cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

af_vsock.c (59401B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * VMware vSockets Driver
      4 *
      5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
      6 */
      7
      8/* Implementation notes:
      9 *
     10 * - There are two kinds of sockets: those created by user action (such as
     11 * calling socket(2)) and those created by incoming connection request packets.
     12 *
     13 * - There are two "global" tables, one for bound sockets (sockets that have
     14 * specified an address that they are responsible for) and one for connected
     15 * sockets (sockets that have established a connection with another socket).
     16 * These tables are "global" in that all sockets on the system are placed
     17 * within them. - Note, though, that the bound table contains an extra entry
     18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
     19 * that list. The bound table is used solely for lookup of sockets when packets
     20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
     21 * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
     22 * sockets out of the bound hash buckets will reduce the chance of collisions
     23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
     24 * socket type in the hash table lookups.
     25 *
     26 * - Sockets created by user action will either be "client" sockets that
     27 * initiate a connection or "server" sockets that listen for connections; we do
     28 * not support simultaneous connects (two "client" sockets connecting).
     29 *
     30 * - "Server" sockets are referred to as listener sockets throughout this
     31 * implementation because they are in the TCP_LISTEN state.  When a
     32 * connection request is received (the second kind of socket mentioned above),
     33 * we create a new socket and refer to it as a pending socket.  These pending
     34 * sockets are placed on the pending connection list of the listener socket.
     35 * When future packets are received for the address the listener socket is
     36 * bound to, we check if the source of the packet is from one that has an
     37 * existing pending connection.  If it does, we process the packet for the
     38 * pending socket.  When that socket reaches the connected state, it is removed
     39 * from the listener socket's pending list and enqueued in the listener
     40 * socket's accept queue.  Callers of accept(2) will accept connected sockets
     41 * from the listener socket's accept queue.  If the socket cannot be accepted
     42 * for some reason then it is marked rejected.  Once the connection is
     43 * accepted, it is owned by the user process and the responsibility for cleanup
     44 * falls with that user process.
     45 *
     46 * - It is possible that these pending sockets will never reach the connected
     47 * state; in fact, we may never receive another packet after the connection
     48 * request.  Because of this, we must schedule a cleanup function to run in the
     49 * future, after some amount of time passes where a connection should have been
     50 * established.  This function ensures that the socket is off all lists so it
     51 * cannot be retrieved, then drops all references to the socket so it is cleaned
     52 * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
     53 * function will also cleanup rejected sockets, those that reach the connected
     54 * state but leave it before they have been accepted.
     55 *
     56 * - Lock ordering for pending or accept queue sockets is:
     57 *
     58 *     lock_sock(listener);
     59 *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
     60 *
     61 * Using explicit nested locking keeps lockdep happy since normally only one
     62 * lock of a given class may be taken at a time.
     63 *
     64 * - Sockets created by user action will be cleaned up when the user process
     65 * calls close(2), causing our release implementation to be called. Our release
     66 * implementation will perform some cleanup then drop the last reference so our
     67 * sk_destruct implementation is invoked.  Our sk_destruct implementation will
     68 * perform additional cleanup that's common for both types of sockets.
     69 *
     70 * - A socket's reference count is what ensures that the structure won't be
     71 * freed.  Each entry in a list (such as the "global" bound and connected tables
     72 * and the listener socket's pending list and connected queue) ensures a
     73 * reference.  When we defer work until process context and pass a socket as our
     74 * argument, we must ensure the reference count is increased to ensure the
     75 * socket isn't freed before the function is run; the deferred function will
     76 * then drop the reference.
     77 *
     78 * - sk->sk_state uses the TCP state constants because they are widely used by
     79 * other address families and exposed to userspace tools like ss(8):
     80 *
     81 *   TCP_CLOSE - unconnected
     82 *   TCP_SYN_SENT - connecting
     83 *   TCP_ESTABLISHED - connected
     84 *   TCP_CLOSING - disconnecting
     85 *   TCP_LISTEN - listening
     86 */
     87
     88#include <linux/compat.h>
     89#include <linux/types.h>
     90#include <linux/bitops.h>
     91#include <linux/cred.h>
     92#include <linux/init.h>
     93#include <linux/io.h>
     94#include <linux/kernel.h>
     95#include <linux/sched/signal.h>
     96#include <linux/kmod.h>
     97#include <linux/list.h>
     98#include <linux/miscdevice.h>
     99#include <linux/module.h>
    100#include <linux/mutex.h>
    101#include <linux/net.h>
    102#include <linux/poll.h>
    103#include <linux/random.h>
    104#include <linux/skbuff.h>
    105#include <linux/smp.h>
    106#include <linux/socket.h>
    107#include <linux/stddef.h>
    108#include <linux/unistd.h>
    109#include <linux/wait.h>
    110#include <linux/workqueue.h>
    111#include <net/sock.h>
    112#include <net/af_vsock.h>
    113
    114static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
    115static void vsock_sk_destruct(struct sock *sk);
    116static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
    117
    118/* Protocol family. */
    119static struct proto vsock_proto = {
    120	.name = "AF_VSOCK",
    121	.owner = THIS_MODULE,
    122	.obj_size = sizeof(struct vsock_sock),
    123};
    124
    125/* The default peer timeout indicates how long we will wait for a peer response
    126 * to a control message.
    127 */
    128#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
    129
    130#define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
    131#define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
    132#define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
    133
    134/* Transport used for host->guest communication */
    135static const struct vsock_transport *transport_h2g;
    136/* Transport used for guest->host communication */
    137static const struct vsock_transport *transport_g2h;
    138/* Transport used for DGRAM communication */
    139static const struct vsock_transport *transport_dgram;
    140/* Transport used for local communication */
    141static const struct vsock_transport *transport_local;
    142static DEFINE_MUTEX(vsock_register_mutex);
    143
    144/**** UTILS ****/
    145
    146/* Each bound VSocket is stored in the bind hash table and each connected
    147 * VSocket is stored in the connected hash table.
    148 *
    149 * Unbound sockets are all put on the same list attached to the end of the hash
    150 * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
    151 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
    152 * represents the list that addr hashes to).
    153 *
    154 * Specifically, we initialize the vsock_bind_table array to a size of
    155 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
    156 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
    157 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
    158 * mods with VSOCK_HASH_SIZE to ensure this.
    159 */
    160#define MAX_PORT_RETRIES        24
    161
    162#define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
    163#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
    164#define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
    165
    166/* XXX This can probably be implemented in a better way. */
    167#define VSOCK_CONN_HASH(src, dst)				\
    168	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
    169#define vsock_connected_sockets(src, dst)		\
    170	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
    171#define vsock_connected_sockets_vsk(vsk)				\
    172	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
    173
    174struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
    175EXPORT_SYMBOL_GPL(vsock_bind_table);
    176struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
    177EXPORT_SYMBOL_GPL(vsock_connected_table);
    178DEFINE_SPINLOCK(vsock_table_lock);
    179EXPORT_SYMBOL_GPL(vsock_table_lock);
    180
    181/* Autobind this socket to the local address if necessary. */
    182static int vsock_auto_bind(struct vsock_sock *vsk)
    183{
    184	struct sock *sk = sk_vsock(vsk);
    185	struct sockaddr_vm local_addr;
    186
    187	if (vsock_addr_bound(&vsk->local_addr))
    188		return 0;
    189	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
    190	return __vsock_bind(sk, &local_addr);
    191}
    192
    193static void vsock_init_tables(void)
    194{
    195	int i;
    196
    197	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
    198		INIT_LIST_HEAD(&vsock_bind_table[i]);
    199
    200	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
    201		INIT_LIST_HEAD(&vsock_connected_table[i]);
    202}
    203
    204static void __vsock_insert_bound(struct list_head *list,
    205				 struct vsock_sock *vsk)
    206{
    207	sock_hold(&vsk->sk);
    208	list_add(&vsk->bound_table, list);
    209}
    210
    211static void __vsock_insert_connected(struct list_head *list,
    212				     struct vsock_sock *vsk)
    213{
    214	sock_hold(&vsk->sk);
    215	list_add(&vsk->connected_table, list);
    216}
    217
    218static void __vsock_remove_bound(struct vsock_sock *vsk)
    219{
    220	list_del_init(&vsk->bound_table);
    221	sock_put(&vsk->sk);
    222}
    223
    224static void __vsock_remove_connected(struct vsock_sock *vsk)
    225{
    226	list_del_init(&vsk->connected_table);
    227	sock_put(&vsk->sk);
    228}
    229
    230static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
    231{
    232	struct vsock_sock *vsk;
    233
    234	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
    235		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
    236			return sk_vsock(vsk);
    237
    238		if (addr->svm_port == vsk->local_addr.svm_port &&
    239		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
    240		     addr->svm_cid == VMADDR_CID_ANY))
    241			return sk_vsock(vsk);
    242	}
    243
    244	return NULL;
    245}
    246
    247static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
    248						  struct sockaddr_vm *dst)
    249{
    250	struct vsock_sock *vsk;
    251
    252	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
    253			    connected_table) {
    254		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
    255		    dst->svm_port == vsk->local_addr.svm_port) {
    256			return sk_vsock(vsk);
    257		}
    258	}
    259
    260	return NULL;
    261}
    262
    263static void vsock_insert_unbound(struct vsock_sock *vsk)
    264{
    265	spin_lock_bh(&vsock_table_lock);
    266	__vsock_insert_bound(vsock_unbound_sockets, vsk);
    267	spin_unlock_bh(&vsock_table_lock);
    268}
    269
    270void vsock_insert_connected(struct vsock_sock *vsk)
    271{
    272	struct list_head *list = vsock_connected_sockets(
    273		&vsk->remote_addr, &vsk->local_addr);
    274
    275	spin_lock_bh(&vsock_table_lock);
    276	__vsock_insert_connected(list, vsk);
    277	spin_unlock_bh(&vsock_table_lock);
    278}
    279EXPORT_SYMBOL_GPL(vsock_insert_connected);
    280
    281void vsock_remove_bound(struct vsock_sock *vsk)
    282{
    283	spin_lock_bh(&vsock_table_lock);
    284	if (__vsock_in_bound_table(vsk))
    285		__vsock_remove_bound(vsk);
    286	spin_unlock_bh(&vsock_table_lock);
    287}
    288EXPORT_SYMBOL_GPL(vsock_remove_bound);
    289
    290void vsock_remove_connected(struct vsock_sock *vsk)
    291{
    292	spin_lock_bh(&vsock_table_lock);
    293	if (__vsock_in_connected_table(vsk))
    294		__vsock_remove_connected(vsk);
    295	spin_unlock_bh(&vsock_table_lock);
    296}
    297EXPORT_SYMBOL_GPL(vsock_remove_connected);
    298
    299struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
    300{
    301	struct sock *sk;
    302
    303	spin_lock_bh(&vsock_table_lock);
    304	sk = __vsock_find_bound_socket(addr);
    305	if (sk)
    306		sock_hold(sk);
    307
    308	spin_unlock_bh(&vsock_table_lock);
    309
    310	return sk;
    311}
    312EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
    313
    314struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
    315					 struct sockaddr_vm *dst)
    316{
    317	struct sock *sk;
    318
    319	spin_lock_bh(&vsock_table_lock);
    320	sk = __vsock_find_connected_socket(src, dst);
    321	if (sk)
    322		sock_hold(sk);
    323
    324	spin_unlock_bh(&vsock_table_lock);
    325
    326	return sk;
    327}
    328EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
    329
    330void vsock_remove_sock(struct vsock_sock *vsk)
    331{
    332	vsock_remove_bound(vsk);
    333	vsock_remove_connected(vsk);
    334}
    335EXPORT_SYMBOL_GPL(vsock_remove_sock);
    336
    337void vsock_for_each_connected_socket(struct vsock_transport *transport,
    338				     void (*fn)(struct sock *sk))
    339{
    340	int i;
    341
    342	spin_lock_bh(&vsock_table_lock);
    343
    344	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
    345		struct vsock_sock *vsk;
    346		list_for_each_entry(vsk, &vsock_connected_table[i],
    347				    connected_table) {
    348			if (vsk->transport != transport)
    349				continue;
    350
    351			fn(sk_vsock(vsk));
    352		}
    353	}
    354
    355	spin_unlock_bh(&vsock_table_lock);
    356}
    357EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
    358
    359void vsock_add_pending(struct sock *listener, struct sock *pending)
    360{
    361	struct vsock_sock *vlistener;
    362	struct vsock_sock *vpending;
    363
    364	vlistener = vsock_sk(listener);
    365	vpending = vsock_sk(pending);
    366
    367	sock_hold(pending);
    368	sock_hold(listener);
    369	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
    370}
    371EXPORT_SYMBOL_GPL(vsock_add_pending);
    372
    373void vsock_remove_pending(struct sock *listener, struct sock *pending)
    374{
    375	struct vsock_sock *vpending = vsock_sk(pending);
    376
    377	list_del_init(&vpending->pending_links);
    378	sock_put(listener);
    379	sock_put(pending);
    380}
    381EXPORT_SYMBOL_GPL(vsock_remove_pending);
    382
    383void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
    384{
    385	struct vsock_sock *vlistener;
    386	struct vsock_sock *vconnected;
    387
    388	vlistener = vsock_sk(listener);
    389	vconnected = vsock_sk(connected);
    390
    391	sock_hold(connected);
    392	sock_hold(listener);
    393	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
    394}
    395EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
    396
    397static bool vsock_use_local_transport(unsigned int remote_cid)
    398{
    399	if (!transport_local)
    400		return false;
    401
    402	if (remote_cid == VMADDR_CID_LOCAL)
    403		return true;
    404
    405	if (transport_g2h) {
    406		return remote_cid == transport_g2h->get_local_cid();
    407	} else {
    408		return remote_cid == VMADDR_CID_HOST;
    409	}
    410}
    411
    412static void vsock_deassign_transport(struct vsock_sock *vsk)
    413{
    414	if (!vsk->transport)
    415		return;
    416
    417	vsk->transport->destruct(vsk);
    418	module_put(vsk->transport->module);
    419	vsk->transport = NULL;
    420}
    421
    422/* Assign a transport to a socket and call the .init transport callback.
    423 *
    424 * Note: for connection oriented socket this must be called when vsk->remote_addr
    425 * is set (e.g. during the connect() or when a connection request on a listener
    426 * socket is received).
    427 * The vsk->remote_addr is used to decide which transport to use:
    428 *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
    429 *    g2h is not loaded, will use local transport;
    430 *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
    431 *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
    432 *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
    433 */
    434int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
    435{
    436	const struct vsock_transport *new_transport;
    437	struct sock *sk = sk_vsock(vsk);
    438	unsigned int remote_cid = vsk->remote_addr.svm_cid;
    439	__u8 remote_flags;
    440	int ret;
    441
    442	/* If the packet is coming with the source and destination CIDs higher
    443	 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
    444	 * forwarded to the host should be established. Then the host will
    445	 * need to forward the packets to the guest.
    446	 *
    447	 * The flag is set on the (listen) receive path (psk is not NULL). On
    448	 * the connect path the flag can be set by the user space application.
    449	 */
    450	if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
    451	    vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
    452		vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
    453
    454	remote_flags = vsk->remote_addr.svm_flags;
    455
    456	switch (sk->sk_type) {
    457	case SOCK_DGRAM:
    458		new_transport = transport_dgram;
    459		break;
    460	case SOCK_STREAM:
    461	case SOCK_SEQPACKET:
    462		if (vsock_use_local_transport(remote_cid))
    463			new_transport = transport_local;
    464		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
    465			 (remote_flags & VMADDR_FLAG_TO_HOST))
    466			new_transport = transport_g2h;
    467		else
    468			new_transport = transport_h2g;
    469		break;
    470	default:
    471		return -ESOCKTNOSUPPORT;
    472	}
    473
    474	if (vsk->transport) {
    475		if (vsk->transport == new_transport)
    476			return 0;
    477
    478		/* transport->release() must be called with sock lock acquired.
    479		 * This path can only be taken during vsock_connect(), where we
    480		 * have already held the sock lock. In the other cases, this
    481		 * function is called on a new socket which is not assigned to
    482		 * any transport.
    483		 */
    484		vsk->transport->release(vsk);
    485		vsock_deassign_transport(vsk);
    486	}
    487
    488	/* We increase the module refcnt to prevent the transport unloading
    489	 * while there are open sockets assigned to it.
    490	 */
    491	if (!new_transport || !try_module_get(new_transport->module))
    492		return -ENODEV;
    493
    494	if (sk->sk_type == SOCK_SEQPACKET) {
    495		if (!new_transport->seqpacket_allow ||
    496		    !new_transport->seqpacket_allow(remote_cid)) {
    497			module_put(new_transport->module);
    498			return -ESOCKTNOSUPPORT;
    499		}
    500	}
    501
    502	ret = new_transport->init(vsk, psk);
    503	if (ret) {
    504		module_put(new_transport->module);
    505		return ret;
    506	}
    507
    508	vsk->transport = new_transport;
    509
    510	return 0;
    511}
    512EXPORT_SYMBOL_GPL(vsock_assign_transport);
    513
    514bool vsock_find_cid(unsigned int cid)
    515{
    516	if (transport_g2h && cid == transport_g2h->get_local_cid())
    517		return true;
    518
    519	if (transport_h2g && cid == VMADDR_CID_HOST)
    520		return true;
    521
    522	if (transport_local && cid == VMADDR_CID_LOCAL)
    523		return true;
    524
    525	return false;
    526}
    527EXPORT_SYMBOL_GPL(vsock_find_cid);
    528
    529static struct sock *vsock_dequeue_accept(struct sock *listener)
    530{
    531	struct vsock_sock *vlistener;
    532	struct vsock_sock *vconnected;
    533
    534	vlistener = vsock_sk(listener);
    535
    536	if (list_empty(&vlistener->accept_queue))
    537		return NULL;
    538
    539	vconnected = list_entry(vlistener->accept_queue.next,
    540				struct vsock_sock, accept_queue);
    541
    542	list_del_init(&vconnected->accept_queue);
    543	sock_put(listener);
    544	/* The caller will need a reference on the connected socket so we let
    545	 * it call sock_put().
    546	 */
    547
    548	return sk_vsock(vconnected);
    549}
    550
    551static bool vsock_is_accept_queue_empty(struct sock *sk)
    552{
    553	struct vsock_sock *vsk = vsock_sk(sk);
    554	return list_empty(&vsk->accept_queue);
    555}
    556
    557static bool vsock_is_pending(struct sock *sk)
    558{
    559	struct vsock_sock *vsk = vsock_sk(sk);
    560	return !list_empty(&vsk->pending_links);
    561}
    562
    563static int vsock_send_shutdown(struct sock *sk, int mode)
    564{
    565	struct vsock_sock *vsk = vsock_sk(sk);
    566
    567	if (!vsk->transport)
    568		return -ENODEV;
    569
    570	return vsk->transport->shutdown(vsk, mode);
    571}
    572
    573static void vsock_pending_work(struct work_struct *work)
    574{
    575	struct sock *sk;
    576	struct sock *listener;
    577	struct vsock_sock *vsk;
    578	bool cleanup;
    579
    580	vsk = container_of(work, struct vsock_sock, pending_work.work);
    581	sk = sk_vsock(vsk);
    582	listener = vsk->listener;
    583	cleanup = true;
    584
    585	lock_sock(listener);
    586	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
    587
    588	if (vsock_is_pending(sk)) {
    589		vsock_remove_pending(listener, sk);
    590
    591		sk_acceptq_removed(listener);
    592	} else if (!vsk->rejected) {
    593		/* We are not on the pending list and accept() did not reject
    594		 * us, so we must have been accepted by our user process.  We
    595		 * just need to drop our references to the sockets and be on
    596		 * our way.
    597		 */
    598		cleanup = false;
    599		goto out;
    600	}
    601
    602	/* We need to remove ourself from the global connected sockets list so
    603	 * incoming packets can't find this socket, and to reduce the reference
    604	 * count.
    605	 */
    606	vsock_remove_connected(vsk);
    607
    608	sk->sk_state = TCP_CLOSE;
    609
    610out:
    611	release_sock(sk);
    612	release_sock(listener);
    613	if (cleanup)
    614		sock_put(sk);
    615
    616	sock_put(sk);
    617	sock_put(listener);
    618}
    619
    620/**** SOCKET OPERATIONS ****/
    621
    622static int __vsock_bind_connectible(struct vsock_sock *vsk,
    623				    struct sockaddr_vm *addr)
    624{
    625	static u32 port;
    626	struct sockaddr_vm new_addr;
    627
    628	if (!port)
    629		port = LAST_RESERVED_PORT + 1 +
    630			prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
    631
    632	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
    633
    634	if (addr->svm_port == VMADDR_PORT_ANY) {
    635		bool found = false;
    636		unsigned int i;
    637
    638		for (i = 0; i < MAX_PORT_RETRIES; i++) {
    639			if (port <= LAST_RESERVED_PORT)
    640				port = LAST_RESERVED_PORT + 1;
    641
    642			new_addr.svm_port = port++;
    643
    644			if (!__vsock_find_bound_socket(&new_addr)) {
    645				found = true;
    646				break;
    647			}
    648		}
    649
    650		if (!found)
    651			return -EADDRNOTAVAIL;
    652	} else {
    653		/* If port is in reserved range, ensure caller
    654		 * has necessary privileges.
    655		 */
    656		if (addr->svm_port <= LAST_RESERVED_PORT &&
    657		    !capable(CAP_NET_BIND_SERVICE)) {
    658			return -EACCES;
    659		}
    660
    661		if (__vsock_find_bound_socket(&new_addr))
    662			return -EADDRINUSE;
    663	}
    664
    665	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
    666
    667	/* Remove connection oriented sockets from the unbound list and add them
    668	 * to the hash table for easy lookup by its address.  The unbound list
    669	 * is simply an extra entry at the end of the hash table, a trick used
    670	 * by AF_UNIX.
    671	 */
    672	__vsock_remove_bound(vsk);
    673	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
    674
    675	return 0;
    676}
    677
    678static int __vsock_bind_dgram(struct vsock_sock *vsk,
    679			      struct sockaddr_vm *addr)
    680{
    681	return vsk->transport->dgram_bind(vsk, addr);
    682}
    683
    684static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
    685{
    686	struct vsock_sock *vsk = vsock_sk(sk);
    687	int retval;
    688
    689	/* First ensure this socket isn't already bound. */
    690	if (vsock_addr_bound(&vsk->local_addr))
    691		return -EINVAL;
    692
    693	/* Now bind to the provided address or select appropriate values if
    694	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
    695	 * like AF_INET prevents binding to a non-local IP address (in most
    696	 * cases), we only allow binding to a local CID.
    697	 */
    698	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
    699		return -EADDRNOTAVAIL;
    700
    701	switch (sk->sk_socket->type) {
    702	case SOCK_STREAM:
    703	case SOCK_SEQPACKET:
    704		spin_lock_bh(&vsock_table_lock);
    705		retval = __vsock_bind_connectible(vsk, addr);
    706		spin_unlock_bh(&vsock_table_lock);
    707		break;
    708
    709	case SOCK_DGRAM:
    710		retval = __vsock_bind_dgram(vsk, addr);
    711		break;
    712
    713	default:
    714		retval = -EINVAL;
    715		break;
    716	}
    717
    718	return retval;
    719}
    720
    721static void vsock_connect_timeout(struct work_struct *work);
    722
    723static struct sock *__vsock_create(struct net *net,
    724				   struct socket *sock,
    725				   struct sock *parent,
    726				   gfp_t priority,
    727				   unsigned short type,
    728				   int kern)
    729{
    730	struct sock *sk;
    731	struct vsock_sock *psk;
    732	struct vsock_sock *vsk;
    733
    734	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
    735	if (!sk)
    736		return NULL;
    737
    738	sock_init_data(sock, sk);
    739
    740	/* sk->sk_type is normally set in sock_init_data, but only if sock is
    741	 * non-NULL. We make sure that our sockets always have a type by
    742	 * setting it here if needed.
    743	 */
    744	if (!sock)
    745		sk->sk_type = type;
    746
    747	vsk = vsock_sk(sk);
    748	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
    749	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
    750
    751	sk->sk_destruct = vsock_sk_destruct;
    752	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
    753	sock_reset_flag(sk, SOCK_DONE);
    754
    755	INIT_LIST_HEAD(&vsk->bound_table);
    756	INIT_LIST_HEAD(&vsk->connected_table);
    757	vsk->listener = NULL;
    758	INIT_LIST_HEAD(&vsk->pending_links);
    759	INIT_LIST_HEAD(&vsk->accept_queue);
    760	vsk->rejected = false;
    761	vsk->sent_request = false;
    762	vsk->ignore_connecting_rst = false;
    763	vsk->peer_shutdown = 0;
    764	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
    765	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
    766
    767	psk = parent ? vsock_sk(parent) : NULL;
    768	if (parent) {
    769		vsk->trusted = psk->trusted;
    770		vsk->owner = get_cred(psk->owner);
    771		vsk->connect_timeout = psk->connect_timeout;
    772		vsk->buffer_size = psk->buffer_size;
    773		vsk->buffer_min_size = psk->buffer_min_size;
    774		vsk->buffer_max_size = psk->buffer_max_size;
    775		security_sk_clone(parent, sk);
    776	} else {
    777		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
    778		vsk->owner = get_current_cred();
    779		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
    780		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
    781		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
    782		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
    783	}
    784
    785	return sk;
    786}
    787
    788static bool sock_type_connectible(u16 type)
    789{
    790	return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
    791}
    792
    793static void __vsock_release(struct sock *sk, int level)
    794{
    795	if (sk) {
    796		struct sock *pending;
    797		struct vsock_sock *vsk;
    798
    799		vsk = vsock_sk(sk);
    800		pending = NULL;	/* Compiler warning. */
    801
    802		/* When "level" is SINGLE_DEPTH_NESTING, use the nested
    803		 * version to avoid the warning "possible recursive locking
    804		 * detected". When "level" is 0, lock_sock_nested(sk, level)
    805		 * is the same as lock_sock(sk).
    806		 */
    807		lock_sock_nested(sk, level);
    808
    809		if (vsk->transport)
    810			vsk->transport->release(vsk);
    811		else if (sock_type_connectible(sk->sk_type))
    812			vsock_remove_sock(vsk);
    813
    814		sock_orphan(sk);
    815		sk->sk_shutdown = SHUTDOWN_MASK;
    816
    817		skb_queue_purge(&sk->sk_receive_queue);
    818
    819		/* Clean up any sockets that never were accepted. */
    820		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
    821			__vsock_release(pending, SINGLE_DEPTH_NESTING);
    822			sock_put(pending);
    823		}
    824
    825		release_sock(sk);
    826		sock_put(sk);
    827	}
    828}
    829
    830static void vsock_sk_destruct(struct sock *sk)
    831{
    832	struct vsock_sock *vsk = vsock_sk(sk);
    833
    834	vsock_deassign_transport(vsk);
    835
    836	/* When clearing these addresses, there's no need to set the family and
    837	 * possibly register the address family with the kernel.
    838	 */
    839	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
    840	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
    841
    842	put_cred(vsk->owner);
    843}
    844
    845static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
    846{
    847	int err;
    848
    849	err = sock_queue_rcv_skb(sk, skb);
    850	if (err)
    851		kfree_skb(skb);
    852
    853	return err;
    854}
    855
    856struct sock *vsock_create_connected(struct sock *parent)
    857{
    858	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
    859			      parent->sk_type, 0);
    860}
    861EXPORT_SYMBOL_GPL(vsock_create_connected);
    862
    863s64 vsock_stream_has_data(struct vsock_sock *vsk)
    864{
    865	return vsk->transport->stream_has_data(vsk);
    866}
    867EXPORT_SYMBOL_GPL(vsock_stream_has_data);
    868
    869static s64 vsock_connectible_has_data(struct vsock_sock *vsk)
    870{
    871	struct sock *sk = sk_vsock(vsk);
    872
    873	if (sk->sk_type == SOCK_SEQPACKET)
    874		return vsk->transport->seqpacket_has_data(vsk);
    875	else
    876		return vsock_stream_has_data(vsk);
    877}
    878
    879s64 vsock_stream_has_space(struct vsock_sock *vsk)
    880{
    881	return vsk->transport->stream_has_space(vsk);
    882}
    883EXPORT_SYMBOL_GPL(vsock_stream_has_space);
    884
    885static int vsock_release(struct socket *sock)
    886{
    887	__vsock_release(sock->sk, 0);
    888	sock->sk = NULL;
    889	sock->state = SS_FREE;
    890
    891	return 0;
    892}
    893
    894static int
    895vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
    896{
    897	int err;
    898	struct sock *sk;
    899	struct sockaddr_vm *vm_addr;
    900
    901	sk = sock->sk;
    902
    903	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
    904		return -EINVAL;
    905
    906	lock_sock(sk);
    907	err = __vsock_bind(sk, vm_addr);
    908	release_sock(sk);
    909
    910	return err;
    911}
    912
    913static int vsock_getname(struct socket *sock,
    914			 struct sockaddr *addr, int peer)
    915{
    916	int err;
    917	struct sock *sk;
    918	struct vsock_sock *vsk;
    919	struct sockaddr_vm *vm_addr;
    920
    921	sk = sock->sk;
    922	vsk = vsock_sk(sk);
    923	err = 0;
    924
    925	lock_sock(sk);
    926
    927	if (peer) {
    928		if (sock->state != SS_CONNECTED) {
    929			err = -ENOTCONN;
    930			goto out;
    931		}
    932		vm_addr = &vsk->remote_addr;
    933	} else {
    934		vm_addr = &vsk->local_addr;
    935	}
    936
    937	if (!vm_addr) {
    938		err = -EINVAL;
    939		goto out;
    940	}
    941
    942	/* sys_getsockname() and sys_getpeername() pass us a
    943	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
    944	 * that macro is defined in socket.c instead of .h, so we hardcode its
    945	 * value here.
    946	 */
    947	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
    948	memcpy(addr, vm_addr, sizeof(*vm_addr));
    949	err = sizeof(*vm_addr);
    950
    951out:
    952	release_sock(sk);
    953	return err;
    954}
    955
    956static int vsock_shutdown(struct socket *sock, int mode)
    957{
    958	int err;
    959	struct sock *sk;
    960
    961	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
    962	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
    963	 * here like the other address families do.  Note also that the
    964	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
    965	 * which is what we want.
    966	 */
    967	mode++;
    968
    969	if ((mode & ~SHUTDOWN_MASK) || !mode)
    970		return -EINVAL;
    971
    972	/* If this is a connection oriented socket and it is not connected then
    973	 * bail out immediately.  If it is a DGRAM socket then we must first
    974	 * kick the socket so that it wakes up from any sleeping calls, for
    975	 * example recv(), and then afterwards return the error.
    976	 */
    977
    978	sk = sock->sk;
    979
    980	lock_sock(sk);
    981	if (sock->state == SS_UNCONNECTED) {
    982		err = -ENOTCONN;
    983		if (sock_type_connectible(sk->sk_type))
    984			goto out;
    985	} else {
    986		sock->state = SS_DISCONNECTING;
    987		err = 0;
    988	}
    989
    990	/* Receive and send shutdowns are treated alike. */
    991	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
    992	if (mode) {
    993		sk->sk_shutdown |= mode;
    994		sk->sk_state_change(sk);
    995
    996		if (sock_type_connectible(sk->sk_type)) {
    997			sock_reset_flag(sk, SOCK_DONE);
    998			vsock_send_shutdown(sk, mode);
    999		}
   1000	}
   1001
   1002out:
   1003	release_sock(sk);
   1004	return err;
   1005}
   1006
   1007static __poll_t vsock_poll(struct file *file, struct socket *sock,
   1008			       poll_table *wait)
   1009{
   1010	struct sock *sk;
   1011	__poll_t mask;
   1012	struct vsock_sock *vsk;
   1013
   1014	sk = sock->sk;
   1015	vsk = vsock_sk(sk);
   1016
   1017	poll_wait(file, sk_sleep(sk), wait);
   1018	mask = 0;
   1019
   1020	if (sk->sk_err)
   1021		/* Signify that there has been an error on this socket. */
   1022		mask |= EPOLLERR;
   1023
   1024	/* INET sockets treat local write shutdown and peer write shutdown as a
   1025	 * case of EPOLLHUP set.
   1026	 */
   1027	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
   1028	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
   1029	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
   1030		mask |= EPOLLHUP;
   1031	}
   1032
   1033	if (sk->sk_shutdown & RCV_SHUTDOWN ||
   1034	    vsk->peer_shutdown & SEND_SHUTDOWN) {
   1035		mask |= EPOLLRDHUP;
   1036	}
   1037
   1038	if (sock->type == SOCK_DGRAM) {
   1039		/* For datagram sockets we can read if there is something in
   1040		 * the queue and write as long as the socket isn't shutdown for
   1041		 * sending.
   1042		 */
   1043		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
   1044		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
   1045			mask |= EPOLLIN | EPOLLRDNORM;
   1046		}
   1047
   1048		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
   1049			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
   1050
   1051	} else if (sock_type_connectible(sk->sk_type)) {
   1052		const struct vsock_transport *transport;
   1053
   1054		lock_sock(sk);
   1055
   1056		transport = vsk->transport;
   1057
   1058		/* Listening sockets that have connections in their accept
   1059		 * queue can be read.
   1060		 */
   1061		if (sk->sk_state == TCP_LISTEN
   1062		    && !vsock_is_accept_queue_empty(sk))
   1063			mask |= EPOLLIN | EPOLLRDNORM;
   1064
   1065		/* If there is something in the queue then we can read. */
   1066		if (transport && transport->stream_is_active(vsk) &&
   1067		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
   1068			bool data_ready_now = false;
   1069			int ret = transport->notify_poll_in(
   1070					vsk, 1, &data_ready_now);
   1071			if (ret < 0) {
   1072				mask |= EPOLLERR;
   1073			} else {
   1074				if (data_ready_now)
   1075					mask |= EPOLLIN | EPOLLRDNORM;
   1076
   1077			}
   1078		}
   1079
   1080		/* Sockets whose connections have been closed, reset, or
   1081		 * terminated should also be considered read, and we check the
   1082		 * shutdown flag for that.
   1083		 */
   1084		if (sk->sk_shutdown & RCV_SHUTDOWN ||
   1085		    vsk->peer_shutdown & SEND_SHUTDOWN) {
   1086			mask |= EPOLLIN | EPOLLRDNORM;
   1087		}
   1088
   1089		/* Connected sockets that can produce data can be written. */
   1090		if (transport && sk->sk_state == TCP_ESTABLISHED) {
   1091			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
   1092				bool space_avail_now = false;
   1093				int ret = transport->notify_poll_out(
   1094						vsk, 1, &space_avail_now);
   1095				if (ret < 0) {
   1096					mask |= EPOLLERR;
   1097				} else {
   1098					if (space_avail_now)
   1099						/* Remove EPOLLWRBAND since INET
   1100						 * sockets are not setting it.
   1101						 */
   1102						mask |= EPOLLOUT | EPOLLWRNORM;
   1103
   1104				}
   1105			}
   1106		}
   1107
   1108		/* Simulate INET socket poll behaviors, which sets
   1109		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
   1110		 * but local send is not shutdown.
   1111		 */
   1112		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
   1113			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
   1114				mask |= EPOLLOUT | EPOLLWRNORM;
   1115
   1116		}
   1117
   1118		release_sock(sk);
   1119	}
   1120
   1121	return mask;
   1122}
   1123
   1124static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
   1125			       size_t len)
   1126{
   1127	int err;
   1128	struct sock *sk;
   1129	struct vsock_sock *vsk;
   1130	struct sockaddr_vm *remote_addr;
   1131	const struct vsock_transport *transport;
   1132
   1133	if (msg->msg_flags & MSG_OOB)
   1134		return -EOPNOTSUPP;
   1135
   1136	/* For now, MSG_DONTWAIT is always assumed... */
   1137	err = 0;
   1138	sk = sock->sk;
   1139	vsk = vsock_sk(sk);
   1140
   1141	lock_sock(sk);
   1142
   1143	transport = vsk->transport;
   1144
   1145	err = vsock_auto_bind(vsk);
   1146	if (err)
   1147		goto out;
   1148
   1149
   1150	/* If the provided message contains an address, use that.  Otherwise
   1151	 * fall back on the socket's remote handle (if it has been connected).
   1152	 */
   1153	if (msg->msg_name &&
   1154	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
   1155			    &remote_addr) == 0) {
   1156		/* Ensure this address is of the right type and is a valid
   1157		 * destination.
   1158		 */
   1159
   1160		if (remote_addr->svm_cid == VMADDR_CID_ANY)
   1161			remote_addr->svm_cid = transport->get_local_cid();
   1162
   1163		if (!vsock_addr_bound(remote_addr)) {
   1164			err = -EINVAL;
   1165			goto out;
   1166		}
   1167	} else if (sock->state == SS_CONNECTED) {
   1168		remote_addr = &vsk->remote_addr;
   1169
   1170		if (remote_addr->svm_cid == VMADDR_CID_ANY)
   1171			remote_addr->svm_cid = transport->get_local_cid();
   1172
   1173		/* XXX Should connect() or this function ensure remote_addr is
   1174		 * bound?
   1175		 */
   1176		if (!vsock_addr_bound(&vsk->remote_addr)) {
   1177			err = -EINVAL;
   1178			goto out;
   1179		}
   1180	} else {
   1181		err = -EINVAL;
   1182		goto out;
   1183	}
   1184
   1185	if (!transport->dgram_allow(remote_addr->svm_cid,
   1186				    remote_addr->svm_port)) {
   1187		err = -EINVAL;
   1188		goto out;
   1189	}
   1190
   1191	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
   1192
   1193out:
   1194	release_sock(sk);
   1195	return err;
   1196}
   1197
   1198static int vsock_dgram_connect(struct socket *sock,
   1199			       struct sockaddr *addr, int addr_len, int flags)
   1200{
   1201	int err;
   1202	struct sock *sk;
   1203	struct vsock_sock *vsk;
   1204	struct sockaddr_vm *remote_addr;
   1205
   1206	sk = sock->sk;
   1207	vsk = vsock_sk(sk);
   1208
   1209	err = vsock_addr_cast(addr, addr_len, &remote_addr);
   1210	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
   1211		lock_sock(sk);
   1212		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
   1213				VMADDR_PORT_ANY);
   1214		sock->state = SS_UNCONNECTED;
   1215		release_sock(sk);
   1216		return 0;
   1217	} else if (err != 0)
   1218		return -EINVAL;
   1219
   1220	lock_sock(sk);
   1221
   1222	err = vsock_auto_bind(vsk);
   1223	if (err)
   1224		goto out;
   1225
   1226	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
   1227					 remote_addr->svm_port)) {
   1228		err = -EINVAL;
   1229		goto out;
   1230	}
   1231
   1232	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
   1233	sock->state = SS_CONNECTED;
   1234
   1235out:
   1236	release_sock(sk);
   1237	return err;
   1238}
   1239
   1240static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
   1241			       size_t len, int flags)
   1242{
   1243	struct vsock_sock *vsk = vsock_sk(sock->sk);
   1244
   1245	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
   1246}
   1247
   1248static const struct proto_ops vsock_dgram_ops = {
   1249	.family = PF_VSOCK,
   1250	.owner = THIS_MODULE,
   1251	.release = vsock_release,
   1252	.bind = vsock_bind,
   1253	.connect = vsock_dgram_connect,
   1254	.socketpair = sock_no_socketpair,
   1255	.accept = sock_no_accept,
   1256	.getname = vsock_getname,
   1257	.poll = vsock_poll,
   1258	.ioctl = sock_no_ioctl,
   1259	.listen = sock_no_listen,
   1260	.shutdown = vsock_shutdown,
   1261	.sendmsg = vsock_dgram_sendmsg,
   1262	.recvmsg = vsock_dgram_recvmsg,
   1263	.mmap = sock_no_mmap,
   1264	.sendpage = sock_no_sendpage,
   1265};
   1266
   1267static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
   1268{
   1269	const struct vsock_transport *transport = vsk->transport;
   1270
   1271	if (!transport || !transport->cancel_pkt)
   1272		return -EOPNOTSUPP;
   1273
   1274	return transport->cancel_pkt(vsk);
   1275}
   1276
   1277static void vsock_connect_timeout(struct work_struct *work)
   1278{
   1279	struct sock *sk;
   1280	struct vsock_sock *vsk;
   1281
   1282	vsk = container_of(work, struct vsock_sock, connect_work.work);
   1283	sk = sk_vsock(vsk);
   1284
   1285	lock_sock(sk);
   1286	if (sk->sk_state == TCP_SYN_SENT &&
   1287	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
   1288		sk->sk_state = TCP_CLOSE;
   1289		sk->sk_err = ETIMEDOUT;
   1290		sk_error_report(sk);
   1291		vsock_transport_cancel_pkt(vsk);
   1292	}
   1293	release_sock(sk);
   1294
   1295	sock_put(sk);
   1296}
   1297
   1298static int vsock_connect(struct socket *sock, struct sockaddr *addr,
   1299			 int addr_len, int flags)
   1300{
   1301	int err;
   1302	struct sock *sk;
   1303	struct vsock_sock *vsk;
   1304	const struct vsock_transport *transport;
   1305	struct sockaddr_vm *remote_addr;
   1306	long timeout;
   1307	DEFINE_WAIT(wait);
   1308
   1309	err = 0;
   1310	sk = sock->sk;
   1311	vsk = vsock_sk(sk);
   1312
   1313	lock_sock(sk);
   1314
   1315	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
   1316	switch (sock->state) {
   1317	case SS_CONNECTED:
   1318		err = -EISCONN;
   1319		goto out;
   1320	case SS_DISCONNECTING:
   1321		err = -EINVAL;
   1322		goto out;
   1323	case SS_CONNECTING:
   1324		/* This continues on so we can move sock into the SS_CONNECTED
   1325		 * state once the connection has completed (at which point err
   1326		 * will be set to zero also).  Otherwise, we will either wait
   1327		 * for the connection or return -EALREADY should this be a
   1328		 * non-blocking call.
   1329		 */
   1330		err = -EALREADY;
   1331		if (flags & O_NONBLOCK)
   1332			goto out;
   1333		break;
   1334	default:
   1335		if ((sk->sk_state == TCP_LISTEN) ||
   1336		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
   1337			err = -EINVAL;
   1338			goto out;
   1339		}
   1340
   1341		/* Set the remote address that we are connecting to. */
   1342		memcpy(&vsk->remote_addr, remote_addr,
   1343		       sizeof(vsk->remote_addr));
   1344
   1345		err = vsock_assign_transport(vsk, NULL);
   1346		if (err)
   1347			goto out;
   1348
   1349		transport = vsk->transport;
   1350
   1351		/* The hypervisor and well-known contexts do not have socket
   1352		 * endpoints.
   1353		 */
   1354		if (!transport ||
   1355		    !transport->stream_allow(remote_addr->svm_cid,
   1356					     remote_addr->svm_port)) {
   1357			err = -ENETUNREACH;
   1358			goto out;
   1359		}
   1360
   1361		err = vsock_auto_bind(vsk);
   1362		if (err)
   1363			goto out;
   1364
   1365		sk->sk_state = TCP_SYN_SENT;
   1366
   1367		err = transport->connect(vsk);
   1368		if (err < 0)
   1369			goto out;
   1370
   1371		/* Mark sock as connecting and set the error code to in
   1372		 * progress in case this is a non-blocking connect.
   1373		 */
   1374		sock->state = SS_CONNECTING;
   1375		err = -EINPROGRESS;
   1376	}
   1377
   1378	/* The receive path will handle all communication until we are able to
   1379	 * enter the connected state.  Here we wait for the connection to be
   1380	 * completed or a notification of an error.
   1381	 */
   1382	timeout = vsk->connect_timeout;
   1383	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
   1384
   1385	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
   1386		if (flags & O_NONBLOCK) {
   1387			/* If we're not going to block, we schedule a timeout
   1388			 * function to generate a timeout on the connection
   1389			 * attempt, in case the peer doesn't respond in a
   1390			 * timely manner. We hold on to the socket until the
   1391			 * timeout fires.
   1392			 */
   1393			sock_hold(sk);
   1394			schedule_delayed_work(&vsk->connect_work, timeout);
   1395
   1396			/* Skip ahead to preserve error code set above. */
   1397			goto out_wait;
   1398		}
   1399
   1400		release_sock(sk);
   1401		timeout = schedule_timeout(timeout);
   1402		lock_sock(sk);
   1403
   1404		if (signal_pending(current)) {
   1405			err = sock_intr_errno(timeout);
   1406			sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
   1407			sock->state = SS_UNCONNECTED;
   1408			vsock_transport_cancel_pkt(vsk);
   1409			vsock_remove_connected(vsk);
   1410			goto out_wait;
   1411		} else if (timeout == 0) {
   1412			err = -ETIMEDOUT;
   1413			sk->sk_state = TCP_CLOSE;
   1414			sock->state = SS_UNCONNECTED;
   1415			vsock_transport_cancel_pkt(vsk);
   1416			goto out_wait;
   1417		}
   1418
   1419		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
   1420	}
   1421
   1422	if (sk->sk_err) {
   1423		err = -sk->sk_err;
   1424		sk->sk_state = TCP_CLOSE;
   1425		sock->state = SS_UNCONNECTED;
   1426	} else {
   1427		err = 0;
   1428	}
   1429
   1430out_wait:
   1431	finish_wait(sk_sleep(sk), &wait);
   1432out:
   1433	release_sock(sk);
   1434	return err;
   1435}
   1436
   1437static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
   1438			bool kern)
   1439{
   1440	struct sock *listener;
   1441	int err;
   1442	struct sock *connected;
   1443	struct vsock_sock *vconnected;
   1444	long timeout;
   1445	DEFINE_WAIT(wait);
   1446
   1447	err = 0;
   1448	listener = sock->sk;
   1449
   1450	lock_sock(listener);
   1451
   1452	if (!sock_type_connectible(sock->type)) {
   1453		err = -EOPNOTSUPP;
   1454		goto out;
   1455	}
   1456
   1457	if (listener->sk_state != TCP_LISTEN) {
   1458		err = -EINVAL;
   1459		goto out;
   1460	}
   1461
   1462	/* Wait for children sockets to appear; these are the new sockets
   1463	 * created upon connection establishment.
   1464	 */
   1465	timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
   1466	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
   1467
   1468	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
   1469	       listener->sk_err == 0) {
   1470		release_sock(listener);
   1471		timeout = schedule_timeout(timeout);
   1472		finish_wait(sk_sleep(listener), &wait);
   1473		lock_sock(listener);
   1474
   1475		if (signal_pending(current)) {
   1476			err = sock_intr_errno(timeout);
   1477			goto out;
   1478		} else if (timeout == 0) {
   1479			err = -EAGAIN;
   1480			goto out;
   1481		}
   1482
   1483		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
   1484	}
   1485	finish_wait(sk_sleep(listener), &wait);
   1486
   1487	if (listener->sk_err)
   1488		err = -listener->sk_err;
   1489
   1490	if (connected) {
   1491		sk_acceptq_removed(listener);
   1492
   1493		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
   1494		vconnected = vsock_sk(connected);
   1495
   1496		/* If the listener socket has received an error, then we should
   1497		 * reject this socket and return.  Note that we simply mark the
   1498		 * socket rejected, drop our reference, and let the cleanup
   1499		 * function handle the cleanup; the fact that we found it in
   1500		 * the listener's accept queue guarantees that the cleanup
   1501		 * function hasn't run yet.
   1502		 */
   1503		if (err) {
   1504			vconnected->rejected = true;
   1505		} else {
   1506			newsock->state = SS_CONNECTED;
   1507			sock_graft(connected, newsock);
   1508		}
   1509
   1510		release_sock(connected);
   1511		sock_put(connected);
   1512	}
   1513
   1514out:
   1515	release_sock(listener);
   1516	return err;
   1517}
   1518
   1519static int vsock_listen(struct socket *sock, int backlog)
   1520{
   1521	int err;
   1522	struct sock *sk;
   1523	struct vsock_sock *vsk;
   1524
   1525	sk = sock->sk;
   1526
   1527	lock_sock(sk);
   1528
   1529	if (!sock_type_connectible(sk->sk_type)) {
   1530		err = -EOPNOTSUPP;
   1531		goto out;
   1532	}
   1533
   1534	if (sock->state != SS_UNCONNECTED) {
   1535		err = -EINVAL;
   1536		goto out;
   1537	}
   1538
   1539	vsk = vsock_sk(sk);
   1540
   1541	if (!vsock_addr_bound(&vsk->local_addr)) {
   1542		err = -EINVAL;
   1543		goto out;
   1544	}
   1545
   1546	sk->sk_max_ack_backlog = backlog;
   1547	sk->sk_state = TCP_LISTEN;
   1548
   1549	err = 0;
   1550
   1551out:
   1552	release_sock(sk);
   1553	return err;
   1554}
   1555
   1556static void vsock_update_buffer_size(struct vsock_sock *vsk,
   1557				     const struct vsock_transport *transport,
   1558				     u64 val)
   1559{
   1560	if (val > vsk->buffer_max_size)
   1561		val = vsk->buffer_max_size;
   1562
   1563	if (val < vsk->buffer_min_size)
   1564		val = vsk->buffer_min_size;
   1565
   1566	if (val != vsk->buffer_size &&
   1567	    transport && transport->notify_buffer_size)
   1568		transport->notify_buffer_size(vsk, &val);
   1569
   1570	vsk->buffer_size = val;
   1571}
   1572
   1573static int vsock_connectible_setsockopt(struct socket *sock,
   1574					int level,
   1575					int optname,
   1576					sockptr_t optval,
   1577					unsigned int optlen)
   1578{
   1579	int err;
   1580	struct sock *sk;
   1581	struct vsock_sock *vsk;
   1582	const struct vsock_transport *transport;
   1583	u64 val;
   1584
   1585	if (level != AF_VSOCK)
   1586		return -ENOPROTOOPT;
   1587
   1588#define COPY_IN(_v)                                       \
   1589	do {						  \
   1590		if (optlen < sizeof(_v)) {		  \
   1591			err = -EINVAL;			  \
   1592			goto exit;			  \
   1593		}					  \
   1594		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
   1595			err = -EFAULT;					\
   1596			goto exit;					\
   1597		}							\
   1598	} while (0)
   1599
   1600	err = 0;
   1601	sk = sock->sk;
   1602	vsk = vsock_sk(sk);
   1603
   1604	lock_sock(sk);
   1605
   1606	transport = vsk->transport;
   1607
   1608	switch (optname) {
   1609	case SO_VM_SOCKETS_BUFFER_SIZE:
   1610		COPY_IN(val);
   1611		vsock_update_buffer_size(vsk, transport, val);
   1612		break;
   1613
   1614	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
   1615		COPY_IN(val);
   1616		vsk->buffer_max_size = val;
   1617		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
   1618		break;
   1619
   1620	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
   1621		COPY_IN(val);
   1622		vsk->buffer_min_size = val;
   1623		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
   1624		break;
   1625
   1626	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
   1627	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
   1628		struct __kernel_sock_timeval tv;
   1629
   1630		err = sock_copy_user_timeval(&tv, optval, optlen,
   1631					     optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
   1632		if (err)
   1633			break;
   1634		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
   1635		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
   1636			vsk->connect_timeout = tv.tv_sec * HZ +
   1637				DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
   1638			if (vsk->connect_timeout == 0)
   1639				vsk->connect_timeout =
   1640				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
   1641
   1642		} else {
   1643			err = -ERANGE;
   1644		}
   1645		break;
   1646	}
   1647
   1648	default:
   1649		err = -ENOPROTOOPT;
   1650		break;
   1651	}
   1652
   1653#undef COPY_IN
   1654
   1655exit:
   1656	release_sock(sk);
   1657	return err;
   1658}
   1659
   1660static int vsock_connectible_getsockopt(struct socket *sock,
   1661					int level, int optname,
   1662					char __user *optval,
   1663					int __user *optlen)
   1664{
   1665	struct sock *sk = sock->sk;
   1666	struct vsock_sock *vsk = vsock_sk(sk);
   1667
   1668	union {
   1669		u64 val64;
   1670		struct old_timeval32 tm32;
   1671		struct __kernel_old_timeval tm;
   1672		struct  __kernel_sock_timeval stm;
   1673	} v;
   1674
   1675	int lv = sizeof(v.val64);
   1676	int len;
   1677
   1678	if (level != AF_VSOCK)
   1679		return -ENOPROTOOPT;
   1680
   1681	if (get_user(len, optlen))
   1682		return -EFAULT;
   1683
   1684	memset(&v, 0, sizeof(v));
   1685
   1686	switch (optname) {
   1687	case SO_VM_SOCKETS_BUFFER_SIZE:
   1688		v.val64 = vsk->buffer_size;
   1689		break;
   1690
   1691	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
   1692		v.val64 = vsk->buffer_max_size;
   1693		break;
   1694
   1695	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
   1696		v.val64 = vsk->buffer_min_size;
   1697		break;
   1698
   1699	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
   1700	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
   1701		lv = sock_get_timeout(vsk->connect_timeout, &v,
   1702				      optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
   1703		break;
   1704
   1705	default:
   1706		return -ENOPROTOOPT;
   1707	}
   1708
   1709	if (len < lv)
   1710		return -EINVAL;
   1711	if (len > lv)
   1712		len = lv;
   1713	if (copy_to_user(optval, &v, len))
   1714		return -EFAULT;
   1715
   1716	if (put_user(len, optlen))
   1717		return -EFAULT;
   1718
   1719	return 0;
   1720}
   1721
   1722static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
   1723				     size_t len)
   1724{
   1725	struct sock *sk;
   1726	struct vsock_sock *vsk;
   1727	const struct vsock_transport *transport;
   1728	ssize_t total_written;
   1729	long timeout;
   1730	int err;
   1731	struct vsock_transport_send_notify_data send_data;
   1732	DEFINE_WAIT_FUNC(wait, woken_wake_function);
   1733
   1734	sk = sock->sk;
   1735	vsk = vsock_sk(sk);
   1736	total_written = 0;
   1737	err = 0;
   1738
   1739	if (msg->msg_flags & MSG_OOB)
   1740		return -EOPNOTSUPP;
   1741
   1742	lock_sock(sk);
   1743
   1744	transport = vsk->transport;
   1745
   1746	/* Callers should not provide a destination with connection oriented
   1747	 * sockets.
   1748	 */
   1749	if (msg->msg_namelen) {
   1750		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
   1751		goto out;
   1752	}
   1753
   1754	/* Send data only if both sides are not shutdown in the direction. */
   1755	if (sk->sk_shutdown & SEND_SHUTDOWN ||
   1756	    vsk->peer_shutdown & RCV_SHUTDOWN) {
   1757		err = -EPIPE;
   1758		goto out;
   1759	}
   1760
   1761	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
   1762	    !vsock_addr_bound(&vsk->local_addr)) {
   1763		err = -ENOTCONN;
   1764		goto out;
   1765	}
   1766
   1767	if (!vsock_addr_bound(&vsk->remote_addr)) {
   1768		err = -EDESTADDRREQ;
   1769		goto out;
   1770	}
   1771
   1772	/* Wait for room in the produce queue to enqueue our user's data. */
   1773	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
   1774
   1775	err = transport->notify_send_init(vsk, &send_data);
   1776	if (err < 0)
   1777		goto out;
   1778
   1779	while (total_written < len) {
   1780		ssize_t written;
   1781
   1782		add_wait_queue(sk_sleep(sk), &wait);
   1783		while (vsock_stream_has_space(vsk) == 0 &&
   1784		       sk->sk_err == 0 &&
   1785		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
   1786		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
   1787
   1788			/* Don't wait for non-blocking sockets. */
   1789			if (timeout == 0) {
   1790				err = -EAGAIN;
   1791				remove_wait_queue(sk_sleep(sk), &wait);
   1792				goto out_err;
   1793			}
   1794
   1795			err = transport->notify_send_pre_block(vsk, &send_data);
   1796			if (err < 0) {
   1797				remove_wait_queue(sk_sleep(sk), &wait);
   1798				goto out_err;
   1799			}
   1800
   1801			release_sock(sk);
   1802			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
   1803			lock_sock(sk);
   1804			if (signal_pending(current)) {
   1805				err = sock_intr_errno(timeout);
   1806				remove_wait_queue(sk_sleep(sk), &wait);
   1807				goto out_err;
   1808			} else if (timeout == 0) {
   1809				err = -EAGAIN;
   1810				remove_wait_queue(sk_sleep(sk), &wait);
   1811				goto out_err;
   1812			}
   1813		}
   1814		remove_wait_queue(sk_sleep(sk), &wait);
   1815
   1816		/* These checks occur both as part of and after the loop
   1817		 * conditional since we need to check before and after
   1818		 * sleeping.
   1819		 */
   1820		if (sk->sk_err) {
   1821			err = -sk->sk_err;
   1822			goto out_err;
   1823		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
   1824			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
   1825			err = -EPIPE;
   1826			goto out_err;
   1827		}
   1828
   1829		err = transport->notify_send_pre_enqueue(vsk, &send_data);
   1830		if (err < 0)
   1831			goto out_err;
   1832
   1833		/* Note that enqueue will only write as many bytes as are free
   1834		 * in the produce queue, so we don't need to ensure len is
   1835		 * smaller than the queue size.  It is the caller's
   1836		 * responsibility to check how many bytes we were able to send.
   1837		 */
   1838
   1839		if (sk->sk_type == SOCK_SEQPACKET) {
   1840			written = transport->seqpacket_enqueue(vsk,
   1841						msg, len - total_written);
   1842		} else {
   1843			written = transport->stream_enqueue(vsk,
   1844					msg, len - total_written);
   1845		}
   1846		if (written < 0) {
   1847			err = -ENOMEM;
   1848			goto out_err;
   1849		}
   1850
   1851		total_written += written;
   1852
   1853		err = transport->notify_send_post_enqueue(
   1854				vsk, written, &send_data);
   1855		if (err < 0)
   1856			goto out_err;
   1857
   1858	}
   1859
   1860out_err:
   1861	if (total_written > 0) {
   1862		/* Return number of written bytes only if:
   1863		 * 1) SOCK_STREAM socket.
   1864		 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
   1865		 */
   1866		if (sk->sk_type == SOCK_STREAM || total_written == len)
   1867			err = total_written;
   1868	}
   1869out:
   1870	release_sock(sk);
   1871	return err;
   1872}
   1873
   1874static int vsock_connectible_wait_data(struct sock *sk,
   1875				       struct wait_queue_entry *wait,
   1876				       long timeout,
   1877				       struct vsock_transport_recv_notify_data *recv_data,
   1878				       size_t target)
   1879{
   1880	const struct vsock_transport *transport;
   1881	struct vsock_sock *vsk;
   1882	s64 data;
   1883	int err;
   1884
   1885	vsk = vsock_sk(sk);
   1886	err = 0;
   1887	transport = vsk->transport;
   1888
   1889	while ((data = vsock_connectible_has_data(vsk)) == 0) {
   1890		prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
   1891
   1892		if (sk->sk_err != 0 ||
   1893		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
   1894		    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
   1895			break;
   1896		}
   1897
   1898		/* Don't wait for non-blocking sockets. */
   1899		if (timeout == 0) {
   1900			err = -EAGAIN;
   1901			break;
   1902		}
   1903
   1904		if (recv_data) {
   1905			err = transport->notify_recv_pre_block(vsk, target, recv_data);
   1906			if (err < 0)
   1907				break;
   1908		}
   1909
   1910		release_sock(sk);
   1911		timeout = schedule_timeout(timeout);
   1912		lock_sock(sk);
   1913
   1914		if (signal_pending(current)) {
   1915			err = sock_intr_errno(timeout);
   1916			break;
   1917		} else if (timeout == 0) {
   1918			err = -EAGAIN;
   1919			break;
   1920		}
   1921	}
   1922
   1923	finish_wait(sk_sleep(sk), wait);
   1924
   1925	if (err)
   1926		return err;
   1927
   1928	/* Internal transport error when checking for available
   1929	 * data. XXX This should be changed to a connection
   1930	 * reset in a later change.
   1931	 */
   1932	if (data < 0)
   1933		return -ENOMEM;
   1934
   1935	return data;
   1936}
   1937
   1938static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
   1939				  size_t len, int flags)
   1940{
   1941	struct vsock_transport_recv_notify_data recv_data;
   1942	const struct vsock_transport *transport;
   1943	struct vsock_sock *vsk;
   1944	ssize_t copied;
   1945	size_t target;
   1946	long timeout;
   1947	int err;
   1948
   1949	DEFINE_WAIT(wait);
   1950
   1951	vsk = vsock_sk(sk);
   1952	transport = vsk->transport;
   1953
   1954	/* We must not copy less than target bytes into the user's buffer
   1955	 * before returning successfully, so we wait for the consume queue to
   1956	 * have that much data to consume before dequeueing.  Note that this
   1957	 * makes it impossible to handle cases where target is greater than the
   1958	 * queue size.
   1959	 */
   1960	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
   1961	if (target >= transport->stream_rcvhiwat(vsk)) {
   1962		err = -ENOMEM;
   1963		goto out;
   1964	}
   1965	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
   1966	copied = 0;
   1967
   1968	err = transport->notify_recv_init(vsk, target, &recv_data);
   1969	if (err < 0)
   1970		goto out;
   1971
   1972
   1973	while (1) {
   1974		ssize_t read;
   1975
   1976		err = vsock_connectible_wait_data(sk, &wait, timeout,
   1977						  &recv_data, target);
   1978		if (err <= 0)
   1979			break;
   1980
   1981		err = transport->notify_recv_pre_dequeue(vsk, target,
   1982							 &recv_data);
   1983		if (err < 0)
   1984			break;
   1985
   1986		read = transport->stream_dequeue(vsk, msg, len - copied, flags);
   1987		if (read < 0) {
   1988			err = -ENOMEM;
   1989			break;
   1990		}
   1991
   1992		copied += read;
   1993
   1994		err = transport->notify_recv_post_dequeue(vsk, target, read,
   1995						!(flags & MSG_PEEK), &recv_data);
   1996		if (err < 0)
   1997			goto out;
   1998
   1999		if (read >= target || flags & MSG_PEEK)
   2000			break;
   2001
   2002		target -= read;
   2003	}
   2004
   2005	if (sk->sk_err)
   2006		err = -sk->sk_err;
   2007	else if (sk->sk_shutdown & RCV_SHUTDOWN)
   2008		err = 0;
   2009
   2010	if (copied > 0)
   2011		err = copied;
   2012
   2013out:
   2014	return err;
   2015}
   2016
   2017static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
   2018				     size_t len, int flags)
   2019{
   2020	const struct vsock_transport *transport;
   2021	struct vsock_sock *vsk;
   2022	ssize_t msg_len;
   2023	long timeout;
   2024	int err = 0;
   2025	DEFINE_WAIT(wait);
   2026
   2027	vsk = vsock_sk(sk);
   2028	transport = vsk->transport;
   2029
   2030	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
   2031
   2032	err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
   2033	if (err <= 0)
   2034		goto out;
   2035
   2036	msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
   2037
   2038	if (msg_len < 0) {
   2039		err = -ENOMEM;
   2040		goto out;
   2041	}
   2042
   2043	if (sk->sk_err) {
   2044		err = -sk->sk_err;
   2045	} else if (sk->sk_shutdown & RCV_SHUTDOWN) {
   2046		err = 0;
   2047	} else {
   2048		/* User sets MSG_TRUNC, so return real length of
   2049		 * packet.
   2050		 */
   2051		if (flags & MSG_TRUNC)
   2052			err = msg_len;
   2053		else
   2054			err = len - msg_data_left(msg);
   2055
   2056		/* Always set MSG_TRUNC if real length of packet is
   2057		 * bigger than user's buffer.
   2058		 */
   2059		if (msg_len > len)
   2060			msg->msg_flags |= MSG_TRUNC;
   2061	}
   2062
   2063out:
   2064	return err;
   2065}
   2066
   2067static int
   2068vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
   2069			  int flags)
   2070{
   2071	struct sock *sk;
   2072	struct vsock_sock *vsk;
   2073	const struct vsock_transport *transport;
   2074	int err;
   2075
   2076	DEFINE_WAIT(wait);
   2077
   2078	sk = sock->sk;
   2079	vsk = vsock_sk(sk);
   2080	err = 0;
   2081
   2082	lock_sock(sk);
   2083
   2084	transport = vsk->transport;
   2085
   2086	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
   2087		/* Recvmsg is supposed to return 0 if a peer performs an
   2088		 * orderly shutdown. Differentiate between that case and when a
   2089		 * peer has not connected or a local shutdown occurred with the
   2090		 * SOCK_DONE flag.
   2091		 */
   2092		if (sock_flag(sk, SOCK_DONE))
   2093			err = 0;
   2094		else
   2095			err = -ENOTCONN;
   2096
   2097		goto out;
   2098	}
   2099
   2100	if (flags & MSG_OOB) {
   2101		err = -EOPNOTSUPP;
   2102		goto out;
   2103	}
   2104
   2105	/* We don't check peer_shutdown flag here since peer may actually shut
   2106	 * down, but there can be data in the queue that a local socket can
   2107	 * receive.
   2108	 */
   2109	if (sk->sk_shutdown & RCV_SHUTDOWN) {
   2110		err = 0;
   2111		goto out;
   2112	}
   2113
   2114	/* It is valid on Linux to pass in a zero-length receive buffer.  This
   2115	 * is not an error.  We may as well bail out now.
   2116	 */
   2117	if (!len) {
   2118		err = 0;
   2119		goto out;
   2120	}
   2121
   2122	if (sk->sk_type == SOCK_STREAM)
   2123		err = __vsock_stream_recvmsg(sk, msg, len, flags);
   2124	else
   2125		err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
   2126
   2127out:
   2128	release_sock(sk);
   2129	return err;
   2130}
   2131
   2132static const struct proto_ops vsock_stream_ops = {
   2133	.family = PF_VSOCK,
   2134	.owner = THIS_MODULE,
   2135	.release = vsock_release,
   2136	.bind = vsock_bind,
   2137	.connect = vsock_connect,
   2138	.socketpair = sock_no_socketpair,
   2139	.accept = vsock_accept,
   2140	.getname = vsock_getname,
   2141	.poll = vsock_poll,
   2142	.ioctl = sock_no_ioctl,
   2143	.listen = vsock_listen,
   2144	.shutdown = vsock_shutdown,
   2145	.setsockopt = vsock_connectible_setsockopt,
   2146	.getsockopt = vsock_connectible_getsockopt,
   2147	.sendmsg = vsock_connectible_sendmsg,
   2148	.recvmsg = vsock_connectible_recvmsg,
   2149	.mmap = sock_no_mmap,
   2150	.sendpage = sock_no_sendpage,
   2151};
   2152
   2153static const struct proto_ops vsock_seqpacket_ops = {
   2154	.family = PF_VSOCK,
   2155	.owner = THIS_MODULE,
   2156	.release = vsock_release,
   2157	.bind = vsock_bind,
   2158	.connect = vsock_connect,
   2159	.socketpair = sock_no_socketpair,
   2160	.accept = vsock_accept,
   2161	.getname = vsock_getname,
   2162	.poll = vsock_poll,
   2163	.ioctl = sock_no_ioctl,
   2164	.listen = vsock_listen,
   2165	.shutdown = vsock_shutdown,
   2166	.setsockopt = vsock_connectible_setsockopt,
   2167	.getsockopt = vsock_connectible_getsockopt,
   2168	.sendmsg = vsock_connectible_sendmsg,
   2169	.recvmsg = vsock_connectible_recvmsg,
   2170	.mmap = sock_no_mmap,
   2171	.sendpage = sock_no_sendpage,
   2172};
   2173
   2174static int vsock_create(struct net *net, struct socket *sock,
   2175			int protocol, int kern)
   2176{
   2177	struct vsock_sock *vsk;
   2178	struct sock *sk;
   2179	int ret;
   2180
   2181	if (!sock)
   2182		return -EINVAL;
   2183
   2184	if (protocol && protocol != PF_VSOCK)
   2185		return -EPROTONOSUPPORT;
   2186
   2187	switch (sock->type) {
   2188	case SOCK_DGRAM:
   2189		sock->ops = &vsock_dgram_ops;
   2190		break;
   2191	case SOCK_STREAM:
   2192		sock->ops = &vsock_stream_ops;
   2193		break;
   2194	case SOCK_SEQPACKET:
   2195		sock->ops = &vsock_seqpacket_ops;
   2196		break;
   2197	default:
   2198		return -ESOCKTNOSUPPORT;
   2199	}
   2200
   2201	sock->state = SS_UNCONNECTED;
   2202
   2203	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
   2204	if (!sk)
   2205		return -ENOMEM;
   2206
   2207	vsk = vsock_sk(sk);
   2208
   2209	if (sock->type == SOCK_DGRAM) {
   2210		ret = vsock_assign_transport(vsk, NULL);
   2211		if (ret < 0) {
   2212			sock_put(sk);
   2213			return ret;
   2214		}
   2215	}
   2216
   2217	vsock_insert_unbound(vsk);
   2218
   2219	return 0;
   2220}
   2221
   2222static const struct net_proto_family vsock_family_ops = {
   2223	.family = AF_VSOCK,
   2224	.create = vsock_create,
   2225	.owner = THIS_MODULE,
   2226};
   2227
   2228static long vsock_dev_do_ioctl(struct file *filp,
   2229			       unsigned int cmd, void __user *ptr)
   2230{
   2231	u32 __user *p = ptr;
   2232	u32 cid = VMADDR_CID_ANY;
   2233	int retval = 0;
   2234
   2235	switch (cmd) {
   2236	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
   2237		/* To be compatible with the VMCI behavior, we prioritize the
   2238		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
   2239		 */
   2240		if (transport_g2h)
   2241			cid = transport_g2h->get_local_cid();
   2242		else if (transport_h2g)
   2243			cid = transport_h2g->get_local_cid();
   2244
   2245		if (put_user(cid, p) != 0)
   2246			retval = -EFAULT;
   2247		break;
   2248
   2249	default:
   2250		retval = -ENOIOCTLCMD;
   2251	}
   2252
   2253	return retval;
   2254}
   2255
   2256static long vsock_dev_ioctl(struct file *filp,
   2257			    unsigned int cmd, unsigned long arg)
   2258{
   2259	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
   2260}
   2261
   2262#ifdef CONFIG_COMPAT
   2263static long vsock_dev_compat_ioctl(struct file *filp,
   2264				   unsigned int cmd, unsigned long arg)
   2265{
   2266	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
   2267}
   2268#endif
   2269
   2270static const struct file_operations vsock_device_ops = {
   2271	.owner		= THIS_MODULE,
   2272	.unlocked_ioctl	= vsock_dev_ioctl,
   2273#ifdef CONFIG_COMPAT
   2274	.compat_ioctl	= vsock_dev_compat_ioctl,
   2275#endif
   2276	.open		= nonseekable_open,
   2277};
   2278
   2279static struct miscdevice vsock_device = {
   2280	.name		= "vsock",
   2281	.fops		= &vsock_device_ops,
   2282};
   2283
   2284static int __init vsock_init(void)
   2285{
   2286	int err = 0;
   2287
   2288	vsock_init_tables();
   2289
   2290	vsock_proto.owner = THIS_MODULE;
   2291	vsock_device.minor = MISC_DYNAMIC_MINOR;
   2292	err = misc_register(&vsock_device);
   2293	if (err) {
   2294		pr_err("Failed to register misc device\n");
   2295		goto err_reset_transport;
   2296	}
   2297
   2298	err = proto_register(&vsock_proto, 1);	/* we want our slab */
   2299	if (err) {
   2300		pr_err("Cannot register vsock protocol\n");
   2301		goto err_deregister_misc;
   2302	}
   2303
   2304	err = sock_register(&vsock_family_ops);
   2305	if (err) {
   2306		pr_err("could not register af_vsock (%d) address family: %d\n",
   2307		       AF_VSOCK, err);
   2308		goto err_unregister_proto;
   2309	}
   2310
   2311	return 0;
   2312
   2313err_unregister_proto:
   2314	proto_unregister(&vsock_proto);
   2315err_deregister_misc:
   2316	misc_deregister(&vsock_device);
   2317err_reset_transport:
   2318	return err;
   2319}
   2320
   2321static void __exit vsock_exit(void)
   2322{
   2323	misc_deregister(&vsock_device);
   2324	sock_unregister(AF_VSOCK);
   2325	proto_unregister(&vsock_proto);
   2326}
   2327
   2328const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
   2329{
   2330	return vsk->transport;
   2331}
   2332EXPORT_SYMBOL_GPL(vsock_core_get_transport);
   2333
   2334int vsock_core_register(const struct vsock_transport *t, int features)
   2335{
   2336	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
   2337	int err = mutex_lock_interruptible(&vsock_register_mutex);
   2338
   2339	if (err)
   2340		return err;
   2341
   2342	t_h2g = transport_h2g;
   2343	t_g2h = transport_g2h;
   2344	t_dgram = transport_dgram;
   2345	t_local = transport_local;
   2346
   2347	if (features & VSOCK_TRANSPORT_F_H2G) {
   2348		if (t_h2g) {
   2349			err = -EBUSY;
   2350			goto err_busy;
   2351		}
   2352		t_h2g = t;
   2353	}
   2354
   2355	if (features & VSOCK_TRANSPORT_F_G2H) {
   2356		if (t_g2h) {
   2357			err = -EBUSY;
   2358			goto err_busy;
   2359		}
   2360		t_g2h = t;
   2361	}
   2362
   2363	if (features & VSOCK_TRANSPORT_F_DGRAM) {
   2364		if (t_dgram) {
   2365			err = -EBUSY;
   2366			goto err_busy;
   2367		}
   2368		t_dgram = t;
   2369	}
   2370
   2371	if (features & VSOCK_TRANSPORT_F_LOCAL) {
   2372		if (t_local) {
   2373			err = -EBUSY;
   2374			goto err_busy;
   2375		}
   2376		t_local = t;
   2377	}
   2378
   2379	transport_h2g = t_h2g;
   2380	transport_g2h = t_g2h;
   2381	transport_dgram = t_dgram;
   2382	transport_local = t_local;
   2383
   2384err_busy:
   2385	mutex_unlock(&vsock_register_mutex);
   2386	return err;
   2387}
   2388EXPORT_SYMBOL_GPL(vsock_core_register);
   2389
   2390void vsock_core_unregister(const struct vsock_transport *t)
   2391{
   2392	mutex_lock(&vsock_register_mutex);
   2393
   2394	if (transport_h2g == t)
   2395		transport_h2g = NULL;
   2396
   2397	if (transport_g2h == t)
   2398		transport_g2h = NULL;
   2399
   2400	if (transport_dgram == t)
   2401		transport_dgram = NULL;
   2402
   2403	if (transport_local == t)
   2404		transport_local = NULL;
   2405
   2406	mutex_unlock(&vsock_register_mutex);
   2407}
   2408EXPORT_SYMBOL_GPL(vsock_core_unregister);
   2409
   2410module_init(vsock_init);
   2411module_exit(vsock_exit);
   2412
   2413MODULE_AUTHOR("VMware, Inc.");
   2414MODULE_DESCRIPTION("VMware Virtual Socket Family");
   2415MODULE_VERSION("1.0.2.0-k");
   2416MODULE_LICENSE("GPL v2");