cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vmci_transport.c (58813B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * VMware vSockets Driver
      4 *
      5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
      6 */
      7
      8#include <linux/types.h>
      9#include <linux/bitops.h>
     10#include <linux/cred.h>
     11#include <linux/init.h>
     12#include <linux/io.h>
     13#include <linux/kernel.h>
     14#include <linux/kmod.h>
     15#include <linux/list.h>
     16#include <linux/module.h>
     17#include <linux/mutex.h>
     18#include <linux/net.h>
     19#include <linux/poll.h>
     20#include <linux/skbuff.h>
     21#include <linux/smp.h>
     22#include <linux/socket.h>
     23#include <linux/stddef.h>
     24#include <linux/unistd.h>
     25#include <linux/wait.h>
     26#include <linux/workqueue.h>
     27#include <net/sock.h>
     28#include <net/af_vsock.h>
     29
     30#include "vmci_transport_notify.h"
     31
     32static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
     33static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
     34static void vmci_transport_peer_detach_cb(u32 sub_id,
     35					  const struct vmci_event_data *ed,
     36					  void *client_data);
     37static void vmci_transport_recv_pkt_work(struct work_struct *work);
     38static void vmci_transport_cleanup(struct work_struct *work);
     39static int vmci_transport_recv_listen(struct sock *sk,
     40				      struct vmci_transport_packet *pkt);
     41static int vmci_transport_recv_connecting_server(
     42					struct sock *sk,
     43					struct sock *pending,
     44					struct vmci_transport_packet *pkt);
     45static int vmci_transport_recv_connecting_client(
     46					struct sock *sk,
     47					struct vmci_transport_packet *pkt);
     48static int vmci_transport_recv_connecting_client_negotiate(
     49					struct sock *sk,
     50					struct vmci_transport_packet *pkt);
     51static int vmci_transport_recv_connecting_client_invalid(
     52					struct sock *sk,
     53					struct vmci_transport_packet *pkt);
     54static int vmci_transport_recv_connected(struct sock *sk,
     55					 struct vmci_transport_packet *pkt);
     56static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
     57static u16 vmci_transport_new_proto_supported_versions(void);
     58static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
     59						  bool old_pkt_proto);
     60static bool vmci_check_transport(struct vsock_sock *vsk);
     61
     62struct vmci_transport_recv_pkt_info {
     63	struct work_struct work;
     64	struct sock *sk;
     65	struct vmci_transport_packet pkt;
     66};
     67
     68static LIST_HEAD(vmci_transport_cleanup_list);
     69static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
     70static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
     71
     72static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
     73							   VMCI_INVALID_ID };
     74static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
     75
     76static int PROTOCOL_OVERRIDE = -1;
     77
     78static struct vsock_transport vmci_transport; /* forward declaration */
     79
     80/* Helper function to convert from a VMCI error code to a VSock error code. */
     81
     82static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
     83{
     84	switch (vmci_error) {
     85	case VMCI_ERROR_NO_MEM:
     86		return -ENOMEM;
     87	case VMCI_ERROR_DUPLICATE_ENTRY:
     88	case VMCI_ERROR_ALREADY_EXISTS:
     89		return -EADDRINUSE;
     90	case VMCI_ERROR_NO_ACCESS:
     91		return -EPERM;
     92	case VMCI_ERROR_NO_RESOURCES:
     93		return -ENOBUFS;
     94	case VMCI_ERROR_INVALID_RESOURCE:
     95		return -EHOSTUNREACH;
     96	case VMCI_ERROR_INVALID_ARGS:
     97	default:
     98		break;
     99	}
    100	return -EINVAL;
    101}
    102
    103static u32 vmci_transport_peer_rid(u32 peer_cid)
    104{
    105	if (VMADDR_CID_HYPERVISOR == peer_cid)
    106		return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
    107
    108	return VMCI_TRANSPORT_PACKET_RID;
    109}
    110
    111static inline void
    112vmci_transport_packet_init(struct vmci_transport_packet *pkt,
    113			   struct sockaddr_vm *src,
    114			   struct sockaddr_vm *dst,
    115			   u8 type,
    116			   u64 size,
    117			   u64 mode,
    118			   struct vmci_transport_waiting_info *wait,
    119			   u16 proto,
    120			   struct vmci_handle handle)
    121{
    122	/* We register the stream control handler as an any cid handle so we
    123	 * must always send from a source address of VMADDR_CID_ANY
    124	 */
    125	pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
    126				       VMCI_TRANSPORT_PACKET_RID);
    127	pkt->dg.dst = vmci_make_handle(dst->svm_cid,
    128				       vmci_transport_peer_rid(dst->svm_cid));
    129	pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
    130	pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
    131	pkt->type = type;
    132	pkt->src_port = src->svm_port;
    133	pkt->dst_port = dst->svm_port;
    134	memset(&pkt->proto, 0, sizeof(pkt->proto));
    135	memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
    136
    137	switch (pkt->type) {
    138	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
    139		pkt->u.size = 0;
    140		break;
    141
    142	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
    143	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
    144		pkt->u.size = size;
    145		break;
    146
    147	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
    148	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
    149		pkt->u.handle = handle;
    150		break;
    151
    152	case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
    153	case VMCI_TRANSPORT_PACKET_TYPE_READ:
    154	case VMCI_TRANSPORT_PACKET_TYPE_RST:
    155		pkt->u.size = 0;
    156		break;
    157
    158	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
    159		pkt->u.mode = mode;
    160		break;
    161
    162	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
    163	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
    164		memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
    165		break;
    166
    167	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
    168	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
    169		pkt->u.size = size;
    170		pkt->proto = proto;
    171		break;
    172	}
    173}
    174
    175static inline void
    176vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
    177				    struct sockaddr_vm *local,
    178				    struct sockaddr_vm *remote)
    179{
    180	vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
    181	vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
    182}
    183
    184static int
    185__vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
    186				  struct sockaddr_vm *src,
    187				  struct sockaddr_vm *dst,
    188				  enum vmci_transport_packet_type type,
    189				  u64 size,
    190				  u64 mode,
    191				  struct vmci_transport_waiting_info *wait,
    192				  u16 proto,
    193				  struct vmci_handle handle,
    194				  bool convert_error)
    195{
    196	int err;
    197
    198	vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
    199				   proto, handle);
    200	err = vmci_datagram_send(&pkt->dg);
    201	if (convert_error && (err < 0))
    202		return vmci_transport_error_to_vsock_error(err);
    203
    204	return err;
    205}
    206
    207static int
    208vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
    209				      enum vmci_transport_packet_type type,
    210				      u64 size,
    211				      u64 mode,
    212				      struct vmci_transport_waiting_info *wait,
    213				      struct vmci_handle handle)
    214{
    215	struct vmci_transport_packet reply;
    216	struct sockaddr_vm src, dst;
    217
    218	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
    219		return 0;
    220	} else {
    221		vmci_transport_packet_get_addresses(pkt, &src, &dst);
    222		return __vmci_transport_send_control_pkt(&reply, &src, &dst,
    223							 type,
    224							 size, mode, wait,
    225							 VSOCK_PROTO_INVALID,
    226							 handle, true);
    227	}
    228}
    229
    230static int
    231vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
    232				   struct sockaddr_vm *dst,
    233				   enum vmci_transport_packet_type type,
    234				   u64 size,
    235				   u64 mode,
    236				   struct vmci_transport_waiting_info *wait,
    237				   struct vmci_handle handle)
    238{
    239	/* Note that it is safe to use a single packet across all CPUs since
    240	 * two tasklets of the same type are guaranteed to not ever run
    241	 * simultaneously. If that ever changes, or VMCI stops using tasklets,
    242	 * we can use per-cpu packets.
    243	 */
    244	static struct vmci_transport_packet pkt;
    245
    246	return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
    247						 size, mode, wait,
    248						 VSOCK_PROTO_INVALID, handle,
    249						 false);
    250}
    251
    252static int
    253vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
    254				      struct sockaddr_vm *dst,
    255				      enum vmci_transport_packet_type type,
    256				      u64 size,
    257				      u64 mode,
    258				      struct vmci_transport_waiting_info *wait,
    259				      u16 proto,
    260				      struct vmci_handle handle)
    261{
    262	struct vmci_transport_packet *pkt;
    263	int err;
    264
    265	pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
    266	if (!pkt)
    267		return -ENOMEM;
    268
    269	err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
    270						mode, wait, proto, handle,
    271						true);
    272	kfree(pkt);
    273
    274	return err;
    275}
    276
    277static int
    278vmci_transport_send_control_pkt(struct sock *sk,
    279				enum vmci_transport_packet_type type,
    280				u64 size,
    281				u64 mode,
    282				struct vmci_transport_waiting_info *wait,
    283				u16 proto,
    284				struct vmci_handle handle)
    285{
    286	struct vsock_sock *vsk;
    287
    288	vsk = vsock_sk(sk);
    289
    290	if (!vsock_addr_bound(&vsk->local_addr))
    291		return -EINVAL;
    292
    293	if (!vsock_addr_bound(&vsk->remote_addr))
    294		return -EINVAL;
    295
    296	return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
    297						     &vsk->remote_addr,
    298						     type, size, mode,
    299						     wait, proto, handle);
    300}
    301
    302static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
    303					struct sockaddr_vm *src,
    304					struct vmci_transport_packet *pkt)
    305{
    306	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
    307		return 0;
    308	return vmci_transport_send_control_pkt_bh(
    309					dst, src,
    310					VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
    311					0, NULL, VMCI_INVALID_HANDLE);
    312}
    313
    314static int vmci_transport_send_reset(struct sock *sk,
    315				     struct vmci_transport_packet *pkt)
    316{
    317	struct sockaddr_vm *dst_ptr;
    318	struct sockaddr_vm dst;
    319	struct vsock_sock *vsk;
    320
    321	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
    322		return 0;
    323
    324	vsk = vsock_sk(sk);
    325
    326	if (!vsock_addr_bound(&vsk->local_addr))
    327		return -EINVAL;
    328
    329	if (vsock_addr_bound(&vsk->remote_addr)) {
    330		dst_ptr = &vsk->remote_addr;
    331	} else {
    332		vsock_addr_init(&dst, pkt->dg.src.context,
    333				pkt->src_port);
    334		dst_ptr = &dst;
    335	}
    336	return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
    337					     VMCI_TRANSPORT_PACKET_TYPE_RST,
    338					     0, 0, NULL, VSOCK_PROTO_INVALID,
    339					     VMCI_INVALID_HANDLE);
    340}
    341
    342static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
    343{
    344	return vmci_transport_send_control_pkt(
    345					sk,
    346					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
    347					size, 0, NULL,
    348					VSOCK_PROTO_INVALID,
    349					VMCI_INVALID_HANDLE);
    350}
    351
    352static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
    353					  u16 version)
    354{
    355	return vmci_transport_send_control_pkt(
    356					sk,
    357					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
    358					size, 0, NULL, version,
    359					VMCI_INVALID_HANDLE);
    360}
    361
    362static int vmci_transport_send_qp_offer(struct sock *sk,
    363					struct vmci_handle handle)
    364{
    365	return vmci_transport_send_control_pkt(
    366					sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
    367					0, NULL,
    368					VSOCK_PROTO_INVALID, handle);
    369}
    370
    371static int vmci_transport_send_attach(struct sock *sk,
    372				      struct vmci_handle handle)
    373{
    374	return vmci_transport_send_control_pkt(
    375					sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
    376					0, 0, NULL, VSOCK_PROTO_INVALID,
    377					handle);
    378}
    379
    380static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
    381{
    382	return vmci_transport_reply_control_pkt_fast(
    383						pkt,
    384						VMCI_TRANSPORT_PACKET_TYPE_RST,
    385						0, 0, NULL,
    386						VMCI_INVALID_HANDLE);
    387}
    388
    389static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
    390					  struct sockaddr_vm *src)
    391{
    392	return vmci_transport_send_control_pkt_bh(
    393					dst, src,
    394					VMCI_TRANSPORT_PACKET_TYPE_INVALID,
    395					0, 0, NULL, VMCI_INVALID_HANDLE);
    396}
    397
    398int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
    399				 struct sockaddr_vm *src)
    400{
    401	return vmci_transport_send_control_pkt_bh(
    402					dst, src,
    403					VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
    404					0, NULL, VMCI_INVALID_HANDLE);
    405}
    406
    407int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
    408				struct sockaddr_vm *src)
    409{
    410	return vmci_transport_send_control_pkt_bh(
    411					dst, src,
    412					VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
    413					0, NULL, VMCI_INVALID_HANDLE);
    414}
    415
    416int vmci_transport_send_wrote(struct sock *sk)
    417{
    418	return vmci_transport_send_control_pkt(
    419					sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
    420					0, NULL, VSOCK_PROTO_INVALID,
    421					VMCI_INVALID_HANDLE);
    422}
    423
    424int vmci_transport_send_read(struct sock *sk)
    425{
    426	return vmci_transport_send_control_pkt(
    427					sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
    428					0, NULL, VSOCK_PROTO_INVALID,
    429					VMCI_INVALID_HANDLE);
    430}
    431
    432int vmci_transport_send_waiting_write(struct sock *sk,
    433				      struct vmci_transport_waiting_info *wait)
    434{
    435	return vmci_transport_send_control_pkt(
    436				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
    437				0, 0, wait, VSOCK_PROTO_INVALID,
    438				VMCI_INVALID_HANDLE);
    439}
    440
    441int vmci_transport_send_waiting_read(struct sock *sk,
    442				     struct vmci_transport_waiting_info *wait)
    443{
    444	return vmci_transport_send_control_pkt(
    445				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
    446				0, 0, wait, VSOCK_PROTO_INVALID,
    447				VMCI_INVALID_HANDLE);
    448}
    449
    450static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
    451{
    452	return vmci_transport_send_control_pkt(
    453					&vsk->sk,
    454					VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
    455					0, mode, NULL,
    456					VSOCK_PROTO_INVALID,
    457					VMCI_INVALID_HANDLE);
    458}
    459
    460static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
    461{
    462	return vmci_transport_send_control_pkt(sk,
    463					VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
    464					size, 0, NULL,
    465					VSOCK_PROTO_INVALID,
    466					VMCI_INVALID_HANDLE);
    467}
    468
    469static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
    470					     u16 version)
    471{
    472	return vmci_transport_send_control_pkt(
    473					sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
    474					size, 0, NULL, version,
    475					VMCI_INVALID_HANDLE);
    476}
    477
    478static struct sock *vmci_transport_get_pending(
    479					struct sock *listener,
    480					struct vmci_transport_packet *pkt)
    481{
    482	struct vsock_sock *vlistener;
    483	struct vsock_sock *vpending;
    484	struct sock *pending;
    485	struct sockaddr_vm src;
    486
    487	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
    488
    489	vlistener = vsock_sk(listener);
    490
    491	list_for_each_entry(vpending, &vlistener->pending_links,
    492			    pending_links) {
    493		if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
    494		    pkt->dst_port == vpending->local_addr.svm_port) {
    495			pending = sk_vsock(vpending);
    496			sock_hold(pending);
    497			goto found;
    498		}
    499	}
    500
    501	pending = NULL;
    502found:
    503	return pending;
    504
    505}
    506
    507static void vmci_transport_release_pending(struct sock *pending)
    508{
    509	sock_put(pending);
    510}
    511
    512/* We allow two kinds of sockets to communicate with a restricted VM: 1)
    513 * trusted sockets 2) sockets from applications running as the same user as the
    514 * VM (this is only true for the host side and only when using hosted products)
    515 */
    516
    517static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
    518{
    519	return vsock->trusted ||
    520	       vmci_is_context_owner(peer_cid, vsock->owner->uid);
    521}
    522
    523/* We allow sending datagrams to and receiving datagrams from a restricted VM
    524 * only if it is trusted as described in vmci_transport_is_trusted.
    525 */
    526
    527static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
    528{
    529	if (VMADDR_CID_HYPERVISOR == peer_cid)
    530		return true;
    531
    532	if (vsock->cached_peer != peer_cid) {
    533		vsock->cached_peer = peer_cid;
    534		if (!vmci_transport_is_trusted(vsock, peer_cid) &&
    535		    (vmci_context_get_priv_flags(peer_cid) &
    536		     VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
    537			vsock->cached_peer_allow_dgram = false;
    538		} else {
    539			vsock->cached_peer_allow_dgram = true;
    540		}
    541	}
    542
    543	return vsock->cached_peer_allow_dgram;
    544}
    545
    546static int
    547vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
    548				struct vmci_handle *handle,
    549				u64 produce_size,
    550				u64 consume_size,
    551				u32 peer, u32 flags, bool trusted)
    552{
    553	int err = 0;
    554
    555	if (trusted) {
    556		/* Try to allocate our queue pair as trusted. This will only
    557		 * work if vsock is running in the host.
    558		 */
    559
    560		err = vmci_qpair_alloc(qpair, handle, produce_size,
    561				       consume_size,
    562				       peer, flags,
    563				       VMCI_PRIVILEGE_FLAG_TRUSTED);
    564		if (err != VMCI_ERROR_NO_ACCESS)
    565			goto out;
    566
    567	}
    568
    569	err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
    570			       peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
    571out:
    572	if (err < 0) {
    573		pr_err_once("Could not attach to queue pair with %d\n", err);
    574		err = vmci_transport_error_to_vsock_error(err);
    575	}
    576
    577	return err;
    578}
    579
    580static int
    581vmci_transport_datagram_create_hnd(u32 resource_id,
    582				   u32 flags,
    583				   vmci_datagram_recv_cb recv_cb,
    584				   void *client_data,
    585				   struct vmci_handle *out_handle)
    586{
    587	int err = 0;
    588
    589	/* Try to allocate our datagram handler as trusted. This will only work
    590	 * if vsock is running in the host.
    591	 */
    592
    593	err = vmci_datagram_create_handle_priv(resource_id, flags,
    594					       VMCI_PRIVILEGE_FLAG_TRUSTED,
    595					       recv_cb,
    596					       client_data, out_handle);
    597
    598	if (err == VMCI_ERROR_NO_ACCESS)
    599		err = vmci_datagram_create_handle(resource_id, flags,
    600						  recv_cb, client_data,
    601						  out_handle);
    602
    603	return err;
    604}
    605
    606/* This is invoked as part of a tasklet that's scheduled when the VMCI
    607 * interrupt fires.  This is run in bottom-half context and if it ever needs to
    608 * sleep it should defer that work to a work queue.
    609 */
    610
    611static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
    612{
    613	struct sock *sk;
    614	size_t size;
    615	struct sk_buff *skb;
    616	struct vsock_sock *vsk;
    617
    618	sk = (struct sock *)data;
    619
    620	/* This handler is privileged when this module is running on the host.
    621	 * We will get datagrams from all endpoints (even VMs that are in a
    622	 * restricted context). If we get one from a restricted context then
    623	 * the destination socket must be trusted.
    624	 *
    625	 * NOTE: We access the socket struct without holding the lock here.
    626	 * This is ok because the field we are interested is never modified
    627	 * outside of the create and destruct socket functions.
    628	 */
    629	vsk = vsock_sk(sk);
    630	if (!vmci_transport_allow_dgram(vsk, dg->src.context))
    631		return VMCI_ERROR_NO_ACCESS;
    632
    633	size = VMCI_DG_SIZE(dg);
    634
    635	/* Attach the packet to the socket's receive queue as an sk_buff. */
    636	skb = alloc_skb(size, GFP_ATOMIC);
    637	if (!skb)
    638		return VMCI_ERROR_NO_MEM;
    639
    640	/* sk_receive_skb() will do a sock_put(), so hold here. */
    641	sock_hold(sk);
    642	skb_put(skb, size);
    643	memcpy(skb->data, dg, size);
    644	sk_receive_skb(sk, skb, 0);
    645
    646	return VMCI_SUCCESS;
    647}
    648
    649static bool vmci_transport_stream_allow(u32 cid, u32 port)
    650{
    651	static const u32 non_socket_contexts[] = {
    652		VMADDR_CID_LOCAL,
    653	};
    654	int i;
    655
    656	BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
    657
    658	for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
    659		if (cid == non_socket_contexts[i])
    660			return false;
    661	}
    662
    663	return true;
    664}
    665
    666/* This is invoked as part of a tasklet that's scheduled when the VMCI
    667 * interrupt fires.  This is run in bottom-half context but it defers most of
    668 * its work to the packet handling work queue.
    669 */
    670
    671static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
    672{
    673	struct sock *sk;
    674	struct sockaddr_vm dst;
    675	struct sockaddr_vm src;
    676	struct vmci_transport_packet *pkt;
    677	struct vsock_sock *vsk;
    678	bool bh_process_pkt;
    679	int err;
    680
    681	sk = NULL;
    682	err = VMCI_SUCCESS;
    683	bh_process_pkt = false;
    684
    685	/* Ignore incoming packets from contexts without sockets, or resources
    686	 * that aren't vsock implementations.
    687	 */
    688
    689	if (!vmci_transport_stream_allow(dg->src.context, -1)
    690	    || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
    691		return VMCI_ERROR_NO_ACCESS;
    692
    693	if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
    694		/* Drop datagrams that do not contain full VSock packets. */
    695		return VMCI_ERROR_INVALID_ARGS;
    696
    697	pkt = (struct vmci_transport_packet *)dg;
    698
    699	/* Find the socket that should handle this packet.  First we look for a
    700	 * connected socket and if there is none we look for a socket bound to
    701	 * the destintation address.
    702	 */
    703	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
    704	vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
    705
    706	sk = vsock_find_connected_socket(&src, &dst);
    707	if (!sk) {
    708		sk = vsock_find_bound_socket(&dst);
    709		if (!sk) {
    710			/* We could not find a socket for this specified
    711			 * address.  If this packet is a RST, we just drop it.
    712			 * If it is another packet, we send a RST.  Note that
    713			 * we do not send a RST reply to RSTs so that we do not
    714			 * continually send RSTs between two endpoints.
    715			 *
    716			 * Note that since this is a reply, dst is src and src
    717			 * is dst.
    718			 */
    719			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
    720				pr_err("unable to send reset\n");
    721
    722			err = VMCI_ERROR_NOT_FOUND;
    723			goto out;
    724		}
    725	}
    726
    727	/* If the received packet type is beyond all types known to this
    728	 * implementation, reply with an invalid message.  Hopefully this will
    729	 * help when implementing backwards compatibility in the future.
    730	 */
    731	if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
    732		vmci_transport_send_invalid_bh(&dst, &src);
    733		err = VMCI_ERROR_INVALID_ARGS;
    734		goto out;
    735	}
    736
    737	/* This handler is privileged when this module is running on the host.
    738	 * We will get datagram connect requests from all endpoints (even VMs
    739	 * that are in a restricted context). If we get one from a restricted
    740	 * context then the destination socket must be trusted.
    741	 *
    742	 * NOTE: We access the socket struct without holding the lock here.
    743	 * This is ok because the field we are interested is never modified
    744	 * outside of the create and destruct socket functions.
    745	 */
    746	vsk = vsock_sk(sk);
    747	if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
    748		err = VMCI_ERROR_NO_ACCESS;
    749		goto out;
    750	}
    751
    752	/* We do most everything in a work queue, but let's fast path the
    753	 * notification of reads and writes to help data transfer performance.
    754	 * We can only do this if there is no process context code executing
    755	 * for this socket since that may change the state.
    756	 */
    757	bh_lock_sock(sk);
    758
    759	if (!sock_owned_by_user(sk)) {
    760		/* The local context ID may be out of date, update it. */
    761		vsk->local_addr.svm_cid = dst.svm_cid;
    762
    763		if (sk->sk_state == TCP_ESTABLISHED)
    764			vmci_trans(vsk)->notify_ops->handle_notify_pkt(
    765					sk, pkt, true, &dst, &src,
    766					&bh_process_pkt);
    767	}
    768
    769	bh_unlock_sock(sk);
    770
    771	if (!bh_process_pkt) {
    772		struct vmci_transport_recv_pkt_info *recv_pkt_info;
    773
    774		recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
    775		if (!recv_pkt_info) {
    776			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
    777				pr_err("unable to send reset\n");
    778
    779			err = VMCI_ERROR_NO_MEM;
    780			goto out;
    781		}
    782
    783		recv_pkt_info->sk = sk;
    784		memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
    785		INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
    786
    787		schedule_work(&recv_pkt_info->work);
    788		/* Clear sk so that the reference count incremented by one of
    789		 * the Find functions above is not decremented below.  We need
    790		 * that reference count for the packet handler we've scheduled
    791		 * to run.
    792		 */
    793		sk = NULL;
    794	}
    795
    796out:
    797	if (sk)
    798		sock_put(sk);
    799
    800	return err;
    801}
    802
    803static void vmci_transport_handle_detach(struct sock *sk)
    804{
    805	struct vsock_sock *vsk;
    806
    807	vsk = vsock_sk(sk);
    808	if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
    809		sock_set_flag(sk, SOCK_DONE);
    810
    811		/* On a detach the peer will not be sending or receiving
    812		 * anymore.
    813		 */
    814		vsk->peer_shutdown = SHUTDOWN_MASK;
    815
    816		/* We should not be sending anymore since the peer won't be
    817		 * there to receive, but we can still receive if there is data
    818		 * left in our consume queue. If the local endpoint is a host,
    819		 * we can't call vsock_stream_has_data, since that may block,
    820		 * but a host endpoint can't read data once the VM has
    821		 * detached, so there is no available data in that case.
    822		 */
    823		if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
    824		    vsock_stream_has_data(vsk) <= 0) {
    825			if (sk->sk_state == TCP_SYN_SENT) {
    826				/* The peer may detach from a queue pair while
    827				 * we are still in the connecting state, i.e.,
    828				 * if the peer VM is killed after attaching to
    829				 * a queue pair, but before we complete the
    830				 * handshake. In that case, we treat the detach
    831				 * event like a reset.
    832				 */
    833
    834				sk->sk_state = TCP_CLOSE;
    835				sk->sk_err = ECONNRESET;
    836				sk_error_report(sk);
    837				return;
    838			}
    839			sk->sk_state = TCP_CLOSE;
    840		}
    841		sk->sk_state_change(sk);
    842	}
    843}
    844
    845static void vmci_transport_peer_detach_cb(u32 sub_id,
    846					  const struct vmci_event_data *e_data,
    847					  void *client_data)
    848{
    849	struct vmci_transport *trans = client_data;
    850	const struct vmci_event_payload_qp *e_payload;
    851
    852	e_payload = vmci_event_data_const_payload(e_data);
    853
    854	/* XXX This is lame, we should provide a way to lookup sockets by
    855	 * qp_handle.
    856	 */
    857	if (vmci_handle_is_invalid(e_payload->handle) ||
    858	    !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
    859		return;
    860
    861	/* We don't ask for delayed CBs when we subscribe to this event (we
    862	 * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
    863	 * guarantees in that case about what context we might be running in,
    864	 * so it could be BH or process, blockable or non-blockable.  So we
    865	 * need to account for all possible contexts here.
    866	 */
    867	spin_lock_bh(&trans->lock);
    868	if (!trans->sk)
    869		goto out;
    870
    871	/* Apart from here, trans->lock is only grabbed as part of sk destruct,
    872	 * where trans->sk isn't locked.
    873	 */
    874	bh_lock_sock(trans->sk);
    875
    876	vmci_transport_handle_detach(trans->sk);
    877
    878	bh_unlock_sock(trans->sk);
    879 out:
    880	spin_unlock_bh(&trans->lock);
    881}
    882
    883static void vmci_transport_qp_resumed_cb(u32 sub_id,
    884					 const struct vmci_event_data *e_data,
    885					 void *client_data)
    886{
    887	vsock_for_each_connected_socket(&vmci_transport,
    888					vmci_transport_handle_detach);
    889}
    890
    891static void vmci_transport_recv_pkt_work(struct work_struct *work)
    892{
    893	struct vmci_transport_recv_pkt_info *recv_pkt_info;
    894	struct vmci_transport_packet *pkt;
    895	struct sock *sk;
    896
    897	recv_pkt_info =
    898		container_of(work, struct vmci_transport_recv_pkt_info, work);
    899	sk = recv_pkt_info->sk;
    900	pkt = &recv_pkt_info->pkt;
    901
    902	lock_sock(sk);
    903
    904	/* The local context ID may be out of date. */
    905	vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
    906
    907	switch (sk->sk_state) {
    908	case TCP_LISTEN:
    909		vmci_transport_recv_listen(sk, pkt);
    910		break;
    911	case TCP_SYN_SENT:
    912		/* Processing of pending connections for servers goes through
    913		 * the listening socket, so see vmci_transport_recv_listen()
    914		 * for that path.
    915		 */
    916		vmci_transport_recv_connecting_client(sk, pkt);
    917		break;
    918	case TCP_ESTABLISHED:
    919		vmci_transport_recv_connected(sk, pkt);
    920		break;
    921	default:
    922		/* Because this function does not run in the same context as
    923		 * vmci_transport_recv_stream_cb it is possible that the
    924		 * socket has closed. We need to let the other side know or it
    925		 * could be sitting in a connect and hang forever. Send a
    926		 * reset to prevent that.
    927		 */
    928		vmci_transport_send_reset(sk, pkt);
    929		break;
    930	}
    931
    932	release_sock(sk);
    933	kfree(recv_pkt_info);
    934	/* Release reference obtained in the stream callback when we fetched
    935	 * this socket out of the bound or connected list.
    936	 */
    937	sock_put(sk);
    938}
    939
    940static int vmci_transport_recv_listen(struct sock *sk,
    941				      struct vmci_transport_packet *pkt)
    942{
    943	struct sock *pending;
    944	struct vsock_sock *vpending;
    945	int err;
    946	u64 qp_size;
    947	bool old_request = false;
    948	bool old_pkt_proto = false;
    949
    950	/* Because we are in the listen state, we could be receiving a packet
    951	 * for ourself or any previous connection requests that we received.
    952	 * If it's the latter, we try to find a socket in our list of pending
    953	 * connections and, if we do, call the appropriate handler for the
    954	 * state that that socket is in.  Otherwise we try to service the
    955	 * connection request.
    956	 */
    957	pending = vmci_transport_get_pending(sk, pkt);
    958	if (pending) {
    959		lock_sock(pending);
    960
    961		/* The local context ID may be out of date. */
    962		vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
    963
    964		switch (pending->sk_state) {
    965		case TCP_SYN_SENT:
    966			err = vmci_transport_recv_connecting_server(sk,
    967								    pending,
    968								    pkt);
    969			break;
    970		default:
    971			vmci_transport_send_reset(pending, pkt);
    972			err = -EINVAL;
    973		}
    974
    975		if (err < 0)
    976			vsock_remove_pending(sk, pending);
    977
    978		release_sock(pending);
    979		vmci_transport_release_pending(pending);
    980
    981		return err;
    982	}
    983
    984	/* The listen state only accepts connection requests.  Reply with a
    985	 * reset unless we received a reset.
    986	 */
    987
    988	if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
    989	      pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
    990		vmci_transport_reply_reset(pkt);
    991		return -EINVAL;
    992	}
    993
    994	if (pkt->u.size == 0) {
    995		vmci_transport_reply_reset(pkt);
    996		return -EINVAL;
    997	}
    998
    999	/* If this socket can't accommodate this connection request, we send a
   1000	 * reset.  Otherwise we create and initialize a child socket and reply
   1001	 * with a connection negotiation.
   1002	 */
   1003	if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
   1004		vmci_transport_reply_reset(pkt);
   1005		return -ECONNREFUSED;
   1006	}
   1007
   1008	pending = vsock_create_connected(sk);
   1009	if (!pending) {
   1010		vmci_transport_send_reset(sk, pkt);
   1011		return -ENOMEM;
   1012	}
   1013
   1014	vpending = vsock_sk(pending);
   1015
   1016	vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
   1017			pkt->dst_port);
   1018	vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
   1019			pkt->src_port);
   1020
   1021	err = vsock_assign_transport(vpending, vsock_sk(sk));
   1022	/* Transport assigned (looking at remote_addr) must be the same
   1023	 * where we received the request.
   1024	 */
   1025	if (err || !vmci_check_transport(vpending)) {
   1026		vmci_transport_send_reset(sk, pkt);
   1027		sock_put(pending);
   1028		return err;
   1029	}
   1030
   1031	/* If the proposed size fits within our min/max, accept it. Otherwise
   1032	 * propose our own size.
   1033	 */
   1034	if (pkt->u.size >= vpending->buffer_min_size &&
   1035	    pkt->u.size <= vpending->buffer_max_size) {
   1036		qp_size = pkt->u.size;
   1037	} else {
   1038		qp_size = vpending->buffer_size;
   1039	}
   1040
   1041	/* Figure out if we are using old or new requests based on the
   1042	 * overrides pkt types sent by our peer.
   1043	 */
   1044	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
   1045		old_request = old_pkt_proto;
   1046	} else {
   1047		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
   1048			old_request = true;
   1049		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
   1050			old_request = false;
   1051
   1052	}
   1053
   1054	if (old_request) {
   1055		/* Handle a REQUEST (or override) */
   1056		u16 version = VSOCK_PROTO_INVALID;
   1057		if (vmci_transport_proto_to_notify_struct(
   1058			pending, &version, true))
   1059			err = vmci_transport_send_negotiate(pending, qp_size);
   1060		else
   1061			err = -EINVAL;
   1062
   1063	} else {
   1064		/* Handle a REQUEST2 (or override) */
   1065		int proto_int = pkt->proto;
   1066		int pos;
   1067		u16 active_proto_version = 0;
   1068
   1069		/* The list of possible protocols is the intersection of all
   1070		 * protocols the client supports ... plus all the protocols we
   1071		 * support.
   1072		 */
   1073		proto_int &= vmci_transport_new_proto_supported_versions();
   1074
   1075		/* We choose the highest possible protocol version and use that
   1076		 * one.
   1077		 */
   1078		pos = fls(proto_int);
   1079		if (pos) {
   1080			active_proto_version = (1 << (pos - 1));
   1081			if (vmci_transport_proto_to_notify_struct(
   1082				pending, &active_proto_version, false))
   1083				err = vmci_transport_send_negotiate2(pending,
   1084							qp_size,
   1085							active_proto_version);
   1086			else
   1087				err = -EINVAL;
   1088
   1089		} else {
   1090			err = -EINVAL;
   1091		}
   1092	}
   1093
   1094	if (err < 0) {
   1095		vmci_transport_send_reset(sk, pkt);
   1096		sock_put(pending);
   1097		err = vmci_transport_error_to_vsock_error(err);
   1098		goto out;
   1099	}
   1100
   1101	vsock_add_pending(sk, pending);
   1102	sk_acceptq_added(sk);
   1103
   1104	pending->sk_state = TCP_SYN_SENT;
   1105	vmci_trans(vpending)->produce_size =
   1106		vmci_trans(vpending)->consume_size = qp_size;
   1107	vpending->buffer_size = qp_size;
   1108
   1109	vmci_trans(vpending)->notify_ops->process_request(pending);
   1110
   1111	/* We might never receive another message for this socket and it's not
   1112	 * connected to any process, so we have to ensure it gets cleaned up
   1113	 * ourself.  Our delayed work function will take care of that.  Note
   1114	 * that we do not ever cancel this function since we have few
   1115	 * guarantees about its state when calling cancel_delayed_work().
   1116	 * Instead we hold a reference on the socket for that function and make
   1117	 * it capable of handling cases where it needs to do nothing but
   1118	 * release that reference.
   1119	 */
   1120	vpending->listener = sk;
   1121	sock_hold(sk);
   1122	sock_hold(pending);
   1123	schedule_delayed_work(&vpending->pending_work, HZ);
   1124
   1125out:
   1126	return err;
   1127}
   1128
   1129static int
   1130vmci_transport_recv_connecting_server(struct sock *listener,
   1131				      struct sock *pending,
   1132				      struct vmci_transport_packet *pkt)
   1133{
   1134	struct vsock_sock *vpending;
   1135	struct vmci_handle handle;
   1136	struct vmci_qp *qpair;
   1137	bool is_local;
   1138	u32 flags;
   1139	u32 detach_sub_id;
   1140	int err;
   1141	int skerr;
   1142
   1143	vpending = vsock_sk(pending);
   1144	detach_sub_id = VMCI_INVALID_ID;
   1145
   1146	switch (pkt->type) {
   1147	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
   1148		if (vmci_handle_is_invalid(pkt->u.handle)) {
   1149			vmci_transport_send_reset(pending, pkt);
   1150			skerr = EPROTO;
   1151			err = -EINVAL;
   1152			goto destroy;
   1153		}
   1154		break;
   1155	default:
   1156		/* Close and cleanup the connection. */
   1157		vmci_transport_send_reset(pending, pkt);
   1158		skerr = EPROTO;
   1159		err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
   1160		goto destroy;
   1161	}
   1162
   1163	/* In order to complete the connection we need to attach to the offered
   1164	 * queue pair and send an attach notification.  We also subscribe to the
   1165	 * detach event so we know when our peer goes away, and we do that
   1166	 * before attaching so we don't miss an event.  If all this succeeds,
   1167	 * we update our state and wakeup anything waiting in accept() for a
   1168	 * connection.
   1169	 */
   1170
   1171	/* We don't care about attach since we ensure the other side has
   1172	 * attached by specifying the ATTACH_ONLY flag below.
   1173	 */
   1174	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
   1175				   vmci_transport_peer_detach_cb,
   1176				   vmci_trans(vpending), &detach_sub_id);
   1177	if (err < VMCI_SUCCESS) {
   1178		vmci_transport_send_reset(pending, pkt);
   1179		err = vmci_transport_error_to_vsock_error(err);
   1180		skerr = -err;
   1181		goto destroy;
   1182	}
   1183
   1184	vmci_trans(vpending)->detach_sub_id = detach_sub_id;
   1185
   1186	/* Now attach to the queue pair the client created. */
   1187	handle = pkt->u.handle;
   1188
   1189	/* vpending->local_addr always has a context id so we do not need to
   1190	 * worry about VMADDR_CID_ANY in this case.
   1191	 */
   1192	is_local =
   1193	    vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
   1194	flags = VMCI_QPFLAG_ATTACH_ONLY;
   1195	flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
   1196
   1197	err = vmci_transport_queue_pair_alloc(
   1198					&qpair,
   1199					&handle,
   1200					vmci_trans(vpending)->produce_size,
   1201					vmci_trans(vpending)->consume_size,
   1202					pkt->dg.src.context,
   1203					flags,
   1204					vmci_transport_is_trusted(
   1205						vpending,
   1206						vpending->remote_addr.svm_cid));
   1207	if (err < 0) {
   1208		vmci_transport_send_reset(pending, pkt);
   1209		skerr = -err;
   1210		goto destroy;
   1211	}
   1212
   1213	vmci_trans(vpending)->qp_handle = handle;
   1214	vmci_trans(vpending)->qpair = qpair;
   1215
   1216	/* When we send the attach message, we must be ready to handle incoming
   1217	 * control messages on the newly connected socket. So we move the
   1218	 * pending socket to the connected state before sending the attach
   1219	 * message. Otherwise, an incoming packet triggered by the attach being
   1220	 * received by the peer may be processed concurrently with what happens
   1221	 * below after sending the attach message, and that incoming packet
   1222	 * will find the listening socket instead of the (currently) pending
   1223	 * socket. Note that enqueueing the socket increments the reference
   1224	 * count, so even if a reset comes before the connection is accepted,
   1225	 * the socket will be valid until it is removed from the queue.
   1226	 *
   1227	 * If we fail sending the attach below, we remove the socket from the
   1228	 * connected list and move the socket to TCP_CLOSE before
   1229	 * releasing the lock, so a pending slow path processing of an incoming
   1230	 * packet will not see the socket in the connected state in that case.
   1231	 */
   1232	pending->sk_state = TCP_ESTABLISHED;
   1233
   1234	vsock_insert_connected(vpending);
   1235
   1236	/* Notify our peer of our attach. */
   1237	err = vmci_transport_send_attach(pending, handle);
   1238	if (err < 0) {
   1239		vsock_remove_connected(vpending);
   1240		pr_err("Could not send attach\n");
   1241		vmci_transport_send_reset(pending, pkt);
   1242		err = vmci_transport_error_to_vsock_error(err);
   1243		skerr = -err;
   1244		goto destroy;
   1245	}
   1246
   1247	/* We have a connection. Move the now connected socket from the
   1248	 * listener's pending list to the accept queue so callers of accept()
   1249	 * can find it.
   1250	 */
   1251	vsock_remove_pending(listener, pending);
   1252	vsock_enqueue_accept(listener, pending);
   1253
   1254	/* Callers of accept() will be waiting on the listening socket, not
   1255	 * the pending socket.
   1256	 */
   1257	listener->sk_data_ready(listener);
   1258
   1259	return 0;
   1260
   1261destroy:
   1262	pending->sk_err = skerr;
   1263	pending->sk_state = TCP_CLOSE;
   1264	/* As long as we drop our reference, all necessary cleanup will handle
   1265	 * when the cleanup function drops its reference and our destruct
   1266	 * implementation is called.  Note that since the listen handler will
   1267	 * remove pending from the pending list upon our failure, the cleanup
   1268	 * function won't drop the additional reference, which is why we do it
   1269	 * here.
   1270	 */
   1271	sock_put(pending);
   1272
   1273	return err;
   1274}
   1275
   1276static int
   1277vmci_transport_recv_connecting_client(struct sock *sk,
   1278				      struct vmci_transport_packet *pkt)
   1279{
   1280	struct vsock_sock *vsk;
   1281	int err;
   1282	int skerr;
   1283
   1284	vsk = vsock_sk(sk);
   1285
   1286	switch (pkt->type) {
   1287	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
   1288		if (vmci_handle_is_invalid(pkt->u.handle) ||
   1289		    !vmci_handle_is_equal(pkt->u.handle,
   1290					  vmci_trans(vsk)->qp_handle)) {
   1291			skerr = EPROTO;
   1292			err = -EINVAL;
   1293			goto destroy;
   1294		}
   1295
   1296		/* Signify the socket is connected and wakeup the waiter in
   1297		 * connect(). Also place the socket in the connected table for
   1298		 * accounting (it can already be found since it's in the bound
   1299		 * table).
   1300		 */
   1301		sk->sk_state = TCP_ESTABLISHED;
   1302		sk->sk_socket->state = SS_CONNECTED;
   1303		vsock_insert_connected(vsk);
   1304		sk->sk_state_change(sk);
   1305
   1306		break;
   1307	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
   1308	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
   1309		if (pkt->u.size == 0
   1310		    || pkt->dg.src.context != vsk->remote_addr.svm_cid
   1311		    || pkt->src_port != vsk->remote_addr.svm_port
   1312		    || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
   1313		    || vmci_trans(vsk)->qpair
   1314		    || vmci_trans(vsk)->produce_size != 0
   1315		    || vmci_trans(vsk)->consume_size != 0
   1316		    || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
   1317			skerr = EPROTO;
   1318			err = -EINVAL;
   1319
   1320			goto destroy;
   1321		}
   1322
   1323		err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
   1324		if (err) {
   1325			skerr = -err;
   1326			goto destroy;
   1327		}
   1328
   1329		break;
   1330	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
   1331		err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
   1332		if (err) {
   1333			skerr = -err;
   1334			goto destroy;
   1335		}
   1336
   1337		break;
   1338	case VMCI_TRANSPORT_PACKET_TYPE_RST:
   1339		/* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
   1340		 * continue processing here after they sent an INVALID packet.
   1341		 * This meant that we got a RST after the INVALID. We ignore a
   1342		 * RST after an INVALID. The common code doesn't send the RST
   1343		 * ... so we can hang if an old version of the common code
   1344		 * fails between getting a REQUEST and sending an OFFER back.
   1345		 * Not much we can do about it... except hope that it doesn't
   1346		 * happen.
   1347		 */
   1348		if (vsk->ignore_connecting_rst) {
   1349			vsk->ignore_connecting_rst = false;
   1350		} else {
   1351			skerr = ECONNRESET;
   1352			err = 0;
   1353			goto destroy;
   1354		}
   1355
   1356		break;
   1357	default:
   1358		/* Close and cleanup the connection. */
   1359		skerr = EPROTO;
   1360		err = -EINVAL;
   1361		goto destroy;
   1362	}
   1363
   1364	return 0;
   1365
   1366destroy:
   1367	vmci_transport_send_reset(sk, pkt);
   1368
   1369	sk->sk_state = TCP_CLOSE;
   1370	sk->sk_err = skerr;
   1371	sk_error_report(sk);
   1372	return err;
   1373}
   1374
   1375static int vmci_transport_recv_connecting_client_negotiate(
   1376					struct sock *sk,
   1377					struct vmci_transport_packet *pkt)
   1378{
   1379	int err;
   1380	struct vsock_sock *vsk;
   1381	struct vmci_handle handle;
   1382	struct vmci_qp *qpair;
   1383	u32 detach_sub_id;
   1384	bool is_local;
   1385	u32 flags;
   1386	bool old_proto = true;
   1387	bool old_pkt_proto;
   1388	u16 version;
   1389
   1390	vsk = vsock_sk(sk);
   1391	handle = VMCI_INVALID_HANDLE;
   1392	detach_sub_id = VMCI_INVALID_ID;
   1393
   1394	/* If we have gotten here then we should be past the point where old
   1395	 * linux vsock could have sent the bogus rst.
   1396	 */
   1397	vsk->sent_request = false;
   1398	vsk->ignore_connecting_rst = false;
   1399
   1400	/* Verify that we're OK with the proposed queue pair size */
   1401	if (pkt->u.size < vsk->buffer_min_size ||
   1402	    pkt->u.size > vsk->buffer_max_size) {
   1403		err = -EINVAL;
   1404		goto destroy;
   1405	}
   1406
   1407	/* At this point we know the CID the peer is using to talk to us. */
   1408
   1409	if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
   1410		vsk->local_addr.svm_cid = pkt->dg.dst.context;
   1411
   1412	/* Setup the notify ops to be the highest supported version that both
   1413	 * the server and the client support.
   1414	 */
   1415
   1416	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
   1417		old_proto = old_pkt_proto;
   1418	} else {
   1419		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
   1420			old_proto = true;
   1421		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
   1422			old_proto = false;
   1423
   1424	}
   1425
   1426	if (old_proto)
   1427		version = VSOCK_PROTO_INVALID;
   1428	else
   1429		version = pkt->proto;
   1430
   1431	if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
   1432		err = -EINVAL;
   1433		goto destroy;
   1434	}
   1435
   1436	/* Subscribe to detach events first.
   1437	 *
   1438	 * XXX We attach once for each queue pair created for now so it is easy
   1439	 * to find the socket (it's provided), but later we should only
   1440	 * subscribe once and add a way to lookup sockets by queue pair handle.
   1441	 */
   1442	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
   1443				   vmci_transport_peer_detach_cb,
   1444				   vmci_trans(vsk), &detach_sub_id);
   1445	if (err < VMCI_SUCCESS) {
   1446		err = vmci_transport_error_to_vsock_error(err);
   1447		goto destroy;
   1448	}
   1449
   1450	/* Make VMCI select the handle for us. */
   1451	handle = VMCI_INVALID_HANDLE;
   1452	is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
   1453	flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
   1454
   1455	err = vmci_transport_queue_pair_alloc(&qpair,
   1456					      &handle,
   1457					      pkt->u.size,
   1458					      pkt->u.size,
   1459					      vsk->remote_addr.svm_cid,
   1460					      flags,
   1461					      vmci_transport_is_trusted(
   1462						  vsk,
   1463						  vsk->
   1464						  remote_addr.svm_cid));
   1465	if (err < 0)
   1466		goto destroy;
   1467
   1468	err = vmci_transport_send_qp_offer(sk, handle);
   1469	if (err < 0) {
   1470		err = vmci_transport_error_to_vsock_error(err);
   1471		goto destroy;
   1472	}
   1473
   1474	vmci_trans(vsk)->qp_handle = handle;
   1475	vmci_trans(vsk)->qpair = qpair;
   1476
   1477	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
   1478		pkt->u.size;
   1479
   1480	vmci_trans(vsk)->detach_sub_id = detach_sub_id;
   1481
   1482	vmci_trans(vsk)->notify_ops->process_negotiate(sk);
   1483
   1484	return 0;
   1485
   1486destroy:
   1487	if (detach_sub_id != VMCI_INVALID_ID)
   1488		vmci_event_unsubscribe(detach_sub_id);
   1489
   1490	if (!vmci_handle_is_invalid(handle))
   1491		vmci_qpair_detach(&qpair);
   1492
   1493	return err;
   1494}
   1495
   1496static int
   1497vmci_transport_recv_connecting_client_invalid(struct sock *sk,
   1498					      struct vmci_transport_packet *pkt)
   1499{
   1500	int err = 0;
   1501	struct vsock_sock *vsk = vsock_sk(sk);
   1502
   1503	if (vsk->sent_request) {
   1504		vsk->sent_request = false;
   1505		vsk->ignore_connecting_rst = true;
   1506
   1507		err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
   1508		if (err < 0)
   1509			err = vmci_transport_error_to_vsock_error(err);
   1510		else
   1511			err = 0;
   1512
   1513	}
   1514
   1515	return err;
   1516}
   1517
   1518static int vmci_transport_recv_connected(struct sock *sk,
   1519					 struct vmci_transport_packet *pkt)
   1520{
   1521	struct vsock_sock *vsk;
   1522	bool pkt_processed = false;
   1523
   1524	/* In cases where we are closing the connection, it's sufficient to
   1525	 * mark the state change (and maybe error) and wake up any waiting
   1526	 * threads. Since this is a connected socket, it's owned by a user
   1527	 * process and will be cleaned up when the failure is passed back on
   1528	 * the current or next system call.  Our system call implementations
   1529	 * must therefore check for error and state changes on entry and when
   1530	 * being awoken.
   1531	 */
   1532	switch (pkt->type) {
   1533	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
   1534		if (pkt->u.mode) {
   1535			vsk = vsock_sk(sk);
   1536
   1537			vsk->peer_shutdown |= pkt->u.mode;
   1538			sk->sk_state_change(sk);
   1539		}
   1540		break;
   1541
   1542	case VMCI_TRANSPORT_PACKET_TYPE_RST:
   1543		vsk = vsock_sk(sk);
   1544		/* It is possible that we sent our peer a message (e.g a
   1545		 * WAITING_READ) right before we got notified that the peer had
   1546		 * detached. If that happens then we can get a RST pkt back
   1547		 * from our peer even though there is data available for us to
   1548		 * read. In that case, don't shutdown the socket completely but
   1549		 * instead allow the local client to finish reading data off
   1550		 * the queuepair. Always treat a RST pkt in connected mode like
   1551		 * a clean shutdown.
   1552		 */
   1553		sock_set_flag(sk, SOCK_DONE);
   1554		vsk->peer_shutdown = SHUTDOWN_MASK;
   1555		if (vsock_stream_has_data(vsk) <= 0)
   1556			sk->sk_state = TCP_CLOSING;
   1557
   1558		sk->sk_state_change(sk);
   1559		break;
   1560
   1561	default:
   1562		vsk = vsock_sk(sk);
   1563		vmci_trans(vsk)->notify_ops->handle_notify_pkt(
   1564				sk, pkt, false, NULL, NULL,
   1565				&pkt_processed);
   1566		if (!pkt_processed)
   1567			return -EINVAL;
   1568
   1569		break;
   1570	}
   1571
   1572	return 0;
   1573}
   1574
   1575static int vmci_transport_socket_init(struct vsock_sock *vsk,
   1576				      struct vsock_sock *psk)
   1577{
   1578	vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
   1579	if (!vsk->trans)
   1580		return -ENOMEM;
   1581
   1582	vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
   1583	vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
   1584	vmci_trans(vsk)->qpair = NULL;
   1585	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
   1586	vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
   1587	vmci_trans(vsk)->notify_ops = NULL;
   1588	INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
   1589	vmci_trans(vsk)->sk = &vsk->sk;
   1590	spin_lock_init(&vmci_trans(vsk)->lock);
   1591
   1592	return 0;
   1593}
   1594
   1595static void vmci_transport_free_resources(struct list_head *transport_list)
   1596{
   1597	while (!list_empty(transport_list)) {
   1598		struct vmci_transport *transport =
   1599		    list_first_entry(transport_list, struct vmci_transport,
   1600				     elem);
   1601		list_del(&transport->elem);
   1602
   1603		if (transport->detach_sub_id != VMCI_INVALID_ID) {
   1604			vmci_event_unsubscribe(transport->detach_sub_id);
   1605			transport->detach_sub_id = VMCI_INVALID_ID;
   1606		}
   1607
   1608		if (!vmci_handle_is_invalid(transport->qp_handle)) {
   1609			vmci_qpair_detach(&transport->qpair);
   1610			transport->qp_handle = VMCI_INVALID_HANDLE;
   1611			transport->produce_size = 0;
   1612			transport->consume_size = 0;
   1613		}
   1614
   1615		kfree(transport);
   1616	}
   1617}
   1618
   1619static void vmci_transport_cleanup(struct work_struct *work)
   1620{
   1621	LIST_HEAD(pending);
   1622
   1623	spin_lock_bh(&vmci_transport_cleanup_lock);
   1624	list_replace_init(&vmci_transport_cleanup_list, &pending);
   1625	spin_unlock_bh(&vmci_transport_cleanup_lock);
   1626	vmci_transport_free_resources(&pending);
   1627}
   1628
   1629static void vmci_transport_destruct(struct vsock_sock *vsk)
   1630{
   1631	/* transport can be NULL if we hit a failure at init() time */
   1632	if (!vmci_trans(vsk))
   1633		return;
   1634
   1635	/* Ensure that the detach callback doesn't use the sk/vsk
   1636	 * we are about to destruct.
   1637	 */
   1638	spin_lock_bh(&vmci_trans(vsk)->lock);
   1639	vmci_trans(vsk)->sk = NULL;
   1640	spin_unlock_bh(&vmci_trans(vsk)->lock);
   1641
   1642	if (vmci_trans(vsk)->notify_ops)
   1643		vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
   1644
   1645	spin_lock_bh(&vmci_transport_cleanup_lock);
   1646	list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
   1647	spin_unlock_bh(&vmci_transport_cleanup_lock);
   1648	schedule_work(&vmci_transport_cleanup_work);
   1649
   1650	vsk->trans = NULL;
   1651}
   1652
   1653static void vmci_transport_release(struct vsock_sock *vsk)
   1654{
   1655	vsock_remove_sock(vsk);
   1656
   1657	if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
   1658		vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
   1659		vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
   1660	}
   1661}
   1662
   1663static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
   1664				     struct sockaddr_vm *addr)
   1665{
   1666	u32 port;
   1667	u32 flags;
   1668	int err;
   1669
   1670	/* VMCI will select a resource ID for us if we provide
   1671	 * VMCI_INVALID_ID.
   1672	 */
   1673	port = addr->svm_port == VMADDR_PORT_ANY ?
   1674			VMCI_INVALID_ID : addr->svm_port;
   1675
   1676	if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
   1677		return -EACCES;
   1678
   1679	flags = addr->svm_cid == VMADDR_CID_ANY ?
   1680				VMCI_FLAG_ANYCID_DG_HND : 0;
   1681
   1682	err = vmci_transport_datagram_create_hnd(port, flags,
   1683						 vmci_transport_recv_dgram_cb,
   1684						 &vsk->sk,
   1685						 &vmci_trans(vsk)->dg_handle);
   1686	if (err < VMCI_SUCCESS)
   1687		return vmci_transport_error_to_vsock_error(err);
   1688	vsock_addr_init(&vsk->local_addr, addr->svm_cid,
   1689			vmci_trans(vsk)->dg_handle.resource);
   1690
   1691	return 0;
   1692}
   1693
   1694static int vmci_transport_dgram_enqueue(
   1695	struct vsock_sock *vsk,
   1696	struct sockaddr_vm *remote_addr,
   1697	struct msghdr *msg,
   1698	size_t len)
   1699{
   1700	int err;
   1701	struct vmci_datagram *dg;
   1702
   1703	if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
   1704		return -EMSGSIZE;
   1705
   1706	if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
   1707		return -EPERM;
   1708
   1709	/* Allocate a buffer for the user's message and our packet header. */
   1710	dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
   1711	if (!dg)
   1712		return -ENOMEM;
   1713
   1714	memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
   1715
   1716	dg->dst = vmci_make_handle(remote_addr->svm_cid,
   1717				   remote_addr->svm_port);
   1718	dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
   1719				   vsk->local_addr.svm_port);
   1720	dg->payload_size = len;
   1721
   1722	err = vmci_datagram_send(dg);
   1723	kfree(dg);
   1724	if (err < 0)
   1725		return vmci_transport_error_to_vsock_error(err);
   1726
   1727	return err - sizeof(*dg);
   1728}
   1729
   1730static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
   1731					struct msghdr *msg, size_t len,
   1732					int flags)
   1733{
   1734	int err;
   1735	struct vmci_datagram *dg;
   1736	size_t payload_len;
   1737	struct sk_buff *skb;
   1738
   1739	if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
   1740		return -EOPNOTSUPP;
   1741
   1742	/* Retrieve the head sk_buff from the socket's receive queue. */
   1743	err = 0;
   1744	skb = skb_recv_datagram(&vsk->sk, flags, &err);
   1745	if (!skb)
   1746		return err;
   1747
   1748	dg = (struct vmci_datagram *)skb->data;
   1749	if (!dg)
   1750		/* err is 0, meaning we read zero bytes. */
   1751		goto out;
   1752
   1753	payload_len = dg->payload_size;
   1754	/* Ensure the sk_buff matches the payload size claimed in the packet. */
   1755	if (payload_len != skb->len - sizeof(*dg)) {
   1756		err = -EINVAL;
   1757		goto out;
   1758	}
   1759
   1760	if (payload_len > len) {
   1761		payload_len = len;
   1762		msg->msg_flags |= MSG_TRUNC;
   1763	}
   1764
   1765	/* Place the datagram payload in the user's iovec. */
   1766	err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
   1767	if (err)
   1768		goto out;
   1769
   1770	if (msg->msg_name) {
   1771		/* Provide the address of the sender. */
   1772		DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
   1773		vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
   1774		msg->msg_namelen = sizeof(*vm_addr);
   1775	}
   1776	err = payload_len;
   1777
   1778out:
   1779	skb_free_datagram(&vsk->sk, skb);
   1780	return err;
   1781}
   1782
   1783static bool vmci_transport_dgram_allow(u32 cid, u32 port)
   1784{
   1785	if (cid == VMADDR_CID_HYPERVISOR) {
   1786		/* Registrations of PBRPC Servers do not modify VMX/Hypervisor
   1787		 * state and are allowed.
   1788		 */
   1789		return port == VMCI_UNITY_PBRPC_REGISTER;
   1790	}
   1791
   1792	return true;
   1793}
   1794
   1795static int vmci_transport_connect(struct vsock_sock *vsk)
   1796{
   1797	int err;
   1798	bool old_pkt_proto = false;
   1799	struct sock *sk = &vsk->sk;
   1800
   1801	if (vmci_transport_old_proto_override(&old_pkt_proto) &&
   1802		old_pkt_proto) {
   1803		err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
   1804		if (err < 0) {
   1805			sk->sk_state = TCP_CLOSE;
   1806			return err;
   1807		}
   1808	} else {
   1809		int supported_proto_versions =
   1810			vmci_transport_new_proto_supported_versions();
   1811		err = vmci_transport_send_conn_request2(sk, vsk->buffer_size,
   1812				supported_proto_versions);
   1813		if (err < 0) {
   1814			sk->sk_state = TCP_CLOSE;
   1815			return err;
   1816		}
   1817
   1818		vsk->sent_request = true;
   1819	}
   1820
   1821	return err;
   1822}
   1823
   1824static ssize_t vmci_transport_stream_dequeue(
   1825	struct vsock_sock *vsk,
   1826	struct msghdr *msg,
   1827	size_t len,
   1828	int flags)
   1829{
   1830	if (flags & MSG_PEEK)
   1831		return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
   1832	else
   1833		return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
   1834}
   1835
   1836static ssize_t vmci_transport_stream_enqueue(
   1837	struct vsock_sock *vsk,
   1838	struct msghdr *msg,
   1839	size_t len)
   1840{
   1841	return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
   1842}
   1843
   1844static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
   1845{
   1846	return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
   1847}
   1848
   1849static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
   1850{
   1851	return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
   1852}
   1853
   1854static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
   1855{
   1856	return vmci_trans(vsk)->consume_size;
   1857}
   1858
   1859static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
   1860{
   1861	return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
   1862}
   1863
   1864static int vmci_transport_notify_poll_in(
   1865	struct vsock_sock *vsk,
   1866	size_t target,
   1867	bool *data_ready_now)
   1868{
   1869	return vmci_trans(vsk)->notify_ops->poll_in(
   1870			&vsk->sk, target, data_ready_now);
   1871}
   1872
   1873static int vmci_transport_notify_poll_out(
   1874	struct vsock_sock *vsk,
   1875	size_t target,
   1876	bool *space_available_now)
   1877{
   1878	return vmci_trans(vsk)->notify_ops->poll_out(
   1879			&vsk->sk, target, space_available_now);
   1880}
   1881
   1882static int vmci_transport_notify_recv_init(
   1883	struct vsock_sock *vsk,
   1884	size_t target,
   1885	struct vsock_transport_recv_notify_data *data)
   1886{
   1887	return vmci_trans(vsk)->notify_ops->recv_init(
   1888			&vsk->sk, target,
   1889			(struct vmci_transport_recv_notify_data *)data);
   1890}
   1891
   1892static int vmci_transport_notify_recv_pre_block(
   1893	struct vsock_sock *vsk,
   1894	size_t target,
   1895	struct vsock_transport_recv_notify_data *data)
   1896{
   1897	return vmci_trans(vsk)->notify_ops->recv_pre_block(
   1898			&vsk->sk, target,
   1899			(struct vmci_transport_recv_notify_data *)data);
   1900}
   1901
   1902static int vmci_transport_notify_recv_pre_dequeue(
   1903	struct vsock_sock *vsk,
   1904	size_t target,
   1905	struct vsock_transport_recv_notify_data *data)
   1906{
   1907	return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
   1908			&vsk->sk, target,
   1909			(struct vmci_transport_recv_notify_data *)data);
   1910}
   1911
   1912static int vmci_transport_notify_recv_post_dequeue(
   1913	struct vsock_sock *vsk,
   1914	size_t target,
   1915	ssize_t copied,
   1916	bool data_read,
   1917	struct vsock_transport_recv_notify_data *data)
   1918{
   1919	return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
   1920			&vsk->sk, target, copied, data_read,
   1921			(struct vmci_transport_recv_notify_data *)data);
   1922}
   1923
   1924static int vmci_transport_notify_send_init(
   1925	struct vsock_sock *vsk,
   1926	struct vsock_transport_send_notify_data *data)
   1927{
   1928	return vmci_trans(vsk)->notify_ops->send_init(
   1929			&vsk->sk,
   1930			(struct vmci_transport_send_notify_data *)data);
   1931}
   1932
   1933static int vmci_transport_notify_send_pre_block(
   1934	struct vsock_sock *vsk,
   1935	struct vsock_transport_send_notify_data *data)
   1936{
   1937	return vmci_trans(vsk)->notify_ops->send_pre_block(
   1938			&vsk->sk,
   1939			(struct vmci_transport_send_notify_data *)data);
   1940}
   1941
   1942static int vmci_transport_notify_send_pre_enqueue(
   1943	struct vsock_sock *vsk,
   1944	struct vsock_transport_send_notify_data *data)
   1945{
   1946	return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
   1947			&vsk->sk,
   1948			(struct vmci_transport_send_notify_data *)data);
   1949}
   1950
   1951static int vmci_transport_notify_send_post_enqueue(
   1952	struct vsock_sock *vsk,
   1953	ssize_t written,
   1954	struct vsock_transport_send_notify_data *data)
   1955{
   1956	return vmci_trans(vsk)->notify_ops->send_post_enqueue(
   1957			&vsk->sk, written,
   1958			(struct vmci_transport_send_notify_data *)data);
   1959}
   1960
   1961static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
   1962{
   1963	if (PROTOCOL_OVERRIDE != -1) {
   1964		if (PROTOCOL_OVERRIDE == 0)
   1965			*old_pkt_proto = true;
   1966		else
   1967			*old_pkt_proto = false;
   1968
   1969		pr_info("Proto override in use\n");
   1970		return true;
   1971	}
   1972
   1973	return false;
   1974}
   1975
   1976static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
   1977						  u16 *proto,
   1978						  bool old_pkt_proto)
   1979{
   1980	struct vsock_sock *vsk = vsock_sk(sk);
   1981
   1982	if (old_pkt_proto) {
   1983		if (*proto != VSOCK_PROTO_INVALID) {
   1984			pr_err("Can't set both an old and new protocol\n");
   1985			return false;
   1986		}
   1987		vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
   1988		goto exit;
   1989	}
   1990
   1991	switch (*proto) {
   1992	case VSOCK_PROTO_PKT_ON_NOTIFY:
   1993		vmci_trans(vsk)->notify_ops =
   1994			&vmci_transport_notify_pkt_q_state_ops;
   1995		break;
   1996	default:
   1997		pr_err("Unknown notify protocol version\n");
   1998		return false;
   1999	}
   2000
   2001exit:
   2002	vmci_trans(vsk)->notify_ops->socket_init(sk);
   2003	return true;
   2004}
   2005
   2006static u16 vmci_transport_new_proto_supported_versions(void)
   2007{
   2008	if (PROTOCOL_OVERRIDE != -1)
   2009		return PROTOCOL_OVERRIDE;
   2010
   2011	return VSOCK_PROTO_ALL_SUPPORTED;
   2012}
   2013
   2014static u32 vmci_transport_get_local_cid(void)
   2015{
   2016	return vmci_get_context_id();
   2017}
   2018
   2019static struct vsock_transport vmci_transport = {
   2020	.module = THIS_MODULE,
   2021	.init = vmci_transport_socket_init,
   2022	.destruct = vmci_transport_destruct,
   2023	.release = vmci_transport_release,
   2024	.connect = vmci_transport_connect,
   2025	.dgram_bind = vmci_transport_dgram_bind,
   2026	.dgram_dequeue = vmci_transport_dgram_dequeue,
   2027	.dgram_enqueue = vmci_transport_dgram_enqueue,
   2028	.dgram_allow = vmci_transport_dgram_allow,
   2029	.stream_dequeue = vmci_transport_stream_dequeue,
   2030	.stream_enqueue = vmci_transport_stream_enqueue,
   2031	.stream_has_data = vmci_transport_stream_has_data,
   2032	.stream_has_space = vmci_transport_stream_has_space,
   2033	.stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
   2034	.stream_is_active = vmci_transport_stream_is_active,
   2035	.stream_allow = vmci_transport_stream_allow,
   2036	.notify_poll_in = vmci_transport_notify_poll_in,
   2037	.notify_poll_out = vmci_transport_notify_poll_out,
   2038	.notify_recv_init = vmci_transport_notify_recv_init,
   2039	.notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
   2040	.notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
   2041	.notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
   2042	.notify_send_init = vmci_transport_notify_send_init,
   2043	.notify_send_pre_block = vmci_transport_notify_send_pre_block,
   2044	.notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
   2045	.notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
   2046	.shutdown = vmci_transport_shutdown,
   2047	.get_local_cid = vmci_transport_get_local_cid,
   2048};
   2049
   2050static bool vmci_check_transport(struct vsock_sock *vsk)
   2051{
   2052	return vsk->transport == &vmci_transport;
   2053}
   2054
   2055static void vmci_vsock_transport_cb(bool is_host)
   2056{
   2057	int features;
   2058
   2059	if (is_host)
   2060		features = VSOCK_TRANSPORT_F_H2G;
   2061	else
   2062		features = VSOCK_TRANSPORT_F_G2H;
   2063
   2064	vsock_core_register(&vmci_transport, features);
   2065}
   2066
   2067static int __init vmci_transport_init(void)
   2068{
   2069	int err;
   2070
   2071	/* Create the datagram handle that we will use to send and receive all
   2072	 * VSocket control messages for this context.
   2073	 */
   2074	err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
   2075						 VMCI_FLAG_ANYCID_DG_HND,
   2076						 vmci_transport_recv_stream_cb,
   2077						 NULL,
   2078						 &vmci_transport_stream_handle);
   2079	if (err < VMCI_SUCCESS) {
   2080		pr_err("Unable to create datagram handle. (%d)\n", err);
   2081		return vmci_transport_error_to_vsock_error(err);
   2082	}
   2083	err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
   2084				   vmci_transport_qp_resumed_cb,
   2085				   NULL, &vmci_transport_qp_resumed_sub_id);
   2086	if (err < VMCI_SUCCESS) {
   2087		pr_err("Unable to subscribe to resumed event. (%d)\n", err);
   2088		err = vmci_transport_error_to_vsock_error(err);
   2089		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
   2090		goto err_destroy_stream_handle;
   2091	}
   2092
   2093	/* Register only with dgram feature, other features (H2G, G2H) will be
   2094	 * registered when the first host or guest becomes active.
   2095	 */
   2096	err = vsock_core_register(&vmci_transport, VSOCK_TRANSPORT_F_DGRAM);
   2097	if (err < 0)
   2098		goto err_unsubscribe;
   2099
   2100	err = vmci_register_vsock_callback(vmci_vsock_transport_cb);
   2101	if (err < 0)
   2102		goto err_unregister;
   2103
   2104	return 0;
   2105
   2106err_unregister:
   2107	vsock_core_unregister(&vmci_transport);
   2108err_unsubscribe:
   2109	vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
   2110err_destroy_stream_handle:
   2111	vmci_datagram_destroy_handle(vmci_transport_stream_handle);
   2112	return err;
   2113}
   2114module_init(vmci_transport_init);
   2115
   2116static void __exit vmci_transport_exit(void)
   2117{
   2118	cancel_work_sync(&vmci_transport_cleanup_work);
   2119	vmci_transport_free_resources(&vmci_transport_cleanup_list);
   2120
   2121	if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
   2122		if (vmci_datagram_destroy_handle(
   2123			vmci_transport_stream_handle) != VMCI_SUCCESS)
   2124			pr_err("Couldn't destroy datagram handle\n");
   2125		vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
   2126	}
   2127
   2128	if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
   2129		vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
   2130		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
   2131	}
   2132
   2133	vmci_register_vsock_callback(NULL);
   2134	vsock_core_unregister(&vmci_transport);
   2135}
   2136module_exit(vmci_transport_exit);
   2137
   2138MODULE_AUTHOR("VMware, Inc.");
   2139MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
   2140MODULE_VERSION("1.0.5.0-k");
   2141MODULE_LICENSE("GPL v2");
   2142MODULE_ALIAS("vmware_vsock");
   2143MODULE_ALIAS_NETPROTO(PF_VSOCK);