cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

crypto.c (67233B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
      4 *
      5 * Copyright (c) 2019, Ericsson AB
      6 * All rights reserved.
      7 *
      8 * Redistribution and use in source and binary forms, with or without
      9 * modification, are permitted provided that the following conditions are met:
     10 *
     11 * 1. Redistributions of source code must retain the above copyright
     12 *    notice, this list of conditions and the following disclaimer.
     13 * 2. Redistributions in binary form must reproduce the above copyright
     14 *    notice, this list of conditions and the following disclaimer in the
     15 *    documentation and/or other materials provided with the distribution.
     16 * 3. Neither the names of the copyright holders nor the names of its
     17 *    contributors may be used to endorse or promote products derived from
     18 *    this software without specific prior written permission.
     19 *
     20 * Alternatively, this software may be distributed under the terms of the
     21 * GNU General Public License ("GPL") version 2 as published by the Free
     22 * Software Foundation.
     23 *
     24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34 * POSSIBILITY OF SUCH DAMAGE.
     35 */
     36
     37#include <crypto/aead.h>
     38#include <crypto/aes.h>
     39#include <crypto/rng.h>
     40#include "crypto.h"
     41#include "msg.h"
     42#include "bcast.h"
     43
     44#define TIPC_TX_GRACE_PERIOD	msecs_to_jiffies(5000) /* 5s */
     45#define TIPC_TX_LASTING_TIME	msecs_to_jiffies(10000) /* 10s */
     46#define TIPC_RX_ACTIVE_LIM	msecs_to_jiffies(3000) /* 3s */
     47#define TIPC_RX_PASSIVE_LIM	msecs_to_jiffies(15000) /* 15s */
     48
     49#define TIPC_MAX_TFMS_DEF	10
     50#define TIPC_MAX_TFMS_LIM	1000
     51
     52#define TIPC_REKEYING_INTV_DEF	(60 * 24) /* default: 1 day */
     53
     54/*
     55 * TIPC Key ids
     56 */
     57enum {
     58	KEY_MASTER = 0,
     59	KEY_MIN = KEY_MASTER,
     60	KEY_1 = 1,
     61	KEY_2,
     62	KEY_3,
     63	KEY_MAX = KEY_3,
     64};
     65
     66/*
     67 * TIPC Crypto statistics
     68 */
     69enum {
     70	STAT_OK,
     71	STAT_NOK,
     72	STAT_ASYNC,
     73	STAT_ASYNC_OK,
     74	STAT_ASYNC_NOK,
     75	STAT_BADKEYS, /* tx only */
     76	STAT_BADMSGS = STAT_BADKEYS, /* rx only */
     77	STAT_NOKEYS,
     78	STAT_SWITCHES,
     79
     80	MAX_STATS,
     81};
     82
     83/* TIPC crypto statistics' header */
     84static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
     85					"async_nok", "badmsgs", "nokeys",
     86					"switches"};
     87
     88/* Max TFMs number per key */
     89int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
     90/* Key exchange switch, default: on */
     91int sysctl_tipc_key_exchange_enabled __read_mostly = 1;
     92
     93/*
     94 * struct tipc_key - TIPC keys' status indicator
     95 *
     96 *         7     6     5     4     3     2     1     0
     97 *      +-----+-----+-----+-----+-----+-----+-----+-----+
     98 * key: | (reserved)|passive idx| active idx|pending idx|
     99 *      +-----+-----+-----+-----+-----+-----+-----+-----+
    100 */
    101struct tipc_key {
    102#define KEY_BITS (2)
    103#define KEY_MASK ((1 << KEY_BITS) - 1)
    104	union {
    105		struct {
    106#if defined(__LITTLE_ENDIAN_BITFIELD)
    107			u8 pending:2,
    108			   active:2,
    109			   passive:2, /* rx only */
    110			   reserved:2;
    111#elif defined(__BIG_ENDIAN_BITFIELD)
    112			u8 reserved:2,
    113			   passive:2, /* rx only */
    114			   active:2,
    115			   pending:2;
    116#else
    117#error  "Please fix <asm/byteorder.h>"
    118#endif
    119		} __packed;
    120		u8 keys;
    121	};
    122};
    123
    124/**
    125 * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
    126 * @tfm: cipher handle/key
    127 * @list: linked list of TFMs
    128 */
    129struct tipc_tfm {
    130	struct crypto_aead *tfm;
    131	struct list_head list;
    132};
    133
    134/**
    135 * struct tipc_aead - TIPC AEAD key structure
    136 * @tfm_entry: per-cpu pointer to one entry in TFM list
    137 * @crypto: TIPC crypto owns this key
    138 * @cloned: reference to the source key in case cloning
    139 * @users: the number of the key users (TX/RX)
    140 * @salt: the key's SALT value
    141 * @authsize: authentication tag size (max = 16)
    142 * @mode: crypto mode is applied to the key
    143 * @hint: a hint for user key
    144 * @rcu: struct rcu_head
    145 * @key: the aead key
    146 * @gen: the key's generation
    147 * @seqno: the key seqno (cluster scope)
    148 * @refcnt: the key reference counter
    149 */
    150struct tipc_aead {
    151#define TIPC_AEAD_HINT_LEN (5)
    152	struct tipc_tfm * __percpu *tfm_entry;
    153	struct tipc_crypto *crypto;
    154	struct tipc_aead *cloned;
    155	atomic_t users;
    156	u32 salt;
    157	u8 authsize;
    158	u8 mode;
    159	char hint[2 * TIPC_AEAD_HINT_LEN + 1];
    160	struct rcu_head rcu;
    161	struct tipc_aead_key *key;
    162	u16 gen;
    163
    164	atomic64_t seqno ____cacheline_aligned;
    165	refcount_t refcnt ____cacheline_aligned;
    166
    167} ____cacheline_aligned;
    168
    169/**
    170 * struct tipc_crypto_stats - TIPC Crypto statistics
    171 * @stat: array of crypto statistics
    172 */
    173struct tipc_crypto_stats {
    174	unsigned int stat[MAX_STATS];
    175};
    176
    177/**
    178 * struct tipc_crypto - TIPC TX/RX crypto structure
    179 * @net: struct net
    180 * @node: TIPC node (RX)
    181 * @aead: array of pointers to AEAD keys for encryption/decryption
    182 * @peer_rx_active: replicated peer RX active key index
    183 * @key_gen: TX/RX key generation
    184 * @key: the key states
    185 * @skey_mode: session key's mode
    186 * @skey: received session key
    187 * @wq: common workqueue on TX crypto
    188 * @work: delayed work sched for TX/RX
    189 * @key_distr: key distributing state
    190 * @rekeying_intv: rekeying interval (in minutes)
    191 * @stats: the crypto statistics
    192 * @name: the crypto name
    193 * @sndnxt: the per-peer sndnxt (TX)
    194 * @timer1: general timer 1 (jiffies)
    195 * @timer2: general timer 2 (jiffies)
    196 * @working: the crypto is working or not
    197 * @key_master: flag indicates if master key exists
    198 * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.)
    199 * @nokey: no key indication
    200 * @flags: combined flags field
    201 * @lock: tipc_key lock
    202 */
    203struct tipc_crypto {
    204	struct net *net;
    205	struct tipc_node *node;
    206	struct tipc_aead __rcu *aead[KEY_MAX + 1];
    207	atomic_t peer_rx_active;
    208	u16 key_gen;
    209	struct tipc_key key;
    210	u8 skey_mode;
    211	struct tipc_aead_key *skey;
    212	struct workqueue_struct *wq;
    213	struct delayed_work work;
    214#define KEY_DISTR_SCHED		1
    215#define KEY_DISTR_COMPL		2
    216	atomic_t key_distr;
    217	u32 rekeying_intv;
    218
    219	struct tipc_crypto_stats __percpu *stats;
    220	char name[48];
    221
    222	atomic64_t sndnxt ____cacheline_aligned;
    223	unsigned long timer1;
    224	unsigned long timer2;
    225	union {
    226		struct {
    227			u8 working:1;
    228			u8 key_master:1;
    229			u8 legacy_user:1;
    230			u8 nokey: 1;
    231		};
    232		u8 flags;
    233	};
    234	spinlock_t lock; /* crypto lock */
    235
    236} ____cacheline_aligned;
    237
    238/* struct tipc_crypto_tx_ctx - TX context for callbacks */
    239struct tipc_crypto_tx_ctx {
    240	struct tipc_aead *aead;
    241	struct tipc_bearer *bearer;
    242	struct tipc_media_addr dst;
    243};
    244
    245/* struct tipc_crypto_rx_ctx - RX context for callbacks */
    246struct tipc_crypto_rx_ctx {
    247	struct tipc_aead *aead;
    248	struct tipc_bearer *bearer;
    249};
    250
    251static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
    252static inline void tipc_aead_put(struct tipc_aead *aead);
    253static void tipc_aead_free(struct rcu_head *rp);
    254static int tipc_aead_users(struct tipc_aead __rcu *aead);
    255static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
    256static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
    257static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
    258static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
    259static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
    260			  u8 mode);
    261static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
    262static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
    263				 unsigned int crypto_ctx_size,
    264				 u8 **iv, struct aead_request **req,
    265				 struct scatterlist **sg, int nsg);
    266static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
    267			     struct tipc_bearer *b,
    268			     struct tipc_media_addr *dst,
    269			     struct tipc_node *__dnode);
    270static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err);
    271static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
    272			     struct sk_buff *skb, struct tipc_bearer *b);
    273static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err);
    274static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
    275static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
    276			   u8 tx_key, struct sk_buff *skb,
    277			   struct tipc_crypto *__rx);
    278static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
    279					     u8 new_passive,
    280					     u8 new_active,
    281					     u8 new_pending);
    282static int tipc_crypto_key_attach(struct tipc_crypto *c,
    283				  struct tipc_aead *aead, u8 pos,
    284				  bool master_key);
    285static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
    286static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
    287						 struct tipc_crypto *rx,
    288						 struct sk_buff *skb,
    289						 u8 tx_key);
    290static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb);
    291static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
    292static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
    293					 struct tipc_bearer *b,
    294					 struct tipc_media_addr *dst,
    295					 struct tipc_node *__dnode, u8 type);
    296static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
    297				     struct tipc_bearer *b,
    298				     struct sk_buff **skb, int err);
    299static void tipc_crypto_do_cmd(struct net *net, int cmd);
    300static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
    301static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
    302				  char *buf);
    303static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
    304				u16 gen, u8 mode, u32 dnode);
    305static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr);
    306static void tipc_crypto_work_tx(struct work_struct *work);
    307static void tipc_crypto_work_rx(struct work_struct *work);
    308static int tipc_aead_key_generate(struct tipc_aead_key *skey);
    309
    310#define is_tx(crypto) (!(crypto)->node)
    311#define is_rx(crypto) (!is_tx(crypto))
    312
    313#define key_next(cur) ((cur) % KEY_MAX + 1)
    314
    315#define tipc_aead_rcu_ptr(rcu_ptr, lock)				\
    316	rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
    317
    318#define tipc_aead_rcu_replace(rcu_ptr, ptr, lock)			\
    319do {									\
    320	struct tipc_aead *__tmp = rcu_dereference_protected((rcu_ptr),	\
    321						lockdep_is_held(lock));	\
    322	rcu_assign_pointer((rcu_ptr), (ptr));				\
    323	tipc_aead_put(__tmp);						\
    324} while (0)
    325
    326#define tipc_crypto_key_detach(rcu_ptr, lock)				\
    327	tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
    328
    329/**
    330 * tipc_aead_key_validate - Validate a AEAD user key
    331 * @ukey: pointer to user key data
    332 * @info: netlink info pointer
    333 */
    334int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info)
    335{
    336	int keylen;
    337
    338	/* Check if algorithm exists */
    339	if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
    340		GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)");
    341		return -ENODEV;
    342	}
    343
    344	/* Currently, we only support the "gcm(aes)" cipher algorithm */
    345	if (strcmp(ukey->alg_name, "gcm(aes)")) {
    346		GENL_SET_ERR_MSG(info, "not supported yet the algorithm");
    347		return -ENOTSUPP;
    348	}
    349
    350	/* Check if key size is correct */
    351	keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
    352	if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
    353		     keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
    354		     keylen != TIPC_AES_GCM_KEY_SIZE_256)) {
    355		GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)");
    356		return -EKEYREJECTED;
    357	}
    358
    359	return 0;
    360}
    361
    362/**
    363 * tipc_aead_key_generate - Generate new session key
    364 * @skey: input/output key with new content
    365 *
    366 * Return: 0 in case of success, otherwise < 0
    367 */
    368static int tipc_aead_key_generate(struct tipc_aead_key *skey)
    369{
    370	int rc = 0;
    371
    372	/* Fill the key's content with a random value via RNG cipher */
    373	rc = crypto_get_default_rng();
    374	if (likely(!rc)) {
    375		rc = crypto_rng_get_bytes(crypto_default_rng, skey->key,
    376					  skey->keylen);
    377		crypto_put_default_rng();
    378	}
    379
    380	return rc;
    381}
    382
    383static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
    384{
    385	struct tipc_aead *tmp;
    386
    387	rcu_read_lock();
    388	tmp = rcu_dereference(aead);
    389	if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
    390		tmp = NULL;
    391	rcu_read_unlock();
    392
    393	return tmp;
    394}
    395
    396static inline void tipc_aead_put(struct tipc_aead *aead)
    397{
    398	if (aead && refcount_dec_and_test(&aead->refcnt))
    399		call_rcu(&aead->rcu, tipc_aead_free);
    400}
    401
    402/**
    403 * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
    404 * @rp: rcu head pointer
    405 */
    406static void tipc_aead_free(struct rcu_head *rp)
    407{
    408	struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
    409	struct tipc_tfm *tfm_entry, *head, *tmp;
    410
    411	if (aead->cloned) {
    412		tipc_aead_put(aead->cloned);
    413	} else {
    414		head = *get_cpu_ptr(aead->tfm_entry);
    415		put_cpu_ptr(aead->tfm_entry);
    416		list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
    417			crypto_free_aead(tfm_entry->tfm);
    418			list_del(&tfm_entry->list);
    419			kfree(tfm_entry);
    420		}
    421		/* Free the head */
    422		crypto_free_aead(head->tfm);
    423		list_del(&head->list);
    424		kfree(head);
    425	}
    426	free_percpu(aead->tfm_entry);
    427	kfree_sensitive(aead->key);
    428	kfree(aead);
    429}
    430
    431static int tipc_aead_users(struct tipc_aead __rcu *aead)
    432{
    433	struct tipc_aead *tmp;
    434	int users = 0;
    435
    436	rcu_read_lock();
    437	tmp = rcu_dereference(aead);
    438	if (tmp)
    439		users = atomic_read(&tmp->users);
    440	rcu_read_unlock();
    441
    442	return users;
    443}
    444
    445static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
    446{
    447	struct tipc_aead *tmp;
    448
    449	rcu_read_lock();
    450	tmp = rcu_dereference(aead);
    451	if (tmp)
    452		atomic_add_unless(&tmp->users, 1, lim);
    453	rcu_read_unlock();
    454}
    455
    456static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
    457{
    458	struct tipc_aead *tmp;
    459
    460	rcu_read_lock();
    461	tmp = rcu_dereference(aead);
    462	if (tmp)
    463		atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
    464	rcu_read_unlock();
    465}
    466
    467static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
    468{
    469	struct tipc_aead *tmp;
    470	int cur;
    471
    472	rcu_read_lock();
    473	tmp = rcu_dereference(aead);
    474	if (tmp) {
    475		do {
    476			cur = atomic_read(&tmp->users);
    477			if (cur == val)
    478				break;
    479		} while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
    480	}
    481	rcu_read_unlock();
    482}
    483
    484/**
    485 * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
    486 * @aead: the AEAD key pointer
    487 */
    488static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
    489{
    490	struct tipc_tfm **tfm_entry;
    491	struct crypto_aead *tfm;
    492
    493	tfm_entry = get_cpu_ptr(aead->tfm_entry);
    494	*tfm_entry = list_next_entry(*tfm_entry, list);
    495	tfm = (*tfm_entry)->tfm;
    496	put_cpu_ptr(tfm_entry);
    497
    498	return tfm;
    499}
    500
    501/**
    502 * tipc_aead_init - Initiate TIPC AEAD
    503 * @aead: returned new TIPC AEAD key handle pointer
    504 * @ukey: pointer to user key data
    505 * @mode: the key mode
    506 *
    507 * Allocate a (list of) new cipher transformation (TFM) with the specific user
    508 * key data if valid. The number of the allocated TFMs can be set via the sysfs
    509 * "net/tipc/max_tfms" first.
    510 * Also, all the other AEAD data are also initialized.
    511 *
    512 * Return: 0 if the initiation is successful, otherwise: < 0
    513 */
    514static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
    515			  u8 mode)
    516{
    517	struct tipc_tfm *tfm_entry, *head;
    518	struct crypto_aead *tfm;
    519	struct tipc_aead *tmp;
    520	int keylen, err, cpu;
    521	int tfm_cnt = 0;
    522
    523	if (unlikely(*aead))
    524		return -EEXIST;
    525
    526	/* Allocate a new AEAD */
    527	tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
    528	if (unlikely(!tmp))
    529		return -ENOMEM;
    530
    531	/* The key consists of two parts: [AES-KEY][SALT] */
    532	keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
    533
    534	/* Allocate per-cpu TFM entry pointer */
    535	tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
    536	if (!tmp->tfm_entry) {
    537		kfree_sensitive(tmp);
    538		return -ENOMEM;
    539	}
    540
    541	/* Make a list of TFMs with the user key data */
    542	do {
    543		tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
    544		if (IS_ERR(tfm)) {
    545			err = PTR_ERR(tfm);
    546			break;
    547		}
    548
    549		if (unlikely(!tfm_cnt &&
    550			     crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
    551			crypto_free_aead(tfm);
    552			err = -ENOTSUPP;
    553			break;
    554		}
    555
    556		err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
    557		err |= crypto_aead_setkey(tfm, ukey->key, keylen);
    558		if (unlikely(err)) {
    559			crypto_free_aead(tfm);
    560			break;
    561		}
    562
    563		tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
    564		if (unlikely(!tfm_entry)) {
    565			crypto_free_aead(tfm);
    566			err = -ENOMEM;
    567			break;
    568		}
    569		INIT_LIST_HEAD(&tfm_entry->list);
    570		tfm_entry->tfm = tfm;
    571
    572		/* First entry? */
    573		if (!tfm_cnt) {
    574			head = tfm_entry;
    575			for_each_possible_cpu(cpu) {
    576				*per_cpu_ptr(tmp->tfm_entry, cpu) = head;
    577			}
    578		} else {
    579			list_add_tail(&tfm_entry->list, &head->list);
    580		}
    581
    582	} while (++tfm_cnt < sysctl_tipc_max_tfms);
    583
    584	/* Not any TFM is allocated? */
    585	if (!tfm_cnt) {
    586		free_percpu(tmp->tfm_entry);
    587		kfree_sensitive(tmp);
    588		return err;
    589	}
    590
    591	/* Form a hex string of some last bytes as the key's hint */
    592	bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN,
    593		TIPC_AEAD_HINT_LEN);
    594
    595	/* Initialize the other data */
    596	tmp->mode = mode;
    597	tmp->cloned = NULL;
    598	tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
    599	tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL);
    600	if (!tmp->key) {
    601		tipc_aead_free(&tmp->rcu);
    602		return -ENOMEM;
    603	}
    604	memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
    605	atomic_set(&tmp->users, 0);
    606	atomic64_set(&tmp->seqno, 0);
    607	refcount_set(&tmp->refcnt, 1);
    608
    609	*aead = tmp;
    610	return 0;
    611}
    612
    613/**
    614 * tipc_aead_clone - Clone a TIPC AEAD key
    615 * @dst: dest key for the cloning
    616 * @src: source key to clone from
    617 *
    618 * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
    619 * common for the keys.
    620 * A reference to the source is hold in the "cloned" pointer for the later
    621 * freeing purposes.
    622 *
    623 * Note: this must be done in cluster-key mode only!
    624 * Return: 0 in case of success, otherwise < 0
    625 */
    626static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
    627{
    628	struct tipc_aead *aead;
    629	int cpu;
    630
    631	if (!src)
    632		return -ENOKEY;
    633
    634	if (src->mode != CLUSTER_KEY)
    635		return -EINVAL;
    636
    637	if (unlikely(*dst))
    638		return -EEXIST;
    639
    640	aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
    641	if (unlikely(!aead))
    642		return -ENOMEM;
    643
    644	aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
    645	if (unlikely(!aead->tfm_entry)) {
    646		kfree_sensitive(aead);
    647		return -ENOMEM;
    648	}
    649
    650	for_each_possible_cpu(cpu) {
    651		*per_cpu_ptr(aead->tfm_entry, cpu) =
    652				*per_cpu_ptr(src->tfm_entry, cpu);
    653	}
    654
    655	memcpy(aead->hint, src->hint, sizeof(src->hint));
    656	aead->mode = src->mode;
    657	aead->salt = src->salt;
    658	aead->authsize = src->authsize;
    659	atomic_set(&aead->users, 0);
    660	atomic64_set(&aead->seqno, 0);
    661	refcount_set(&aead->refcnt, 1);
    662
    663	WARN_ON(!refcount_inc_not_zero(&src->refcnt));
    664	aead->cloned = src;
    665
    666	*dst = aead;
    667	return 0;
    668}
    669
    670/**
    671 * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
    672 * @tfm: cipher handle to be registered with the request
    673 * @crypto_ctx_size: size of crypto context for callback
    674 * @iv: returned pointer to IV data
    675 * @req: returned pointer to AEAD request data
    676 * @sg: returned pointer to SG lists
    677 * @nsg: number of SG lists to be allocated
    678 *
    679 * Allocate memory to store the crypto context data, AEAD request, IV and SG
    680 * lists, the memory layout is as follows:
    681 * crypto_ctx || iv || aead_req || sg[]
    682 *
    683 * Return: the pointer to the memory areas in case of success, otherwise NULL
    684 */
    685static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
    686				 unsigned int crypto_ctx_size,
    687				 u8 **iv, struct aead_request **req,
    688				 struct scatterlist **sg, int nsg)
    689{
    690	unsigned int iv_size, req_size;
    691	unsigned int len;
    692	u8 *mem;
    693
    694	iv_size = crypto_aead_ivsize(tfm);
    695	req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
    696
    697	len = crypto_ctx_size;
    698	len += iv_size;
    699	len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
    700	len = ALIGN(len, crypto_tfm_ctx_alignment());
    701	len += req_size;
    702	len = ALIGN(len, __alignof__(struct scatterlist));
    703	len += nsg * sizeof(**sg);
    704
    705	mem = kmalloc(len, GFP_ATOMIC);
    706	if (!mem)
    707		return NULL;
    708
    709	*iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
    710			      crypto_aead_alignmask(tfm) + 1);
    711	*req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
    712						crypto_tfm_ctx_alignment());
    713	*sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
    714					      __alignof__(struct scatterlist));
    715
    716	return (void *)mem;
    717}
    718
    719/**
    720 * tipc_aead_encrypt - Encrypt a message
    721 * @aead: TIPC AEAD key for the message encryption
    722 * @skb: the input/output skb
    723 * @b: TIPC bearer where the message will be delivered after the encryption
    724 * @dst: the destination media address
    725 * @__dnode: TIPC dest node if "known"
    726 *
    727 * Return:
    728 * * 0                   : if the encryption has completed
    729 * * -EINPROGRESS/-EBUSY : if a callback will be performed
    730 * * < 0                 : the encryption has failed
    731 */
    732static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
    733			     struct tipc_bearer *b,
    734			     struct tipc_media_addr *dst,
    735			     struct tipc_node *__dnode)
    736{
    737	struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
    738	struct tipc_crypto_tx_ctx *tx_ctx;
    739	struct aead_request *req;
    740	struct sk_buff *trailer;
    741	struct scatterlist *sg;
    742	struct tipc_ehdr *ehdr;
    743	int ehsz, len, tailen, nsg, rc;
    744	void *ctx;
    745	u32 salt;
    746	u8 *iv;
    747
    748	/* Make sure message len at least 4-byte aligned */
    749	len = ALIGN(skb->len, 4);
    750	tailen = len - skb->len + aead->authsize;
    751
    752	/* Expand skb tail for authentication tag:
    753	 * As for simplicity, we'd have made sure skb having enough tailroom
    754	 * for authentication tag @skb allocation. Even when skb is nonlinear
    755	 * but there is no frag_list, it should be still fine!
    756	 * Otherwise, we must cow it to be a writable buffer with the tailroom.
    757	 */
    758	SKB_LINEAR_ASSERT(skb);
    759	if (tailen > skb_tailroom(skb)) {
    760		pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n",
    761			 skb_tailroom(skb), tailen);
    762	}
    763
    764	nsg = skb_cow_data(skb, tailen, &trailer);
    765	if (unlikely(nsg < 0)) {
    766		pr_err("TX: skb_cow_data() returned %d\n", nsg);
    767		return nsg;
    768	}
    769
    770	pskb_put(skb, trailer, tailen);
    771
    772	/* Allocate memory for the AEAD operation */
    773	ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
    774	if (unlikely(!ctx))
    775		return -ENOMEM;
    776	TIPC_SKB_CB(skb)->crypto_ctx = ctx;
    777
    778	/* Map skb to the sg lists */
    779	sg_init_table(sg, nsg);
    780	rc = skb_to_sgvec(skb, sg, 0, skb->len);
    781	if (unlikely(rc < 0)) {
    782		pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
    783		goto exit;
    784	}
    785
    786	/* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
    787	 * In case we're in cluster-key mode, SALT is varied by xor-ing with
    788	 * the source address (or w0 of id), otherwise with the dest address
    789	 * if dest is known.
    790	 */
    791	ehdr = (struct tipc_ehdr *)skb->data;
    792	salt = aead->salt;
    793	if (aead->mode == CLUSTER_KEY)
    794		salt ^= __be32_to_cpu(ehdr->addr);
    795	else if (__dnode)
    796		salt ^= tipc_node_get_addr(__dnode);
    797	memcpy(iv, &salt, 4);
    798	memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
    799
    800	/* Prepare request */
    801	ehsz = tipc_ehdr_size(ehdr);
    802	aead_request_set_tfm(req, tfm);
    803	aead_request_set_ad(req, ehsz);
    804	aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
    805
    806	/* Set callback function & data */
    807	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
    808				  tipc_aead_encrypt_done, skb);
    809	tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
    810	tx_ctx->aead = aead;
    811	tx_ctx->bearer = b;
    812	memcpy(&tx_ctx->dst, dst, sizeof(*dst));
    813
    814	/* Hold bearer */
    815	if (unlikely(!tipc_bearer_hold(b))) {
    816		rc = -ENODEV;
    817		goto exit;
    818	}
    819
    820	/* Now, do encrypt */
    821	rc = crypto_aead_encrypt(req);
    822	if (rc == -EINPROGRESS || rc == -EBUSY)
    823		return rc;
    824
    825	tipc_bearer_put(b);
    826
    827exit:
    828	kfree(ctx);
    829	TIPC_SKB_CB(skb)->crypto_ctx = NULL;
    830	return rc;
    831}
    832
    833static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err)
    834{
    835	struct sk_buff *skb = base->data;
    836	struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
    837	struct tipc_bearer *b = tx_ctx->bearer;
    838	struct tipc_aead *aead = tx_ctx->aead;
    839	struct tipc_crypto *tx = aead->crypto;
    840	struct net *net = tx->net;
    841
    842	switch (err) {
    843	case 0:
    844		this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
    845		rcu_read_lock();
    846		if (likely(test_bit(0, &b->up)))
    847			b->media->send_msg(net, skb, b, &tx_ctx->dst);
    848		else
    849			kfree_skb(skb);
    850		rcu_read_unlock();
    851		break;
    852	case -EINPROGRESS:
    853		return;
    854	default:
    855		this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
    856		kfree_skb(skb);
    857		break;
    858	}
    859
    860	kfree(tx_ctx);
    861	tipc_bearer_put(b);
    862	tipc_aead_put(aead);
    863}
    864
    865/**
    866 * tipc_aead_decrypt - Decrypt an encrypted message
    867 * @net: struct net
    868 * @aead: TIPC AEAD for the message decryption
    869 * @skb: the input/output skb
    870 * @b: TIPC bearer where the message has been received
    871 *
    872 * Return:
    873 * * 0                   : if the decryption has completed
    874 * * -EINPROGRESS/-EBUSY : if a callback will be performed
    875 * * < 0                 : the decryption has failed
    876 */
    877static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
    878			     struct sk_buff *skb, struct tipc_bearer *b)
    879{
    880	struct tipc_crypto_rx_ctx *rx_ctx;
    881	struct aead_request *req;
    882	struct crypto_aead *tfm;
    883	struct sk_buff *unused;
    884	struct scatterlist *sg;
    885	struct tipc_ehdr *ehdr;
    886	int ehsz, nsg, rc;
    887	void *ctx;
    888	u32 salt;
    889	u8 *iv;
    890
    891	if (unlikely(!aead))
    892		return -ENOKEY;
    893
    894	nsg = skb_cow_data(skb, 0, &unused);
    895	if (unlikely(nsg < 0)) {
    896		pr_err("RX: skb_cow_data() returned %d\n", nsg);
    897		return nsg;
    898	}
    899
    900	/* Allocate memory for the AEAD operation */
    901	tfm = tipc_aead_tfm_next(aead);
    902	ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
    903	if (unlikely(!ctx))
    904		return -ENOMEM;
    905	TIPC_SKB_CB(skb)->crypto_ctx = ctx;
    906
    907	/* Map skb to the sg lists */
    908	sg_init_table(sg, nsg);
    909	rc = skb_to_sgvec(skb, sg, 0, skb->len);
    910	if (unlikely(rc < 0)) {
    911		pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
    912		goto exit;
    913	}
    914
    915	/* Reconstruct IV: */
    916	ehdr = (struct tipc_ehdr *)skb->data;
    917	salt = aead->salt;
    918	if (aead->mode == CLUSTER_KEY)
    919		salt ^= __be32_to_cpu(ehdr->addr);
    920	else if (ehdr->destined)
    921		salt ^= tipc_own_addr(net);
    922	memcpy(iv, &salt, 4);
    923	memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
    924
    925	/* Prepare request */
    926	ehsz = tipc_ehdr_size(ehdr);
    927	aead_request_set_tfm(req, tfm);
    928	aead_request_set_ad(req, ehsz);
    929	aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
    930
    931	/* Set callback function & data */
    932	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
    933				  tipc_aead_decrypt_done, skb);
    934	rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
    935	rx_ctx->aead = aead;
    936	rx_ctx->bearer = b;
    937
    938	/* Hold bearer */
    939	if (unlikely(!tipc_bearer_hold(b))) {
    940		rc = -ENODEV;
    941		goto exit;
    942	}
    943
    944	/* Now, do decrypt */
    945	rc = crypto_aead_decrypt(req);
    946	if (rc == -EINPROGRESS || rc == -EBUSY)
    947		return rc;
    948
    949	tipc_bearer_put(b);
    950
    951exit:
    952	kfree(ctx);
    953	TIPC_SKB_CB(skb)->crypto_ctx = NULL;
    954	return rc;
    955}
    956
    957static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err)
    958{
    959	struct sk_buff *skb = base->data;
    960	struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
    961	struct tipc_bearer *b = rx_ctx->bearer;
    962	struct tipc_aead *aead = rx_ctx->aead;
    963	struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
    964	struct net *net = aead->crypto->net;
    965
    966	switch (err) {
    967	case 0:
    968		this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
    969		break;
    970	case -EINPROGRESS:
    971		return;
    972	default:
    973		this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
    974		break;
    975	}
    976
    977	kfree(rx_ctx);
    978	tipc_crypto_rcv_complete(net, aead, b, &skb, err);
    979	if (likely(skb)) {
    980		if (likely(test_bit(0, &b->up)))
    981			tipc_rcv(net, skb, b);
    982		else
    983			kfree_skb(skb);
    984	}
    985
    986	tipc_bearer_put(b);
    987}
    988
    989static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
    990{
    991	return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
    992}
    993
    994/**
    995 * tipc_ehdr_validate - Validate an encryption message
    996 * @skb: the message buffer
    997 *
    998 * Return: "true" if this is a valid encryption message, otherwise "false"
    999 */
   1000bool tipc_ehdr_validate(struct sk_buff *skb)
   1001{
   1002	struct tipc_ehdr *ehdr;
   1003	int ehsz;
   1004
   1005	if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
   1006		return false;
   1007
   1008	ehdr = (struct tipc_ehdr *)skb->data;
   1009	if (unlikely(ehdr->version != TIPC_EVERSION))
   1010		return false;
   1011	ehsz = tipc_ehdr_size(ehdr);
   1012	if (unlikely(!pskb_may_pull(skb, ehsz)))
   1013		return false;
   1014	if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
   1015		return false;
   1016
   1017	return true;
   1018}
   1019
   1020/**
   1021 * tipc_ehdr_build - Build TIPC encryption message header
   1022 * @net: struct net
   1023 * @aead: TX AEAD key to be used for the message encryption
   1024 * @tx_key: key id used for the message encryption
   1025 * @skb: input/output message skb
   1026 * @__rx: RX crypto handle if dest is "known"
   1027 *
   1028 * Return: the header size if the building is successful, otherwise < 0
   1029 */
   1030static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
   1031			   u8 tx_key, struct sk_buff *skb,
   1032			   struct tipc_crypto *__rx)
   1033{
   1034	struct tipc_msg *hdr = buf_msg(skb);
   1035	struct tipc_ehdr *ehdr;
   1036	u32 user = msg_user(hdr);
   1037	u64 seqno;
   1038	int ehsz;
   1039
   1040	/* Make room for encryption header */
   1041	ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
   1042	WARN_ON(skb_headroom(skb) < ehsz);
   1043	ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
   1044
   1045	/* Obtain a seqno first:
   1046	 * Use the key seqno (= cluster wise) if dest is unknown or we're in
   1047	 * cluster key mode, otherwise it's better for a per-peer seqno!
   1048	 */
   1049	if (!__rx || aead->mode == CLUSTER_KEY)
   1050		seqno = atomic64_inc_return(&aead->seqno);
   1051	else
   1052		seqno = atomic64_inc_return(&__rx->sndnxt);
   1053
   1054	/* Revoke the key if seqno is wrapped around */
   1055	if (unlikely(!seqno))
   1056		return tipc_crypto_key_revoke(net, tx_key);
   1057
   1058	/* Word 1-2 */
   1059	ehdr->seqno = cpu_to_be64(seqno);
   1060
   1061	/* Words 0, 3- */
   1062	ehdr->version = TIPC_EVERSION;
   1063	ehdr->user = 0;
   1064	ehdr->keepalive = 0;
   1065	ehdr->tx_key = tx_key;
   1066	ehdr->destined = (__rx) ? 1 : 0;
   1067	ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
   1068	ehdr->rx_nokey = (__rx) ? __rx->nokey : 0;
   1069	ehdr->master_key = aead->crypto->key_master;
   1070	ehdr->reserved_1 = 0;
   1071	ehdr->reserved_2 = 0;
   1072
   1073	switch (user) {
   1074	case LINK_CONFIG:
   1075		ehdr->user = LINK_CONFIG;
   1076		memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
   1077		break;
   1078	default:
   1079		if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
   1080			ehdr->user = LINK_PROTOCOL;
   1081			ehdr->keepalive = msg_is_keepalive(hdr);
   1082		}
   1083		ehdr->addr = hdr->hdr[3];
   1084		break;
   1085	}
   1086
   1087	return ehsz;
   1088}
   1089
   1090static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
   1091					     u8 new_passive,
   1092					     u8 new_active,
   1093					     u8 new_pending)
   1094{
   1095	struct tipc_key old = c->key;
   1096	char buf[32];
   1097
   1098	c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
   1099		      ((new_active  & KEY_MASK) << (KEY_BITS)) |
   1100		      ((new_pending & KEY_MASK));
   1101
   1102	pr_debug("%s: key changing %s ::%pS\n", c->name,
   1103		 tipc_key_change_dump(old, c->key, buf),
   1104		 __builtin_return_address(0));
   1105}
   1106
   1107/**
   1108 * tipc_crypto_key_init - Initiate a new user / AEAD key
   1109 * @c: TIPC crypto to which new key is attached
   1110 * @ukey: the user key
   1111 * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
   1112 * @master_key: specify this is a cluster master key
   1113 *
   1114 * A new TIPC AEAD key will be allocated and initiated with the specified user
   1115 * key, then attached to the TIPC crypto.
   1116 *
   1117 * Return: new key id in case of success, otherwise: < 0
   1118 */
   1119int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
   1120			 u8 mode, bool master_key)
   1121{
   1122	struct tipc_aead *aead = NULL;
   1123	int rc = 0;
   1124
   1125	/* Initiate with the new user key */
   1126	rc = tipc_aead_init(&aead, ukey, mode);
   1127
   1128	/* Attach it to the crypto */
   1129	if (likely(!rc)) {
   1130		rc = tipc_crypto_key_attach(c, aead, 0, master_key);
   1131		if (rc < 0)
   1132			tipc_aead_free(&aead->rcu);
   1133	}
   1134
   1135	return rc;
   1136}
   1137
   1138/**
   1139 * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
   1140 * @c: TIPC crypto to which the new AEAD key is attached
   1141 * @aead: the new AEAD key pointer
   1142 * @pos: desired slot in the crypto key array, = 0 if any!
   1143 * @master_key: specify this is a cluster master key
   1144 *
   1145 * Return: new key id in case of success, otherwise: -EBUSY
   1146 */
   1147static int tipc_crypto_key_attach(struct tipc_crypto *c,
   1148				  struct tipc_aead *aead, u8 pos,
   1149				  bool master_key)
   1150{
   1151	struct tipc_key key;
   1152	int rc = -EBUSY;
   1153	u8 new_key;
   1154
   1155	spin_lock_bh(&c->lock);
   1156	key = c->key;
   1157	if (master_key) {
   1158		new_key = KEY_MASTER;
   1159		goto attach;
   1160	}
   1161	if (key.active && key.passive)
   1162		goto exit;
   1163	if (key.pending) {
   1164		if (tipc_aead_users(c->aead[key.pending]) > 0)
   1165			goto exit;
   1166		/* if (pos): ok with replacing, will be aligned when needed */
   1167		/* Replace it */
   1168		new_key = key.pending;
   1169	} else {
   1170		if (pos) {
   1171			if (key.active && pos != key_next(key.active)) {
   1172				key.passive = pos;
   1173				new_key = pos;
   1174				goto attach;
   1175			} else if (!key.active && !key.passive) {
   1176				key.pending = pos;
   1177				new_key = pos;
   1178				goto attach;
   1179			}
   1180		}
   1181		key.pending = key_next(key.active ?: key.passive);
   1182		new_key = key.pending;
   1183	}
   1184
   1185attach:
   1186	aead->crypto = c;
   1187	aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen;
   1188	tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
   1189	if (likely(c->key.keys != key.keys))
   1190		tipc_crypto_key_set_state(c, key.passive, key.active,
   1191					  key.pending);
   1192	c->working = 1;
   1193	c->nokey = 0;
   1194	c->key_master |= master_key;
   1195	rc = new_key;
   1196
   1197exit:
   1198	spin_unlock_bh(&c->lock);
   1199	return rc;
   1200}
   1201
   1202void tipc_crypto_key_flush(struct tipc_crypto *c)
   1203{
   1204	struct tipc_crypto *tx, *rx;
   1205	int k;
   1206
   1207	spin_lock_bh(&c->lock);
   1208	if (is_rx(c)) {
   1209		/* Try to cancel pending work */
   1210		rx = c;
   1211		tx = tipc_net(rx->net)->crypto_tx;
   1212		if (cancel_delayed_work(&rx->work)) {
   1213			kfree(rx->skey);
   1214			rx->skey = NULL;
   1215			atomic_xchg(&rx->key_distr, 0);
   1216			tipc_node_put(rx->node);
   1217		}
   1218		/* RX stopping => decrease TX key users if any */
   1219		k = atomic_xchg(&rx->peer_rx_active, 0);
   1220		if (k) {
   1221			tipc_aead_users_dec(tx->aead[k], 0);
   1222			/* Mark the point TX key users changed */
   1223			tx->timer1 = jiffies;
   1224		}
   1225	}
   1226
   1227	c->flags = 0;
   1228	tipc_crypto_key_set_state(c, 0, 0, 0);
   1229	for (k = KEY_MIN; k <= KEY_MAX; k++)
   1230		tipc_crypto_key_detach(c->aead[k], &c->lock);
   1231	atomic64_set(&c->sndnxt, 0);
   1232	spin_unlock_bh(&c->lock);
   1233}
   1234
   1235/**
   1236 * tipc_crypto_key_try_align - Align RX keys if possible
   1237 * @rx: RX crypto handle
   1238 * @new_pending: new pending slot if aligned (= TX key from peer)
   1239 *
   1240 * Peer has used an unknown key slot, this only happens when peer has left and
   1241 * rejoned, or we are newcomer.
   1242 * That means, there must be no active key but a pending key at unaligned slot.
   1243 * If so, we try to move the pending key to the new slot.
   1244 * Note: A potential passive key can exist, it will be shifted correspondingly!
   1245 *
   1246 * Return: "true" if key is successfully aligned, otherwise "false"
   1247 */
   1248static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
   1249{
   1250	struct tipc_aead *tmp1, *tmp2 = NULL;
   1251	struct tipc_key key;
   1252	bool aligned = false;
   1253	u8 new_passive = 0;
   1254	int x;
   1255
   1256	spin_lock(&rx->lock);
   1257	key = rx->key;
   1258	if (key.pending == new_pending) {
   1259		aligned = true;
   1260		goto exit;
   1261	}
   1262	if (key.active)
   1263		goto exit;
   1264	if (!key.pending)
   1265		goto exit;
   1266	if (tipc_aead_users(rx->aead[key.pending]) > 0)
   1267		goto exit;
   1268
   1269	/* Try to "isolate" this pending key first */
   1270	tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
   1271	if (!refcount_dec_if_one(&tmp1->refcnt))
   1272		goto exit;
   1273	rcu_assign_pointer(rx->aead[key.pending], NULL);
   1274
   1275	/* Move passive key if any */
   1276	if (key.passive) {
   1277		tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
   1278		x = (key.passive - key.pending + new_pending) % KEY_MAX;
   1279		new_passive = (x <= 0) ? x + KEY_MAX : x;
   1280	}
   1281
   1282	/* Re-allocate the key(s) */
   1283	tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
   1284	rcu_assign_pointer(rx->aead[new_pending], tmp1);
   1285	if (new_passive)
   1286		rcu_assign_pointer(rx->aead[new_passive], tmp2);
   1287	refcount_set(&tmp1->refcnt, 1);
   1288	aligned = true;
   1289	pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending,
   1290			    new_pending);
   1291
   1292exit:
   1293	spin_unlock(&rx->lock);
   1294	return aligned;
   1295}
   1296
   1297/**
   1298 * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
   1299 * @tx: TX crypto handle
   1300 * @rx: RX crypto handle (can be NULL)
   1301 * @skb: the message skb which will be decrypted later
   1302 * @tx_key: peer TX key id
   1303 *
   1304 * This function looks up the existing TX keys and pick one which is suitable
   1305 * for the message decryption, that must be a cluster key and not used before
   1306 * on the same message (i.e. recursive).
   1307 *
   1308 * Return: the TX AEAD key handle in case of success, otherwise NULL
   1309 */
   1310static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
   1311						 struct tipc_crypto *rx,
   1312						 struct sk_buff *skb,
   1313						 u8 tx_key)
   1314{
   1315	struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
   1316	struct tipc_aead *aead = NULL;
   1317	struct tipc_key key = tx->key;
   1318	u8 k, i = 0;
   1319
   1320	/* Initialize data if not yet */
   1321	if (!skb_cb->tx_clone_deferred) {
   1322		skb_cb->tx_clone_deferred = 1;
   1323		memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
   1324	}
   1325
   1326	skb_cb->tx_clone_ctx.rx = rx;
   1327	if (++skb_cb->tx_clone_ctx.recurs > 2)
   1328		return NULL;
   1329
   1330	/* Pick one TX key */
   1331	spin_lock(&tx->lock);
   1332	if (tx_key == KEY_MASTER) {
   1333		aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock);
   1334		goto done;
   1335	}
   1336	do {
   1337		k = (i == 0) ? key.pending :
   1338			((i == 1) ? key.active : key.passive);
   1339		if (!k)
   1340			continue;
   1341		aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
   1342		if (!aead)
   1343			continue;
   1344		if (aead->mode != CLUSTER_KEY ||
   1345		    aead == skb_cb->tx_clone_ctx.last) {
   1346			aead = NULL;
   1347			continue;
   1348		}
   1349		/* Ok, found one cluster key */
   1350		skb_cb->tx_clone_ctx.last = aead;
   1351		WARN_ON(skb->next);
   1352		skb->next = skb_clone(skb, GFP_ATOMIC);
   1353		if (unlikely(!skb->next))
   1354			pr_warn("Failed to clone skb for next round if any\n");
   1355		break;
   1356	} while (++i < 3);
   1357
   1358done:
   1359	if (likely(aead))
   1360		WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
   1361	spin_unlock(&tx->lock);
   1362
   1363	return aead;
   1364}
   1365
   1366/**
   1367 * tipc_crypto_key_synch: Synch own key data according to peer key status
   1368 * @rx: RX crypto handle
   1369 * @skb: TIPCv2 message buffer (incl. the ehdr from peer)
   1370 *
   1371 * This function updates the peer node related data as the peer RX active key
   1372 * has changed, so the number of TX keys' users on this node are increased and
   1373 * decreased correspondingly.
   1374 *
   1375 * It also considers if peer has no key, then we need to make own master key
   1376 * (if any) taking over i.e. starting grace period and also trigger key
   1377 * distributing process.
   1378 *
   1379 * The "per-peer" sndnxt is also reset when the peer key has switched.
   1380 */
   1381static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb)
   1382{
   1383	struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb);
   1384	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
   1385	struct tipc_msg *hdr = buf_msg(skb);
   1386	u32 self = tipc_own_addr(rx->net);
   1387	u8 cur, new;
   1388	unsigned long delay;
   1389
   1390	/* Update RX 'key_master' flag according to peer, also mark "legacy" if
   1391	 * a peer has no master key.
   1392	 */
   1393	rx->key_master = ehdr->master_key;
   1394	if (!rx->key_master)
   1395		tx->legacy_user = 1;
   1396
   1397	/* For later cases, apply only if message is destined to this node */
   1398	if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self)
   1399		return;
   1400
   1401	/* Case 1: Peer has no keys, let's make master key take over */
   1402	if (ehdr->rx_nokey) {
   1403		/* Set or extend grace period */
   1404		tx->timer2 = jiffies;
   1405		/* Schedule key distributing for the peer if not yet */
   1406		if (tx->key.keys &&
   1407		    !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) {
   1408			get_random_bytes(&delay, 2);
   1409			delay %= 5;
   1410			delay = msecs_to_jiffies(500 * ++delay);
   1411			if (queue_delayed_work(tx->wq, &rx->work, delay))
   1412				tipc_node_get(rx->node);
   1413		}
   1414	} else {
   1415		/* Cancel a pending key distributing if any */
   1416		atomic_xchg(&rx->key_distr, 0);
   1417	}
   1418
   1419	/* Case 2: Peer RX active key has changed, let's update own TX users */
   1420	cur = atomic_read(&rx->peer_rx_active);
   1421	new = ehdr->rx_key_active;
   1422	if (tx->key.keys &&
   1423	    cur != new &&
   1424	    atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) {
   1425		if (new)
   1426			tipc_aead_users_inc(tx->aead[new], INT_MAX);
   1427		if (cur)
   1428			tipc_aead_users_dec(tx->aead[cur], 0);
   1429
   1430		atomic64_set(&rx->sndnxt, 0);
   1431		/* Mark the point TX key users changed */
   1432		tx->timer1 = jiffies;
   1433
   1434		pr_debug("%s: key users changed %d-- %d++, peer %s\n",
   1435			 tx->name, cur, new, rx->name);
   1436	}
   1437}
   1438
   1439static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
   1440{
   1441	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
   1442	struct tipc_key key;
   1443
   1444	spin_lock(&tx->lock);
   1445	key = tx->key;
   1446	WARN_ON(!key.active || tx_key != key.active);
   1447
   1448	/* Free the active key */
   1449	tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
   1450	tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
   1451	spin_unlock(&tx->lock);
   1452
   1453	pr_warn("%s: key is revoked\n", tx->name);
   1454	return -EKEYREVOKED;
   1455}
   1456
   1457int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
   1458		      struct tipc_node *node)
   1459{
   1460	struct tipc_crypto *c;
   1461
   1462	if (*crypto)
   1463		return -EEXIST;
   1464
   1465	/* Allocate crypto */
   1466	c = kzalloc(sizeof(*c), GFP_ATOMIC);
   1467	if (!c)
   1468		return -ENOMEM;
   1469
   1470	/* Allocate workqueue on TX */
   1471	if (!node) {
   1472		c->wq = alloc_ordered_workqueue("tipc_crypto", 0);
   1473		if (!c->wq) {
   1474			kfree(c);
   1475			return -ENOMEM;
   1476		}
   1477	}
   1478
   1479	/* Allocate statistic structure */
   1480	c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
   1481	if (!c->stats) {
   1482		if (c->wq)
   1483			destroy_workqueue(c->wq);
   1484		kfree_sensitive(c);
   1485		return -ENOMEM;
   1486	}
   1487
   1488	c->flags = 0;
   1489	c->net = net;
   1490	c->node = node;
   1491	get_random_bytes(&c->key_gen, 2);
   1492	tipc_crypto_key_set_state(c, 0, 0, 0);
   1493	atomic_set(&c->key_distr, 0);
   1494	atomic_set(&c->peer_rx_active, 0);
   1495	atomic64_set(&c->sndnxt, 0);
   1496	c->timer1 = jiffies;
   1497	c->timer2 = jiffies;
   1498	c->rekeying_intv = TIPC_REKEYING_INTV_DEF;
   1499	spin_lock_init(&c->lock);
   1500	scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX",
   1501		  (is_rx(c)) ? tipc_node_get_id_str(c->node) :
   1502			       tipc_own_id_string(c->net));
   1503
   1504	if (is_rx(c))
   1505		INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx);
   1506	else
   1507		INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx);
   1508
   1509	*crypto = c;
   1510	return 0;
   1511}
   1512
   1513void tipc_crypto_stop(struct tipc_crypto **crypto)
   1514{
   1515	struct tipc_crypto *c = *crypto;
   1516	u8 k;
   1517
   1518	if (!c)
   1519		return;
   1520
   1521	/* Flush any queued works & destroy wq */
   1522	if (is_tx(c)) {
   1523		c->rekeying_intv = 0;
   1524		cancel_delayed_work_sync(&c->work);
   1525		destroy_workqueue(c->wq);
   1526	}
   1527
   1528	/* Release AEAD keys */
   1529	rcu_read_lock();
   1530	for (k = KEY_MIN; k <= KEY_MAX; k++)
   1531		tipc_aead_put(rcu_dereference(c->aead[k]));
   1532	rcu_read_unlock();
   1533	pr_debug("%s: has been stopped\n", c->name);
   1534
   1535	/* Free this crypto statistics */
   1536	free_percpu(c->stats);
   1537
   1538	*crypto = NULL;
   1539	kfree_sensitive(c);
   1540}
   1541
   1542void tipc_crypto_timeout(struct tipc_crypto *rx)
   1543{
   1544	struct tipc_net *tn = tipc_net(rx->net);
   1545	struct tipc_crypto *tx = tn->crypto_tx;
   1546	struct tipc_key key;
   1547	int cmd;
   1548
   1549	/* TX pending: taking all users & stable -> active */
   1550	spin_lock(&tx->lock);
   1551	key = tx->key;
   1552	if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
   1553		goto s1;
   1554	if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
   1555		goto s1;
   1556	if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME))
   1557		goto s1;
   1558
   1559	tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
   1560	if (key.active)
   1561		tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
   1562	this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
   1563	pr_info("%s: key[%d] is activated\n", tx->name, key.pending);
   1564
   1565s1:
   1566	spin_unlock(&tx->lock);
   1567
   1568	/* RX pending: having user -> active */
   1569	spin_lock(&rx->lock);
   1570	key = rx->key;
   1571	if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
   1572		goto s2;
   1573
   1574	if (key.active)
   1575		key.passive = key.active;
   1576	key.active = key.pending;
   1577	rx->timer2 = jiffies;
   1578	tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
   1579	this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
   1580	pr_info("%s: key[%d] is activated\n", rx->name, key.pending);
   1581	goto s5;
   1582
   1583s2:
   1584	/* RX pending: not working -> remove */
   1585	if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10)
   1586		goto s3;
   1587
   1588	tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
   1589	tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock);
   1590	pr_debug("%s: key[%d] is removed\n", rx->name, key.pending);
   1591	goto s5;
   1592
   1593s3:
   1594	/* RX active: timed out or no user -> pending */
   1595	if (!key.active)
   1596		goto s4;
   1597	if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) &&
   1598	    tipc_aead_users(rx->aead[key.active]) > 0)
   1599		goto s4;
   1600
   1601	if (key.pending)
   1602		key.passive = key.active;
   1603	else
   1604		key.pending = key.active;
   1605	rx->timer2 = jiffies;
   1606	tipc_crypto_key_set_state(rx, key.passive, 0, key.pending);
   1607	tipc_aead_users_set(rx->aead[key.pending], 0);
   1608	pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active);
   1609	goto s5;
   1610
   1611s4:
   1612	/* RX passive: outdated or not working -> free */
   1613	if (!key.passive)
   1614		goto s5;
   1615	if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) &&
   1616	    tipc_aead_users(rx->aead[key.passive]) > -10)
   1617		goto s5;
   1618
   1619	tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
   1620	tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
   1621	pr_debug("%s: key[%d] is freed\n", rx->name, key.passive);
   1622
   1623s5:
   1624	spin_unlock(&rx->lock);
   1625
   1626	/* Relax it here, the flag will be set again if it really is, but only
   1627	 * when we are not in grace period for safety!
   1628	 */
   1629	if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD))
   1630		tx->legacy_user = 0;
   1631
   1632	/* Limit max_tfms & do debug commands if needed */
   1633	if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
   1634		return;
   1635
   1636	cmd = sysctl_tipc_max_tfms;
   1637	sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
   1638	tipc_crypto_do_cmd(rx->net, cmd);
   1639}
   1640
   1641static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
   1642					 struct tipc_bearer *b,
   1643					 struct tipc_media_addr *dst,
   1644					 struct tipc_node *__dnode, u8 type)
   1645{
   1646	struct sk_buff *skb;
   1647
   1648	skb = skb_clone(_skb, GFP_ATOMIC);
   1649	if (skb) {
   1650		TIPC_SKB_CB(skb)->xmit_type = type;
   1651		tipc_crypto_xmit(net, &skb, b, dst, __dnode);
   1652		if (skb)
   1653			b->media->send_msg(net, skb, b, dst);
   1654	}
   1655}
   1656
   1657/**
   1658 * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
   1659 * @net: struct net
   1660 * @skb: input/output message skb pointer
   1661 * @b: bearer used for xmit later
   1662 * @dst: destination media address
   1663 * @__dnode: destination node for reference if any
   1664 *
   1665 * First, build an encryption message header on the top of the message, then
   1666 * encrypt the original TIPC message by using the pending, master or active
   1667 * key with this preference order.
   1668 * If the encryption is successful, the encrypted skb is returned directly or
   1669 * via the callback.
   1670 * Otherwise, the skb is freed!
   1671 *
   1672 * Return:
   1673 * * 0                   : the encryption has succeeded (or no encryption)
   1674 * * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
   1675 * * -ENOKEK             : the encryption has failed due to no key
   1676 * * -EKEYREVOKED        : the encryption has failed due to key revoked
   1677 * * -ENOMEM             : the encryption has failed due to no memory
   1678 * * < 0                 : the encryption has failed due to other reasons
   1679 */
   1680int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
   1681		     struct tipc_bearer *b, struct tipc_media_addr *dst,
   1682		     struct tipc_node *__dnode)
   1683{
   1684	struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
   1685	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
   1686	struct tipc_crypto_stats __percpu *stats = tx->stats;
   1687	struct tipc_msg *hdr = buf_msg(*skb);
   1688	struct tipc_key key = tx->key;
   1689	struct tipc_aead *aead = NULL;
   1690	u32 user = msg_user(hdr);
   1691	u32 type = msg_type(hdr);
   1692	int rc = -ENOKEY;
   1693	u8 tx_key = 0;
   1694
   1695	/* No encryption? */
   1696	if (!tx->working)
   1697		return 0;
   1698
   1699	/* Pending key if peer has active on it or probing time */
   1700	if (unlikely(key.pending)) {
   1701		tx_key = key.pending;
   1702		if (!tx->key_master && !key.active)
   1703			goto encrypt;
   1704		if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
   1705			goto encrypt;
   1706		if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) {
   1707			pr_debug("%s: probing for key[%d]\n", tx->name,
   1708				 key.pending);
   1709			goto encrypt;
   1710		}
   1711		if (user == LINK_CONFIG || user == LINK_PROTOCOL)
   1712			tipc_crypto_clone_msg(net, *skb, b, dst, __dnode,
   1713					      SKB_PROBING);
   1714	}
   1715
   1716	/* Master key if this is a *vital* message or in grace period */
   1717	if (tx->key_master) {
   1718		tx_key = KEY_MASTER;
   1719		if (!key.active)
   1720			goto encrypt;
   1721		if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) {
   1722			pr_debug("%s: gracing for msg (%d %d)\n", tx->name,
   1723				 user, type);
   1724			goto encrypt;
   1725		}
   1726		if (user == LINK_CONFIG ||
   1727		    (user == LINK_PROTOCOL && type == RESET_MSG) ||
   1728		    (user == MSG_CRYPTO && type == KEY_DISTR_MSG) ||
   1729		    time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) {
   1730			if (__rx && __rx->key_master &&
   1731			    !atomic_read(&__rx->peer_rx_active))
   1732				goto encrypt;
   1733			if (!__rx) {
   1734				if (likely(!tx->legacy_user))
   1735					goto encrypt;
   1736				tipc_crypto_clone_msg(net, *skb, b, dst,
   1737						      __dnode, SKB_GRACING);
   1738			}
   1739		}
   1740	}
   1741
   1742	/* Else, use the active key if any */
   1743	if (likely(key.active)) {
   1744		tx_key = key.active;
   1745		goto encrypt;
   1746	}
   1747
   1748	goto exit;
   1749
   1750encrypt:
   1751	aead = tipc_aead_get(tx->aead[tx_key]);
   1752	if (unlikely(!aead))
   1753		goto exit;
   1754	rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
   1755	if (likely(rc > 0))
   1756		rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
   1757
   1758exit:
   1759	switch (rc) {
   1760	case 0:
   1761		this_cpu_inc(stats->stat[STAT_OK]);
   1762		break;
   1763	case -EINPROGRESS:
   1764	case -EBUSY:
   1765		this_cpu_inc(stats->stat[STAT_ASYNC]);
   1766		*skb = NULL;
   1767		return rc;
   1768	default:
   1769		this_cpu_inc(stats->stat[STAT_NOK]);
   1770		if (rc == -ENOKEY)
   1771			this_cpu_inc(stats->stat[STAT_NOKEYS]);
   1772		else if (rc == -EKEYREVOKED)
   1773			this_cpu_inc(stats->stat[STAT_BADKEYS]);
   1774		kfree_skb(*skb);
   1775		*skb = NULL;
   1776		break;
   1777	}
   1778
   1779	tipc_aead_put(aead);
   1780	return rc;
   1781}
   1782
   1783/**
   1784 * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
   1785 * @net: struct net
   1786 * @rx: RX crypto handle
   1787 * @skb: input/output message skb pointer
   1788 * @b: bearer where the message has been received
   1789 *
   1790 * If the decryption is successful, the decrypted skb is returned directly or
   1791 * as the callback, the encryption header and auth tag will be trimed out
   1792 * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
   1793 * Otherwise, the skb will be freed!
   1794 * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
   1795 * cluster key(s) can be taken for decryption (- recursive).
   1796 *
   1797 * Return:
   1798 * * 0                   : the decryption has successfully completed
   1799 * * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
   1800 * * -ENOKEY             : the decryption has failed due to no key
   1801 * * -EBADMSG            : the decryption has failed due to bad message
   1802 * * -ENOMEM             : the decryption has failed due to no memory
   1803 * * < 0                 : the decryption has failed due to other reasons
   1804 */
   1805int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
   1806		    struct sk_buff **skb, struct tipc_bearer *b)
   1807{
   1808	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
   1809	struct tipc_crypto_stats __percpu *stats;
   1810	struct tipc_aead *aead = NULL;
   1811	struct tipc_key key;
   1812	int rc = -ENOKEY;
   1813	u8 tx_key, n;
   1814
   1815	tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
   1816
   1817	/* New peer?
   1818	 * Let's try with TX key (i.e. cluster mode) & verify the skb first!
   1819	 */
   1820	if (unlikely(!rx || tx_key == KEY_MASTER))
   1821		goto pick_tx;
   1822
   1823	/* Pick RX key according to TX key if any */
   1824	key = rx->key;
   1825	if (tx_key == key.active || tx_key == key.pending ||
   1826	    tx_key == key.passive)
   1827		goto decrypt;
   1828
   1829	/* Unknown key, let's try to align RX key(s) */
   1830	if (tipc_crypto_key_try_align(rx, tx_key))
   1831		goto decrypt;
   1832
   1833pick_tx:
   1834	/* No key suitable? Try to pick one from TX... */
   1835	aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key);
   1836	if (aead)
   1837		goto decrypt;
   1838	goto exit;
   1839
   1840decrypt:
   1841	rcu_read_lock();
   1842	if (!aead)
   1843		aead = tipc_aead_get(rx->aead[tx_key]);
   1844	rc = tipc_aead_decrypt(net, aead, *skb, b);
   1845	rcu_read_unlock();
   1846
   1847exit:
   1848	stats = ((rx) ?: tx)->stats;
   1849	switch (rc) {
   1850	case 0:
   1851		this_cpu_inc(stats->stat[STAT_OK]);
   1852		break;
   1853	case -EINPROGRESS:
   1854	case -EBUSY:
   1855		this_cpu_inc(stats->stat[STAT_ASYNC]);
   1856		*skb = NULL;
   1857		return rc;
   1858	default:
   1859		this_cpu_inc(stats->stat[STAT_NOK]);
   1860		if (rc == -ENOKEY) {
   1861			kfree_skb(*skb);
   1862			*skb = NULL;
   1863			if (rx) {
   1864				/* Mark rx->nokey only if we dont have a
   1865				 * pending received session key, nor a newer
   1866				 * one i.e. in the next slot.
   1867				 */
   1868				n = key_next(tx_key);
   1869				rx->nokey = !(rx->skey ||
   1870					      rcu_access_pointer(rx->aead[n]));
   1871				pr_debug_ratelimited("%s: nokey %d, key %d/%x\n",
   1872						     rx->name, rx->nokey,
   1873						     tx_key, rx->key.keys);
   1874				tipc_node_put(rx->node);
   1875			}
   1876			this_cpu_inc(stats->stat[STAT_NOKEYS]);
   1877			return rc;
   1878		} else if (rc == -EBADMSG) {
   1879			this_cpu_inc(stats->stat[STAT_BADMSGS]);
   1880		}
   1881		break;
   1882	}
   1883
   1884	tipc_crypto_rcv_complete(net, aead, b, skb, rc);
   1885	return rc;
   1886}
   1887
   1888static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
   1889				     struct tipc_bearer *b,
   1890				     struct sk_buff **skb, int err)
   1891{
   1892	struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
   1893	struct tipc_crypto *rx = aead->crypto;
   1894	struct tipc_aead *tmp = NULL;
   1895	struct tipc_ehdr *ehdr;
   1896	struct tipc_node *n;
   1897
   1898	/* Is this completed by TX? */
   1899	if (unlikely(is_tx(aead->crypto))) {
   1900		rx = skb_cb->tx_clone_ctx.rx;
   1901		pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
   1902			 (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
   1903			 (*skb)->next, skb_cb->flags);
   1904		pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
   1905			 skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
   1906			 aead->crypto->aead[1], aead->crypto->aead[2],
   1907			 aead->crypto->aead[3]);
   1908		if (unlikely(err)) {
   1909			if (err == -EBADMSG && (*skb)->next)
   1910				tipc_rcv(net, (*skb)->next, b);
   1911			goto free_skb;
   1912		}
   1913
   1914		if (likely((*skb)->next)) {
   1915			kfree_skb((*skb)->next);
   1916			(*skb)->next = NULL;
   1917		}
   1918		ehdr = (struct tipc_ehdr *)(*skb)->data;
   1919		if (!rx) {
   1920			WARN_ON(ehdr->user != LINK_CONFIG);
   1921			n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
   1922					     true);
   1923			rx = tipc_node_crypto_rx(n);
   1924			if (unlikely(!rx))
   1925				goto free_skb;
   1926		}
   1927
   1928		/* Ignore cloning if it was TX master key */
   1929		if (ehdr->tx_key == KEY_MASTER)
   1930			goto rcv;
   1931		if (tipc_aead_clone(&tmp, aead) < 0)
   1932			goto rcv;
   1933		WARN_ON(!refcount_inc_not_zero(&tmp->refcnt));
   1934		if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) {
   1935			tipc_aead_free(&tmp->rcu);
   1936			goto rcv;
   1937		}
   1938		tipc_aead_put(aead);
   1939		aead = tmp;
   1940	}
   1941
   1942	if (unlikely(err)) {
   1943		tipc_aead_users_dec((struct tipc_aead __force __rcu *)aead, INT_MIN);
   1944		goto free_skb;
   1945	}
   1946
   1947	/* Set the RX key's user */
   1948	tipc_aead_users_set((struct tipc_aead __force __rcu *)aead, 1);
   1949
   1950	/* Mark this point, RX works */
   1951	rx->timer1 = jiffies;
   1952
   1953rcv:
   1954	/* Remove ehdr & auth. tag prior to tipc_rcv() */
   1955	ehdr = (struct tipc_ehdr *)(*skb)->data;
   1956
   1957	/* Mark this point, RX passive still works */
   1958	if (rx->key.passive && ehdr->tx_key == rx->key.passive)
   1959		rx->timer2 = jiffies;
   1960
   1961	skb_reset_network_header(*skb);
   1962	skb_pull(*skb, tipc_ehdr_size(ehdr));
   1963	pskb_trim(*skb, (*skb)->len - aead->authsize);
   1964
   1965	/* Validate TIPCv2 message */
   1966	if (unlikely(!tipc_msg_validate(skb))) {
   1967		pr_err_ratelimited("Packet dropped after decryption!\n");
   1968		goto free_skb;
   1969	}
   1970
   1971	/* Ok, everything's fine, try to synch own keys according to peers' */
   1972	tipc_crypto_key_synch(rx, *skb);
   1973
   1974	/* Mark skb decrypted */
   1975	skb_cb->decrypted = 1;
   1976
   1977	/* Clear clone cxt if any */
   1978	if (likely(!skb_cb->tx_clone_deferred))
   1979		goto exit;
   1980	skb_cb->tx_clone_deferred = 0;
   1981	memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
   1982	goto exit;
   1983
   1984free_skb:
   1985	kfree_skb(*skb);
   1986	*skb = NULL;
   1987
   1988exit:
   1989	tipc_aead_put(aead);
   1990	if (rx)
   1991		tipc_node_put(rx->node);
   1992}
   1993
   1994static void tipc_crypto_do_cmd(struct net *net, int cmd)
   1995{
   1996	struct tipc_net *tn = tipc_net(net);
   1997	struct tipc_crypto *tx = tn->crypto_tx, *rx;
   1998	struct list_head *p;
   1999	unsigned int stat;
   2000	int i, j, cpu;
   2001	char buf[200];
   2002
   2003	/* Currently only one command is supported */
   2004	switch (cmd) {
   2005	case 0xfff1:
   2006		goto print_stats;
   2007	default:
   2008		return;
   2009	}
   2010
   2011print_stats:
   2012	/* Print a header */
   2013	pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
   2014
   2015	/* Print key status */
   2016	pr_info("Key status:\n");
   2017	pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
   2018		tipc_crypto_key_dump(tx, buf));
   2019
   2020	rcu_read_lock();
   2021	for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
   2022		rx = tipc_node_crypto_rx_by_list(p);
   2023		pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
   2024			tipc_crypto_key_dump(rx, buf));
   2025	}
   2026	rcu_read_unlock();
   2027
   2028	/* Print crypto statistics */
   2029	for (i = 0, j = 0; i < MAX_STATS; i++)
   2030		j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
   2031	pr_info("Counter     %s", buf);
   2032
   2033	memset(buf, '-', 115);
   2034	buf[115] = '\0';
   2035	pr_info("%s\n", buf);
   2036
   2037	j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
   2038	for_each_possible_cpu(cpu) {
   2039		for (i = 0; i < MAX_STATS; i++) {
   2040			stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
   2041			j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
   2042		}
   2043		pr_info("%s", buf);
   2044		j = scnprintf(buf, 200, "%12s", " ");
   2045	}
   2046
   2047	rcu_read_lock();
   2048	for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
   2049		rx = tipc_node_crypto_rx_by_list(p);
   2050		j = scnprintf(buf, 200, "RX(%7.7s) ",
   2051			      tipc_node_get_id_str(rx->node));
   2052		for_each_possible_cpu(cpu) {
   2053			for (i = 0; i < MAX_STATS; i++) {
   2054				stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
   2055				j += scnprintf(buf + j, 200 - j, "|%11d ",
   2056					       stat);
   2057			}
   2058			pr_info("%s", buf);
   2059			j = scnprintf(buf, 200, "%12s", " ");
   2060		}
   2061	}
   2062	rcu_read_unlock();
   2063
   2064	pr_info("\n======================== Done ========================\n");
   2065}
   2066
   2067static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
   2068{
   2069	struct tipc_key key = c->key;
   2070	struct tipc_aead *aead;
   2071	int k, i = 0;
   2072	char *s;
   2073
   2074	for (k = KEY_MIN; k <= KEY_MAX; k++) {
   2075		if (k == KEY_MASTER) {
   2076			if (is_rx(c))
   2077				continue;
   2078			if (time_before(jiffies,
   2079					c->timer2 + TIPC_TX_GRACE_PERIOD))
   2080				s = "ACT";
   2081			else
   2082				s = "PAS";
   2083		} else {
   2084			if (k == key.passive)
   2085				s = "PAS";
   2086			else if (k == key.active)
   2087				s = "ACT";
   2088			else if (k == key.pending)
   2089				s = "PEN";
   2090			else
   2091				s = "-";
   2092		}
   2093		i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
   2094
   2095		rcu_read_lock();
   2096		aead = rcu_dereference(c->aead[k]);
   2097		if (aead)
   2098			i += scnprintf(buf + i, 200 - i,
   2099				       "{\"0x...%s\", \"%s\"}/%d:%d",
   2100				       aead->hint,
   2101				       (aead->mode == CLUSTER_KEY) ? "c" : "p",
   2102				       atomic_read(&aead->users),
   2103				       refcount_read(&aead->refcnt));
   2104		rcu_read_unlock();
   2105		i += scnprintf(buf + i, 200 - i, "\n");
   2106	}
   2107
   2108	if (is_rx(c))
   2109		i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
   2110			       atomic_read(&c->peer_rx_active));
   2111
   2112	return buf;
   2113}
   2114
   2115static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
   2116				  char *buf)
   2117{
   2118	struct tipc_key *key = &old;
   2119	int k, i = 0;
   2120	char *s;
   2121
   2122	/* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
   2123again:
   2124	i += scnprintf(buf + i, 32 - i, "[");
   2125	for (k = KEY_1; k <= KEY_3; k++) {
   2126		if (k == key->passive)
   2127			s = "pas";
   2128		else if (k == key->active)
   2129			s = "act";
   2130		else if (k == key->pending)
   2131			s = "pen";
   2132		else
   2133			s = "-";
   2134		i += scnprintf(buf + i, 32 - i,
   2135			       (k != KEY_3) ? "%s " : "%s", s);
   2136	}
   2137	if (key != &new) {
   2138		i += scnprintf(buf + i, 32 - i, "] -> ");
   2139		key = &new;
   2140		goto again;
   2141	}
   2142	i += scnprintf(buf + i, 32 - i, "]");
   2143	return buf;
   2144}
   2145
   2146/**
   2147 * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point
   2148 * @net: the struct net
   2149 * @skb: the receiving message buffer
   2150 */
   2151void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb)
   2152{
   2153	struct tipc_crypto *rx;
   2154	struct tipc_msg *hdr;
   2155
   2156	if (unlikely(skb_linearize(skb)))
   2157		goto exit;
   2158
   2159	hdr = buf_msg(skb);
   2160	rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr));
   2161	if (unlikely(!rx))
   2162		goto exit;
   2163
   2164	switch (msg_type(hdr)) {
   2165	case KEY_DISTR_MSG:
   2166		if (tipc_crypto_key_rcv(rx, hdr))
   2167			goto exit;
   2168		break;
   2169	default:
   2170		break;
   2171	}
   2172
   2173	tipc_node_put(rx->node);
   2174
   2175exit:
   2176	kfree_skb(skb);
   2177}
   2178
   2179/**
   2180 * tipc_crypto_key_distr - Distribute a TX key
   2181 * @tx: the TX crypto
   2182 * @key: the key's index
   2183 * @dest: the destination tipc node, = NULL if distributing to all nodes
   2184 *
   2185 * Return: 0 in case of success, otherwise < 0
   2186 */
   2187int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key,
   2188			  struct tipc_node *dest)
   2189{
   2190	struct tipc_aead *aead;
   2191	u32 dnode = tipc_node_get_addr(dest);
   2192	int rc = -ENOKEY;
   2193
   2194	if (!sysctl_tipc_key_exchange_enabled)
   2195		return 0;
   2196
   2197	if (key) {
   2198		rcu_read_lock();
   2199		aead = tipc_aead_get(tx->aead[key]);
   2200		if (likely(aead)) {
   2201			rc = tipc_crypto_key_xmit(tx->net, aead->key,
   2202						  aead->gen, aead->mode,
   2203						  dnode);
   2204			tipc_aead_put(aead);
   2205		}
   2206		rcu_read_unlock();
   2207	}
   2208
   2209	return rc;
   2210}
   2211
   2212/**
   2213 * tipc_crypto_key_xmit - Send a session key
   2214 * @net: the struct net
   2215 * @skey: the session key to be sent
   2216 * @gen: the key's generation
   2217 * @mode: the key's mode
   2218 * @dnode: the destination node address, = 0 if broadcasting to all nodes
   2219 *
   2220 * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG'
   2221 * as its data section, then xmit-ed through the uc/bc link.
   2222 *
   2223 * Return: 0 in case of success, otherwise < 0
   2224 */
   2225static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
   2226				u16 gen, u8 mode, u32 dnode)
   2227{
   2228	struct sk_buff_head pkts;
   2229	struct tipc_msg *hdr;
   2230	struct sk_buff *skb;
   2231	u16 size, cong_link_cnt;
   2232	u8 *data;
   2233	int rc;
   2234
   2235	size = tipc_aead_key_size(skey);
   2236	skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC);
   2237	if (!skb)
   2238		return -ENOMEM;
   2239
   2240	hdr = buf_msg(skb);
   2241	tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG,
   2242		      INT_H_SIZE, dnode);
   2243	msg_set_size(hdr, INT_H_SIZE + size);
   2244	msg_set_key_gen(hdr, gen);
   2245	msg_set_key_mode(hdr, mode);
   2246
   2247	data = msg_data(hdr);
   2248	*((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen);
   2249	memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME);
   2250	memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key,
   2251	       skey->keylen);
   2252
   2253	__skb_queue_head_init(&pkts);
   2254	__skb_queue_tail(&pkts, skb);
   2255	if (dnode)
   2256		rc = tipc_node_xmit(net, &pkts, dnode, 0);
   2257	else
   2258		rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt);
   2259
   2260	return rc;
   2261}
   2262
   2263/**
   2264 * tipc_crypto_key_rcv - Receive a session key
   2265 * @rx: the RX crypto
   2266 * @hdr: the TIPC v2 message incl. the receiving session key in its data
   2267 *
   2268 * This function retrieves the session key in the message from peer, then
   2269 * schedules a RX work to attach the key to the corresponding RX crypto.
   2270 *
   2271 * Return: "true" if the key has been scheduled for attaching, otherwise
   2272 * "false".
   2273 */
   2274static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr)
   2275{
   2276	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
   2277	struct tipc_aead_key *skey = NULL;
   2278	u16 key_gen = msg_key_gen(hdr);
   2279	u32 size = msg_data_sz(hdr);
   2280	u8 *data = msg_data(hdr);
   2281	unsigned int keylen;
   2282
   2283	/* Verify whether the size can exist in the packet */
   2284	if (unlikely(size < sizeof(struct tipc_aead_key) + TIPC_AEAD_KEYLEN_MIN)) {
   2285		pr_debug("%s: message data size is too small\n", rx->name);
   2286		goto exit;
   2287	}
   2288
   2289	keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME)));
   2290
   2291	/* Verify the supplied size values */
   2292	if (unlikely(size != keylen + sizeof(struct tipc_aead_key) ||
   2293		     keylen > TIPC_AEAD_KEY_SIZE_MAX)) {
   2294		pr_debug("%s: invalid MSG_CRYPTO key size\n", rx->name);
   2295		goto exit;
   2296	}
   2297
   2298	spin_lock(&rx->lock);
   2299	if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) {
   2300		pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name,
   2301		       rx->skey, key_gen, rx->key_gen);
   2302		goto exit_unlock;
   2303	}
   2304
   2305	/* Allocate memory for the key */
   2306	skey = kmalloc(size, GFP_ATOMIC);
   2307	if (unlikely(!skey)) {
   2308		pr_err("%s: unable to allocate memory for skey\n", rx->name);
   2309		goto exit_unlock;
   2310	}
   2311
   2312	/* Copy key from msg data */
   2313	skey->keylen = keylen;
   2314	memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME);
   2315	memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32),
   2316	       skey->keylen);
   2317
   2318	rx->key_gen = key_gen;
   2319	rx->skey_mode = msg_key_mode(hdr);
   2320	rx->skey = skey;
   2321	rx->nokey = 0;
   2322	mb(); /* for nokey flag */
   2323
   2324exit_unlock:
   2325	spin_unlock(&rx->lock);
   2326
   2327exit:
   2328	/* Schedule the key attaching on this crypto */
   2329	if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0)))
   2330		return true;
   2331
   2332	return false;
   2333}
   2334
   2335/**
   2336 * tipc_crypto_work_rx - Scheduled RX works handler
   2337 * @work: the struct RX work
   2338 *
   2339 * The function processes the previous scheduled works i.e. distributing TX key
   2340 * or attaching a received session key on RX crypto.
   2341 */
   2342static void tipc_crypto_work_rx(struct work_struct *work)
   2343{
   2344	struct delayed_work *dwork = to_delayed_work(work);
   2345	struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work);
   2346	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
   2347	unsigned long delay = msecs_to_jiffies(5000);
   2348	bool resched = false;
   2349	u8 key;
   2350	int rc;
   2351
   2352	/* Case 1: Distribute TX key to peer if scheduled */
   2353	if (atomic_cmpxchg(&rx->key_distr,
   2354			   KEY_DISTR_SCHED,
   2355			   KEY_DISTR_COMPL) == KEY_DISTR_SCHED) {
   2356		/* Always pick the newest one for distributing */
   2357		key = tx->key.pending ?: tx->key.active;
   2358		rc = tipc_crypto_key_distr(tx, key, rx->node);
   2359		if (unlikely(rc))
   2360			pr_warn("%s: unable to distr key[%d] to %s, err %d\n",
   2361				tx->name, key, tipc_node_get_id_str(rx->node),
   2362				rc);
   2363
   2364		/* Sched for key_distr releasing */
   2365		resched = true;
   2366	} else {
   2367		atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0);
   2368	}
   2369
   2370	/* Case 2: Attach a pending received session key from peer if any */
   2371	if (rx->skey) {
   2372		rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false);
   2373		if (unlikely(rc < 0))
   2374			pr_warn("%s: unable to attach received skey, err %d\n",
   2375				rx->name, rc);
   2376		switch (rc) {
   2377		case -EBUSY:
   2378		case -ENOMEM:
   2379			/* Resched the key attaching */
   2380			resched = true;
   2381			break;
   2382		default:
   2383			synchronize_rcu();
   2384			kfree(rx->skey);
   2385			rx->skey = NULL;
   2386			break;
   2387		}
   2388	}
   2389
   2390	if (resched && queue_delayed_work(tx->wq, &rx->work, delay))
   2391		return;
   2392
   2393	tipc_node_put(rx->node);
   2394}
   2395
   2396/**
   2397 * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval
   2398 * @tx: TX crypto
   2399 * @changed: if the rekeying needs to be rescheduled with new interval
   2400 * @new_intv: new rekeying interval (when "changed" = true)
   2401 */
   2402void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed,
   2403				u32 new_intv)
   2404{
   2405	unsigned long delay;
   2406	bool now = false;
   2407
   2408	if (changed) {
   2409		if (new_intv == TIPC_REKEYING_NOW)
   2410			now = true;
   2411		else
   2412			tx->rekeying_intv = new_intv;
   2413		cancel_delayed_work_sync(&tx->work);
   2414	}
   2415
   2416	if (tx->rekeying_intv || now) {
   2417		delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000;
   2418		queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay));
   2419	}
   2420}
   2421
   2422/**
   2423 * tipc_crypto_work_tx - Scheduled TX works handler
   2424 * @work: the struct TX work
   2425 *
   2426 * The function processes the previous scheduled work, i.e. key rekeying, by
   2427 * generating a new session key based on current one, then attaching it to the
   2428 * TX crypto and finally distributing it to peers. It also re-schedules the
   2429 * rekeying if needed.
   2430 */
   2431static void tipc_crypto_work_tx(struct work_struct *work)
   2432{
   2433	struct delayed_work *dwork = to_delayed_work(work);
   2434	struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work);
   2435	struct tipc_aead_key *skey = NULL;
   2436	struct tipc_key key = tx->key;
   2437	struct tipc_aead *aead;
   2438	int rc = -ENOMEM;
   2439
   2440	if (unlikely(key.pending))
   2441		goto resched;
   2442
   2443	/* Take current key as a template */
   2444	rcu_read_lock();
   2445	aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]);
   2446	if (unlikely(!aead)) {
   2447		rcu_read_unlock();
   2448		/* At least one key should exist for securing */
   2449		return;
   2450	}
   2451
   2452	/* Lets duplicate it first */
   2453	skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC);
   2454	rcu_read_unlock();
   2455
   2456	/* Now, generate new key, initiate & distribute it */
   2457	if (likely(skey)) {
   2458		rc = tipc_aead_key_generate(skey) ?:
   2459		     tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false);
   2460		if (likely(rc > 0))
   2461			rc = tipc_crypto_key_distr(tx, rc, NULL);
   2462		kfree_sensitive(skey);
   2463	}
   2464
   2465	if (unlikely(rc))
   2466		pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc);
   2467
   2468resched:
   2469	/* Re-schedule rekeying if any */
   2470	tipc_crypto_rekeying_sched(tx, false, 0);
   2471}