cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

frwr_ops.c (19860B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (c) 2015, 2017 Oracle.  All rights reserved.
      4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
      5 */
      6
      7/* Lightweight memory registration using Fast Registration Work
      8 * Requests (FRWR).
      9 *
     10 * FRWR features ordered asynchronous registration and invalidation
     11 * of arbitrarily-sized memory regions. This is the fastest and safest
     12 * but most complex memory registration mode.
     13 */
     14
     15/* Normal operation
     16 *
     17 * A Memory Region is prepared for RDMA Read or Write using a FAST_REG
     18 * Work Request (frwr_map). When the RDMA operation is finished, this
     19 * Memory Region is invalidated using a LOCAL_INV Work Request
     20 * (frwr_unmap_async and frwr_unmap_sync).
     21 *
     22 * Typically FAST_REG Work Requests are not signaled, and neither are
     23 * RDMA Send Work Requests (with the exception of signaling occasionally
     24 * to prevent provider work queue overflows). This greatly reduces HCA
     25 * interrupt workload.
     26 */
     27
     28/* Transport recovery
     29 *
     30 * frwr_map and frwr_unmap_* cannot run at the same time the transport
     31 * connect worker is running. The connect worker holds the transport
     32 * send lock, just as ->send_request does. This prevents frwr_map and
     33 * the connect worker from running concurrently. When a connection is
     34 * closed, the Receive completion queue is drained before the allowing
     35 * the connect worker to get control. This prevents frwr_unmap and the
     36 * connect worker from running concurrently.
     37 *
     38 * When the underlying transport disconnects, MRs that are in flight
     39 * are flushed and are likely unusable. Thus all MRs are destroyed.
     40 * New MRs are created on demand.
     41 */
     42
     43#include <linux/sunrpc/svc_rdma.h>
     44
     45#include "xprt_rdma.h"
     46#include <trace/events/rpcrdma.h>
     47
     48static void frwr_cid_init(struct rpcrdma_ep *ep,
     49			  struct rpcrdma_mr *mr)
     50{
     51	struct rpc_rdma_cid *cid = &mr->mr_cid;
     52
     53	cid->ci_queue_id = ep->re_attr.send_cq->res.id;
     54	cid->ci_completion_id = mr->mr_ibmr->res.id;
     55}
     56
     57static void frwr_mr_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr)
     58{
     59	if (mr->mr_device) {
     60		trace_xprtrdma_mr_unmap(mr);
     61		ib_dma_unmap_sg(mr->mr_device, mr->mr_sg, mr->mr_nents,
     62				mr->mr_dir);
     63		mr->mr_device = NULL;
     64	}
     65}
     66
     67/**
     68 * frwr_mr_release - Destroy one MR
     69 * @mr: MR allocated by frwr_mr_init
     70 *
     71 */
     72void frwr_mr_release(struct rpcrdma_mr *mr)
     73{
     74	int rc;
     75
     76	frwr_mr_unmap(mr->mr_xprt, mr);
     77
     78	rc = ib_dereg_mr(mr->mr_ibmr);
     79	if (rc)
     80		trace_xprtrdma_frwr_dereg(mr, rc);
     81	kfree(mr->mr_sg);
     82	kfree(mr);
     83}
     84
     85static void frwr_mr_put(struct rpcrdma_mr *mr)
     86{
     87	frwr_mr_unmap(mr->mr_xprt, mr);
     88
     89	/* The MR is returned to the req's MR free list instead
     90	 * of to the xprt's MR free list. No spinlock is needed.
     91	 */
     92	rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs);
     93}
     94
     95/* frwr_reset - Place MRs back on the free list
     96 * @req: request to reset
     97 *
     98 * Used after a failed marshal. For FRWR, this means the MRs
     99 * don't have to be fully released and recreated.
    100 *
    101 * NB: This is safe only as long as none of @req's MRs are
    102 * involved with an ongoing asynchronous FAST_REG or LOCAL_INV
    103 * Work Request.
    104 */
    105void frwr_reset(struct rpcrdma_req *req)
    106{
    107	struct rpcrdma_mr *mr;
    108
    109	while ((mr = rpcrdma_mr_pop(&req->rl_registered)))
    110		frwr_mr_put(mr);
    111}
    112
    113/**
    114 * frwr_mr_init - Initialize one MR
    115 * @r_xprt: controlling transport instance
    116 * @mr: generic MR to prepare for FRWR
    117 *
    118 * Returns zero if successful. Otherwise a negative errno
    119 * is returned.
    120 */
    121int frwr_mr_init(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr)
    122{
    123	struct rpcrdma_ep *ep = r_xprt->rx_ep;
    124	unsigned int depth = ep->re_max_fr_depth;
    125	struct scatterlist *sg;
    126	struct ib_mr *frmr;
    127	int rc;
    128
    129	frmr = ib_alloc_mr(ep->re_pd, ep->re_mrtype, depth);
    130	if (IS_ERR(frmr))
    131		goto out_mr_err;
    132
    133	sg = kmalloc_array(depth, sizeof(*sg), GFP_KERNEL);
    134	if (!sg)
    135		goto out_list_err;
    136
    137	mr->mr_xprt = r_xprt;
    138	mr->mr_ibmr = frmr;
    139	mr->mr_device = NULL;
    140	INIT_LIST_HEAD(&mr->mr_list);
    141	init_completion(&mr->mr_linv_done);
    142	frwr_cid_init(ep, mr);
    143
    144	sg_init_table(sg, depth);
    145	mr->mr_sg = sg;
    146	return 0;
    147
    148out_mr_err:
    149	rc = PTR_ERR(frmr);
    150	trace_xprtrdma_frwr_alloc(mr, rc);
    151	return rc;
    152
    153out_list_err:
    154	ib_dereg_mr(frmr);
    155	return -ENOMEM;
    156}
    157
    158/**
    159 * frwr_query_device - Prepare a transport for use with FRWR
    160 * @ep: endpoint to fill in
    161 * @device: RDMA device to query
    162 *
    163 * On success, sets:
    164 *	ep->re_attr
    165 *	ep->re_max_requests
    166 *	ep->re_max_rdma_segs
    167 *	ep->re_max_fr_depth
    168 *	ep->re_mrtype
    169 *
    170 * Return values:
    171 *   On success, returns zero.
    172 *   %-EINVAL - the device does not support FRWR memory registration
    173 *   %-ENOMEM - the device is not sufficiently capable for NFS/RDMA
    174 */
    175int frwr_query_device(struct rpcrdma_ep *ep, const struct ib_device *device)
    176{
    177	const struct ib_device_attr *attrs = &device->attrs;
    178	int max_qp_wr, depth, delta;
    179	unsigned int max_sge;
    180
    181	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) ||
    182	    attrs->max_fast_reg_page_list_len == 0) {
    183		pr_err("rpcrdma: 'frwr' mode is not supported by device %s\n",
    184		       device->name);
    185		return -EINVAL;
    186	}
    187
    188	max_sge = min_t(unsigned int, attrs->max_send_sge,
    189			RPCRDMA_MAX_SEND_SGES);
    190	if (max_sge < RPCRDMA_MIN_SEND_SGES) {
    191		pr_err("rpcrdma: HCA provides only %u send SGEs\n", max_sge);
    192		return -ENOMEM;
    193	}
    194	ep->re_attr.cap.max_send_sge = max_sge;
    195	ep->re_attr.cap.max_recv_sge = 1;
    196
    197	ep->re_mrtype = IB_MR_TYPE_MEM_REG;
    198	if (attrs->kernel_cap_flags & IBK_SG_GAPS_REG)
    199		ep->re_mrtype = IB_MR_TYPE_SG_GAPS;
    200
    201	/* Quirk: Some devices advertise a large max_fast_reg_page_list_len
    202	 * capability, but perform optimally when the MRs are not larger
    203	 * than a page.
    204	 */
    205	if (attrs->max_sge_rd > RPCRDMA_MAX_HDR_SEGS)
    206		ep->re_max_fr_depth = attrs->max_sge_rd;
    207	else
    208		ep->re_max_fr_depth = attrs->max_fast_reg_page_list_len;
    209	if (ep->re_max_fr_depth > RPCRDMA_MAX_DATA_SEGS)
    210		ep->re_max_fr_depth = RPCRDMA_MAX_DATA_SEGS;
    211
    212	/* Add room for frwr register and invalidate WRs.
    213	 * 1. FRWR reg WR for head
    214	 * 2. FRWR invalidate WR for head
    215	 * 3. N FRWR reg WRs for pagelist
    216	 * 4. N FRWR invalidate WRs for pagelist
    217	 * 5. FRWR reg WR for tail
    218	 * 6. FRWR invalidate WR for tail
    219	 * 7. The RDMA_SEND WR
    220	 */
    221	depth = 7;
    222
    223	/* Calculate N if the device max FRWR depth is smaller than
    224	 * RPCRDMA_MAX_DATA_SEGS.
    225	 */
    226	if (ep->re_max_fr_depth < RPCRDMA_MAX_DATA_SEGS) {
    227		delta = RPCRDMA_MAX_DATA_SEGS - ep->re_max_fr_depth;
    228		do {
    229			depth += 2; /* FRWR reg + invalidate */
    230			delta -= ep->re_max_fr_depth;
    231		} while (delta > 0);
    232	}
    233
    234	max_qp_wr = attrs->max_qp_wr;
    235	max_qp_wr -= RPCRDMA_BACKWARD_WRS;
    236	max_qp_wr -= 1;
    237	if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE)
    238		return -ENOMEM;
    239	if (ep->re_max_requests > max_qp_wr)
    240		ep->re_max_requests = max_qp_wr;
    241	ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
    242	if (ep->re_attr.cap.max_send_wr > max_qp_wr) {
    243		ep->re_max_requests = max_qp_wr / depth;
    244		if (!ep->re_max_requests)
    245			return -ENOMEM;
    246		ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
    247	}
    248	ep->re_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS;
    249	ep->re_attr.cap.max_send_wr += 1; /* for ib_drain_sq */
    250	ep->re_attr.cap.max_recv_wr = ep->re_max_requests;
    251	ep->re_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS;
    252	ep->re_attr.cap.max_recv_wr += RPCRDMA_MAX_RECV_BATCH;
    253	ep->re_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */
    254
    255	ep->re_max_rdma_segs =
    256		DIV_ROUND_UP(RPCRDMA_MAX_DATA_SEGS, ep->re_max_fr_depth);
    257	/* Reply chunks require segments for head and tail buffers */
    258	ep->re_max_rdma_segs += 2;
    259	if (ep->re_max_rdma_segs > RPCRDMA_MAX_HDR_SEGS)
    260		ep->re_max_rdma_segs = RPCRDMA_MAX_HDR_SEGS;
    261
    262	/* Ensure the underlying device is capable of conveying the
    263	 * largest r/wsize NFS will ask for. This guarantees that
    264	 * failing over from one RDMA device to another will not
    265	 * break NFS I/O.
    266	 */
    267	if ((ep->re_max_rdma_segs * ep->re_max_fr_depth) < RPCRDMA_MAX_SEGS)
    268		return -ENOMEM;
    269
    270	return 0;
    271}
    272
    273/**
    274 * frwr_map - Register a memory region
    275 * @r_xprt: controlling transport
    276 * @seg: memory region co-ordinates
    277 * @nsegs: number of segments remaining
    278 * @writing: true when RDMA Write will be used
    279 * @xid: XID of RPC using the registered memory
    280 * @mr: MR to fill in
    281 *
    282 * Prepare a REG_MR Work Request to register a memory region
    283 * for remote access via RDMA READ or RDMA WRITE.
    284 *
    285 * Returns the next segment or a negative errno pointer.
    286 * On success, @mr is filled in.
    287 */
    288struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt,
    289				struct rpcrdma_mr_seg *seg,
    290				int nsegs, bool writing, __be32 xid,
    291				struct rpcrdma_mr *mr)
    292{
    293	struct rpcrdma_ep *ep = r_xprt->rx_ep;
    294	struct ib_reg_wr *reg_wr;
    295	int i, n, dma_nents;
    296	struct ib_mr *ibmr;
    297	u8 key;
    298
    299	if (nsegs > ep->re_max_fr_depth)
    300		nsegs = ep->re_max_fr_depth;
    301	for (i = 0; i < nsegs;) {
    302		sg_set_page(&mr->mr_sg[i], seg->mr_page,
    303			    seg->mr_len, seg->mr_offset);
    304
    305		++seg;
    306		++i;
    307		if (ep->re_mrtype == IB_MR_TYPE_SG_GAPS)
    308			continue;
    309		if ((i < nsegs && seg->mr_offset) ||
    310		    offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
    311			break;
    312	}
    313	mr->mr_dir = rpcrdma_data_dir(writing);
    314	mr->mr_nents = i;
    315
    316	dma_nents = ib_dma_map_sg(ep->re_id->device, mr->mr_sg, mr->mr_nents,
    317				  mr->mr_dir);
    318	if (!dma_nents)
    319		goto out_dmamap_err;
    320	mr->mr_device = ep->re_id->device;
    321
    322	ibmr = mr->mr_ibmr;
    323	n = ib_map_mr_sg(ibmr, mr->mr_sg, dma_nents, NULL, PAGE_SIZE);
    324	if (n != dma_nents)
    325		goto out_mapmr_err;
    326
    327	ibmr->iova &= 0x00000000ffffffff;
    328	ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32;
    329	key = (u8)(ibmr->rkey & 0x000000FF);
    330	ib_update_fast_reg_key(ibmr, ++key);
    331
    332	reg_wr = &mr->mr_regwr;
    333	reg_wr->mr = ibmr;
    334	reg_wr->key = ibmr->rkey;
    335	reg_wr->access = writing ?
    336			 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
    337			 IB_ACCESS_REMOTE_READ;
    338
    339	mr->mr_handle = ibmr->rkey;
    340	mr->mr_length = ibmr->length;
    341	mr->mr_offset = ibmr->iova;
    342	trace_xprtrdma_mr_map(mr);
    343
    344	return seg;
    345
    346out_dmamap_err:
    347	trace_xprtrdma_frwr_sgerr(mr, i);
    348	return ERR_PTR(-EIO);
    349
    350out_mapmr_err:
    351	trace_xprtrdma_frwr_maperr(mr, n);
    352	return ERR_PTR(-EIO);
    353}
    354
    355/**
    356 * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC
    357 * @cq: completion queue
    358 * @wc: WCE for a completed FastReg WR
    359 *
    360 * Each flushed MR gets destroyed after the QP has drained.
    361 */
    362static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc)
    363{
    364	struct ib_cqe *cqe = wc->wr_cqe;
    365	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
    366
    367	/* WARNING: Only wr_cqe and status are reliable at this point */
    368	trace_xprtrdma_wc_fastreg(wc, &mr->mr_cid);
    369
    370	rpcrdma_flush_disconnect(cq->cq_context, wc);
    371}
    372
    373/**
    374 * frwr_send - post Send WRs containing the RPC Call message
    375 * @r_xprt: controlling transport instance
    376 * @req: prepared RPC Call
    377 *
    378 * For FRWR, chain any FastReg WRs to the Send WR. Only a
    379 * single ib_post_send call is needed to register memory
    380 * and then post the Send WR.
    381 *
    382 * Returns the return code from ib_post_send.
    383 *
    384 * Caller must hold the transport send lock to ensure that the
    385 * pointers to the transport's rdma_cm_id and QP are stable.
    386 */
    387int frwr_send(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
    388{
    389	struct ib_send_wr *post_wr, *send_wr = &req->rl_wr;
    390	struct rpcrdma_ep *ep = r_xprt->rx_ep;
    391	struct rpcrdma_mr *mr;
    392	unsigned int num_wrs;
    393	int ret;
    394
    395	num_wrs = 1;
    396	post_wr = send_wr;
    397	list_for_each_entry(mr, &req->rl_registered, mr_list) {
    398		trace_xprtrdma_mr_fastreg(mr);
    399
    400		mr->mr_cqe.done = frwr_wc_fastreg;
    401		mr->mr_regwr.wr.next = post_wr;
    402		mr->mr_regwr.wr.wr_cqe = &mr->mr_cqe;
    403		mr->mr_regwr.wr.num_sge = 0;
    404		mr->mr_regwr.wr.opcode = IB_WR_REG_MR;
    405		mr->mr_regwr.wr.send_flags = 0;
    406		post_wr = &mr->mr_regwr.wr;
    407		++num_wrs;
    408	}
    409
    410	if ((kref_read(&req->rl_kref) > 1) || num_wrs > ep->re_send_count) {
    411		send_wr->send_flags |= IB_SEND_SIGNALED;
    412		ep->re_send_count = min_t(unsigned int, ep->re_send_batch,
    413					  num_wrs - ep->re_send_count);
    414	} else {
    415		send_wr->send_flags &= ~IB_SEND_SIGNALED;
    416		ep->re_send_count -= num_wrs;
    417	}
    418
    419	trace_xprtrdma_post_send(req);
    420	ret = ib_post_send(ep->re_id->qp, post_wr, NULL);
    421	if (ret)
    422		trace_xprtrdma_post_send_err(r_xprt, req, ret);
    423	return ret;
    424}
    425
    426/**
    427 * frwr_reminv - handle a remotely invalidated mr on the @mrs list
    428 * @rep: Received reply
    429 * @mrs: list of MRs to check
    430 *
    431 */
    432void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs)
    433{
    434	struct rpcrdma_mr *mr;
    435
    436	list_for_each_entry(mr, mrs, mr_list)
    437		if (mr->mr_handle == rep->rr_inv_rkey) {
    438			list_del_init(&mr->mr_list);
    439			trace_xprtrdma_mr_reminv(mr);
    440			frwr_mr_put(mr);
    441			break;	/* only one invalidated MR per RPC */
    442		}
    443}
    444
    445static void frwr_mr_done(struct ib_wc *wc, struct rpcrdma_mr *mr)
    446{
    447	if (likely(wc->status == IB_WC_SUCCESS))
    448		frwr_mr_put(mr);
    449}
    450
    451/**
    452 * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC
    453 * @cq: completion queue
    454 * @wc: WCE for a completed LocalInv WR
    455 *
    456 */
    457static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc)
    458{
    459	struct ib_cqe *cqe = wc->wr_cqe;
    460	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
    461
    462	/* WARNING: Only wr_cqe and status are reliable at this point */
    463	trace_xprtrdma_wc_li(wc, &mr->mr_cid);
    464	frwr_mr_done(wc, mr);
    465
    466	rpcrdma_flush_disconnect(cq->cq_context, wc);
    467}
    468
    469/**
    470 * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC
    471 * @cq: completion queue
    472 * @wc: WCE for a completed LocalInv WR
    473 *
    474 * Awaken anyone waiting for an MR to finish being fenced.
    475 */
    476static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc)
    477{
    478	struct ib_cqe *cqe = wc->wr_cqe;
    479	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
    480
    481	/* WARNING: Only wr_cqe and status are reliable at this point */
    482	trace_xprtrdma_wc_li_wake(wc, &mr->mr_cid);
    483	frwr_mr_done(wc, mr);
    484	complete(&mr->mr_linv_done);
    485
    486	rpcrdma_flush_disconnect(cq->cq_context, wc);
    487}
    488
    489/**
    490 * frwr_unmap_sync - invalidate memory regions that were registered for @req
    491 * @r_xprt: controlling transport instance
    492 * @req: rpcrdma_req with a non-empty list of MRs to process
    493 *
    494 * Sleeps until it is safe for the host CPU to access the previously mapped
    495 * memory regions. This guarantees that registered MRs are properly fenced
    496 * from the server before the RPC consumer accesses the data in them. It
    497 * also ensures proper Send flow control: waking the next RPC waits until
    498 * this RPC has relinquished all its Send Queue entries.
    499 */
    500void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
    501{
    502	struct ib_send_wr *first, **prev, *last;
    503	struct rpcrdma_ep *ep = r_xprt->rx_ep;
    504	const struct ib_send_wr *bad_wr;
    505	struct rpcrdma_mr *mr;
    506	int rc;
    507
    508	/* ORDER: Invalidate all of the MRs first
    509	 *
    510	 * Chain the LOCAL_INV Work Requests and post them with
    511	 * a single ib_post_send() call.
    512	 */
    513	prev = &first;
    514	mr = rpcrdma_mr_pop(&req->rl_registered);
    515	do {
    516		trace_xprtrdma_mr_localinv(mr);
    517		r_xprt->rx_stats.local_inv_needed++;
    518
    519		last = &mr->mr_invwr;
    520		last->next = NULL;
    521		last->wr_cqe = &mr->mr_cqe;
    522		last->sg_list = NULL;
    523		last->num_sge = 0;
    524		last->opcode = IB_WR_LOCAL_INV;
    525		last->send_flags = IB_SEND_SIGNALED;
    526		last->ex.invalidate_rkey = mr->mr_handle;
    527
    528		last->wr_cqe->done = frwr_wc_localinv;
    529
    530		*prev = last;
    531		prev = &last->next;
    532	} while ((mr = rpcrdma_mr_pop(&req->rl_registered)));
    533
    534	mr = container_of(last, struct rpcrdma_mr, mr_invwr);
    535
    536	/* Strong send queue ordering guarantees that when the
    537	 * last WR in the chain completes, all WRs in the chain
    538	 * are complete.
    539	 */
    540	last->wr_cqe->done = frwr_wc_localinv_wake;
    541	reinit_completion(&mr->mr_linv_done);
    542
    543	/* Transport disconnect drains the receive CQ before it
    544	 * replaces the QP. The RPC reply handler won't call us
    545	 * unless re_id->qp is a valid pointer.
    546	 */
    547	bad_wr = NULL;
    548	rc = ib_post_send(ep->re_id->qp, first, &bad_wr);
    549
    550	/* The final LOCAL_INV WR in the chain is supposed to
    551	 * do the wake. If it was never posted, the wake will
    552	 * not happen, so don't wait in that case.
    553	 */
    554	if (bad_wr != first)
    555		wait_for_completion(&mr->mr_linv_done);
    556	if (!rc)
    557		return;
    558
    559	/* On error, the MRs get destroyed once the QP has drained. */
    560	trace_xprtrdma_post_linv_err(req, rc);
    561
    562	/* Force a connection loss to ensure complete recovery.
    563	 */
    564	rpcrdma_force_disconnect(ep);
    565}
    566
    567/**
    568 * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC
    569 * @cq:	completion queue
    570 * @wc:	WCE for a completed LocalInv WR
    571 *
    572 */
    573static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc)
    574{
    575	struct ib_cqe *cqe = wc->wr_cqe;
    576	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
    577	struct rpcrdma_rep *rep;
    578
    579	/* WARNING: Only wr_cqe and status are reliable at this point */
    580	trace_xprtrdma_wc_li_done(wc, &mr->mr_cid);
    581
    582	/* Ensure that @rep is generated before the MR is released */
    583	rep = mr->mr_req->rl_reply;
    584	smp_rmb();
    585
    586	if (wc->status != IB_WC_SUCCESS) {
    587		if (rep)
    588			rpcrdma_unpin_rqst(rep);
    589		rpcrdma_flush_disconnect(cq->cq_context, wc);
    590		return;
    591	}
    592	frwr_mr_put(mr);
    593	rpcrdma_complete_rqst(rep);
    594}
    595
    596/**
    597 * frwr_unmap_async - invalidate memory regions that were registered for @req
    598 * @r_xprt: controlling transport instance
    599 * @req: rpcrdma_req with a non-empty list of MRs to process
    600 *
    601 * This guarantees that registered MRs are properly fenced from the
    602 * server before the RPC consumer accesses the data in them. It also
    603 * ensures proper Send flow control: waking the next RPC waits until
    604 * this RPC has relinquished all its Send Queue entries.
    605 */
    606void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
    607{
    608	struct ib_send_wr *first, *last, **prev;
    609	struct rpcrdma_ep *ep = r_xprt->rx_ep;
    610	struct rpcrdma_mr *mr;
    611	int rc;
    612
    613	/* Chain the LOCAL_INV Work Requests and post them with
    614	 * a single ib_post_send() call.
    615	 */
    616	prev = &first;
    617	mr = rpcrdma_mr_pop(&req->rl_registered);
    618	do {
    619		trace_xprtrdma_mr_localinv(mr);
    620		r_xprt->rx_stats.local_inv_needed++;
    621
    622		last = &mr->mr_invwr;
    623		last->next = NULL;
    624		last->wr_cqe = &mr->mr_cqe;
    625		last->sg_list = NULL;
    626		last->num_sge = 0;
    627		last->opcode = IB_WR_LOCAL_INV;
    628		last->send_flags = IB_SEND_SIGNALED;
    629		last->ex.invalidate_rkey = mr->mr_handle;
    630
    631		last->wr_cqe->done = frwr_wc_localinv;
    632
    633		*prev = last;
    634		prev = &last->next;
    635	} while ((mr = rpcrdma_mr_pop(&req->rl_registered)));
    636
    637	/* Strong send queue ordering guarantees that when the
    638	 * last WR in the chain completes, all WRs in the chain
    639	 * are complete. The last completion will wake up the
    640	 * RPC waiter.
    641	 */
    642	last->wr_cqe->done = frwr_wc_localinv_done;
    643
    644	/* Transport disconnect drains the receive CQ before it
    645	 * replaces the QP. The RPC reply handler won't call us
    646	 * unless re_id->qp is a valid pointer.
    647	 */
    648	rc = ib_post_send(ep->re_id->qp, first, NULL);
    649	if (!rc)
    650		return;
    651
    652	/* On error, the MRs get destroyed once the QP has drained. */
    653	trace_xprtrdma_post_linv_err(req, rc);
    654
    655	/* The final LOCAL_INV WR in the chain is supposed to
    656	 * do the wake. If it was never posted, the wake does
    657	 * not happen. Unpin the rqst in preparation for its
    658	 * retransmission.
    659	 */
    660	rpcrdma_unpin_rqst(req->rl_reply);
    661
    662	/* Force a connection loss to ensure complete recovery.
    663	 */
    664	rpcrdma_force_disconnect(ep);
    665}
    666
    667/**
    668 * frwr_wp_create - Create an MR for padding Write chunks
    669 * @r_xprt: transport resources to use
    670 *
    671 * Return 0 on success, negative errno on failure.
    672 */
    673int frwr_wp_create(struct rpcrdma_xprt *r_xprt)
    674{
    675	struct rpcrdma_ep *ep = r_xprt->rx_ep;
    676	struct rpcrdma_mr_seg seg;
    677	struct rpcrdma_mr *mr;
    678
    679	mr = rpcrdma_mr_get(r_xprt);
    680	if (!mr)
    681		return -EAGAIN;
    682	mr->mr_req = NULL;
    683	ep->re_write_pad_mr = mr;
    684
    685	seg.mr_len = XDR_UNIT;
    686	seg.mr_page = virt_to_page(ep->re_write_pad);
    687	seg.mr_offset = offset_in_page(ep->re_write_pad);
    688	if (IS_ERR(frwr_map(r_xprt, &seg, 1, true, xdr_zero, mr)))
    689		return -EIO;
    690	trace_xprtrdma_mr_fastreg(mr);
    691
    692	mr->mr_cqe.done = frwr_wc_fastreg;
    693	mr->mr_regwr.wr.next = NULL;
    694	mr->mr_regwr.wr.wr_cqe = &mr->mr_cqe;
    695	mr->mr_regwr.wr.num_sge = 0;
    696	mr->mr_regwr.wr.opcode = IB_WR_REG_MR;
    697	mr->mr_regwr.wr.send_flags = 0;
    698
    699	return ib_post_send(ep->re_id->qp, &mr->mr_regwr.wr, NULL);
    700}