int / unsigned) on our platforms.
   2351 */
   2352#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
   2353#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
   2354#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
   2355
   2356struct used_address {
   2357	struct sockaddr_storage name;
   2358	unsigned int name_len;
   2359};
   2360
   2361int __copy_msghdr_from_user(struct msghdr *kmsg,
   2362			    struct user_msghdr __user *umsg,
   2363			    struct sockaddr __user **save_addr,
   2364			    struct iovec __user **uiov, size_t *nsegs)
   2365{
   2366	struct user_msghdr msg;
   2367	ssize_t err;
   2368
   2369	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
   2370		return -EFAULT;
   2371
   2372	kmsg->msg_control_is_user = true;
   2373	kmsg->msg_get_inq = 0;
   2374	kmsg->msg_control_user = msg.msg_control;
   2375	kmsg->msg_controllen = msg.msg_controllen;
   2376	kmsg->msg_flags = msg.msg_flags;
   2377
   2378	kmsg->msg_namelen = msg.msg_namelen;
   2379	if (!msg.msg_name)
   2380		kmsg->msg_namelen = 0;
   2381
   2382	if (kmsg->msg_namelen < 0)
   2383		return -EINVAL;
   2384
   2385	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
   2386		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
   2387
   2388	if (save_addr)
   2389		*save_addr = msg.msg_name;
   2390
   2391	if (msg.msg_name && kmsg->msg_namelen) {
   2392		if (!save_addr) {
   2393			err = move_addr_to_kernel(msg.msg_name,
   2394						  kmsg->msg_namelen,
   2395						  kmsg->msg_name);
   2396			if (err < 0)
   2397				return err;
   2398		}
   2399	} else {
   2400		kmsg->msg_name = NULL;
   2401		kmsg->msg_namelen = 0;
   2402	}
   2403
   2404	if (msg.msg_iovlen > UIO_MAXIOV)
   2405		return -EMSGSIZE;
   2406
   2407	kmsg->msg_iocb = NULL;
   2408	*uiov = msg.msg_iov;
   2409	*nsegs = msg.msg_iovlen;
   2410	return 0;
   2411}
   2412
   2413static int copy_msghdr_from_user(struct msghdr *kmsg,
   2414				 struct user_msghdr __user *umsg,
   2415				 struct sockaddr __user **save_addr,
   2416				 struct iovec **iov)
   2417{
   2418	struct user_msghdr msg;
   2419	ssize_t err;
   2420
   2421	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
   2422					&msg.msg_iovlen);
   2423	if (err)
   2424		return err;
   2425
   2426	err = import_iovec(save_addr ? READ : WRITE,
   2427			    msg.msg_iov, msg.msg_iovlen,
   2428			    UIO_FASTIOV, iov, &kmsg->msg_iter);
   2429	return err < 0 ? err : 0;
   2430}
   2431
   2432static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
   2433			   unsigned int flags, struct used_address *used_address,
   2434			   unsigned int allowed_msghdr_flags)
   2435{
   2436	unsigned char ctl[sizeof(struct cmsghdr) + 20]
   2437				__aligned(sizeof(__kernel_size_t));
   2438	/* 20 is size of ipv6_pktinfo */
   2439	unsigned char *ctl_buf = ctl;
   2440	int ctl_len;
   2441	ssize_t err;
   2442
   2443	err = -ENOBUFS;
   2444
   2445	if (msg_sys->msg_controllen > INT_MAX)
   2446		goto out;
   2447	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
   2448	ctl_len = msg_sys->msg_controllen;
   2449	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
   2450		err =
   2451		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
   2452						     sizeof(ctl));
   2453		if (err)
   2454			goto out;
   2455		ctl_buf = msg_sys->msg_control;
   2456		ctl_len = msg_sys->msg_controllen;
   2457	} else if (ctl_len) {
   2458		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
   2459			     CMSG_ALIGN(sizeof(struct cmsghdr)));
   2460		if (ctl_len > sizeof(ctl)) {
   2461			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
   2462			if (ctl_buf == NULL)
   2463				goto out;
   2464		}
   2465		err = -EFAULT;
   2466		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
   2467			goto out_freectl;
   2468		msg_sys->msg_control = ctl_buf;
   2469		msg_sys->msg_control_is_user = false;
   2470	}
   2471	msg_sys->msg_flags = flags;
   2472
   2473	if (sock->file->f_flags & O_NONBLOCK)
   2474		msg_sys->msg_flags |= MSG_DONTWAIT;
   2475	/*
   2476	 * If this is sendmmsg() and current destination address is same as
   2477	 * previously succeeded address, omit asking LSM's decision.
   2478	 * used_address->name_len is initialized to UINT_MAX so that the first
   2479	 * destination address never matches.
   2480	 */
   2481	if (used_address && msg_sys->msg_name &&
   2482	    used_address->name_len == msg_sys->msg_namelen &&
   2483	    !memcmp(&used_address->name, msg_sys->msg_name,
   2484		    used_address->name_len)) {
   2485		err = sock_sendmsg_nosec(sock, msg_sys);
   2486		goto out_freectl;
   2487	}
   2488	err = sock_sendmsg(sock, msg_sys);
   2489	/*
   2490	 * If this is sendmmsg() and sending to current destination address was
   2491	 * successful, remember it.
   2492	 */
   2493	if (used_address && err >= 0) {
   2494		used_address->name_len = msg_sys->msg_namelen;
   2495		if (msg_sys->msg_name)
   2496			memcpy(&used_address->name, msg_sys->msg_name,
   2497			       used_address->name_len);
   2498	}
   2499
   2500out_freectl:
   2501	if (ctl_buf != ctl)
   2502		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
   2503out:
   2504	return err;
   2505}
   2506
   2507int sendmsg_copy_msghdr(struct msghdr *msg,
   2508			struct user_msghdr __user *umsg, unsigned flags,
   2509			struct iovec **iov)
   2510{
   2511	int err;
   2512
   2513	if (flags & MSG_CMSG_COMPAT) {
   2514		struct compat_msghdr __user *msg_compat;
   2515
   2516		msg_compat = (struct compat_msghdr __user *) umsg;
   2517		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
   2518	} else {
   2519		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
   2520	}
   2521	if (err < 0)
   2522		return err;
   2523
   2524	return 0;
   2525}
   2526
   2527static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
   2528			 struct msghdr *msg_sys, unsigned int flags,
   2529			 struct used_address *used_address,
   2530			 unsigned int allowed_msghdr_flags)
   2531{
   2532	struct sockaddr_storage address;
   2533	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
   2534	ssize_t err;
   2535
   2536	msg_sys->msg_name = &address;
   2537
   2538	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
   2539	if (err < 0)
   2540		return err;
   2541
   2542	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
   2543				allowed_msghdr_flags);
   2544	kfree(iov);
   2545	return err;
   2546}
   2547
   2548/*
   2549 *	BSD sendmsg interface
   2550 */
   2551long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
   2552			unsigned int flags)
   2553{
   2554	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
   2555}
   2556
   2557long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
   2558		   bool forbid_cmsg_compat)
   2559{
   2560	int fput_needed, err;
   2561	struct msghdr msg_sys;
   2562	struct socket *sock;
   2563
   2564	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
   2565		return -EINVAL;
   2566
   2567	sock = sockfd_lookup_light(fd, &err, &fput_needed);
   2568	if (!sock)
   2569		goto out;
   2570
   2571	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
   2572
   2573	fput_light(sock->file, fput_needed);
   2574out:
   2575	return err;
   2576}
   2577
   2578SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
   2579{
   2580	return __sys_sendmsg(fd, msg, flags, true);
   2581}
   2582
   2583/*
   2584 *	Linux sendmmsg interface
   2585 */
   2586
   2587int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
   2588		   unsigned int flags, bool forbid_cmsg_compat)
   2589{
   2590	int fput_needed, err, datagrams;
   2591	struct socket *sock;
   2592	struct mmsghdr __user *entry;
   2593	struct compat_mmsghdr __user *compat_entry;
   2594	struct msghdr msg_sys;
   2595	struct used_address used_address;
   2596	unsigned int oflags = flags;
   2597
   2598	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
   2599		return -EINVAL;
   2600
   2601	if (vlen > UIO_MAXIOV)
   2602		vlen = UIO_MAXIOV;
   2603
   2604	datagrams = 0;
   2605
   2606	sock = sockfd_lookup_light(fd, &err, &fput_needed);
   2607	if (!sock)
   2608		return err;
   2609
   2610	used_address.name_len = UINT_MAX;
   2611	entry = mmsg;
   2612	compat_entry = (struct compat_mmsghdr __user *)mmsg;
   2613	err = 0;
   2614	flags |= MSG_BATCH;
   2615
   2616	while (datagrams < vlen) {
   2617		if (datagrams == vlen - 1)
   2618			flags = oflags;
   2619
   2620		if (MSG_CMSG_COMPAT & flags) {
   2621			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
   2622					     &msg_sys, flags, &used_address, MSG_EOR);
   2623			if (err < 0)
   2624				break;
   2625			err = __put_user(err, &compat_entry->msg_len);
   2626			++compat_entry;
   2627		} else {
   2628			err = ___sys_sendmsg(sock,
   2629					     (struct user_msghdr __user *)entry,
   2630					     &msg_sys, flags, &used_address, MSG_EOR);
   2631			if (err < 0)
   2632				break;
   2633			err = put_user(err, &entry->msg_len);
   2634			++entry;
   2635		}
   2636
   2637		if (err)
   2638			break;
   2639		++datagrams;
   2640		if (msg_data_left(&msg_sys))
   2641			break;
   2642		cond_resched();
   2643	}
   2644
   2645	fput_light(sock->file, fput_needed);
   2646
   2647	/* We only return an error if no datagrams were able to be sent */
   2648	if (datagrams != 0)
   2649		return datagrams;
   2650
   2651	return err;
   2652}
   2653
   2654SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
   2655		unsigned int, vlen, unsigned int, flags)
   2656{
   2657	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
   2658}
   2659
   2660int recvmsg_copy_msghdr(struct msghdr *msg,
   2661			struct user_msghdr __user *umsg, unsigned flags,
   2662			struct sockaddr __user **uaddr,
   2663			struct iovec **iov)
   2664{
   2665	ssize_t err;
   2666
   2667	if (MSG_CMSG_COMPAT & flags) {
   2668		struct compat_msghdr __user *msg_compat;
   2669
   2670		msg_compat = (struct compat_msghdr __user *) umsg;
   2671		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
   2672	} else {
   2673		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
   2674	}
   2675	if (err < 0)
   2676		return err;
   2677
   2678	return 0;
   2679}
   2680
   2681static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
   2682			   struct user_msghdr __user *msg,
   2683			   struct sockaddr __user *uaddr,
   2684			   unsigned int flags, int nosec)
   2685{
   2686	struct compat_msghdr __user *msg_compat =
   2687					(struct compat_msghdr __user *) msg;
   2688	int __user *uaddr_len = COMPAT_NAMELEN(msg);
   2689	struct sockaddr_storage addr;
   2690	unsigned long cmsg_ptr;
   2691	int len;
   2692	ssize_t err;
   2693
   2694	msg_sys->msg_name = &addr;
   2695	cmsg_ptr = (unsigned long)msg_sys->msg_control;
   2696	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
   2697
   2698	/* We assume all kernel code knows the size of sockaddr_storage */
   2699	msg_sys->msg_namelen = 0;
   2700
   2701	if (sock->file->f_flags & O_NONBLOCK)
   2702		flags |= MSG_DONTWAIT;
   2703
   2704	if (unlikely(nosec))
   2705		err = sock_recvmsg_nosec(sock, msg_sys, flags);
   2706	else
   2707		err = sock_recvmsg(sock, msg_sys, flags);
   2708
   2709	if (err < 0)
   2710		goto out;
   2711	len = err;
   2712
   2713	if (uaddr != NULL) {
   2714		err = move_addr_to_user(&addr,
   2715					msg_sys->msg_namelen, uaddr,
   2716					uaddr_len);
   2717		if (err < 0)
   2718			goto out;
   2719	}
   2720	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
   2721			 COMPAT_FLAGS(msg));
   2722	if (err)
   2723		goto out;
   2724	if (MSG_CMSG_COMPAT & flags)
   2725		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
   2726				 &msg_compat->msg_controllen);
   2727	else
   2728		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
   2729				 &msg->msg_controllen);
   2730	if (err)
   2731		goto out;
   2732	err = len;
   2733out:
   2734	return err;
   2735}
   2736
   2737static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
   2738			 struct msghdr *msg_sys, unsigned int flags, int nosec)
   2739{
   2740	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
   2741	/* user mode address pointers */
   2742	struct sockaddr __user *uaddr;
   2743	ssize_t err;
   2744
   2745	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
   2746	if (err < 0)
   2747		return err;
   2748
   2749	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
   2750	kfree(iov);
   2751	return err;
   2752}
   2753
   2754/*
   2755 *	BSD recvmsg interface
   2756 */
   2757
   2758long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
   2759			struct user_msghdr __user *umsg,
   2760			struct sockaddr __user *uaddr, unsigned int flags)
   2761{
   2762	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
   2763}
   2764
   2765long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
   2766		   bool forbid_cmsg_compat)
   2767{
   2768	int fput_needed, err;
   2769	struct msghdr msg_sys;
   2770	struct socket *sock;
   2771
   2772	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
   2773		return -EINVAL;
   2774
   2775	sock = sockfd_lookup_light(fd, &err, &fput_needed);
   2776	if (!sock)
   2777		goto out;
   2778
   2779	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
   2780
   2781	fput_light(sock->file, fput_needed);
   2782out:
   2783	return err;
   2784}
   2785
   2786SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
   2787		unsigned int, flags)
   2788{
   2789	return __sys_recvmsg(fd, msg, flags, true);
   2790}
   2791
   2792/*
   2793 *     Linux recvmmsg interface
   2794 */
   2795
   2796static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
   2797			  unsigned int vlen, unsigned int flags,
   2798			  struct timespec64 *timeout)
   2799{
   2800	int fput_needed, err, datagrams;
   2801	struct socket *sock;
   2802	struct mmsghdr __user *entry;
   2803	struct compat_mmsghdr __user *compat_entry;
   2804	struct msghdr msg_sys;
   2805	struct timespec64 end_time;
   2806	struct timespec64 timeout64;
   2807
   2808	if (timeout &&
   2809	    poll_select_set_timeout(&end_time, timeout->tv_sec,
   2810				    timeout->tv_nsec))
   2811		return -EINVAL;
   2812
   2813	datagrams = 0;
   2814
   2815	sock = sockfd_lookup_light(fd, &err, &fput_needed);
   2816	if (!sock)
   2817		return err;
   2818
   2819	if (likely(!(flags & MSG_ERRQUEUE))) {
   2820		err = sock_error(sock->sk);
   2821		if (err) {
   2822			datagrams = err;
   2823			goto out_put;
   2824		}
   2825	}
   2826
   2827	entry = mmsg;
   2828	compat_entry = (struct compat_mmsghdr __user *)mmsg;
   2829
   2830	while (datagrams < vlen) {
   2831		/*
   2832		 * No need to ask LSM for more than the first datagram.
   2833		 */
   2834		if (MSG_CMSG_COMPAT & flags) {
   2835			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
   2836					     &msg_sys, flags & ~MSG_WAITFORONE,
   2837					     datagrams);
   2838			if (err < 0)
   2839				break;
   2840			err = __put_user(err, &compat_entry->msg_len);
   2841			++compat_entry;
   2842		} else {
   2843			err = ___sys_recvmsg(sock,
   2844					     (struct user_msghdr __user *)entry,
   2845					     &msg_sys, flags & ~MSG_WAITFORONE,
   2846					     datagrams);
   2847			if (err < 0)
   2848				break;
   2849			err = put_user(err, &entry->msg_len);
   2850			++entry;
   2851		}
   2852
   2853		if (err)
   2854			break;
   2855		++datagrams;
   2856
   2857		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
   2858		if (flags & MSG_WAITFORONE)
   2859			flags |= MSG_DONTWAIT;
   2860
   2861		if (timeout) {
   2862			ktime_get_ts64(&timeout64);
   2863			*timeout = timespec64_sub(end_time, timeout64);
   2864			if (timeout->tv_sec < 0) {
   2865				timeout->tv_sec = timeout->tv_nsec = 0;
   2866				break;
   2867			}
   2868
   2869			/* Timeout, return less than vlen datagrams */
   2870			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
   2871				break;
   2872		}
   2873
   2874		/* Out of band data, return right away */
   2875		if (msg_sys.msg_flags & MSG_OOB)
   2876			break;
   2877		cond_resched();
   2878	}
   2879
   2880	if (err == 0)
   2881		goto out_put;
   2882
   2883	if (datagrams == 0) {
   2884		datagrams = err;
   2885		goto out_put;
   2886	}
   2887
   2888	/*
   2889	 * We may return less entries than requested (vlen) if the
   2890	 * sock is non block and there aren't enough datagrams...
   2891	 */
   2892	if (err != -EAGAIN) {
   2893		/*
   2894		 * ... or  if recvmsg returns an error after we
   2895		 * received some datagrams, where we record the
   2896		 * error to return on the next call or if the
   2897		 * app asks about it using getsockopt(SO_ERROR).
   2898		 */
   2899		sock->sk->sk_err = -err;
   2900	}
   2901out_put:
   2902	fput_light(sock->file, fput_needed);
   2903
   2904	return datagrams;
   2905}
   2906
   2907int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
   2908		   unsigned int vlen, unsigned int flags,
   2909		   struct __kernel_timespec __user *timeout,
   2910		   struct old_timespec32 __user *timeout32)
   2911{
   2912	int datagrams;
   2913	struct timespec64 timeout_sys;
   2914
   2915	if (timeout && get_timespec64(&timeout_sys, timeout))
   2916		return -EFAULT;
   2917
   2918	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
   2919		return -EFAULT;
   2920
   2921	if (!timeout && !timeout32)
   2922		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
   2923
   2924	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
   2925
   2926	if (datagrams <= 0)
   2927		return datagrams;
   2928
   2929	if (timeout && put_timespec64(&timeout_sys, timeout))
   2930		datagrams = -EFAULT;
   2931
   2932	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
   2933		datagrams = -EFAULT;
   2934
   2935	return datagrams;
   2936}
   2937
   2938SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
   2939		unsigned int, vlen, unsigned int, flags,
   2940		struct __kernel_timespec __user *, timeout)
   2941{
   2942	if (flags & MSG_CMSG_COMPAT)
   2943		return -EINVAL;
   2944
   2945	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
   2946}
   2947
   2948#ifdef CONFIG_COMPAT_32BIT_TIME
   2949SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
   2950		unsigned int, vlen, unsigned int, flags,
   2951		struct old_timespec32 __user *, timeout)
   2952{
   2953	if (flags & MSG_CMSG_COMPAT)
   2954		return -EINVAL;
   2955
   2956	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
   2957}
   2958#endif
   2959
   2960#ifdef __ARCH_WANT_SYS_SOCKETCALL
   2961/* Argument list sizes for sys_socketcall */
   2962#define AL(x) ((x) * sizeof(unsigned long))
   2963static const unsigned char nargs[21] = {
   2964	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
   2965	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
   2966	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
   2967	AL(4), AL(5), AL(4)
   2968};
   2969
   2970#undef AL
   2971
   2972/*
   2973 *	System call vectors.
   2974 *
   2975 *	Argument checking cleaned up. Saved 20% in size.
   2976 *  This function doesn't need to set the kernel lock because
   2977 *  it is set by the callees.
   2978 */
   2979
   2980SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
   2981{
   2982	unsigned long a[AUDITSC_ARGS];
   2983	unsigned long a0, a1;
   2984	int err;
   2985	unsigned int len;
   2986
   2987	if (call < 1 || call > SYS_SENDMMSG)
   2988		return -EINVAL;
   2989	call = array_index_nospec(call, SYS_SENDMMSG + 1);
   2990
   2991	len = nargs[call];
   2992	if (len > sizeof(a))
   2993		return -EINVAL;
   2994
   2995	/* copy_from_user should be SMP safe. */
   2996	if (copy_from_user(a, args, len))
   2997		return -EFAULT;
   2998
   2999	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
   3000	if (err)
   3001		return err;
   3002
   3003	a0 = a[0];
   3004	a1 = a[1];
   3005
   3006	switch (call) {
   3007	case SYS_SOCKET:
   3008		err = __sys_socket(a0, a1, a[2]);
   3009		break;
   3010	case SYS_BIND:
   3011		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
   3012		break;
   3013	case SYS_CONNECT:
   3014		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
   3015		break;
   3016	case SYS_LISTEN:
   3017		err = __sys_listen(a0, a1);
   3018		break;
   3019	case SYS_ACCEPT:
   3020		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
   3021				    (int __user *)a[2], 0);
   3022		break;
   3023	case SYS_GETSOCKNAME:
   3024		err =
   3025		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
   3026				      (int __user *)a[2]);
   3027		break;
   3028	case SYS_GETPEERNAME:
   3029		err =
   3030		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
   3031				      (int __user *)a[2]);
   3032		break;
   3033	case SYS_SOCKETPAIR:
   3034		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
   3035		break;
   3036	case SYS_SEND:
   3037		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
   3038				   NULL, 0);
   3039		break;
   3040	case SYS_SENDTO:
   3041		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
   3042				   (struct sockaddr __user *)a[4], a[5]);
   3043		break;
   3044	case SYS_RECV:
   3045		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
   3046				     NULL, NULL);
   3047		break;
   3048	case SYS_RECVFROM:
   3049		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
   3050				     (struct sockaddr __user *)a[4],
   3051				     (int __user *)a[5]);
   3052		break;
   3053	case SYS_SHUTDOWN:
   3054		err = __sys_shutdown(a0, a1);
   3055		break;
   3056	case SYS_SETSOCKOPT:
   3057		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
   3058				       a[4]);
   3059		break;
   3060	case SYS_GETSOCKOPT:
   3061		err =
   3062		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
   3063				     (int __user *)a[4]);
   3064		break;
   3065	case SYS_SENDMSG:
   3066		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
   3067				    a[2], true);
   3068		break;
   3069	case SYS_SENDMMSG:
   3070		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
   3071				     a[3], true);
   3072		break;
   3073	case SYS_RECVMSG:
   3074		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
   3075				    a[2], true);
   3076		break;
   3077	case SYS_RECVMMSG:
   3078		if (IS_ENABLED(CONFIG_64BIT))
   3079			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
   3080					     a[2], a[3],
   3081					     (struct __kernel_timespec __user *)a[4],
   3082					     NULL);
   3083		else
   3084			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
   3085					     a[2], a[3], NULL,
   3086					     (struct old_timespec32 __user *)a[4]);
   3087		break;
   3088	case SYS_ACCEPT4:
   3089		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
   3090				    (int __user *)a[2], a[3]);
   3091		break;
   3092	default:
   3093		err = -EINVAL;
   3094		break;
   3095	}
   3096	return err;
   3097}
   3098
   3099#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
   3100
   3101/**
   3102 *	sock_register - add a socket protocol handler
   3103 *	@ops: description of protocol
   3104 *
   3105 *	This function is called by a protocol handler that wants to
   3106 *	advertise its address family, and have it linked into the
   3107 *	socket interface. The value ops->family corresponds to the
   3108 *	socket system call protocol family.
   3109 */
   3110int sock_register(const struct net_proto_family *ops)
   3111{
   3112	int err;
   3113
   3114	if (ops->family >= NPROTO) {
   3115		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
   3116		return -ENOBUFS;
   3117	}
   3118
   3119	spin_lock(&net_family_lock);
   3120	if (rcu_dereference_protected(net_families[ops->family],
   3121				      lockdep_is_held(&net_family_lock)))
   3122		err = -EEXIST;
   3123	else {
   3124		rcu_assign_pointer(net_families[ops->family], ops);
   3125		err = 0;
   3126	}
   3127	spin_unlock(&net_family_lock);
   3128
   3129	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
   3130	return err;
   3131}
   3132EXPORT_SYMBOL(sock_register);
   3133
   3134/**
   3135 *	sock_unregister - remove a protocol handler
   3136 *	@family: protocol family to remove
   3137 *
   3138 *	This function is called by a protocol handler that wants to
   3139 *	remove its address family, and have it unlinked from the
   3140 *	new socket creation.
   3141 *
   3142 *	If protocol handler is a module, then it can use module reference
   3143 *	counts to protect against new references. If protocol handler is not
   3144 *	a module then it needs to provide its own protection in
   3145 *	the ops->create routine.
   3146 */
   3147void sock_unregister(int family)
   3148{
   3149	BUG_ON(family < 0 || family >= NPROTO);
   3150
   3151	spin_lock(&net_family_lock);
   3152	RCU_INIT_POINTER(net_families[family], NULL);
   3153	spin_unlock(&net_family_lock);
   3154
   3155	synchronize_rcu();
   3156
   3157	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
   3158}
   3159EXPORT_SYMBOL(sock_unregister);
   3160
   3161bool sock_is_registered(int family)
   3162{
   3163	return family < NPROTO && rcu_access_pointer(net_families[family]);
   3164}
   3165
   3166static int __init sock_init(void)
   3167{
   3168	int err;
   3169	/*
   3170	 *      Initialize the network sysctl infrastructure.
   3171	 */
   3172	err = net_sysctl_init();
   3173	if (err)
   3174		goto out;
   3175
   3176	/*
   3177	 *      Initialize skbuff SLAB cache
   3178	 */
   3179	skb_init();
   3180
   3181	/*
   3182	 *      Initialize the protocols module.
   3183	 */
   3184
   3185	init_inodecache();
   3186
   3187	err = register_filesystem(&sock_fs_type);
   3188	if (err)
   3189		goto out;
   3190	sock_mnt = kern_mount(&sock_fs_type);
   3191	if (IS_ERR(sock_mnt)) {
   3192		err = PTR_ERR(sock_mnt);
   3193		goto out_mount;
   3194	}
   3195
   3196	/* The real protocol initialization is performed in later initcalls.
   3197	 */
   3198
   3199#ifdef CONFIG_NETFILTER
   3200	err = netfilter_init();
   3201	if (err)
   3202		goto out;
   3203#endif
   3204
   3205	ptp_classifier_init();
   3206
   3207out:
   3208	return err;
   3209
   3210out_mount:
   3211	unregister_filesystem(&sock_fs_type);
   3212	goto out;
   3213}
   3214
   3215core_initcall(sock_init);	/* early initcall */
   3216
   3217#ifdef CONFIG_PROC_FS
   3218void socket_seq_show(struct seq_file *seq)
   3219{
   3220	seq_printf(seq, "sockets: used %d\n",
   3221		   sock_inuse_get(seq->private));
   3222}
   3223#endif				/* CONFIG_PROC_FS */
   3224
   3225/* Handle the fact that while struct ifreq has the same *layout* on
   3226 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
   3227 * which are handled elsewhere, it still has different *size* due to
   3228 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
   3229 * resulting in struct ifreq being 32 and 40 bytes respectively).
   3230 * As a result, if the struct happens to be at the end of a page and
   3231 * the next page isn't readable/writable, we get a fault. To prevent
   3232 * that, copy back and forth to the full size.
   3233 */
   3234int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
   3235{
   3236	if (in_compat_syscall()) {
   3237		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
   3238
   3239		memset(ifr, 0, sizeof(*ifr));
   3240		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
   3241			return -EFAULT;
   3242
   3243		if (ifrdata)
   3244			*ifrdata = compat_ptr(ifr32->ifr_data);
   3245
   3246		return 0;
   3247	}
   3248
   3249	if (copy_from_user(ifr, arg, sizeof(*ifr)))
   3250		return -EFAULT;
   3251
   3252	if (ifrdata)
   3253		*ifrdata = ifr->ifr_data;
   3254
   3255	return 0;
   3256}
   3257EXPORT_SYMBOL(get_user_ifreq);
   3258
   3259int put_user_ifreq(struct ifreq *ifr, void __user *arg)
   3260{
   3261	size_t size = sizeof(*ifr);
   3262
   3263	if (in_compat_syscall())
   3264		size = sizeof(struct compat_ifreq);
   3265
   3266	if (copy_to_user(arg, ifr, size))
   3267		return -EFAULT;
   3268
   3269	return 0;
   3270}
   3271EXPORT_SYMBOL(put_user_ifreq);
   3272
   3273#ifdef CONFIG_COMPAT
   3274static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
   3275{
   3276	compat_uptr_t uptr32;
   3277	struct ifreq ifr;
   3278	void __user *saved;
   3279	int err;
   3280
   3281	if (get_user_ifreq(&ifr, NULL, uifr32))
   3282		return -EFAULT;
   3283
   3284	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
   3285		return -EFAULT;
   3286
   3287	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
   3288	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
   3289
   3290	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
   3291	if (!err) {
   3292		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
   3293		if (put_user_ifreq(&ifr, uifr32))
   3294			err = -EFAULT;
   3295	}
   3296	return err;
   3297}
   3298
   3299/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
   3300static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
   3301				 struct compat_ifreq __user *u_ifreq32)
   3302{
   3303	struct ifreq ifreq;
   3304	void __user *data;
   3305
   3306	if (!is_socket_ioctl_cmd(cmd))
   3307		return -ENOTTY;
   3308	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
   3309		return -EFAULT;
   3310	ifreq.ifr_data = data;
   3311
   3312	return dev_ioctl(net, cmd, &ifreq, data, NULL);
   3313}
   3314
   3315static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
   3316			 unsigned int cmd, unsigned long arg)
   3317{
   3318	void __user *argp = compat_ptr(arg);
   3319	struct sock *sk = sock->sk;
   3320	struct net *net = sock_net(sk);
   3321
   3322	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
   3323		return sock_ioctl(file, cmd, (unsigned long)argp);
   3324
   3325	switch (cmd) {
   3326	case SIOCWANDEV:
   3327		return compat_siocwandev(net, argp);
   3328	case SIOCGSTAMP_OLD:
   3329	case SIOCGSTAMPNS_OLD:
   3330		if (!sock->ops->gettstamp)
   3331			return -ENOIOCTLCMD;
   3332		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
   3333					    !COMPAT_USE_64BIT_TIME);
   3334
   3335	case SIOCETHTOOL:
   3336	case SIOCBONDSLAVEINFOQUERY:
   3337	case SIOCBONDINFOQUERY:
   3338	case SIOCSHWTSTAMP:
   3339	case SIOCGHWTSTAMP:
   3340		return compat_ifr_data_ioctl(net, cmd, argp);
   3341
   3342	case FIOSETOWN:
   3343	case SIOCSPGRP:
   3344	case FIOGETOWN:
   3345	case SIOCGPGRP:
   3346	case SIOCBRADDBR:
   3347	case SIOCBRDELBR:
   3348	case SIOCGIFVLAN:
   3349	case SIOCSIFVLAN:
   3350	case SIOCGSKNS:
   3351	case SIOCGSTAMP_NEW:
   3352	case SIOCGSTAMPNS_NEW:
   3353	case SIOCGIFCONF:
   3354	case SIOCSIFBR:
   3355	case SIOCGIFBR:
   3356		return sock_ioctl(file, cmd, arg);
   3357
   3358	case SIOCGIFFLAGS:
   3359	case SIOCSIFFLAGS:
   3360	case SIOCGIFMAP:
   3361	case SIOCSIFMAP:
   3362	case SIOCGIFMETRIC:
   3363	case SIOCSIFMETRIC:
   3364	case SIOCGIFMTU:
   3365	case SIOCSIFMTU:
   3366	case SIOCGIFMEM:
   3367	case SIOCSIFMEM:
   3368	case SIOCGIFHWADDR:
   3369	case SIOCSIFHWADDR:
   3370	case SIOCADDMULTI:
   3371	case SIOCDELMULTI:
   3372	case SIOCGIFINDEX:
   3373	case SIOCGIFADDR:
   3374	case SIOCSIFADDR:
   3375	case SIOCSIFHWBROADCAST:
   3376	case SIOCDIFADDR:
   3377	case SIOCGIFBRDADDR:
   3378	case SIOCSIFBRDADDR:
   3379	case SIOCGIFDSTADDR:
   3380	case SIOCSIFDSTADDR:
   3381	case SIOCGIFNETMASK:
   3382	case SIOCSIFNETMASK:
   3383	case SIOCSIFPFLAGS:
   3384	case SIOCGIFPFLAGS:
   3385	case SIOCGIFTXQLEN:
   3386	case SIOCSIFTXQLEN:
   3387	case SIOCBRADDIF:
   3388	case SIOCBRDELIF:
   3389	case SIOCGIFNAME:
   3390	case SIOCSIFNAME:
   3391	case SIOCGMIIPHY:
   3392	case SIOCGMIIREG:
   3393	case SIOCSMIIREG:
   3394	case SIOCBONDENSLAVE:
   3395	case SIOCBONDRELEASE:
   3396	case SIOCBONDSETHWADDR:
   3397	case SIOCBONDCHANGEACTIVE:
   3398	case SIOCSARP:
   3399	case SIOCGARP:
   3400	case SIOCDARP:
   3401	case SIOCOUTQ:
   3402	case SIOCOUTQNSD:
   3403	case SIOCATMARK:
   3404		return sock_do_ioctl(net, sock, cmd, arg);
   3405	}
   3406
   3407	return -ENOIOCTLCMD;
   3408}
   3409
   3410static long compat_sock_ioctl(struct file *file, unsigned int cmd,
   3411			      unsigned long arg)
   3412{
   3413	struct socket *sock = file->private_data;
   3414	int ret = -ENOIOCTLCMD;
   3415	struct sock *sk;
   3416	struct net *net;
   3417
   3418	sk = sock->sk;
   3419	net = sock_net(sk);
   3420
   3421	if (sock->ops->compat_ioctl)
   3422		ret = sock->ops->compat_ioctl(sock, cmd, arg);
   3423
   3424	if (ret == -ENOIOCTLCMD &&
   3425	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
   3426		ret = compat_wext_handle_ioctl(net, cmd, arg);
   3427
   3428	if (ret == -ENOIOCTLCMD)
   3429		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
   3430
   3431	return ret;
   3432}
   3433#endif
   3434
   3435/**
   3436 *	kernel_bind - bind an address to a socket (kernel space)
   3437 *	@sock: socket
   3438 *	@addr: address
   3439 *	@addrlen: length of address
   3440 *
   3441 *	Returns 0 or an error.
   3442 */
   3443
   3444int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
   3445{
   3446	return sock->ops->bind(sock, addr, addrlen);
   3447}
   3448EXPORT_SYMBOL(kernel_bind);
   3449
   3450/**
   3451 *	kernel_listen - move socket to listening state (kernel space)
   3452 *	@sock: socket
   3453 *	@backlog: pending connections queue size
   3454 *
   3455 *	Returns 0 or an error.
   3456 */
   3457
   3458int kernel_listen(struct socket *sock, int backlog)
   3459{
   3460	return sock->ops->listen(sock, backlog);
   3461}
   3462EXPORT_SYMBOL(kernel_listen);
   3463
   3464/**
   3465 *	kernel_accept - accept a connection (kernel space)
   3466 *	@sock: listening socket
   3467 *	@newsock: new connected socket
   3468 *	@flags: flags
   3469 *
   3470 *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
   3471 *	If it fails, @newsock is guaranteed to be %NULL.
   3472 *	Returns 0 or an error.
   3473 */
   3474
   3475int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
   3476{
   3477	struct sock *sk = sock->sk;
   3478	int err;
   3479
   3480	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
   3481			       newsock);
   3482	if (err < 0)
   3483		goto done;
   3484
   3485	err = sock->ops->accept(sock, *newsock, flags, true);
   3486	if (err < 0) {
   3487		sock_release(*newsock);
   3488		*newsock = NULL;
   3489		goto done;
   3490	}
   3491
   3492	(*newsock)->ops = sock->ops;
   3493	__module_get((*newsock)->ops->owner);
   3494
   3495done:
   3496	return err;
   3497}
   3498EXPORT_SYMBOL(kernel_accept);
   3499
   3500/**
   3501 *	kernel_connect - connect a socket (kernel space)
   3502 *	@sock: socket
   3503 *	@addr: address
   3504 *	@addrlen: address length
   3505 *	@flags: flags (O_NONBLOCK, ...)
   3506 *
   3507 *	For datagram sockets, @addr is the address to which datagrams are sent
   3508 *	by default, and the only address from which datagrams are received.
   3509 *	For stream sockets, attempts to connect to @addr.
   3510 *	Returns 0 or an error code.
   3511 */
   3512
   3513int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
   3514		   int flags)
   3515{
   3516	return sock->ops->connect(sock, addr, addrlen, flags);
   3517}
   3518EXPORT_SYMBOL(kernel_connect);
   3519
   3520/**
   3521 *	kernel_getsockname - get the address which the socket is bound (kernel space)
   3522 *	@sock: socket
   3523 *	@addr: address holder
   3524 *
   3525 * 	Fills the @addr pointer with the address which the socket is bound.
   3526 *	Returns the length of the address in bytes or an error code.
   3527 */
   3528
   3529int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
   3530{
   3531	return sock->ops->getname(sock, addr, 0);
   3532}
   3533EXPORT_SYMBOL(kernel_getsockname);
   3534
   3535/**
   3536 *	kernel_getpeername - get the address which the socket is connected (kernel space)
   3537 *	@sock: socket
   3538 *	@addr: address holder
   3539 *
   3540 * 	Fills the @addr pointer with the address which the socket is connected.
   3541 *	Returns the length of the address in bytes or an error code.
   3542 */
   3543
   3544int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
   3545{
   3546	return sock->ops->getname(sock, addr, 1);
   3547}
   3548EXPORT_SYMBOL(kernel_getpeername);
   3549
   3550/**
   3551 *	kernel_sendpage - send a &page through a socket (kernel space)
   3552 *	@sock: socket
   3553 *	@page: page
   3554 *	@offset: page offset
   3555 *	@size: total size in bytes
   3556 *	@flags: flags (MSG_DONTWAIT, ...)
   3557 *
   3558 *	Returns the total amount sent in bytes or an error.
   3559 */
   3560
   3561int kernel_sendpage(struct socket *sock, struct page *page, int offset,
   3562		    size_t size, int flags)
   3563{
   3564	if (sock->ops->sendpage) {
   3565		/* Warn in case the improper page to zero-copy send */
   3566		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
   3567		return sock->ops->sendpage(sock, page, offset, size, flags);
   3568	}
   3569	return sock_no_sendpage(sock, page, offset, size, flags);
   3570}
   3571EXPORT_SYMBOL(kernel_sendpage);
   3572
   3573/**
   3574 *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
   3575 *	@sk: sock
   3576 *	@page: page
   3577 *	@offset: page offset
   3578 *	@size: total size in bytes
   3579 *	@flags: flags (MSG_DONTWAIT, ...)
   3580 *
   3581 *	Returns the total amount sent in bytes or an error.
   3582 *	Caller must hold @sk.
   3583 */
   3584
   3585int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
   3586			   size_t size, int flags)
   3587{
   3588	struct socket *sock = sk->sk_socket;
   3589
   3590	if (sock->ops->sendpage_locked)
   3591		return sock->ops->sendpage_locked(sk, page, offset, size,
   3592						  flags);
   3593
   3594	return sock_no_sendpage_locked(sk, page, offset, size, flags);
   3595}
   3596EXPORT_SYMBOL(kernel_sendpage_locked);
   3597
   3598/**
   3599 *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
   3600 *	@sock: socket
   3601 *	@how: connection part
   3602 *
   3603 *	Returns 0 or an error.
   3604 */
   3605
   3606int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
   3607{
   3608	return sock->ops->shutdown(sock, how);
   3609}
   3610EXPORT_SYMBOL(kernel_sock_shutdown);
   3611
   3612/**
   3613 *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
   3614 *	@sk: socket
   3615 *
   3616 *	This routine returns the IP overhead imposed by a socket i.e.
   3617 *	the length of the underlying IP header, depending on whether
   3618 *	this is an IPv4 or IPv6 socket and the length from IP options turned
   3619 *	on at the socket. Assumes that the caller has a lock on the socket.
   3620 */
   3621
   3622u32 kernel_sock_ip_overhead(struct sock *sk)
   3623{
   3624	struct inet_sock *inet;
   3625	struct ip_options_rcu *opt;
   3626	u32 overhead = 0;
   3627#if IS_ENABLED(CONFIG_IPV6)
   3628	struct ipv6_pinfo *np;
   3629	struct ipv6_txoptions *optv6 = NULL;
   3630#endif /* IS_ENABLED(CONFIG_IPV6) */
   3631
   3632	if (!sk)
   3633		return overhead;
   3634
   3635	switch (sk->sk_family) {
   3636	case AF_INET:
   3637		inet = inet_sk(sk);
   3638		overhead += sizeof(struct iphdr);
   3639		opt = rcu_dereference_protected(inet->inet_opt,
   3640						sock_owned_by_user(sk));
   3641		if (opt)
   3642			overhead += opt->opt.optlen;
   3643		return overhead;
   3644#if IS_ENABLED(CONFIG_IPV6)
   3645	case AF_INET6:
   3646		np = inet6_sk(sk);
   3647		overhead += sizeof(struct ipv6hdr);
   3648		if (np)
   3649			optv6 = rcu_dereference_protected(np->opt,
   3650							  sock_owned_by_user(sk));
   3651		if (optv6)
   3652			overhead += (optv6->opt_flen + optv6->opt_nflen);
   3653		return overhead;
   3654#endif /* IS_ENABLED(CONFIG_IPV6) */
   3655	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
   3656		return overhead;
   3657	}
   3658}
   3659EXPORT_SYMBOL(kernel_sock_ip_overhead);