cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sched.c (34481B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * linux/net/sunrpc/sched.c
      4 *
      5 * Scheduling for synchronous and asynchronous RPC requests.
      6 *
      7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
      8 *
      9 * TCP NFS related read + write fixes
     10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
     11 */
     12
     13#include <linux/module.h>
     14
     15#include <linux/sched.h>
     16#include <linux/interrupt.h>
     17#include <linux/slab.h>
     18#include <linux/mempool.h>
     19#include <linux/smp.h>
     20#include <linux/spinlock.h>
     21#include <linux/mutex.h>
     22#include <linux/freezer.h>
     23#include <linux/sched/mm.h>
     24
     25#include <linux/sunrpc/clnt.h>
     26#include <linux/sunrpc/metrics.h>
     27
     28#include "sunrpc.h"
     29
     30#define CREATE_TRACE_POINTS
     31#include <trace/events/sunrpc.h>
     32
     33/*
     34 * RPC slabs and memory pools
     35 */
     36#define RPC_BUFFER_MAXSIZE	(2048)
     37#define RPC_BUFFER_POOLSIZE	(8)
     38#define RPC_TASK_POOLSIZE	(8)
     39static struct kmem_cache	*rpc_task_slabp __read_mostly;
     40static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
     41static mempool_t	*rpc_task_mempool __read_mostly;
     42static mempool_t	*rpc_buffer_mempool __read_mostly;
     43
     44static void			rpc_async_schedule(struct work_struct *);
     45static void			 rpc_release_task(struct rpc_task *task);
     46static void __rpc_queue_timer_fn(struct work_struct *);
     47
     48/*
     49 * RPC tasks sit here while waiting for conditions to improve.
     50 */
     51static struct rpc_wait_queue delay_queue;
     52
     53/*
     54 * rpciod-related stuff
     55 */
     56struct workqueue_struct *rpciod_workqueue __read_mostly;
     57struct workqueue_struct *xprtiod_workqueue __read_mostly;
     58EXPORT_SYMBOL_GPL(xprtiod_workqueue);
     59
     60gfp_t rpc_task_gfp_mask(void)
     61{
     62	if (current->flags & PF_WQ_WORKER)
     63		return GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
     64	return GFP_KERNEL;
     65}
     66
     67unsigned long
     68rpc_task_timeout(const struct rpc_task *task)
     69{
     70	unsigned long timeout = READ_ONCE(task->tk_timeout);
     71
     72	if (timeout != 0) {
     73		unsigned long now = jiffies;
     74		if (time_before(now, timeout))
     75			return timeout - now;
     76	}
     77	return 0;
     78}
     79EXPORT_SYMBOL_GPL(rpc_task_timeout);
     80
     81/*
     82 * Disable the timer for a given RPC task. Should be called with
     83 * queue->lock and bh_disabled in order to avoid races within
     84 * rpc_run_timer().
     85 */
     86static void
     87__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
     88{
     89	if (list_empty(&task->u.tk_wait.timer_list))
     90		return;
     91	task->tk_timeout = 0;
     92	list_del(&task->u.tk_wait.timer_list);
     93	if (list_empty(&queue->timer_list.list))
     94		cancel_delayed_work(&queue->timer_list.dwork);
     95}
     96
     97static void
     98rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
     99{
    100	unsigned long now = jiffies;
    101	queue->timer_list.expires = expires;
    102	if (time_before_eq(expires, now))
    103		expires = 0;
    104	else
    105		expires -= now;
    106	mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
    107}
    108
    109/*
    110 * Set up a timer for the current task.
    111 */
    112static void
    113__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
    114		unsigned long timeout)
    115{
    116	task->tk_timeout = timeout;
    117	if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
    118		rpc_set_queue_timer(queue, timeout);
    119	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
    120}
    121
    122static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
    123{
    124	if (queue->priority != priority) {
    125		queue->priority = priority;
    126		queue->nr = 1U << priority;
    127	}
    128}
    129
    130static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
    131{
    132	rpc_set_waitqueue_priority(queue, queue->maxpriority);
    133}
    134
    135/*
    136 * Add a request to a queue list
    137 */
    138static void
    139__rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
    140{
    141	struct rpc_task *t;
    142
    143	list_for_each_entry(t, q, u.tk_wait.list) {
    144		if (t->tk_owner == task->tk_owner) {
    145			list_add_tail(&task->u.tk_wait.links,
    146					&t->u.tk_wait.links);
    147			/* Cache the queue head in task->u.tk_wait.list */
    148			task->u.tk_wait.list.next = q;
    149			task->u.tk_wait.list.prev = NULL;
    150			return;
    151		}
    152	}
    153	INIT_LIST_HEAD(&task->u.tk_wait.links);
    154	list_add_tail(&task->u.tk_wait.list, q);
    155}
    156
    157/*
    158 * Remove request from a queue list
    159 */
    160static void
    161__rpc_list_dequeue_task(struct rpc_task *task)
    162{
    163	struct list_head *q;
    164	struct rpc_task *t;
    165
    166	if (task->u.tk_wait.list.prev == NULL) {
    167		list_del(&task->u.tk_wait.links);
    168		return;
    169	}
    170	if (!list_empty(&task->u.tk_wait.links)) {
    171		t = list_first_entry(&task->u.tk_wait.links,
    172				struct rpc_task,
    173				u.tk_wait.links);
    174		/* Assume __rpc_list_enqueue_task() cached the queue head */
    175		q = t->u.tk_wait.list.next;
    176		list_add_tail(&t->u.tk_wait.list, q);
    177		list_del(&task->u.tk_wait.links);
    178	}
    179	list_del(&task->u.tk_wait.list);
    180}
    181
    182/*
    183 * Add new request to a priority queue.
    184 */
    185static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
    186		struct rpc_task *task,
    187		unsigned char queue_priority)
    188{
    189	if (unlikely(queue_priority > queue->maxpriority))
    190		queue_priority = queue->maxpriority;
    191	__rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
    192}
    193
    194/*
    195 * Add new request to wait queue.
    196 */
    197static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
    198		struct rpc_task *task,
    199		unsigned char queue_priority)
    200{
    201	INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
    202	if (RPC_IS_PRIORITY(queue))
    203		__rpc_add_wait_queue_priority(queue, task, queue_priority);
    204	else
    205		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
    206	task->tk_waitqueue = queue;
    207	queue->qlen++;
    208	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
    209	smp_wmb();
    210	rpc_set_queued(task);
    211}
    212
    213/*
    214 * Remove request from a priority queue.
    215 */
    216static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
    217{
    218	__rpc_list_dequeue_task(task);
    219}
    220
    221/*
    222 * Remove request from queue.
    223 * Note: must be called with spin lock held.
    224 */
    225static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
    226{
    227	__rpc_disable_timer(queue, task);
    228	if (RPC_IS_PRIORITY(queue))
    229		__rpc_remove_wait_queue_priority(task);
    230	else
    231		list_del(&task->u.tk_wait.list);
    232	queue->qlen--;
    233}
    234
    235static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
    236{
    237	int i;
    238
    239	spin_lock_init(&queue->lock);
    240	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
    241		INIT_LIST_HEAD(&queue->tasks[i]);
    242	queue->maxpriority = nr_queues - 1;
    243	rpc_reset_waitqueue_priority(queue);
    244	queue->qlen = 0;
    245	queue->timer_list.expires = 0;
    246	INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
    247	INIT_LIST_HEAD(&queue->timer_list.list);
    248	rpc_assign_waitqueue_name(queue, qname);
    249}
    250
    251void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
    252{
    253	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
    254}
    255EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
    256
    257void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
    258{
    259	__rpc_init_priority_wait_queue(queue, qname, 1);
    260}
    261EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
    262
    263void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
    264{
    265	cancel_delayed_work_sync(&queue->timer_list.dwork);
    266}
    267EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
    268
    269static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
    270{
    271	freezable_schedule_unsafe();
    272	if (signal_pending_state(mode, current))
    273		return -ERESTARTSYS;
    274	return 0;
    275}
    276
    277#if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
    278static void rpc_task_set_debuginfo(struct rpc_task *task)
    279{
    280	struct rpc_clnt *clnt = task->tk_client;
    281
    282	/* Might be a task carrying a reverse-direction operation */
    283	if (!clnt) {
    284		static atomic_t rpc_pid;
    285
    286		task->tk_pid = atomic_inc_return(&rpc_pid);
    287		return;
    288	}
    289
    290	task->tk_pid = atomic_inc_return(&clnt->cl_pid);
    291}
    292#else
    293static inline void rpc_task_set_debuginfo(struct rpc_task *task)
    294{
    295}
    296#endif
    297
    298static void rpc_set_active(struct rpc_task *task)
    299{
    300	rpc_task_set_debuginfo(task);
    301	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
    302	trace_rpc_task_begin(task, NULL);
    303}
    304
    305/*
    306 * Mark an RPC call as having completed by clearing the 'active' bit
    307 * and then waking up all tasks that were sleeping.
    308 */
    309static int rpc_complete_task(struct rpc_task *task)
    310{
    311	void *m = &task->tk_runstate;
    312	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
    313	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
    314	unsigned long flags;
    315	int ret;
    316
    317	trace_rpc_task_complete(task, NULL);
    318
    319	spin_lock_irqsave(&wq->lock, flags);
    320	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
    321	ret = atomic_dec_and_test(&task->tk_count);
    322	if (waitqueue_active(wq))
    323		__wake_up_locked_key(wq, TASK_NORMAL, &k);
    324	spin_unlock_irqrestore(&wq->lock, flags);
    325	return ret;
    326}
    327
    328/*
    329 * Allow callers to wait for completion of an RPC call
    330 *
    331 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
    332 * to enforce taking of the wq->lock and hence avoid races with
    333 * rpc_complete_task().
    334 */
    335int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
    336{
    337	if (action == NULL)
    338		action = rpc_wait_bit_killable;
    339	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
    340			action, TASK_KILLABLE);
    341}
    342EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
    343
    344/*
    345 * Make an RPC task runnable.
    346 *
    347 * Note: If the task is ASYNC, and is being made runnable after sitting on an
    348 * rpc_wait_queue, this must be called with the queue spinlock held to protect
    349 * the wait queue operation.
    350 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
    351 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
    352 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
    353 * the RPC_TASK_RUNNING flag.
    354 */
    355static void rpc_make_runnable(struct workqueue_struct *wq,
    356		struct rpc_task *task)
    357{
    358	bool need_wakeup = !rpc_test_and_set_running(task);
    359
    360	rpc_clear_queued(task);
    361	if (!need_wakeup)
    362		return;
    363	if (RPC_IS_ASYNC(task)) {
    364		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
    365		queue_work(wq, &task->u.tk_work);
    366	} else
    367		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
    368}
    369
    370/*
    371 * Prepare for sleeping on a wait queue.
    372 * By always appending tasks to the list we ensure FIFO behavior.
    373 * NB: An RPC task will only receive interrupt-driven events as long
    374 * as it's on a wait queue.
    375 */
    376static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
    377		struct rpc_task *task,
    378		unsigned char queue_priority)
    379{
    380	trace_rpc_task_sleep(task, q);
    381
    382	__rpc_add_wait_queue(q, task, queue_priority);
    383}
    384
    385static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
    386		struct rpc_task *task,
    387		unsigned char queue_priority)
    388{
    389	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
    390		return;
    391	__rpc_do_sleep_on_priority(q, task, queue_priority);
    392}
    393
    394static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
    395		struct rpc_task *task, unsigned long timeout,
    396		unsigned char queue_priority)
    397{
    398	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
    399		return;
    400	if (time_is_after_jiffies(timeout)) {
    401		__rpc_do_sleep_on_priority(q, task, queue_priority);
    402		__rpc_add_timer(q, task, timeout);
    403	} else
    404		task->tk_status = -ETIMEDOUT;
    405}
    406
    407static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
    408{
    409	if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
    410		task->tk_callback = action;
    411}
    412
    413static bool rpc_sleep_check_activated(struct rpc_task *task)
    414{
    415	/* We shouldn't ever put an inactive task to sleep */
    416	if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
    417		task->tk_status = -EIO;
    418		rpc_put_task_async(task);
    419		return false;
    420	}
    421	return true;
    422}
    423
    424void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
    425				rpc_action action, unsigned long timeout)
    426{
    427	if (!rpc_sleep_check_activated(task))
    428		return;
    429
    430	rpc_set_tk_callback(task, action);
    431
    432	/*
    433	 * Protect the queue operations.
    434	 */
    435	spin_lock(&q->lock);
    436	__rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
    437	spin_unlock(&q->lock);
    438}
    439EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
    440
    441void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
    442				rpc_action action)
    443{
    444	if (!rpc_sleep_check_activated(task))
    445		return;
    446
    447	rpc_set_tk_callback(task, action);
    448
    449	WARN_ON_ONCE(task->tk_timeout != 0);
    450	/*
    451	 * Protect the queue operations.
    452	 */
    453	spin_lock(&q->lock);
    454	__rpc_sleep_on_priority(q, task, task->tk_priority);
    455	spin_unlock(&q->lock);
    456}
    457EXPORT_SYMBOL_GPL(rpc_sleep_on);
    458
    459void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
    460		struct rpc_task *task, unsigned long timeout, int priority)
    461{
    462	if (!rpc_sleep_check_activated(task))
    463		return;
    464
    465	priority -= RPC_PRIORITY_LOW;
    466	/*
    467	 * Protect the queue operations.
    468	 */
    469	spin_lock(&q->lock);
    470	__rpc_sleep_on_priority_timeout(q, task, timeout, priority);
    471	spin_unlock(&q->lock);
    472}
    473EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
    474
    475void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
    476		int priority)
    477{
    478	if (!rpc_sleep_check_activated(task))
    479		return;
    480
    481	WARN_ON_ONCE(task->tk_timeout != 0);
    482	priority -= RPC_PRIORITY_LOW;
    483	/*
    484	 * Protect the queue operations.
    485	 */
    486	spin_lock(&q->lock);
    487	__rpc_sleep_on_priority(q, task, priority);
    488	spin_unlock(&q->lock);
    489}
    490EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
    491
    492/**
    493 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
    494 * @wq: workqueue on which to run task
    495 * @queue: wait queue
    496 * @task: task to be woken up
    497 *
    498 * Caller must hold queue->lock, and have cleared the task queued flag.
    499 */
    500static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
    501		struct rpc_wait_queue *queue,
    502		struct rpc_task *task)
    503{
    504	/* Has the task been executed yet? If not, we cannot wake it up! */
    505	if (!RPC_IS_ACTIVATED(task)) {
    506		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
    507		return;
    508	}
    509
    510	trace_rpc_task_wakeup(task, queue);
    511
    512	__rpc_remove_wait_queue(queue, task);
    513
    514	rpc_make_runnable(wq, task);
    515}
    516
    517/*
    518 * Wake up a queued task while the queue lock is being held
    519 */
    520static struct rpc_task *
    521rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
    522		struct rpc_wait_queue *queue, struct rpc_task *task,
    523		bool (*action)(struct rpc_task *, void *), void *data)
    524{
    525	if (RPC_IS_QUEUED(task)) {
    526		smp_rmb();
    527		if (task->tk_waitqueue == queue) {
    528			if (action == NULL || action(task, data)) {
    529				__rpc_do_wake_up_task_on_wq(wq, queue, task);
    530				return task;
    531			}
    532		}
    533	}
    534	return NULL;
    535}
    536
    537/*
    538 * Wake up a queued task while the queue lock is being held
    539 */
    540static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
    541					  struct rpc_task *task)
    542{
    543	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
    544						   task, NULL, NULL);
    545}
    546
    547/*
    548 * Wake up a task on a specific queue
    549 */
    550void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
    551{
    552	if (!RPC_IS_QUEUED(task))
    553		return;
    554	spin_lock(&queue->lock);
    555	rpc_wake_up_task_queue_locked(queue, task);
    556	spin_unlock(&queue->lock);
    557}
    558EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
    559
    560static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
    561{
    562	task->tk_status = *(int *)status;
    563	return true;
    564}
    565
    566static void
    567rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
    568		struct rpc_task *task, int status)
    569{
    570	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
    571			task, rpc_task_action_set_status, &status);
    572}
    573
    574/**
    575 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
    576 * @queue: pointer to rpc_wait_queue
    577 * @task: pointer to rpc_task
    578 * @status: integer error value
    579 *
    580 * If @task is queued on @queue, then it is woken up, and @task->tk_status is
    581 * set to the value of @status.
    582 */
    583void
    584rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
    585		struct rpc_task *task, int status)
    586{
    587	if (!RPC_IS_QUEUED(task))
    588		return;
    589	spin_lock(&queue->lock);
    590	rpc_wake_up_task_queue_set_status_locked(queue, task, status);
    591	spin_unlock(&queue->lock);
    592}
    593
    594/*
    595 * Wake up the next task on a priority queue.
    596 */
    597static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
    598{
    599	struct list_head *q;
    600	struct rpc_task *task;
    601
    602	/*
    603	 * Service the privileged queue.
    604	 */
    605	q = &queue->tasks[RPC_NR_PRIORITY - 1];
    606	if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
    607		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
    608		goto out;
    609	}
    610
    611	/*
    612	 * Service a batch of tasks from a single owner.
    613	 */
    614	q = &queue->tasks[queue->priority];
    615	if (!list_empty(q) && queue->nr) {
    616		queue->nr--;
    617		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
    618		goto out;
    619	}
    620
    621	/*
    622	 * Service the next queue.
    623	 */
    624	do {
    625		if (q == &queue->tasks[0])
    626			q = &queue->tasks[queue->maxpriority];
    627		else
    628			q = q - 1;
    629		if (!list_empty(q)) {
    630			task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
    631			goto new_queue;
    632		}
    633	} while (q != &queue->tasks[queue->priority]);
    634
    635	rpc_reset_waitqueue_priority(queue);
    636	return NULL;
    637
    638new_queue:
    639	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
    640out:
    641	return task;
    642}
    643
    644static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
    645{
    646	if (RPC_IS_PRIORITY(queue))
    647		return __rpc_find_next_queued_priority(queue);
    648	if (!list_empty(&queue->tasks[0]))
    649		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
    650	return NULL;
    651}
    652
    653/*
    654 * Wake up the first task on the wait queue.
    655 */
    656struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
    657		struct rpc_wait_queue *queue,
    658		bool (*func)(struct rpc_task *, void *), void *data)
    659{
    660	struct rpc_task	*task = NULL;
    661
    662	spin_lock(&queue->lock);
    663	task = __rpc_find_next_queued(queue);
    664	if (task != NULL)
    665		task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
    666				task, func, data);
    667	spin_unlock(&queue->lock);
    668
    669	return task;
    670}
    671
    672/*
    673 * Wake up the first task on the wait queue.
    674 */
    675struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
    676		bool (*func)(struct rpc_task *, void *), void *data)
    677{
    678	return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
    679}
    680EXPORT_SYMBOL_GPL(rpc_wake_up_first);
    681
    682static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
    683{
    684	return true;
    685}
    686
    687/*
    688 * Wake up the next task on the wait queue.
    689*/
    690struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
    691{
    692	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
    693}
    694EXPORT_SYMBOL_GPL(rpc_wake_up_next);
    695
    696/**
    697 * rpc_wake_up_locked - wake up all rpc_tasks
    698 * @queue: rpc_wait_queue on which the tasks are sleeping
    699 *
    700 */
    701static void rpc_wake_up_locked(struct rpc_wait_queue *queue)
    702{
    703	struct rpc_task *task;
    704
    705	for (;;) {
    706		task = __rpc_find_next_queued(queue);
    707		if (task == NULL)
    708			break;
    709		rpc_wake_up_task_queue_locked(queue, task);
    710	}
    711}
    712
    713/**
    714 * rpc_wake_up - wake up all rpc_tasks
    715 * @queue: rpc_wait_queue on which the tasks are sleeping
    716 *
    717 * Grabs queue->lock
    718 */
    719void rpc_wake_up(struct rpc_wait_queue *queue)
    720{
    721	spin_lock(&queue->lock);
    722	rpc_wake_up_locked(queue);
    723	spin_unlock(&queue->lock);
    724}
    725EXPORT_SYMBOL_GPL(rpc_wake_up);
    726
    727/**
    728 * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value.
    729 * @queue: rpc_wait_queue on which the tasks are sleeping
    730 * @status: status value to set
    731 */
    732static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status)
    733{
    734	struct rpc_task *task;
    735
    736	for (;;) {
    737		task = __rpc_find_next_queued(queue);
    738		if (task == NULL)
    739			break;
    740		rpc_wake_up_task_queue_set_status_locked(queue, task, status);
    741	}
    742}
    743
    744/**
    745 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
    746 * @queue: rpc_wait_queue on which the tasks are sleeping
    747 * @status: status value to set
    748 *
    749 * Grabs queue->lock
    750 */
    751void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
    752{
    753	spin_lock(&queue->lock);
    754	rpc_wake_up_status_locked(queue, status);
    755	spin_unlock(&queue->lock);
    756}
    757EXPORT_SYMBOL_GPL(rpc_wake_up_status);
    758
    759static void __rpc_queue_timer_fn(struct work_struct *work)
    760{
    761	struct rpc_wait_queue *queue = container_of(work,
    762			struct rpc_wait_queue,
    763			timer_list.dwork.work);
    764	struct rpc_task *task, *n;
    765	unsigned long expires, now, timeo;
    766
    767	spin_lock(&queue->lock);
    768	expires = now = jiffies;
    769	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
    770		timeo = task->tk_timeout;
    771		if (time_after_eq(now, timeo)) {
    772			trace_rpc_task_timeout(task, task->tk_action);
    773			task->tk_status = -ETIMEDOUT;
    774			rpc_wake_up_task_queue_locked(queue, task);
    775			continue;
    776		}
    777		if (expires == now || time_after(expires, timeo))
    778			expires = timeo;
    779	}
    780	if (!list_empty(&queue->timer_list.list))
    781		rpc_set_queue_timer(queue, expires);
    782	spin_unlock(&queue->lock);
    783}
    784
    785static void __rpc_atrun(struct rpc_task *task)
    786{
    787	if (task->tk_status == -ETIMEDOUT)
    788		task->tk_status = 0;
    789}
    790
    791/*
    792 * Run a task at a later time
    793 */
    794void rpc_delay(struct rpc_task *task, unsigned long delay)
    795{
    796	rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
    797}
    798EXPORT_SYMBOL_GPL(rpc_delay);
    799
    800/*
    801 * Helper to call task->tk_ops->rpc_call_prepare
    802 */
    803void rpc_prepare_task(struct rpc_task *task)
    804{
    805	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
    806}
    807
    808static void
    809rpc_init_task_statistics(struct rpc_task *task)
    810{
    811	/* Initialize retry counters */
    812	task->tk_garb_retry = 2;
    813	task->tk_cred_retry = 2;
    814	task->tk_rebind_retry = 2;
    815
    816	/* starting timestamp */
    817	task->tk_start = ktime_get();
    818}
    819
    820static void
    821rpc_reset_task_statistics(struct rpc_task *task)
    822{
    823	task->tk_timeouts = 0;
    824	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
    825	rpc_init_task_statistics(task);
    826}
    827
    828/*
    829 * Helper that calls task->tk_ops->rpc_call_done if it exists
    830 */
    831void rpc_exit_task(struct rpc_task *task)
    832{
    833	trace_rpc_task_end(task, task->tk_action);
    834	task->tk_action = NULL;
    835	if (task->tk_ops->rpc_count_stats)
    836		task->tk_ops->rpc_count_stats(task, task->tk_calldata);
    837	else if (task->tk_client)
    838		rpc_count_iostats(task, task->tk_client->cl_metrics);
    839	if (task->tk_ops->rpc_call_done != NULL) {
    840		trace_rpc_task_call_done(task, task->tk_ops->rpc_call_done);
    841		task->tk_ops->rpc_call_done(task, task->tk_calldata);
    842		if (task->tk_action != NULL) {
    843			/* Always release the RPC slot and buffer memory */
    844			xprt_release(task);
    845			rpc_reset_task_statistics(task);
    846		}
    847	}
    848}
    849
    850void rpc_signal_task(struct rpc_task *task)
    851{
    852	struct rpc_wait_queue *queue;
    853
    854	if (!RPC_IS_ACTIVATED(task))
    855		return;
    856
    857	trace_rpc_task_signalled(task, task->tk_action);
    858	set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
    859	smp_mb__after_atomic();
    860	queue = READ_ONCE(task->tk_waitqueue);
    861	if (queue)
    862		rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
    863}
    864
    865void rpc_exit(struct rpc_task *task, int status)
    866{
    867	task->tk_status = status;
    868	task->tk_action = rpc_exit_task;
    869	rpc_wake_up_queued_task(task->tk_waitqueue, task);
    870}
    871EXPORT_SYMBOL_GPL(rpc_exit);
    872
    873void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
    874{
    875	if (ops->rpc_release != NULL)
    876		ops->rpc_release(calldata);
    877}
    878
    879static bool xprt_needs_memalloc(struct rpc_xprt *xprt, struct rpc_task *tk)
    880{
    881	if (!xprt)
    882		return false;
    883	if (!atomic_read(&xprt->swapper))
    884		return false;
    885	return test_bit(XPRT_LOCKED, &xprt->state) && xprt->snd_task == tk;
    886}
    887
    888/*
    889 * This is the RPC `scheduler' (or rather, the finite state machine).
    890 */
    891static void __rpc_execute(struct rpc_task *task)
    892{
    893	struct rpc_wait_queue *queue;
    894	int task_is_async = RPC_IS_ASYNC(task);
    895	int status = 0;
    896	unsigned long pflags = current->flags;
    897
    898	WARN_ON_ONCE(RPC_IS_QUEUED(task));
    899	if (RPC_IS_QUEUED(task))
    900		return;
    901
    902	for (;;) {
    903		void (*do_action)(struct rpc_task *);
    904
    905		/*
    906		 * Perform the next FSM step or a pending callback.
    907		 *
    908		 * tk_action may be NULL if the task has been killed.
    909		 * In particular, note that rpc_killall_tasks may
    910		 * do this at any time, so beware when dereferencing.
    911		 */
    912		do_action = task->tk_action;
    913		if (task->tk_callback) {
    914			do_action = task->tk_callback;
    915			task->tk_callback = NULL;
    916		}
    917		if (!do_action)
    918			break;
    919		if (RPC_IS_SWAPPER(task) ||
    920		    xprt_needs_memalloc(task->tk_xprt, task))
    921			current->flags |= PF_MEMALLOC;
    922
    923		trace_rpc_task_run_action(task, do_action);
    924		do_action(task);
    925
    926		/*
    927		 * Lockless check for whether task is sleeping or not.
    928		 */
    929		if (!RPC_IS_QUEUED(task)) {
    930			cond_resched();
    931			continue;
    932		}
    933
    934		/*
    935		 * Signalled tasks should exit rather than sleep.
    936		 */
    937		if (RPC_SIGNALLED(task)) {
    938			task->tk_rpc_status = -ERESTARTSYS;
    939			rpc_exit(task, -ERESTARTSYS);
    940		}
    941
    942		/*
    943		 * The queue->lock protects against races with
    944		 * rpc_make_runnable().
    945		 *
    946		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
    947		 * rpc_task, rpc_make_runnable() can assign it to a
    948		 * different workqueue. We therefore cannot assume that the
    949		 * rpc_task pointer may still be dereferenced.
    950		 */
    951		queue = task->tk_waitqueue;
    952		spin_lock(&queue->lock);
    953		if (!RPC_IS_QUEUED(task)) {
    954			spin_unlock(&queue->lock);
    955			continue;
    956		}
    957		rpc_clear_running(task);
    958		spin_unlock(&queue->lock);
    959		if (task_is_async)
    960			goto out;
    961
    962		/* sync task: sleep here */
    963		trace_rpc_task_sync_sleep(task, task->tk_action);
    964		status = out_of_line_wait_on_bit(&task->tk_runstate,
    965				RPC_TASK_QUEUED, rpc_wait_bit_killable,
    966				TASK_KILLABLE);
    967		if (status < 0) {
    968			/*
    969			 * When a sync task receives a signal, it exits with
    970			 * -ERESTARTSYS. In order to catch any callbacks that
    971			 * clean up after sleeping on some queue, we don't
    972			 * break the loop here, but go around once more.
    973			 */
    974			trace_rpc_task_signalled(task, task->tk_action);
    975			set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
    976			task->tk_rpc_status = -ERESTARTSYS;
    977			rpc_exit(task, -ERESTARTSYS);
    978		}
    979		trace_rpc_task_sync_wake(task, task->tk_action);
    980	}
    981
    982	/* Release all resources associated with the task */
    983	rpc_release_task(task);
    984out:
    985	current_restore_flags(pflags, PF_MEMALLOC);
    986}
    987
    988/*
    989 * User-visible entry point to the scheduler.
    990 *
    991 * This may be called recursively if e.g. an async NFS task updates
    992 * the attributes and finds that dirty pages must be flushed.
    993 * NOTE: Upon exit of this function the task is guaranteed to be
    994 *	 released. In particular note that tk_release() will have
    995 *	 been called, so your task memory may have been freed.
    996 */
    997void rpc_execute(struct rpc_task *task)
    998{
    999	bool is_async = RPC_IS_ASYNC(task);
   1000
   1001	rpc_set_active(task);
   1002	rpc_make_runnable(rpciod_workqueue, task);
   1003	if (!is_async) {
   1004		unsigned int pflags = memalloc_nofs_save();
   1005		__rpc_execute(task);
   1006		memalloc_nofs_restore(pflags);
   1007	}
   1008}
   1009
   1010static void rpc_async_schedule(struct work_struct *work)
   1011{
   1012	unsigned int pflags = memalloc_nofs_save();
   1013
   1014	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
   1015	memalloc_nofs_restore(pflags);
   1016}
   1017
   1018/**
   1019 * rpc_malloc - allocate RPC buffer resources
   1020 * @task: RPC task
   1021 *
   1022 * A single memory region is allocated, which is split between the
   1023 * RPC call and RPC reply that this task is being used for. When
   1024 * this RPC is retired, the memory is released by calling rpc_free.
   1025 *
   1026 * To prevent rpciod from hanging, this allocator never sleeps,
   1027 * returning -ENOMEM and suppressing warning if the request cannot
   1028 * be serviced immediately. The caller can arrange to sleep in a
   1029 * way that is safe for rpciod.
   1030 *
   1031 * Most requests are 'small' (under 2KiB) and can be serviced from a
   1032 * mempool, ensuring that NFS reads and writes can always proceed,
   1033 * and that there is good locality of reference for these buffers.
   1034 */
   1035int rpc_malloc(struct rpc_task *task)
   1036{
   1037	struct rpc_rqst *rqst = task->tk_rqstp;
   1038	size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
   1039	struct rpc_buffer *buf;
   1040	gfp_t gfp = rpc_task_gfp_mask();
   1041
   1042	size += sizeof(struct rpc_buffer);
   1043	if (size <= RPC_BUFFER_MAXSIZE) {
   1044		buf = kmem_cache_alloc(rpc_buffer_slabp, gfp);
   1045		/* Reach for the mempool if dynamic allocation fails */
   1046		if (!buf && RPC_IS_ASYNC(task))
   1047			buf = mempool_alloc(rpc_buffer_mempool, GFP_NOWAIT);
   1048	} else
   1049		buf = kmalloc(size, gfp);
   1050
   1051	if (!buf)
   1052		return -ENOMEM;
   1053
   1054	buf->len = size;
   1055	rqst->rq_buffer = buf->data;
   1056	rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
   1057	return 0;
   1058}
   1059EXPORT_SYMBOL_GPL(rpc_malloc);
   1060
   1061/**
   1062 * rpc_free - free RPC buffer resources allocated via rpc_malloc
   1063 * @task: RPC task
   1064 *
   1065 */
   1066void rpc_free(struct rpc_task *task)
   1067{
   1068	void *buffer = task->tk_rqstp->rq_buffer;
   1069	size_t size;
   1070	struct rpc_buffer *buf;
   1071
   1072	buf = container_of(buffer, struct rpc_buffer, data);
   1073	size = buf->len;
   1074
   1075	if (size <= RPC_BUFFER_MAXSIZE)
   1076		mempool_free(buf, rpc_buffer_mempool);
   1077	else
   1078		kfree(buf);
   1079}
   1080EXPORT_SYMBOL_GPL(rpc_free);
   1081
   1082/*
   1083 * Creation and deletion of RPC task structures
   1084 */
   1085static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
   1086{
   1087	memset(task, 0, sizeof(*task));
   1088	atomic_set(&task->tk_count, 1);
   1089	task->tk_flags  = task_setup_data->flags;
   1090	task->tk_ops = task_setup_data->callback_ops;
   1091	task->tk_calldata = task_setup_data->callback_data;
   1092	INIT_LIST_HEAD(&task->tk_task);
   1093
   1094	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
   1095	task->tk_owner = current->tgid;
   1096
   1097	/* Initialize workqueue for async tasks */
   1098	task->tk_workqueue = task_setup_data->workqueue;
   1099
   1100	task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
   1101			xprt_get(task_setup_data->rpc_xprt));
   1102
   1103	task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
   1104
   1105	if (task->tk_ops->rpc_call_prepare != NULL)
   1106		task->tk_action = rpc_prepare_task;
   1107
   1108	rpc_init_task_statistics(task);
   1109}
   1110
   1111static struct rpc_task *rpc_alloc_task(void)
   1112{
   1113	struct rpc_task *task;
   1114
   1115	task = kmem_cache_alloc(rpc_task_slabp, rpc_task_gfp_mask());
   1116	if (task)
   1117		return task;
   1118	return mempool_alloc(rpc_task_mempool, GFP_NOWAIT);
   1119}
   1120
   1121/*
   1122 * Create a new task for the specified client.
   1123 */
   1124struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
   1125{
   1126	struct rpc_task	*task = setup_data->task;
   1127	unsigned short flags = 0;
   1128
   1129	if (task == NULL) {
   1130		task = rpc_alloc_task();
   1131		if (task == NULL) {
   1132			rpc_release_calldata(setup_data->callback_ops,
   1133					     setup_data->callback_data);
   1134			return ERR_PTR(-ENOMEM);
   1135		}
   1136		flags = RPC_TASK_DYNAMIC;
   1137	}
   1138
   1139	rpc_init_task(task, setup_data);
   1140	task->tk_flags |= flags;
   1141	return task;
   1142}
   1143
   1144/*
   1145 * rpc_free_task - release rpc task and perform cleanups
   1146 *
   1147 * Note that we free up the rpc_task _after_ rpc_release_calldata()
   1148 * in order to work around a workqueue dependency issue.
   1149 *
   1150 * Tejun Heo states:
   1151 * "Workqueue currently considers two work items to be the same if they're
   1152 * on the same address and won't execute them concurrently - ie. it
   1153 * makes a work item which is queued again while being executed wait
   1154 * for the previous execution to complete.
   1155 *
   1156 * If a work function frees the work item, and then waits for an event
   1157 * which should be performed by another work item and *that* work item
   1158 * recycles the freed work item, it can create a false dependency loop.
   1159 * There really is no reliable way to detect this short of verifying
   1160 * every memory free."
   1161 *
   1162 */
   1163static void rpc_free_task(struct rpc_task *task)
   1164{
   1165	unsigned short tk_flags = task->tk_flags;
   1166
   1167	put_rpccred(task->tk_op_cred);
   1168	rpc_release_calldata(task->tk_ops, task->tk_calldata);
   1169
   1170	if (tk_flags & RPC_TASK_DYNAMIC)
   1171		mempool_free(task, rpc_task_mempool);
   1172}
   1173
   1174static void rpc_async_release(struct work_struct *work)
   1175{
   1176	unsigned int pflags = memalloc_nofs_save();
   1177
   1178	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
   1179	memalloc_nofs_restore(pflags);
   1180}
   1181
   1182static void rpc_release_resources_task(struct rpc_task *task)
   1183{
   1184	xprt_release(task);
   1185	if (task->tk_msg.rpc_cred) {
   1186		if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
   1187			put_cred(task->tk_msg.rpc_cred);
   1188		task->tk_msg.rpc_cred = NULL;
   1189	}
   1190	rpc_task_release_client(task);
   1191}
   1192
   1193static void rpc_final_put_task(struct rpc_task *task,
   1194		struct workqueue_struct *q)
   1195{
   1196	if (q != NULL) {
   1197		INIT_WORK(&task->u.tk_work, rpc_async_release);
   1198		queue_work(q, &task->u.tk_work);
   1199	} else
   1200		rpc_free_task(task);
   1201}
   1202
   1203static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
   1204{
   1205	if (atomic_dec_and_test(&task->tk_count)) {
   1206		rpc_release_resources_task(task);
   1207		rpc_final_put_task(task, q);
   1208	}
   1209}
   1210
   1211void rpc_put_task(struct rpc_task *task)
   1212{
   1213	rpc_do_put_task(task, NULL);
   1214}
   1215EXPORT_SYMBOL_GPL(rpc_put_task);
   1216
   1217void rpc_put_task_async(struct rpc_task *task)
   1218{
   1219	rpc_do_put_task(task, task->tk_workqueue);
   1220}
   1221EXPORT_SYMBOL_GPL(rpc_put_task_async);
   1222
   1223static void rpc_release_task(struct rpc_task *task)
   1224{
   1225	WARN_ON_ONCE(RPC_IS_QUEUED(task));
   1226
   1227	rpc_release_resources_task(task);
   1228
   1229	/*
   1230	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
   1231	 * so it should be safe to use task->tk_count as a test for whether
   1232	 * or not any other processes still hold references to our rpc_task.
   1233	 */
   1234	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
   1235		/* Wake up anyone who may be waiting for task completion */
   1236		if (!rpc_complete_task(task))
   1237			return;
   1238	} else {
   1239		if (!atomic_dec_and_test(&task->tk_count))
   1240			return;
   1241	}
   1242	rpc_final_put_task(task, task->tk_workqueue);
   1243}
   1244
   1245int rpciod_up(void)
   1246{
   1247	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
   1248}
   1249
   1250void rpciod_down(void)
   1251{
   1252	module_put(THIS_MODULE);
   1253}
   1254
   1255/*
   1256 * Start up the rpciod workqueue.
   1257 */
   1258static int rpciod_start(void)
   1259{
   1260	struct workqueue_struct *wq;
   1261
   1262	/*
   1263	 * Create the rpciod thread and wait for it to start.
   1264	 */
   1265	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
   1266	if (!wq)
   1267		goto out_failed;
   1268	rpciod_workqueue = wq;
   1269	wq = alloc_workqueue("xprtiod", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
   1270	if (!wq)
   1271		goto free_rpciod;
   1272	xprtiod_workqueue = wq;
   1273	return 1;
   1274free_rpciod:
   1275	wq = rpciod_workqueue;
   1276	rpciod_workqueue = NULL;
   1277	destroy_workqueue(wq);
   1278out_failed:
   1279	return 0;
   1280}
   1281
   1282static void rpciod_stop(void)
   1283{
   1284	struct workqueue_struct *wq = NULL;
   1285
   1286	if (rpciod_workqueue == NULL)
   1287		return;
   1288
   1289	wq = rpciod_workqueue;
   1290	rpciod_workqueue = NULL;
   1291	destroy_workqueue(wq);
   1292	wq = xprtiod_workqueue;
   1293	xprtiod_workqueue = NULL;
   1294	destroy_workqueue(wq);
   1295}
   1296
   1297void
   1298rpc_destroy_mempool(void)
   1299{
   1300	rpciod_stop();
   1301	mempool_destroy(rpc_buffer_mempool);
   1302	mempool_destroy(rpc_task_mempool);
   1303	kmem_cache_destroy(rpc_task_slabp);
   1304	kmem_cache_destroy(rpc_buffer_slabp);
   1305	rpc_destroy_wait_queue(&delay_queue);
   1306}
   1307
   1308int
   1309rpc_init_mempool(void)
   1310{
   1311	/*
   1312	 * The following is not strictly a mempool initialisation,
   1313	 * but there is no harm in doing it here
   1314	 */
   1315	rpc_init_wait_queue(&delay_queue, "delayq");
   1316	if (!rpciod_start())
   1317		goto err_nomem;
   1318
   1319	rpc_task_slabp = kmem_cache_create("rpc_tasks",
   1320					     sizeof(struct rpc_task),
   1321					     0, SLAB_HWCACHE_ALIGN,
   1322					     NULL);
   1323	if (!rpc_task_slabp)
   1324		goto err_nomem;
   1325	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
   1326					     RPC_BUFFER_MAXSIZE,
   1327					     0, SLAB_HWCACHE_ALIGN,
   1328					     NULL);
   1329	if (!rpc_buffer_slabp)
   1330		goto err_nomem;
   1331	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
   1332						    rpc_task_slabp);
   1333	if (!rpc_task_mempool)
   1334		goto err_nomem;
   1335	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
   1336						      rpc_buffer_slabp);
   1337	if (!rpc_buffer_mempool)
   1338		goto err_nomem;
   1339	return 0;
   1340err_nomem:
   1341	rpc_destroy_mempool();
   1342	return -ENOMEM;
   1343}