cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

scan.c (87029B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * cfg80211 scan result handling
      4 *
      5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
      6 * Copyright 2013-2014  Intel Mobile Communications GmbH
      7 * Copyright 2016	Intel Deutschland GmbH
      8 * Copyright (C) 2018-2021 Intel Corporation
      9 */
     10#include <linux/kernel.h>
     11#include <linux/slab.h>
     12#include <linux/module.h>
     13#include <linux/netdevice.h>
     14#include <linux/wireless.h>
     15#include <linux/nl80211.h>
     16#include <linux/etherdevice.h>
     17#include <linux/crc32.h>
     18#include <linux/bitfield.h>
     19#include <net/arp.h>
     20#include <net/cfg80211.h>
     21#include <net/cfg80211-wext.h>
     22#include <net/iw_handler.h>
     23#include "core.h"
     24#include "nl80211.h"
     25#include "wext-compat.h"
     26#include "rdev-ops.h"
     27
     28/**
     29 * DOC: BSS tree/list structure
     30 *
     31 * At the top level, the BSS list is kept in both a list in each
     32 * registered device (@bss_list) as well as an RB-tree for faster
     33 * lookup. In the RB-tree, entries can be looked up using their
     34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
     35 * for other BSSes.
     36 *
     37 * Due to the possibility of hidden SSIDs, there's a second level
     38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
     39 * The hidden_list connects all BSSes belonging to a single AP
     40 * that has a hidden SSID, and connects beacon and probe response
     41 * entries. For a probe response entry for a hidden SSID, the
     42 * hidden_beacon_bss pointer points to the BSS struct holding the
     43 * beacon's information.
     44 *
     45 * Reference counting is done for all these references except for
     46 * the hidden_list, so that a beacon BSS struct that is otherwise
     47 * not referenced has one reference for being on the bss_list and
     48 * one for each probe response entry that points to it using the
     49 * hidden_beacon_bss pointer. When a BSS struct that has such a
     50 * pointer is get/put, the refcount update is also propagated to
     51 * the referenced struct, this ensure that it cannot get removed
     52 * while somebody is using the probe response version.
     53 *
     54 * Note that the hidden_beacon_bss pointer never changes, due to
     55 * the reference counting. Therefore, no locking is needed for
     56 * it.
     57 *
     58 * Also note that the hidden_beacon_bss pointer is only relevant
     59 * if the driver uses something other than the IEs, e.g. private
     60 * data stored in the BSS struct, since the beacon IEs are
     61 * also linked into the probe response struct.
     62 */
     63
     64/*
     65 * Limit the number of BSS entries stored in mac80211. Each one is
     66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
     67 * If somebody wants to really attack this though, they'd likely
     68 * use small beacons, and only one type of frame, limiting each of
     69 * the entries to a much smaller size (in order to generate more
     70 * entries in total, so overhead is bigger.)
     71 */
     72static int bss_entries_limit = 1000;
     73module_param(bss_entries_limit, int, 0644);
     74MODULE_PARM_DESC(bss_entries_limit,
     75                 "limit to number of scan BSS entries (per wiphy, default 1000)");
     76
     77#define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
     78
     79/**
     80 * struct cfg80211_colocated_ap - colocated AP information
     81 *
     82 * @list: linked list to all colocated aPS
     83 * @bssid: BSSID of the reported AP
     84 * @ssid: SSID of the reported AP
     85 * @ssid_len: length of the ssid
     86 * @center_freq: frequency the reported AP is on
     87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
     88 *	that operate in the same channel as the reported AP and that might be
     89 *	detected by a STA receiving this frame, are transmitting unsolicited
     90 *	Probe Response frames every 20 TUs
     91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
     92 * @same_ssid: the reported AP has the same SSID as the reporting AP
     93 * @multi_bss: the reported AP is part of a multiple BSSID set
     94 * @transmitted_bssid: the reported AP is the transmitting BSSID
     95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
     96 *	colocated and can be discovered via legacy bands.
     97 * @short_ssid_valid: short_ssid is valid and can be used
     98 * @short_ssid: the short SSID for this SSID
     99 */
    100struct cfg80211_colocated_ap {
    101	struct list_head list;
    102	u8 bssid[ETH_ALEN];
    103	u8 ssid[IEEE80211_MAX_SSID_LEN];
    104	size_t ssid_len;
    105	u32 short_ssid;
    106	u32 center_freq;
    107	u8 unsolicited_probe:1,
    108	   oct_recommended:1,
    109	   same_ssid:1,
    110	   multi_bss:1,
    111	   transmitted_bssid:1,
    112	   colocated_ess:1,
    113	   short_ssid_valid:1;
    114};
    115
    116static void bss_free(struct cfg80211_internal_bss *bss)
    117{
    118	struct cfg80211_bss_ies *ies;
    119
    120	if (WARN_ON(atomic_read(&bss->hold)))
    121		return;
    122
    123	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
    124	if (ies && !bss->pub.hidden_beacon_bss)
    125		kfree_rcu(ies, rcu_head);
    126	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
    127	if (ies)
    128		kfree_rcu(ies, rcu_head);
    129
    130	/*
    131	 * This happens when the module is removed, it doesn't
    132	 * really matter any more save for completeness
    133	 */
    134	if (!list_empty(&bss->hidden_list))
    135		list_del(&bss->hidden_list);
    136
    137	kfree(bss);
    138}
    139
    140static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
    141			       struct cfg80211_internal_bss *bss)
    142{
    143	lockdep_assert_held(&rdev->bss_lock);
    144
    145	bss->refcount++;
    146	if (bss->pub.hidden_beacon_bss) {
    147		bss = container_of(bss->pub.hidden_beacon_bss,
    148				   struct cfg80211_internal_bss,
    149				   pub);
    150		bss->refcount++;
    151	}
    152	if (bss->pub.transmitted_bss) {
    153		bss = container_of(bss->pub.transmitted_bss,
    154				   struct cfg80211_internal_bss,
    155				   pub);
    156		bss->refcount++;
    157	}
    158}
    159
    160static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
    161			       struct cfg80211_internal_bss *bss)
    162{
    163	lockdep_assert_held(&rdev->bss_lock);
    164
    165	if (bss->pub.hidden_beacon_bss) {
    166		struct cfg80211_internal_bss *hbss;
    167		hbss = container_of(bss->pub.hidden_beacon_bss,
    168				    struct cfg80211_internal_bss,
    169				    pub);
    170		hbss->refcount--;
    171		if (hbss->refcount == 0)
    172			bss_free(hbss);
    173	}
    174
    175	if (bss->pub.transmitted_bss) {
    176		struct cfg80211_internal_bss *tbss;
    177
    178		tbss = container_of(bss->pub.transmitted_bss,
    179				    struct cfg80211_internal_bss,
    180				    pub);
    181		tbss->refcount--;
    182		if (tbss->refcount == 0)
    183			bss_free(tbss);
    184	}
    185
    186	bss->refcount--;
    187	if (bss->refcount == 0)
    188		bss_free(bss);
    189}
    190
    191static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
    192				  struct cfg80211_internal_bss *bss)
    193{
    194	lockdep_assert_held(&rdev->bss_lock);
    195
    196	if (!list_empty(&bss->hidden_list)) {
    197		/*
    198		 * don't remove the beacon entry if it has
    199		 * probe responses associated with it
    200		 */
    201		if (!bss->pub.hidden_beacon_bss)
    202			return false;
    203		/*
    204		 * if it's a probe response entry break its
    205		 * link to the other entries in the group
    206		 */
    207		list_del_init(&bss->hidden_list);
    208	}
    209
    210	list_del_init(&bss->list);
    211	list_del_init(&bss->pub.nontrans_list);
    212	rb_erase(&bss->rbn, &rdev->bss_tree);
    213	rdev->bss_entries--;
    214	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
    215		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
    216		  rdev->bss_entries, list_empty(&rdev->bss_list));
    217	bss_ref_put(rdev, bss);
    218	return true;
    219}
    220
    221bool cfg80211_is_element_inherited(const struct element *elem,
    222				   const struct element *non_inherit_elem)
    223{
    224	u8 id_len, ext_id_len, i, loop_len, id;
    225	const u8 *list;
    226
    227	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
    228		return false;
    229
    230	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
    231		return true;
    232
    233	/*
    234	 * non inheritance element format is:
    235	 * ext ID (56) | IDs list len | list | extension IDs list len | list
    236	 * Both lists are optional. Both lengths are mandatory.
    237	 * This means valid length is:
    238	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
    239	 */
    240	id_len = non_inherit_elem->data[1];
    241	if (non_inherit_elem->datalen < 3 + id_len)
    242		return true;
    243
    244	ext_id_len = non_inherit_elem->data[2 + id_len];
    245	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
    246		return true;
    247
    248	if (elem->id == WLAN_EID_EXTENSION) {
    249		if (!ext_id_len)
    250			return true;
    251		loop_len = ext_id_len;
    252		list = &non_inherit_elem->data[3 + id_len];
    253		id = elem->data[0];
    254	} else {
    255		if (!id_len)
    256			return true;
    257		loop_len = id_len;
    258		list = &non_inherit_elem->data[2];
    259		id = elem->id;
    260	}
    261
    262	for (i = 0; i < loop_len; i++) {
    263		if (list[i] == id)
    264			return false;
    265	}
    266
    267	return true;
    268}
    269EXPORT_SYMBOL(cfg80211_is_element_inherited);
    270
    271static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
    272				  const u8 *subelement, size_t subie_len,
    273				  u8 *new_ie, gfp_t gfp)
    274{
    275	u8 *pos, *tmp;
    276	const u8 *tmp_old, *tmp_new;
    277	const struct element *non_inherit_elem;
    278	u8 *sub_copy;
    279
    280	/* copy subelement as we need to change its content to
    281	 * mark an ie after it is processed.
    282	 */
    283	sub_copy = kmemdup(subelement, subie_len, gfp);
    284	if (!sub_copy)
    285		return 0;
    286
    287	pos = &new_ie[0];
    288
    289	/* set new ssid */
    290	tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
    291	if (tmp_new) {
    292		memcpy(pos, tmp_new, tmp_new[1] + 2);
    293		pos += (tmp_new[1] + 2);
    294	}
    295
    296	/* get non inheritance list if exists */
    297	non_inherit_elem =
    298		cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
    299				       sub_copy, subie_len);
    300
    301	/* go through IEs in ie (skip SSID) and subelement,
    302	 * merge them into new_ie
    303	 */
    304	tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
    305	tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
    306
    307	while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
    308		if (tmp_old[0] == 0) {
    309			tmp_old++;
    310			continue;
    311		}
    312
    313		if (tmp_old[0] == WLAN_EID_EXTENSION)
    314			tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
    315							 subie_len);
    316		else
    317			tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
    318						     subie_len);
    319
    320		if (!tmp) {
    321			const struct element *old_elem = (void *)tmp_old;
    322
    323			/* ie in old ie but not in subelement */
    324			if (cfg80211_is_element_inherited(old_elem,
    325							  non_inherit_elem)) {
    326				memcpy(pos, tmp_old, tmp_old[1] + 2);
    327				pos += tmp_old[1] + 2;
    328			}
    329		} else {
    330			/* ie in transmitting ie also in subelement,
    331			 * copy from subelement and flag the ie in subelement
    332			 * as copied (by setting eid field to WLAN_EID_SSID,
    333			 * which is skipped anyway).
    334			 * For vendor ie, compare OUI + type + subType to
    335			 * determine if they are the same ie.
    336			 */
    337			if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
    338				if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
    339					/* same vendor ie, copy from
    340					 * subelement
    341					 */
    342					memcpy(pos, tmp, tmp[1] + 2);
    343					pos += tmp[1] + 2;
    344					tmp[0] = WLAN_EID_SSID;
    345				} else {
    346					memcpy(pos, tmp_old, tmp_old[1] + 2);
    347					pos += tmp_old[1] + 2;
    348				}
    349			} else {
    350				/* copy ie from subelement into new ie */
    351				memcpy(pos, tmp, tmp[1] + 2);
    352				pos += tmp[1] + 2;
    353				tmp[0] = WLAN_EID_SSID;
    354			}
    355		}
    356
    357		if (tmp_old + tmp_old[1] + 2 - ie == ielen)
    358			break;
    359
    360		tmp_old += tmp_old[1] + 2;
    361	}
    362
    363	/* go through subelement again to check if there is any ie not
    364	 * copied to new ie, skip ssid, capability, bssid-index ie
    365	 */
    366	tmp_new = sub_copy;
    367	while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
    368		if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
    369		      tmp_new[0] == WLAN_EID_SSID)) {
    370			memcpy(pos, tmp_new, tmp_new[1] + 2);
    371			pos += tmp_new[1] + 2;
    372		}
    373		if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
    374			break;
    375		tmp_new += tmp_new[1] + 2;
    376	}
    377
    378	kfree(sub_copy);
    379	return pos - new_ie;
    380}
    381
    382static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
    383		   const u8 *ssid, size_t ssid_len)
    384{
    385	const struct cfg80211_bss_ies *ies;
    386	const struct element *ssid_elem;
    387
    388	if (bssid && !ether_addr_equal(a->bssid, bssid))
    389		return false;
    390
    391	if (!ssid)
    392		return true;
    393
    394	ies = rcu_access_pointer(a->ies);
    395	if (!ies)
    396		return false;
    397	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
    398	if (!ssid_elem)
    399		return false;
    400	if (ssid_elem->datalen != ssid_len)
    401		return false;
    402	return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
    403}
    404
    405static int
    406cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
    407			   struct cfg80211_bss *nontrans_bss)
    408{
    409	const struct element *ssid_elem;
    410	struct cfg80211_bss *bss = NULL;
    411
    412	rcu_read_lock();
    413	ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
    414	if (!ssid_elem) {
    415		rcu_read_unlock();
    416		return -EINVAL;
    417	}
    418
    419	/* check if nontrans_bss is in the list */
    420	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
    421		if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
    422			   ssid_elem->datalen)) {
    423			rcu_read_unlock();
    424			return 0;
    425		}
    426	}
    427
    428	rcu_read_unlock();
    429
    430	/* add to the list */
    431	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
    432	return 0;
    433}
    434
    435static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
    436				  unsigned long expire_time)
    437{
    438	struct cfg80211_internal_bss *bss, *tmp;
    439	bool expired = false;
    440
    441	lockdep_assert_held(&rdev->bss_lock);
    442
    443	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
    444		if (atomic_read(&bss->hold))
    445			continue;
    446		if (!time_after(expire_time, bss->ts))
    447			continue;
    448
    449		if (__cfg80211_unlink_bss(rdev, bss))
    450			expired = true;
    451	}
    452
    453	if (expired)
    454		rdev->bss_generation++;
    455}
    456
    457static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
    458{
    459	struct cfg80211_internal_bss *bss, *oldest = NULL;
    460	bool ret;
    461
    462	lockdep_assert_held(&rdev->bss_lock);
    463
    464	list_for_each_entry(bss, &rdev->bss_list, list) {
    465		if (atomic_read(&bss->hold))
    466			continue;
    467
    468		if (!list_empty(&bss->hidden_list) &&
    469		    !bss->pub.hidden_beacon_bss)
    470			continue;
    471
    472		if (oldest && time_before(oldest->ts, bss->ts))
    473			continue;
    474		oldest = bss;
    475	}
    476
    477	if (WARN_ON(!oldest))
    478		return false;
    479
    480	/*
    481	 * The callers make sure to increase rdev->bss_generation if anything
    482	 * gets removed (and a new entry added), so there's no need to also do
    483	 * it here.
    484	 */
    485
    486	ret = __cfg80211_unlink_bss(rdev, oldest);
    487	WARN_ON(!ret);
    488	return ret;
    489}
    490
    491static u8 cfg80211_parse_bss_param(u8 data,
    492				   struct cfg80211_colocated_ap *coloc_ap)
    493{
    494	coloc_ap->oct_recommended =
    495		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
    496	coloc_ap->same_ssid =
    497		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
    498	coloc_ap->multi_bss =
    499		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
    500	coloc_ap->transmitted_bssid =
    501		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
    502	coloc_ap->unsolicited_probe =
    503		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
    504	coloc_ap->colocated_ess =
    505		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
    506
    507	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
    508}
    509
    510static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
    511				    const struct element **elem, u32 *s_ssid)
    512{
    513
    514	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
    515	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
    516		return -EINVAL;
    517
    518	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
    519	return 0;
    520}
    521
    522static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
    523{
    524	struct cfg80211_colocated_ap *ap, *tmp_ap;
    525
    526	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
    527		list_del(&ap->list);
    528		kfree(ap);
    529	}
    530}
    531
    532static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
    533				  const u8 *pos, u8 length,
    534				  const struct element *ssid_elem,
    535				  int s_ssid_tmp)
    536{
    537	/* skip the TBTT offset */
    538	pos++;
    539
    540	memcpy(entry->bssid, pos, ETH_ALEN);
    541	pos += ETH_ALEN;
    542
    543	if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
    544		memcpy(&entry->short_ssid, pos,
    545		       sizeof(entry->short_ssid));
    546		entry->short_ssid_valid = true;
    547		pos += 4;
    548	}
    549
    550	/* skip non colocated APs */
    551	if (!cfg80211_parse_bss_param(*pos, entry))
    552		return -EINVAL;
    553	pos++;
    554
    555	if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
    556		/*
    557		 * no information about the short ssid. Consider the entry valid
    558		 * for now. It would later be dropped in case there are explicit
    559		 * SSIDs that need to be matched
    560		 */
    561		if (!entry->same_ssid)
    562			return 0;
    563	}
    564
    565	if (entry->same_ssid) {
    566		entry->short_ssid = s_ssid_tmp;
    567		entry->short_ssid_valid = true;
    568
    569		/*
    570		 * This is safe because we validate datalen in
    571		 * cfg80211_parse_colocated_ap(), before calling this
    572		 * function.
    573		 */
    574		memcpy(&entry->ssid, &ssid_elem->data,
    575		       ssid_elem->datalen);
    576		entry->ssid_len = ssid_elem->datalen;
    577	}
    578	return 0;
    579}
    580
    581static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
    582				       struct list_head *list)
    583{
    584	struct ieee80211_neighbor_ap_info *ap_info;
    585	const struct element *elem, *ssid_elem;
    586	const u8 *pos, *end;
    587	u32 s_ssid_tmp;
    588	int n_coloc = 0, ret;
    589	LIST_HEAD(ap_list);
    590
    591	elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
    592				  ies->len);
    593	if (!elem)
    594		return 0;
    595
    596	pos = elem->data;
    597	end = pos + elem->datalen;
    598
    599	ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
    600	if (ret)
    601		return ret;
    602
    603	/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
    604	while (pos + sizeof(*ap_info) <= end) {
    605		enum nl80211_band band;
    606		int freq;
    607		u8 length, i, count;
    608
    609		ap_info = (void *)pos;
    610		count = u8_get_bits(ap_info->tbtt_info_hdr,
    611				    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
    612		length = ap_info->tbtt_info_len;
    613
    614		pos += sizeof(*ap_info);
    615
    616		if (!ieee80211_operating_class_to_band(ap_info->op_class,
    617						       &band))
    618			break;
    619
    620		freq = ieee80211_channel_to_frequency(ap_info->channel, band);
    621
    622		if (end - pos < count * length)
    623			break;
    624
    625		/*
    626		 * TBTT info must include bss param + BSSID +
    627		 * (short SSID or same_ssid bit to be set).
    628		 * ignore other options, and move to the
    629		 * next AP info
    630		 */
    631		if (band != NL80211_BAND_6GHZ ||
    632		    (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
    633		     length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
    634			pos += count * length;
    635			continue;
    636		}
    637
    638		for (i = 0; i < count; i++) {
    639			struct cfg80211_colocated_ap *entry;
    640
    641			entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
    642					GFP_ATOMIC);
    643
    644			if (!entry)
    645				break;
    646
    647			entry->center_freq = freq;
    648
    649			if (!cfg80211_parse_ap_info(entry, pos, length,
    650						    ssid_elem, s_ssid_tmp)) {
    651				n_coloc++;
    652				list_add_tail(&entry->list, &ap_list);
    653			} else {
    654				kfree(entry);
    655			}
    656
    657			pos += length;
    658		}
    659	}
    660
    661	if (pos != end) {
    662		cfg80211_free_coloc_ap_list(&ap_list);
    663		return 0;
    664	}
    665
    666	list_splice_tail(&ap_list, list);
    667	return n_coloc;
    668}
    669
    670static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
    671					struct ieee80211_channel *chan,
    672					bool add_to_6ghz)
    673{
    674	int i;
    675	u32 n_channels = request->n_channels;
    676	struct cfg80211_scan_6ghz_params *params =
    677		&request->scan_6ghz_params[request->n_6ghz_params];
    678
    679	for (i = 0; i < n_channels; i++) {
    680		if (request->channels[i] == chan) {
    681			if (add_to_6ghz)
    682				params->channel_idx = i;
    683			return;
    684		}
    685	}
    686
    687	request->channels[n_channels] = chan;
    688	if (add_to_6ghz)
    689		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
    690			n_channels;
    691
    692	request->n_channels++;
    693}
    694
    695static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
    696				     struct cfg80211_scan_request *request)
    697{
    698	int i;
    699	u32 s_ssid;
    700
    701	for (i = 0; i < request->n_ssids; i++) {
    702		/* wildcard ssid in the scan request */
    703		if (!request->ssids[i].ssid_len) {
    704			if (ap->multi_bss && !ap->transmitted_bssid)
    705				continue;
    706
    707			return true;
    708		}
    709
    710		if (ap->ssid_len &&
    711		    ap->ssid_len == request->ssids[i].ssid_len) {
    712			if (!memcmp(request->ssids[i].ssid, ap->ssid,
    713				    ap->ssid_len))
    714				return true;
    715		} else if (ap->short_ssid_valid) {
    716			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
    717					   request->ssids[i].ssid_len);
    718
    719			if (ap->short_ssid == s_ssid)
    720				return true;
    721		}
    722	}
    723
    724	return false;
    725}
    726
    727static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
    728{
    729	u8 i;
    730	struct cfg80211_colocated_ap *ap;
    731	int n_channels, count = 0, err;
    732	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
    733	LIST_HEAD(coloc_ap_list);
    734	bool need_scan_psc = true;
    735	const struct ieee80211_sband_iftype_data *iftd;
    736
    737	rdev_req->scan_6ghz = true;
    738
    739	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
    740		return -EOPNOTSUPP;
    741
    742	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
    743					       rdev_req->wdev->iftype);
    744	if (!iftd || !iftd->he_cap.has_he)
    745		return -EOPNOTSUPP;
    746
    747	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
    748
    749	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
    750		struct cfg80211_internal_bss *intbss;
    751
    752		spin_lock_bh(&rdev->bss_lock);
    753		list_for_each_entry(intbss, &rdev->bss_list, list) {
    754			struct cfg80211_bss *res = &intbss->pub;
    755			const struct cfg80211_bss_ies *ies;
    756
    757			ies = rcu_access_pointer(res->ies);
    758			count += cfg80211_parse_colocated_ap(ies,
    759							     &coloc_ap_list);
    760		}
    761		spin_unlock_bh(&rdev->bss_lock);
    762	}
    763
    764	request = kzalloc(struct_size(request, channels, n_channels) +
    765			  sizeof(*request->scan_6ghz_params) * count +
    766			  sizeof(*request->ssids) * rdev_req->n_ssids,
    767			  GFP_KERNEL);
    768	if (!request) {
    769		cfg80211_free_coloc_ap_list(&coloc_ap_list);
    770		return -ENOMEM;
    771	}
    772
    773	*request = *rdev_req;
    774	request->n_channels = 0;
    775	request->scan_6ghz_params =
    776		(void *)&request->channels[n_channels];
    777
    778	/*
    779	 * PSC channels should not be scanned in case of direct scan with 1 SSID
    780	 * and at least one of the reported co-located APs with same SSID
    781	 * indicating that all APs in the same ESS are co-located
    782	 */
    783	if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
    784		list_for_each_entry(ap, &coloc_ap_list, list) {
    785			if (ap->colocated_ess &&
    786			    cfg80211_find_ssid_match(ap, request)) {
    787				need_scan_psc = false;
    788				break;
    789			}
    790		}
    791	}
    792
    793	/*
    794	 * add to the scan request the channels that need to be scanned
    795	 * regardless of the collocated APs (PSC channels or all channels
    796	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
    797	 */
    798	for (i = 0; i < rdev_req->n_channels; i++) {
    799		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
    800		    ((need_scan_psc &&
    801		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
    802		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
    803			cfg80211_scan_req_add_chan(request,
    804						   rdev_req->channels[i],
    805						   false);
    806		}
    807	}
    808
    809	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
    810		goto skip;
    811
    812	list_for_each_entry(ap, &coloc_ap_list, list) {
    813		bool found = false;
    814		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
    815			&request->scan_6ghz_params[request->n_6ghz_params];
    816		struct ieee80211_channel *chan =
    817			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
    818
    819		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
    820			continue;
    821
    822		for (i = 0; i < rdev_req->n_channels; i++) {
    823			if (rdev_req->channels[i] == chan)
    824				found = true;
    825		}
    826
    827		if (!found)
    828			continue;
    829
    830		if (request->n_ssids > 0 &&
    831		    !cfg80211_find_ssid_match(ap, request))
    832			continue;
    833
    834		if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
    835			continue;
    836
    837		cfg80211_scan_req_add_chan(request, chan, true);
    838		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
    839		scan_6ghz_params->short_ssid = ap->short_ssid;
    840		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
    841		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
    842
    843		/*
    844		 * If a PSC channel is added to the scan and 'need_scan_psc' is
    845		 * set to false, then all the APs that the scan logic is
    846		 * interested with on the channel are collocated and thus there
    847		 * is no need to perform the initial PSC channel listen.
    848		 */
    849		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
    850			scan_6ghz_params->psc_no_listen = true;
    851
    852		request->n_6ghz_params++;
    853	}
    854
    855skip:
    856	cfg80211_free_coloc_ap_list(&coloc_ap_list);
    857
    858	if (request->n_channels) {
    859		struct cfg80211_scan_request *old = rdev->int_scan_req;
    860		rdev->int_scan_req = request;
    861
    862		/*
    863		 * Add the ssids from the parent scan request to the new scan
    864		 * request, so the driver would be able to use them in its
    865		 * probe requests to discover hidden APs on PSC channels.
    866		 */
    867		request->ssids = (void *)&request->channels[request->n_channels];
    868		request->n_ssids = rdev_req->n_ssids;
    869		memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
    870		       request->n_ssids);
    871
    872		/*
    873		 * If this scan follows a previous scan, save the scan start
    874		 * info from the first part of the scan
    875		 */
    876		if (old)
    877			rdev->int_scan_req->info = old->info;
    878
    879		err = rdev_scan(rdev, request);
    880		if (err) {
    881			rdev->int_scan_req = old;
    882			kfree(request);
    883		} else {
    884			kfree(old);
    885		}
    886
    887		return err;
    888	}
    889
    890	kfree(request);
    891	return -EINVAL;
    892}
    893
    894int cfg80211_scan(struct cfg80211_registered_device *rdev)
    895{
    896	struct cfg80211_scan_request *request;
    897	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
    898	u32 n_channels = 0, idx, i;
    899
    900	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
    901		return rdev_scan(rdev, rdev_req);
    902
    903	for (i = 0; i < rdev_req->n_channels; i++) {
    904		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
    905			n_channels++;
    906	}
    907
    908	if (!n_channels)
    909		return cfg80211_scan_6ghz(rdev);
    910
    911	request = kzalloc(struct_size(request, channels, n_channels),
    912			  GFP_KERNEL);
    913	if (!request)
    914		return -ENOMEM;
    915
    916	*request = *rdev_req;
    917	request->n_channels = n_channels;
    918
    919	for (i = idx = 0; i < rdev_req->n_channels; i++) {
    920		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
    921			request->channels[idx++] = rdev_req->channels[i];
    922	}
    923
    924	rdev_req->scan_6ghz = false;
    925	rdev->int_scan_req = request;
    926	return rdev_scan(rdev, request);
    927}
    928
    929void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
    930			   bool send_message)
    931{
    932	struct cfg80211_scan_request *request, *rdev_req;
    933	struct wireless_dev *wdev;
    934	struct sk_buff *msg;
    935#ifdef CONFIG_CFG80211_WEXT
    936	union iwreq_data wrqu;
    937#endif
    938
    939	lockdep_assert_held(&rdev->wiphy.mtx);
    940
    941	if (rdev->scan_msg) {
    942		nl80211_send_scan_msg(rdev, rdev->scan_msg);
    943		rdev->scan_msg = NULL;
    944		return;
    945	}
    946
    947	rdev_req = rdev->scan_req;
    948	if (!rdev_req)
    949		return;
    950
    951	wdev = rdev_req->wdev;
    952	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
    953
    954	if (wdev_running(wdev) &&
    955	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
    956	    !rdev_req->scan_6ghz && !request->info.aborted &&
    957	    !cfg80211_scan_6ghz(rdev))
    958		return;
    959
    960	/*
    961	 * This must be before sending the other events!
    962	 * Otherwise, wpa_supplicant gets completely confused with
    963	 * wext events.
    964	 */
    965	if (wdev->netdev)
    966		cfg80211_sme_scan_done(wdev->netdev);
    967
    968	if (!request->info.aborted &&
    969	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
    970		/* flush entries from previous scans */
    971		spin_lock_bh(&rdev->bss_lock);
    972		__cfg80211_bss_expire(rdev, request->scan_start);
    973		spin_unlock_bh(&rdev->bss_lock);
    974	}
    975
    976	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
    977
    978#ifdef CONFIG_CFG80211_WEXT
    979	if (wdev->netdev && !request->info.aborted) {
    980		memset(&wrqu, 0, sizeof(wrqu));
    981
    982		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
    983	}
    984#endif
    985
    986	dev_put(wdev->netdev);
    987
    988	kfree(rdev->int_scan_req);
    989	rdev->int_scan_req = NULL;
    990
    991	kfree(rdev->scan_req);
    992	rdev->scan_req = NULL;
    993
    994	if (!send_message)
    995		rdev->scan_msg = msg;
    996	else
    997		nl80211_send_scan_msg(rdev, msg);
    998}
    999
   1000void __cfg80211_scan_done(struct work_struct *wk)
   1001{
   1002	struct cfg80211_registered_device *rdev;
   1003
   1004	rdev = container_of(wk, struct cfg80211_registered_device,
   1005			    scan_done_wk);
   1006
   1007	wiphy_lock(&rdev->wiphy);
   1008	___cfg80211_scan_done(rdev, true);
   1009	wiphy_unlock(&rdev->wiphy);
   1010}
   1011
   1012void cfg80211_scan_done(struct cfg80211_scan_request *request,
   1013			struct cfg80211_scan_info *info)
   1014{
   1015	struct cfg80211_scan_info old_info = request->info;
   1016
   1017	trace_cfg80211_scan_done(request, info);
   1018	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
   1019		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
   1020
   1021	request->info = *info;
   1022
   1023	/*
   1024	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
   1025	 * be of the first part. In such a case old_info.scan_start_tsf should
   1026	 * be non zero.
   1027	 */
   1028	if (request->scan_6ghz && old_info.scan_start_tsf) {
   1029		request->info.scan_start_tsf = old_info.scan_start_tsf;
   1030		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
   1031		       sizeof(request->info.tsf_bssid));
   1032	}
   1033
   1034	request->notified = true;
   1035	queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
   1036}
   1037EXPORT_SYMBOL(cfg80211_scan_done);
   1038
   1039void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
   1040				 struct cfg80211_sched_scan_request *req)
   1041{
   1042	lockdep_assert_held(&rdev->wiphy.mtx);
   1043
   1044	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
   1045}
   1046
   1047static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
   1048					struct cfg80211_sched_scan_request *req)
   1049{
   1050	lockdep_assert_held(&rdev->wiphy.mtx);
   1051
   1052	list_del_rcu(&req->list);
   1053	kfree_rcu(req, rcu_head);
   1054}
   1055
   1056static struct cfg80211_sched_scan_request *
   1057cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
   1058{
   1059	struct cfg80211_sched_scan_request *pos;
   1060
   1061	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
   1062				lockdep_is_held(&rdev->wiphy.mtx)) {
   1063		if (pos->reqid == reqid)
   1064			return pos;
   1065	}
   1066	return NULL;
   1067}
   1068
   1069/*
   1070 * Determines if a scheduled scan request can be handled. When a legacy
   1071 * scheduled scan is running no other scheduled scan is allowed regardless
   1072 * whether the request is for legacy or multi-support scan. When a multi-support
   1073 * scheduled scan is running a request for legacy scan is not allowed. In this
   1074 * case a request for multi-support scan can be handled if resources are
   1075 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
   1076 */
   1077int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
   1078				     bool want_multi)
   1079{
   1080	struct cfg80211_sched_scan_request *pos;
   1081	int i = 0;
   1082
   1083	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
   1084		/* request id zero means legacy in progress */
   1085		if (!i && !pos->reqid)
   1086			return -EINPROGRESS;
   1087		i++;
   1088	}
   1089
   1090	if (i) {
   1091		/* no legacy allowed when multi request(s) are active */
   1092		if (!want_multi)
   1093			return -EINPROGRESS;
   1094
   1095		/* resource limit reached */
   1096		if (i == rdev->wiphy.max_sched_scan_reqs)
   1097			return -ENOSPC;
   1098	}
   1099	return 0;
   1100}
   1101
   1102void cfg80211_sched_scan_results_wk(struct work_struct *work)
   1103{
   1104	struct cfg80211_registered_device *rdev;
   1105	struct cfg80211_sched_scan_request *req, *tmp;
   1106
   1107	rdev = container_of(work, struct cfg80211_registered_device,
   1108			   sched_scan_res_wk);
   1109
   1110	wiphy_lock(&rdev->wiphy);
   1111	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
   1112		if (req->report_results) {
   1113			req->report_results = false;
   1114			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
   1115				/* flush entries from previous scans */
   1116				spin_lock_bh(&rdev->bss_lock);
   1117				__cfg80211_bss_expire(rdev, req->scan_start);
   1118				spin_unlock_bh(&rdev->bss_lock);
   1119				req->scan_start = jiffies;
   1120			}
   1121			nl80211_send_sched_scan(req,
   1122						NL80211_CMD_SCHED_SCAN_RESULTS);
   1123		}
   1124	}
   1125	wiphy_unlock(&rdev->wiphy);
   1126}
   1127
   1128void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
   1129{
   1130	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
   1131	struct cfg80211_sched_scan_request *request;
   1132
   1133	trace_cfg80211_sched_scan_results(wiphy, reqid);
   1134	/* ignore if we're not scanning */
   1135
   1136	rcu_read_lock();
   1137	request = cfg80211_find_sched_scan_req(rdev, reqid);
   1138	if (request) {
   1139		request->report_results = true;
   1140		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
   1141	}
   1142	rcu_read_unlock();
   1143}
   1144EXPORT_SYMBOL(cfg80211_sched_scan_results);
   1145
   1146void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
   1147{
   1148	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
   1149
   1150	lockdep_assert_held(&wiphy->mtx);
   1151
   1152	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
   1153
   1154	__cfg80211_stop_sched_scan(rdev, reqid, true);
   1155}
   1156EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
   1157
   1158void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
   1159{
   1160	wiphy_lock(wiphy);
   1161	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
   1162	wiphy_unlock(wiphy);
   1163}
   1164EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
   1165
   1166int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
   1167				 struct cfg80211_sched_scan_request *req,
   1168				 bool driver_initiated)
   1169{
   1170	lockdep_assert_held(&rdev->wiphy.mtx);
   1171
   1172	if (!driver_initiated) {
   1173		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
   1174		if (err)
   1175			return err;
   1176	}
   1177
   1178	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
   1179
   1180	cfg80211_del_sched_scan_req(rdev, req);
   1181
   1182	return 0;
   1183}
   1184
   1185int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
   1186			       u64 reqid, bool driver_initiated)
   1187{
   1188	struct cfg80211_sched_scan_request *sched_scan_req;
   1189
   1190	lockdep_assert_held(&rdev->wiphy.mtx);
   1191
   1192	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
   1193	if (!sched_scan_req)
   1194		return -ENOENT;
   1195
   1196	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
   1197					    driver_initiated);
   1198}
   1199
   1200void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
   1201                      unsigned long age_secs)
   1202{
   1203	struct cfg80211_internal_bss *bss;
   1204	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
   1205
   1206	spin_lock_bh(&rdev->bss_lock);
   1207	list_for_each_entry(bss, &rdev->bss_list, list)
   1208		bss->ts -= age_jiffies;
   1209	spin_unlock_bh(&rdev->bss_lock);
   1210}
   1211
   1212void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
   1213{
   1214	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
   1215}
   1216
   1217void cfg80211_bss_flush(struct wiphy *wiphy)
   1218{
   1219	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
   1220
   1221	spin_lock_bh(&rdev->bss_lock);
   1222	__cfg80211_bss_expire(rdev, jiffies);
   1223	spin_unlock_bh(&rdev->bss_lock);
   1224}
   1225EXPORT_SYMBOL(cfg80211_bss_flush);
   1226
   1227const struct element *
   1228cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
   1229			 const u8 *match, unsigned int match_len,
   1230			 unsigned int match_offset)
   1231{
   1232	const struct element *elem;
   1233
   1234	for_each_element_id(elem, eid, ies, len) {
   1235		if (elem->datalen >= match_offset + match_len &&
   1236		    !memcmp(elem->data + match_offset, match, match_len))
   1237			return elem;
   1238	}
   1239
   1240	return NULL;
   1241}
   1242EXPORT_SYMBOL(cfg80211_find_elem_match);
   1243
   1244const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
   1245						const u8 *ies,
   1246						unsigned int len)
   1247{
   1248	const struct element *elem;
   1249	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
   1250	int match_len = (oui_type < 0) ? 3 : sizeof(match);
   1251
   1252	if (WARN_ON(oui_type > 0xff))
   1253		return NULL;
   1254
   1255	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
   1256					match, match_len, 0);
   1257
   1258	if (!elem || elem->datalen < 4)
   1259		return NULL;
   1260
   1261	return elem;
   1262}
   1263EXPORT_SYMBOL(cfg80211_find_vendor_elem);
   1264
   1265/**
   1266 * enum bss_compare_mode - BSS compare mode
   1267 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
   1268 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
   1269 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
   1270 */
   1271enum bss_compare_mode {
   1272	BSS_CMP_REGULAR,
   1273	BSS_CMP_HIDE_ZLEN,
   1274	BSS_CMP_HIDE_NUL,
   1275};
   1276
   1277static int cmp_bss(struct cfg80211_bss *a,
   1278		   struct cfg80211_bss *b,
   1279		   enum bss_compare_mode mode)
   1280{
   1281	const struct cfg80211_bss_ies *a_ies, *b_ies;
   1282	const u8 *ie1 = NULL;
   1283	const u8 *ie2 = NULL;
   1284	int i, r;
   1285
   1286	if (a->channel != b->channel)
   1287		return b->channel->center_freq - a->channel->center_freq;
   1288
   1289	a_ies = rcu_access_pointer(a->ies);
   1290	if (!a_ies)
   1291		return -1;
   1292	b_ies = rcu_access_pointer(b->ies);
   1293	if (!b_ies)
   1294		return 1;
   1295
   1296	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
   1297		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
   1298				       a_ies->data, a_ies->len);
   1299	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
   1300		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
   1301				       b_ies->data, b_ies->len);
   1302	if (ie1 && ie2) {
   1303		int mesh_id_cmp;
   1304
   1305		if (ie1[1] == ie2[1])
   1306			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
   1307		else
   1308			mesh_id_cmp = ie2[1] - ie1[1];
   1309
   1310		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
   1311				       a_ies->data, a_ies->len);
   1312		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
   1313				       b_ies->data, b_ies->len);
   1314		if (ie1 && ie2) {
   1315			if (mesh_id_cmp)
   1316				return mesh_id_cmp;
   1317			if (ie1[1] != ie2[1])
   1318				return ie2[1] - ie1[1];
   1319			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
   1320		}
   1321	}
   1322
   1323	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
   1324	if (r)
   1325		return r;
   1326
   1327	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
   1328	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
   1329
   1330	if (!ie1 && !ie2)
   1331		return 0;
   1332
   1333	/*
   1334	 * Note that with "hide_ssid", the function returns a match if
   1335	 * the already-present BSS ("b") is a hidden SSID beacon for
   1336	 * the new BSS ("a").
   1337	 */
   1338
   1339	/* sort missing IE before (left of) present IE */
   1340	if (!ie1)
   1341		return -1;
   1342	if (!ie2)
   1343		return 1;
   1344
   1345	switch (mode) {
   1346	case BSS_CMP_HIDE_ZLEN:
   1347		/*
   1348		 * In ZLEN mode we assume the BSS entry we're
   1349		 * looking for has a zero-length SSID. So if
   1350		 * the one we're looking at right now has that,
   1351		 * return 0. Otherwise, return the difference
   1352		 * in length, but since we're looking for the
   1353		 * 0-length it's really equivalent to returning
   1354		 * the length of the one we're looking at.
   1355		 *
   1356		 * No content comparison is needed as we assume
   1357		 * the content length is zero.
   1358		 */
   1359		return ie2[1];
   1360	case BSS_CMP_REGULAR:
   1361	default:
   1362		/* sort by length first, then by contents */
   1363		if (ie1[1] != ie2[1])
   1364			return ie2[1] - ie1[1];
   1365		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
   1366	case BSS_CMP_HIDE_NUL:
   1367		if (ie1[1] != ie2[1])
   1368			return ie2[1] - ie1[1];
   1369		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
   1370		for (i = 0; i < ie2[1]; i++)
   1371			if (ie2[i + 2])
   1372				return -1;
   1373		return 0;
   1374	}
   1375}
   1376
   1377static bool cfg80211_bss_type_match(u16 capability,
   1378				    enum nl80211_band band,
   1379				    enum ieee80211_bss_type bss_type)
   1380{
   1381	bool ret = true;
   1382	u16 mask, val;
   1383
   1384	if (bss_type == IEEE80211_BSS_TYPE_ANY)
   1385		return ret;
   1386
   1387	if (band == NL80211_BAND_60GHZ) {
   1388		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
   1389		switch (bss_type) {
   1390		case IEEE80211_BSS_TYPE_ESS:
   1391			val = WLAN_CAPABILITY_DMG_TYPE_AP;
   1392			break;
   1393		case IEEE80211_BSS_TYPE_PBSS:
   1394			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
   1395			break;
   1396		case IEEE80211_BSS_TYPE_IBSS:
   1397			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
   1398			break;
   1399		default:
   1400			return false;
   1401		}
   1402	} else {
   1403		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
   1404		switch (bss_type) {
   1405		case IEEE80211_BSS_TYPE_ESS:
   1406			val = WLAN_CAPABILITY_ESS;
   1407			break;
   1408		case IEEE80211_BSS_TYPE_IBSS:
   1409			val = WLAN_CAPABILITY_IBSS;
   1410			break;
   1411		case IEEE80211_BSS_TYPE_MBSS:
   1412			val = 0;
   1413			break;
   1414		default:
   1415			return false;
   1416		}
   1417	}
   1418
   1419	ret = ((capability & mask) == val);
   1420	return ret;
   1421}
   1422
   1423/* Returned bss is reference counted and must be cleaned up appropriately. */
   1424struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
   1425				      struct ieee80211_channel *channel,
   1426				      const u8 *bssid,
   1427				      const u8 *ssid, size_t ssid_len,
   1428				      enum ieee80211_bss_type bss_type,
   1429				      enum ieee80211_privacy privacy)
   1430{
   1431	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
   1432	struct cfg80211_internal_bss *bss, *res = NULL;
   1433	unsigned long now = jiffies;
   1434	int bss_privacy;
   1435
   1436	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
   1437			       privacy);
   1438
   1439	spin_lock_bh(&rdev->bss_lock);
   1440
   1441	list_for_each_entry(bss, &rdev->bss_list, list) {
   1442		if (!cfg80211_bss_type_match(bss->pub.capability,
   1443					     bss->pub.channel->band, bss_type))
   1444			continue;
   1445
   1446		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
   1447		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
   1448		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
   1449			continue;
   1450		if (channel && bss->pub.channel != channel)
   1451			continue;
   1452		if (!is_valid_ether_addr(bss->pub.bssid))
   1453			continue;
   1454		/* Don't get expired BSS structs */
   1455		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
   1456		    !atomic_read(&bss->hold))
   1457			continue;
   1458		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
   1459			res = bss;
   1460			bss_ref_get(rdev, res);
   1461			break;
   1462		}
   1463	}
   1464
   1465	spin_unlock_bh(&rdev->bss_lock);
   1466	if (!res)
   1467		return NULL;
   1468	trace_cfg80211_return_bss(&res->pub);
   1469	return &res->pub;
   1470}
   1471EXPORT_SYMBOL(cfg80211_get_bss);
   1472
   1473static void rb_insert_bss(struct cfg80211_registered_device *rdev,
   1474			  struct cfg80211_internal_bss *bss)
   1475{
   1476	struct rb_node **p = &rdev->bss_tree.rb_node;
   1477	struct rb_node *parent = NULL;
   1478	struct cfg80211_internal_bss *tbss;
   1479	int cmp;
   1480
   1481	while (*p) {
   1482		parent = *p;
   1483		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
   1484
   1485		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
   1486
   1487		if (WARN_ON(!cmp)) {
   1488			/* will sort of leak this BSS */
   1489			return;
   1490		}
   1491
   1492		if (cmp < 0)
   1493			p = &(*p)->rb_left;
   1494		else
   1495			p = &(*p)->rb_right;
   1496	}
   1497
   1498	rb_link_node(&bss->rbn, parent, p);
   1499	rb_insert_color(&bss->rbn, &rdev->bss_tree);
   1500}
   1501
   1502static struct cfg80211_internal_bss *
   1503rb_find_bss(struct cfg80211_registered_device *rdev,
   1504	    struct cfg80211_internal_bss *res,
   1505	    enum bss_compare_mode mode)
   1506{
   1507	struct rb_node *n = rdev->bss_tree.rb_node;
   1508	struct cfg80211_internal_bss *bss;
   1509	int r;
   1510
   1511	while (n) {
   1512		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
   1513		r = cmp_bss(&res->pub, &bss->pub, mode);
   1514
   1515		if (r == 0)
   1516			return bss;
   1517		else if (r < 0)
   1518			n = n->rb_left;
   1519		else
   1520			n = n->rb_right;
   1521	}
   1522
   1523	return NULL;
   1524}
   1525
   1526static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
   1527				   struct cfg80211_internal_bss *new)
   1528{
   1529	const struct cfg80211_bss_ies *ies;
   1530	struct cfg80211_internal_bss *bss;
   1531	const u8 *ie;
   1532	int i, ssidlen;
   1533	u8 fold = 0;
   1534	u32 n_entries = 0;
   1535
   1536	ies = rcu_access_pointer(new->pub.beacon_ies);
   1537	if (WARN_ON(!ies))
   1538		return false;
   1539
   1540	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
   1541	if (!ie) {
   1542		/* nothing to do */
   1543		return true;
   1544	}
   1545
   1546	ssidlen = ie[1];
   1547	for (i = 0; i < ssidlen; i++)
   1548		fold |= ie[2 + i];
   1549
   1550	if (fold) {
   1551		/* not a hidden SSID */
   1552		return true;
   1553	}
   1554
   1555	/* This is the bad part ... */
   1556
   1557	list_for_each_entry(bss, &rdev->bss_list, list) {
   1558		/*
   1559		 * we're iterating all the entries anyway, so take the
   1560		 * opportunity to validate the list length accounting
   1561		 */
   1562		n_entries++;
   1563
   1564		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
   1565			continue;
   1566		if (bss->pub.channel != new->pub.channel)
   1567			continue;
   1568		if (bss->pub.scan_width != new->pub.scan_width)
   1569			continue;
   1570		if (rcu_access_pointer(bss->pub.beacon_ies))
   1571			continue;
   1572		ies = rcu_access_pointer(bss->pub.ies);
   1573		if (!ies)
   1574			continue;
   1575		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
   1576		if (!ie)
   1577			continue;
   1578		if (ssidlen && ie[1] != ssidlen)
   1579			continue;
   1580		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
   1581			continue;
   1582		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
   1583			list_del(&bss->hidden_list);
   1584		/* combine them */
   1585		list_add(&bss->hidden_list, &new->hidden_list);
   1586		bss->pub.hidden_beacon_bss = &new->pub;
   1587		new->refcount += bss->refcount;
   1588		rcu_assign_pointer(bss->pub.beacon_ies,
   1589				   new->pub.beacon_ies);
   1590	}
   1591
   1592	WARN_ONCE(n_entries != rdev->bss_entries,
   1593		  "rdev bss entries[%d]/list[len:%d] corruption\n",
   1594		  rdev->bss_entries, n_entries);
   1595
   1596	return true;
   1597}
   1598
   1599struct cfg80211_non_tx_bss {
   1600	struct cfg80211_bss *tx_bss;
   1601	u8 max_bssid_indicator;
   1602	u8 bssid_index;
   1603};
   1604
   1605static bool
   1606cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
   1607			  struct cfg80211_internal_bss *known,
   1608			  struct cfg80211_internal_bss *new,
   1609			  bool signal_valid)
   1610{
   1611	lockdep_assert_held(&rdev->bss_lock);
   1612
   1613	/* Update IEs */
   1614	if (rcu_access_pointer(new->pub.proberesp_ies)) {
   1615		const struct cfg80211_bss_ies *old;
   1616
   1617		old = rcu_access_pointer(known->pub.proberesp_ies);
   1618
   1619		rcu_assign_pointer(known->pub.proberesp_ies,
   1620				   new->pub.proberesp_ies);
   1621		/* Override possible earlier Beacon frame IEs */
   1622		rcu_assign_pointer(known->pub.ies,
   1623				   new->pub.proberesp_ies);
   1624		if (old)
   1625			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
   1626	} else if (rcu_access_pointer(new->pub.beacon_ies)) {
   1627		const struct cfg80211_bss_ies *old;
   1628		struct cfg80211_internal_bss *bss;
   1629
   1630		if (known->pub.hidden_beacon_bss &&
   1631		    !list_empty(&known->hidden_list)) {
   1632			const struct cfg80211_bss_ies *f;
   1633
   1634			/* The known BSS struct is one of the probe
   1635			 * response members of a group, but we're
   1636			 * receiving a beacon (beacon_ies in the new
   1637			 * bss is used). This can only mean that the
   1638			 * AP changed its beacon from not having an
   1639			 * SSID to showing it, which is confusing so
   1640			 * drop this information.
   1641			 */
   1642
   1643			f = rcu_access_pointer(new->pub.beacon_ies);
   1644			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
   1645			return false;
   1646		}
   1647
   1648		old = rcu_access_pointer(known->pub.beacon_ies);
   1649
   1650		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
   1651
   1652		/* Override IEs if they were from a beacon before */
   1653		if (old == rcu_access_pointer(known->pub.ies))
   1654			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
   1655
   1656		/* Assign beacon IEs to all sub entries */
   1657		list_for_each_entry(bss, &known->hidden_list, hidden_list) {
   1658			const struct cfg80211_bss_ies *ies;
   1659
   1660			ies = rcu_access_pointer(bss->pub.beacon_ies);
   1661			WARN_ON(ies != old);
   1662
   1663			rcu_assign_pointer(bss->pub.beacon_ies,
   1664					   new->pub.beacon_ies);
   1665		}
   1666
   1667		if (old)
   1668			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
   1669	}
   1670
   1671	known->pub.beacon_interval = new->pub.beacon_interval;
   1672
   1673	/* don't update the signal if beacon was heard on
   1674	 * adjacent channel.
   1675	 */
   1676	if (signal_valid)
   1677		known->pub.signal = new->pub.signal;
   1678	known->pub.capability = new->pub.capability;
   1679	known->ts = new->ts;
   1680	known->ts_boottime = new->ts_boottime;
   1681	known->parent_tsf = new->parent_tsf;
   1682	known->pub.chains = new->pub.chains;
   1683	memcpy(known->pub.chain_signal, new->pub.chain_signal,
   1684	       IEEE80211_MAX_CHAINS);
   1685	ether_addr_copy(known->parent_bssid, new->parent_bssid);
   1686	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
   1687	known->pub.bssid_index = new->pub.bssid_index;
   1688
   1689	return true;
   1690}
   1691
   1692/* Returned bss is reference counted and must be cleaned up appropriately. */
   1693struct cfg80211_internal_bss *
   1694cfg80211_bss_update(struct cfg80211_registered_device *rdev,
   1695		    struct cfg80211_internal_bss *tmp,
   1696		    bool signal_valid, unsigned long ts)
   1697{
   1698	struct cfg80211_internal_bss *found = NULL;
   1699
   1700	if (WARN_ON(!tmp->pub.channel))
   1701		return NULL;
   1702
   1703	tmp->ts = ts;
   1704
   1705	spin_lock_bh(&rdev->bss_lock);
   1706
   1707	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
   1708		spin_unlock_bh(&rdev->bss_lock);
   1709		return NULL;
   1710	}
   1711
   1712	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
   1713
   1714	if (found) {
   1715		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
   1716			goto drop;
   1717	} else {
   1718		struct cfg80211_internal_bss *new;
   1719		struct cfg80211_internal_bss *hidden;
   1720		struct cfg80211_bss_ies *ies;
   1721
   1722		/*
   1723		 * create a copy -- the "res" variable that is passed in
   1724		 * is allocated on the stack since it's not needed in the
   1725		 * more common case of an update
   1726		 */
   1727		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
   1728			      GFP_ATOMIC);
   1729		if (!new) {
   1730			ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
   1731			if (ies)
   1732				kfree_rcu(ies, rcu_head);
   1733			ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
   1734			if (ies)
   1735				kfree_rcu(ies, rcu_head);
   1736			goto drop;
   1737		}
   1738		memcpy(new, tmp, sizeof(*new));
   1739		new->refcount = 1;
   1740		INIT_LIST_HEAD(&new->hidden_list);
   1741		INIT_LIST_HEAD(&new->pub.nontrans_list);
   1742
   1743		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
   1744			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
   1745			if (!hidden)
   1746				hidden = rb_find_bss(rdev, tmp,
   1747						     BSS_CMP_HIDE_NUL);
   1748			if (hidden) {
   1749				new->pub.hidden_beacon_bss = &hidden->pub;
   1750				list_add(&new->hidden_list,
   1751					 &hidden->hidden_list);
   1752				hidden->refcount++;
   1753				rcu_assign_pointer(new->pub.beacon_ies,
   1754						   hidden->pub.beacon_ies);
   1755			}
   1756		} else {
   1757			/*
   1758			 * Ok so we found a beacon, and don't have an entry. If
   1759			 * it's a beacon with hidden SSID, we might be in for an
   1760			 * expensive search for any probe responses that should
   1761			 * be grouped with this beacon for updates ...
   1762			 */
   1763			if (!cfg80211_combine_bsses(rdev, new)) {
   1764				bss_ref_put(rdev, new);
   1765				goto drop;
   1766			}
   1767		}
   1768
   1769		if (rdev->bss_entries >= bss_entries_limit &&
   1770		    !cfg80211_bss_expire_oldest(rdev)) {
   1771			bss_ref_put(rdev, new);
   1772			goto drop;
   1773		}
   1774
   1775		/* This must be before the call to bss_ref_get */
   1776		if (tmp->pub.transmitted_bss) {
   1777			struct cfg80211_internal_bss *pbss =
   1778				container_of(tmp->pub.transmitted_bss,
   1779					     struct cfg80211_internal_bss,
   1780					     pub);
   1781
   1782			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
   1783			bss_ref_get(rdev, pbss);
   1784		}
   1785
   1786		list_add_tail(&new->list, &rdev->bss_list);
   1787		rdev->bss_entries++;
   1788		rb_insert_bss(rdev, new);
   1789		found = new;
   1790	}
   1791
   1792	rdev->bss_generation++;
   1793	bss_ref_get(rdev, found);
   1794	spin_unlock_bh(&rdev->bss_lock);
   1795
   1796	return found;
   1797 drop:
   1798	spin_unlock_bh(&rdev->bss_lock);
   1799	return NULL;
   1800}
   1801
   1802int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
   1803				    enum nl80211_band band,
   1804				    enum cfg80211_bss_frame_type ftype)
   1805{
   1806	const struct element *tmp;
   1807
   1808	if (band == NL80211_BAND_6GHZ) {
   1809		struct ieee80211_he_operation *he_oper;
   1810
   1811		tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
   1812					     ielen);
   1813		if (tmp && tmp->datalen >= sizeof(*he_oper) &&
   1814		    tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
   1815			const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
   1816
   1817			he_oper = (void *)&tmp->data[1];
   1818
   1819			he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
   1820			if (!he_6ghz_oper)
   1821				return -1;
   1822
   1823			if (ftype != CFG80211_BSS_FTYPE_BEACON ||
   1824			    he_6ghz_oper->control & IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON)
   1825				return he_6ghz_oper->primary;
   1826		}
   1827	} else if (band == NL80211_BAND_S1GHZ) {
   1828		tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
   1829		if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
   1830			struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
   1831
   1832			return s1gop->oper_ch;
   1833		}
   1834	} else {
   1835		tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
   1836		if (tmp && tmp->datalen == 1)
   1837			return tmp->data[0];
   1838
   1839		tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
   1840		if (tmp &&
   1841		    tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
   1842			struct ieee80211_ht_operation *htop = (void *)tmp->data;
   1843
   1844			return htop->primary_chan;
   1845		}
   1846	}
   1847
   1848	return -1;
   1849}
   1850EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
   1851
   1852/*
   1853 * Update RX channel information based on the available frame payload
   1854 * information. This is mainly for the 2.4 GHz band where frames can be received
   1855 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
   1856 * element to indicate the current (transmitting) channel, but this might also
   1857 * be needed on other bands if RX frequency does not match with the actual
   1858 * operating channel of a BSS, or if the AP reports a different primary channel.
   1859 */
   1860static struct ieee80211_channel *
   1861cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
   1862			 struct ieee80211_channel *channel,
   1863			 enum nl80211_bss_scan_width scan_width,
   1864			 enum cfg80211_bss_frame_type ftype)
   1865{
   1866	u32 freq;
   1867	int channel_number;
   1868	struct ieee80211_channel *alt_channel;
   1869
   1870	channel_number = cfg80211_get_ies_channel_number(ie, ielen,
   1871							 channel->band, ftype);
   1872
   1873	if (channel_number < 0) {
   1874		/* No channel information in frame payload */
   1875		return channel;
   1876	}
   1877
   1878	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
   1879
   1880	/*
   1881	 * In 6GHz, duplicated beacon indication is relevant for
   1882	 * beacons only.
   1883	 */
   1884	if (channel->band == NL80211_BAND_6GHZ &&
   1885	    (freq == channel->center_freq ||
   1886	     abs(freq - channel->center_freq) > 80))
   1887		return channel;
   1888
   1889	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
   1890	if (!alt_channel) {
   1891		if (channel->band == NL80211_BAND_2GHZ) {
   1892			/*
   1893			 * Better not allow unexpected channels when that could
   1894			 * be going beyond the 1-11 range (e.g., discovering
   1895			 * BSS on channel 12 when radio is configured for
   1896			 * channel 11.
   1897			 */
   1898			return NULL;
   1899		}
   1900
   1901		/* No match for the payload channel number - ignore it */
   1902		return channel;
   1903	}
   1904
   1905	if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
   1906	    scan_width == NL80211_BSS_CHAN_WIDTH_5) {
   1907		/*
   1908		 * Ignore channel number in 5 and 10 MHz channels where there
   1909		 * may not be an n:1 or 1:n mapping between frequencies and
   1910		 * channel numbers.
   1911		 */
   1912		return channel;
   1913	}
   1914
   1915	/*
   1916	 * Use the channel determined through the payload channel number
   1917	 * instead of the RX channel reported by the driver.
   1918	 */
   1919	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
   1920		return NULL;
   1921	return alt_channel;
   1922}
   1923
   1924/* Returned bss is reference counted and must be cleaned up appropriately. */
   1925static struct cfg80211_bss *
   1926cfg80211_inform_single_bss_data(struct wiphy *wiphy,
   1927				struct cfg80211_inform_bss *data,
   1928				enum cfg80211_bss_frame_type ftype,
   1929				const u8 *bssid, u64 tsf, u16 capability,
   1930				u16 beacon_interval, const u8 *ie, size_t ielen,
   1931				struct cfg80211_non_tx_bss *non_tx_data,
   1932				gfp_t gfp)
   1933{
   1934	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
   1935	struct cfg80211_bss_ies *ies;
   1936	struct ieee80211_channel *channel;
   1937	struct cfg80211_internal_bss tmp = {}, *res;
   1938	int bss_type;
   1939	bool signal_valid;
   1940	unsigned long ts;
   1941
   1942	if (WARN_ON(!wiphy))
   1943		return NULL;
   1944
   1945	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
   1946		    (data->signal < 0 || data->signal > 100)))
   1947		return NULL;
   1948
   1949	channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
   1950					   data->scan_width, ftype);
   1951	if (!channel)
   1952		return NULL;
   1953
   1954	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
   1955	tmp.pub.channel = channel;
   1956	tmp.pub.scan_width = data->scan_width;
   1957	tmp.pub.signal = data->signal;
   1958	tmp.pub.beacon_interval = beacon_interval;
   1959	tmp.pub.capability = capability;
   1960	tmp.ts_boottime = data->boottime_ns;
   1961	tmp.parent_tsf = data->parent_tsf;
   1962	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
   1963
   1964	if (non_tx_data) {
   1965		tmp.pub.transmitted_bss = non_tx_data->tx_bss;
   1966		ts = bss_from_pub(non_tx_data->tx_bss)->ts;
   1967		tmp.pub.bssid_index = non_tx_data->bssid_index;
   1968		tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
   1969	} else {
   1970		ts = jiffies;
   1971	}
   1972
   1973	/*
   1974	 * If we do not know here whether the IEs are from a Beacon or Probe
   1975	 * Response frame, we need to pick one of the options and only use it
   1976	 * with the driver that does not provide the full Beacon/Probe Response
   1977	 * frame. Use Beacon frame pointer to avoid indicating that this should
   1978	 * override the IEs pointer should we have received an earlier
   1979	 * indication of Probe Response data.
   1980	 */
   1981	ies = kzalloc(sizeof(*ies) + ielen, gfp);
   1982	if (!ies)
   1983		return NULL;
   1984	ies->len = ielen;
   1985	ies->tsf = tsf;
   1986	ies->from_beacon = false;
   1987	memcpy(ies->data, ie, ielen);
   1988
   1989	switch (ftype) {
   1990	case CFG80211_BSS_FTYPE_BEACON:
   1991		ies->from_beacon = true;
   1992		fallthrough;
   1993	case CFG80211_BSS_FTYPE_UNKNOWN:
   1994		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
   1995		break;
   1996	case CFG80211_BSS_FTYPE_PRESP:
   1997		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
   1998		break;
   1999	}
   2000	rcu_assign_pointer(tmp.pub.ies, ies);
   2001
   2002	signal_valid = data->chan == channel;
   2003	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
   2004	if (!res)
   2005		return NULL;
   2006
   2007	if (channel->band == NL80211_BAND_60GHZ) {
   2008		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
   2009		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
   2010		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
   2011			regulatory_hint_found_beacon(wiphy, channel, gfp);
   2012	} else {
   2013		if (res->pub.capability & WLAN_CAPABILITY_ESS)
   2014			regulatory_hint_found_beacon(wiphy, channel, gfp);
   2015	}
   2016
   2017	if (non_tx_data) {
   2018		/* this is a nontransmitting bss, we need to add it to
   2019		 * transmitting bss' list if it is not there
   2020		 */
   2021		spin_lock_bh(&rdev->bss_lock);
   2022		if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
   2023					       &res->pub)) {
   2024			if (__cfg80211_unlink_bss(rdev, res))
   2025				rdev->bss_generation++;
   2026		}
   2027		spin_unlock_bh(&rdev->bss_lock);
   2028	}
   2029
   2030	trace_cfg80211_return_bss(&res->pub);
   2031	/* cfg80211_bss_update gives us a referenced result */
   2032	return &res->pub;
   2033}
   2034
   2035static const struct element
   2036*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
   2037				   const struct element *mbssid_elem,
   2038				   const struct element *sub_elem)
   2039{
   2040	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
   2041	const struct element *next_mbssid;
   2042	const struct element *next_sub;
   2043
   2044	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
   2045					 mbssid_end,
   2046					 ielen - (mbssid_end - ie));
   2047
   2048	/*
   2049	 * If it is not the last subelement in current MBSSID IE or there isn't
   2050	 * a next MBSSID IE - profile is complete.
   2051	*/
   2052	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
   2053	    !next_mbssid)
   2054		return NULL;
   2055
   2056	/* For any length error, just return NULL */
   2057
   2058	if (next_mbssid->datalen < 4)
   2059		return NULL;
   2060
   2061	next_sub = (void *)&next_mbssid->data[1];
   2062
   2063	if (next_mbssid->data + next_mbssid->datalen <
   2064	    next_sub->data + next_sub->datalen)
   2065		return NULL;
   2066
   2067	if (next_sub->id != 0 || next_sub->datalen < 2)
   2068		return NULL;
   2069
   2070	/*
   2071	 * Check if the first element in the next sub element is a start
   2072	 * of a new profile
   2073	 */
   2074	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
   2075	       NULL : next_mbssid;
   2076}
   2077
   2078size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
   2079			      const struct element *mbssid_elem,
   2080			      const struct element *sub_elem,
   2081			      u8 *merged_ie, size_t max_copy_len)
   2082{
   2083	size_t copied_len = sub_elem->datalen;
   2084	const struct element *next_mbssid;
   2085
   2086	if (sub_elem->datalen > max_copy_len)
   2087		return 0;
   2088
   2089	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
   2090
   2091	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
   2092								mbssid_elem,
   2093								sub_elem))) {
   2094		const struct element *next_sub = (void *)&next_mbssid->data[1];
   2095
   2096		if (copied_len + next_sub->datalen > max_copy_len)
   2097			break;
   2098		memcpy(merged_ie + copied_len, next_sub->data,
   2099		       next_sub->datalen);
   2100		copied_len += next_sub->datalen;
   2101	}
   2102
   2103	return copied_len;
   2104}
   2105EXPORT_SYMBOL(cfg80211_merge_profile);
   2106
   2107static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
   2108				       struct cfg80211_inform_bss *data,
   2109				       enum cfg80211_bss_frame_type ftype,
   2110				       const u8 *bssid, u64 tsf,
   2111				       u16 beacon_interval, const u8 *ie,
   2112				       size_t ielen,
   2113				       struct cfg80211_non_tx_bss *non_tx_data,
   2114				       gfp_t gfp)
   2115{
   2116	const u8 *mbssid_index_ie;
   2117	const struct element *elem, *sub;
   2118	size_t new_ie_len;
   2119	u8 new_bssid[ETH_ALEN];
   2120	u8 *new_ie, *profile;
   2121	u64 seen_indices = 0;
   2122	u16 capability;
   2123	struct cfg80211_bss *bss;
   2124
   2125	if (!non_tx_data)
   2126		return;
   2127	if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
   2128		return;
   2129	if (!wiphy->support_mbssid)
   2130		return;
   2131	if (wiphy->support_only_he_mbssid &&
   2132	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
   2133		return;
   2134
   2135	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
   2136	if (!new_ie)
   2137		return;
   2138
   2139	profile = kmalloc(ielen, gfp);
   2140	if (!profile)
   2141		goto out;
   2142
   2143	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
   2144		if (elem->datalen < 4)
   2145			continue;
   2146		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
   2147			u8 profile_len;
   2148
   2149			if (sub->id != 0 || sub->datalen < 4) {
   2150				/* not a valid BSS profile */
   2151				continue;
   2152			}
   2153
   2154			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
   2155			    sub->data[1] != 2) {
   2156				/* The first element within the Nontransmitted
   2157				 * BSSID Profile is not the Nontransmitted
   2158				 * BSSID Capability element.
   2159				 */
   2160				continue;
   2161			}
   2162
   2163			memset(profile, 0, ielen);
   2164			profile_len = cfg80211_merge_profile(ie, ielen,
   2165							     elem,
   2166							     sub,
   2167							     profile,
   2168							     ielen);
   2169
   2170			/* found a Nontransmitted BSSID Profile */
   2171			mbssid_index_ie = cfg80211_find_ie
   2172				(WLAN_EID_MULTI_BSSID_IDX,
   2173				 profile, profile_len);
   2174			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
   2175			    mbssid_index_ie[2] == 0 ||
   2176			    mbssid_index_ie[2] > 46) {
   2177				/* No valid Multiple BSSID-Index element */
   2178				continue;
   2179			}
   2180
   2181			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
   2182				/* We don't support legacy split of a profile */
   2183				net_dbg_ratelimited("Partial info for BSSID index %d\n",
   2184						    mbssid_index_ie[2]);
   2185
   2186			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
   2187
   2188			non_tx_data->bssid_index = mbssid_index_ie[2];
   2189			non_tx_data->max_bssid_indicator = elem->data[0];
   2190
   2191			cfg80211_gen_new_bssid(bssid,
   2192					       non_tx_data->max_bssid_indicator,
   2193					       non_tx_data->bssid_index,
   2194					       new_bssid);
   2195			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
   2196			new_ie_len = cfg80211_gen_new_ie(ie, ielen,
   2197							 profile,
   2198							 profile_len, new_ie,
   2199							 gfp);
   2200			if (!new_ie_len)
   2201				continue;
   2202
   2203			capability = get_unaligned_le16(profile + 2);
   2204			bss = cfg80211_inform_single_bss_data(wiphy, data,
   2205							      ftype,
   2206							      new_bssid, tsf,
   2207							      capability,
   2208							      beacon_interval,
   2209							      new_ie,
   2210							      new_ie_len,
   2211							      non_tx_data,
   2212							      gfp);
   2213			if (!bss)
   2214				break;
   2215			cfg80211_put_bss(wiphy, bss);
   2216		}
   2217	}
   2218
   2219out:
   2220	kfree(new_ie);
   2221	kfree(profile);
   2222}
   2223
   2224struct cfg80211_bss *
   2225cfg80211_inform_bss_data(struct wiphy *wiphy,
   2226			 struct cfg80211_inform_bss *data,
   2227			 enum cfg80211_bss_frame_type ftype,
   2228			 const u8 *bssid, u64 tsf, u16 capability,
   2229			 u16 beacon_interval, const u8 *ie, size_t ielen,
   2230			 gfp_t gfp)
   2231{
   2232	struct cfg80211_bss *res;
   2233	struct cfg80211_non_tx_bss non_tx_data;
   2234
   2235	res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
   2236					      capability, beacon_interval, ie,
   2237					      ielen, NULL, gfp);
   2238	if (!res)
   2239		return NULL;
   2240	non_tx_data.tx_bss = res;
   2241	cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
   2242				   beacon_interval, ie, ielen, &non_tx_data,
   2243				   gfp);
   2244	return res;
   2245}
   2246EXPORT_SYMBOL(cfg80211_inform_bss_data);
   2247
   2248static void
   2249cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
   2250				 struct cfg80211_inform_bss *data,
   2251				 struct ieee80211_mgmt *mgmt, size_t len,
   2252				 struct cfg80211_non_tx_bss *non_tx_data,
   2253				 gfp_t gfp)
   2254{
   2255	enum cfg80211_bss_frame_type ftype;
   2256	const u8 *ie = mgmt->u.probe_resp.variable;
   2257	size_t ielen = len - offsetof(struct ieee80211_mgmt,
   2258				      u.probe_resp.variable);
   2259
   2260	ftype = ieee80211_is_beacon(mgmt->frame_control) ?
   2261		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
   2262
   2263	cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
   2264				   le64_to_cpu(mgmt->u.probe_resp.timestamp),
   2265				   le16_to_cpu(mgmt->u.probe_resp.beacon_int),
   2266				   ie, ielen, non_tx_data, gfp);
   2267}
   2268
   2269static void
   2270cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
   2271				   struct cfg80211_bss *nontrans_bss,
   2272				   struct ieee80211_mgmt *mgmt, size_t len)
   2273{
   2274	u8 *ie, *new_ie, *pos;
   2275	const struct element *nontrans_ssid;
   2276	const u8 *trans_ssid, *mbssid;
   2277	size_t ielen = len - offsetof(struct ieee80211_mgmt,
   2278				      u.probe_resp.variable);
   2279	size_t new_ie_len;
   2280	struct cfg80211_bss_ies *new_ies;
   2281	const struct cfg80211_bss_ies *old;
   2282	u8 cpy_len;
   2283
   2284	lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
   2285
   2286	ie = mgmt->u.probe_resp.variable;
   2287
   2288	new_ie_len = ielen;
   2289	trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
   2290	if (!trans_ssid)
   2291		return;
   2292	new_ie_len -= trans_ssid[1];
   2293	mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
   2294	/*
   2295	 * It's not valid to have the MBSSID element before SSID
   2296	 * ignore if that happens - the code below assumes it is
   2297	 * after (while copying things inbetween).
   2298	 */
   2299	if (!mbssid || mbssid < trans_ssid)
   2300		return;
   2301	new_ie_len -= mbssid[1];
   2302
   2303	nontrans_ssid = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
   2304	if (!nontrans_ssid)
   2305		return;
   2306
   2307	new_ie_len += nontrans_ssid->datalen;
   2308
   2309	/* generate new ie for nontrans BSS
   2310	 * 1. replace SSID with nontrans BSS' SSID
   2311	 * 2. skip MBSSID IE
   2312	 */
   2313	new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
   2314	if (!new_ie)
   2315		return;
   2316
   2317	new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
   2318	if (!new_ies)
   2319		goto out_free;
   2320
   2321	pos = new_ie;
   2322
   2323	/* copy the nontransmitted SSID */
   2324	cpy_len = nontrans_ssid->datalen + 2;
   2325	memcpy(pos, nontrans_ssid, cpy_len);
   2326	pos += cpy_len;
   2327	/* copy the IEs between SSID and MBSSID */
   2328	cpy_len = trans_ssid[1] + 2;
   2329	memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
   2330	pos += (mbssid - (trans_ssid + cpy_len));
   2331	/* copy the IEs after MBSSID */
   2332	cpy_len = mbssid[1] + 2;
   2333	memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
   2334
   2335	/* update ie */
   2336	new_ies->len = new_ie_len;
   2337	new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
   2338	new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
   2339	memcpy(new_ies->data, new_ie, new_ie_len);
   2340	if (ieee80211_is_probe_resp(mgmt->frame_control)) {
   2341		old = rcu_access_pointer(nontrans_bss->proberesp_ies);
   2342		rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
   2343		rcu_assign_pointer(nontrans_bss->ies, new_ies);
   2344		if (old)
   2345			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
   2346	} else {
   2347		old = rcu_access_pointer(nontrans_bss->beacon_ies);
   2348		rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
   2349		rcu_assign_pointer(nontrans_bss->ies, new_ies);
   2350		if (old)
   2351			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
   2352	}
   2353
   2354out_free:
   2355	kfree(new_ie);
   2356}
   2357
   2358/* cfg80211_inform_bss_width_frame helper */
   2359static struct cfg80211_bss *
   2360cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
   2361				      struct cfg80211_inform_bss *data,
   2362				      struct ieee80211_mgmt *mgmt, size_t len,
   2363				      gfp_t gfp)
   2364{
   2365	struct cfg80211_internal_bss tmp = {}, *res;
   2366	struct cfg80211_bss_ies *ies;
   2367	struct ieee80211_channel *channel;
   2368	bool signal_valid;
   2369	struct ieee80211_ext *ext = NULL;
   2370	u8 *bssid, *variable;
   2371	u16 capability, beacon_int;
   2372	size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
   2373					     u.probe_resp.variable);
   2374	int bss_type;
   2375	enum cfg80211_bss_frame_type ftype;
   2376
   2377	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
   2378			offsetof(struct ieee80211_mgmt, u.beacon.variable));
   2379
   2380	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
   2381
   2382	if (WARN_ON(!mgmt))
   2383		return NULL;
   2384
   2385	if (WARN_ON(!wiphy))
   2386		return NULL;
   2387
   2388	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
   2389		    (data->signal < 0 || data->signal > 100)))
   2390		return NULL;
   2391
   2392	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
   2393		ext = (void *) mgmt;
   2394		min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
   2395		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
   2396			min_hdr_len = offsetof(struct ieee80211_ext,
   2397					       u.s1g_short_beacon.variable);
   2398	}
   2399
   2400	if (WARN_ON(len < min_hdr_len))
   2401		return NULL;
   2402
   2403	ielen = len - min_hdr_len;
   2404	variable = mgmt->u.probe_resp.variable;
   2405	if (ext) {
   2406		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
   2407			variable = ext->u.s1g_short_beacon.variable;
   2408		else
   2409			variable = ext->u.s1g_beacon.variable;
   2410	}
   2411
   2412	if (ieee80211_is_beacon(mgmt->frame_control))
   2413		ftype = CFG80211_BSS_FTYPE_BEACON;
   2414	else if (ieee80211_is_probe_resp(mgmt->frame_control))
   2415		ftype = CFG80211_BSS_FTYPE_PRESP;
   2416	else
   2417		ftype = CFG80211_BSS_FTYPE_UNKNOWN;
   2418
   2419	channel = cfg80211_get_bss_channel(wiphy, variable,
   2420					   ielen, data->chan, data->scan_width,
   2421					   ftype);
   2422	if (!channel)
   2423		return NULL;
   2424
   2425	if (ext) {
   2426		const struct ieee80211_s1g_bcn_compat_ie *compat;
   2427		const struct element *elem;
   2428
   2429		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
   2430					  variable, ielen);
   2431		if (!elem)
   2432			return NULL;
   2433		if (elem->datalen < sizeof(*compat))
   2434			return NULL;
   2435		compat = (void *)elem->data;
   2436		bssid = ext->u.s1g_beacon.sa;
   2437		capability = le16_to_cpu(compat->compat_info);
   2438		beacon_int = le16_to_cpu(compat->beacon_int);
   2439	} else {
   2440		bssid = mgmt->bssid;
   2441		beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
   2442		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
   2443	}
   2444
   2445	ies = kzalloc(sizeof(*ies) + ielen, gfp);
   2446	if (!ies)
   2447		return NULL;
   2448	ies->len = ielen;
   2449	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
   2450	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
   2451			   ieee80211_is_s1g_beacon(mgmt->frame_control);
   2452	memcpy(ies->data, variable, ielen);
   2453
   2454	if (ieee80211_is_probe_resp(mgmt->frame_control))
   2455		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
   2456	else
   2457		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
   2458	rcu_assign_pointer(tmp.pub.ies, ies);
   2459
   2460	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
   2461	tmp.pub.beacon_interval = beacon_int;
   2462	tmp.pub.capability = capability;
   2463	tmp.pub.channel = channel;
   2464	tmp.pub.scan_width = data->scan_width;
   2465	tmp.pub.signal = data->signal;
   2466	tmp.ts_boottime = data->boottime_ns;
   2467	tmp.parent_tsf = data->parent_tsf;
   2468	tmp.pub.chains = data->chains;
   2469	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
   2470	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
   2471
   2472	signal_valid = data->chan == channel;
   2473	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
   2474				  jiffies);
   2475	if (!res)
   2476		return NULL;
   2477
   2478	if (channel->band == NL80211_BAND_60GHZ) {
   2479		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
   2480		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
   2481		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
   2482			regulatory_hint_found_beacon(wiphy, channel, gfp);
   2483	} else {
   2484		if (res->pub.capability & WLAN_CAPABILITY_ESS)
   2485			regulatory_hint_found_beacon(wiphy, channel, gfp);
   2486	}
   2487
   2488	trace_cfg80211_return_bss(&res->pub);
   2489	/* cfg80211_bss_update gives us a referenced result */
   2490	return &res->pub;
   2491}
   2492
   2493struct cfg80211_bss *
   2494cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
   2495			       struct cfg80211_inform_bss *data,
   2496			       struct ieee80211_mgmt *mgmt, size_t len,
   2497			       gfp_t gfp)
   2498{
   2499	struct cfg80211_bss *res, *tmp_bss;
   2500	const u8 *ie = mgmt->u.probe_resp.variable;
   2501	const struct cfg80211_bss_ies *ies1, *ies2;
   2502	size_t ielen = len - offsetof(struct ieee80211_mgmt,
   2503				      u.probe_resp.variable);
   2504	struct cfg80211_non_tx_bss non_tx_data;
   2505
   2506	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
   2507						    len, gfp);
   2508	if (!res || !wiphy->support_mbssid ||
   2509	    !cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
   2510		return res;
   2511	if (wiphy->support_only_he_mbssid &&
   2512	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
   2513		return res;
   2514
   2515	non_tx_data.tx_bss = res;
   2516	/* process each non-transmitting bss */
   2517	cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
   2518					 &non_tx_data, gfp);
   2519
   2520	spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
   2521
   2522	/* check if the res has other nontransmitting bss which is not
   2523	 * in MBSSID IE
   2524	 */
   2525	ies1 = rcu_access_pointer(res->ies);
   2526
   2527	/* go through nontrans_list, if the timestamp of the BSS is
   2528	 * earlier than the timestamp of the transmitting BSS then
   2529	 * update it
   2530	 */
   2531	list_for_each_entry(tmp_bss, &res->nontrans_list,
   2532			    nontrans_list) {
   2533		ies2 = rcu_access_pointer(tmp_bss->ies);
   2534		if (ies2->tsf < ies1->tsf)
   2535			cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
   2536							   mgmt, len);
   2537	}
   2538	spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
   2539
   2540	return res;
   2541}
   2542EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
   2543
   2544void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
   2545{
   2546	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
   2547	struct cfg80211_internal_bss *bss;
   2548
   2549	if (!pub)
   2550		return;
   2551
   2552	bss = container_of(pub, struct cfg80211_internal_bss, pub);
   2553
   2554	spin_lock_bh(&rdev->bss_lock);
   2555	bss_ref_get(rdev, bss);
   2556	spin_unlock_bh(&rdev->bss_lock);
   2557}
   2558EXPORT_SYMBOL(cfg80211_ref_bss);
   2559
   2560void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
   2561{
   2562	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
   2563	struct cfg80211_internal_bss *bss;
   2564
   2565	if (!pub)
   2566		return;
   2567
   2568	bss = container_of(pub, struct cfg80211_internal_bss, pub);
   2569
   2570	spin_lock_bh(&rdev->bss_lock);
   2571	bss_ref_put(rdev, bss);
   2572	spin_unlock_bh(&rdev->bss_lock);
   2573}
   2574EXPORT_SYMBOL(cfg80211_put_bss);
   2575
   2576void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
   2577{
   2578	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
   2579	struct cfg80211_internal_bss *bss, *tmp1;
   2580	struct cfg80211_bss *nontrans_bss, *tmp;
   2581
   2582	if (WARN_ON(!pub))
   2583		return;
   2584
   2585	bss = container_of(pub, struct cfg80211_internal_bss, pub);
   2586
   2587	spin_lock_bh(&rdev->bss_lock);
   2588	if (list_empty(&bss->list))
   2589		goto out;
   2590
   2591	list_for_each_entry_safe(nontrans_bss, tmp,
   2592				 &pub->nontrans_list,
   2593				 nontrans_list) {
   2594		tmp1 = container_of(nontrans_bss,
   2595				    struct cfg80211_internal_bss, pub);
   2596		if (__cfg80211_unlink_bss(rdev, tmp1))
   2597			rdev->bss_generation++;
   2598	}
   2599
   2600	if (__cfg80211_unlink_bss(rdev, bss))
   2601		rdev->bss_generation++;
   2602out:
   2603	spin_unlock_bh(&rdev->bss_lock);
   2604}
   2605EXPORT_SYMBOL(cfg80211_unlink_bss);
   2606
   2607void cfg80211_bss_iter(struct wiphy *wiphy,
   2608		       struct cfg80211_chan_def *chandef,
   2609		       void (*iter)(struct wiphy *wiphy,
   2610				    struct cfg80211_bss *bss,
   2611				    void *data),
   2612		       void *iter_data)
   2613{
   2614	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
   2615	struct cfg80211_internal_bss *bss;
   2616
   2617	spin_lock_bh(&rdev->bss_lock);
   2618
   2619	list_for_each_entry(bss, &rdev->bss_list, list) {
   2620		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
   2621			iter(wiphy, &bss->pub, iter_data);
   2622	}
   2623
   2624	spin_unlock_bh(&rdev->bss_lock);
   2625}
   2626EXPORT_SYMBOL(cfg80211_bss_iter);
   2627
   2628void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
   2629				     struct ieee80211_channel *chan)
   2630{
   2631	struct wiphy *wiphy = wdev->wiphy;
   2632	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
   2633	struct cfg80211_internal_bss *cbss = wdev->current_bss;
   2634	struct cfg80211_internal_bss *new = NULL;
   2635	struct cfg80211_internal_bss *bss;
   2636	struct cfg80211_bss *nontrans_bss;
   2637	struct cfg80211_bss *tmp;
   2638
   2639	spin_lock_bh(&rdev->bss_lock);
   2640
   2641	/*
   2642	 * Some APs use CSA also for bandwidth changes, i.e., without actually
   2643	 * changing the control channel, so no need to update in such a case.
   2644	 */
   2645	if (cbss->pub.channel == chan)
   2646		goto done;
   2647
   2648	/* use transmitting bss */
   2649	if (cbss->pub.transmitted_bss)
   2650		cbss = container_of(cbss->pub.transmitted_bss,
   2651				    struct cfg80211_internal_bss,
   2652				    pub);
   2653
   2654	cbss->pub.channel = chan;
   2655
   2656	list_for_each_entry(bss, &rdev->bss_list, list) {
   2657		if (!cfg80211_bss_type_match(bss->pub.capability,
   2658					     bss->pub.channel->band,
   2659					     wdev->conn_bss_type))
   2660			continue;
   2661
   2662		if (bss == cbss)
   2663			continue;
   2664
   2665		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
   2666			new = bss;
   2667			break;
   2668		}
   2669	}
   2670
   2671	if (new) {
   2672		/* to save time, update IEs for transmitting bss only */
   2673		if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
   2674			new->pub.proberesp_ies = NULL;
   2675			new->pub.beacon_ies = NULL;
   2676		}
   2677
   2678		list_for_each_entry_safe(nontrans_bss, tmp,
   2679					 &new->pub.nontrans_list,
   2680					 nontrans_list) {
   2681			bss = container_of(nontrans_bss,
   2682					   struct cfg80211_internal_bss, pub);
   2683			if (__cfg80211_unlink_bss(rdev, bss))
   2684				rdev->bss_generation++;
   2685		}
   2686
   2687		WARN_ON(atomic_read(&new->hold));
   2688		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
   2689			rdev->bss_generation++;
   2690	}
   2691
   2692	rb_erase(&cbss->rbn, &rdev->bss_tree);
   2693	rb_insert_bss(rdev, cbss);
   2694	rdev->bss_generation++;
   2695
   2696	list_for_each_entry_safe(nontrans_bss, tmp,
   2697				 &cbss->pub.nontrans_list,
   2698				 nontrans_list) {
   2699		bss = container_of(nontrans_bss,
   2700				   struct cfg80211_internal_bss, pub);
   2701		bss->pub.channel = chan;
   2702		rb_erase(&bss->rbn, &rdev->bss_tree);
   2703		rb_insert_bss(rdev, bss);
   2704		rdev->bss_generation++;
   2705	}
   2706
   2707done:
   2708	spin_unlock_bh(&rdev->bss_lock);
   2709}
   2710
   2711#ifdef CONFIG_CFG80211_WEXT
   2712static struct cfg80211_registered_device *
   2713cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
   2714{
   2715	struct cfg80211_registered_device *rdev;
   2716	struct net_device *dev;
   2717
   2718	ASSERT_RTNL();
   2719
   2720	dev = dev_get_by_index(net, ifindex);
   2721	if (!dev)
   2722		return ERR_PTR(-ENODEV);
   2723	if (dev->ieee80211_ptr)
   2724		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
   2725	else
   2726		rdev = ERR_PTR(-ENODEV);
   2727	dev_put(dev);
   2728	return rdev;
   2729}
   2730
   2731int cfg80211_wext_siwscan(struct net_device *dev,
   2732			  struct iw_request_info *info,
   2733			  union iwreq_data *wrqu, char *extra)
   2734{
   2735	struct cfg80211_registered_device *rdev;
   2736	struct wiphy *wiphy;
   2737	struct iw_scan_req *wreq = NULL;
   2738	struct cfg80211_scan_request *creq;
   2739	int i, err, n_channels = 0;
   2740	enum nl80211_band band;
   2741
   2742	if (!netif_running(dev))
   2743		return -ENETDOWN;
   2744
   2745	if (wrqu->data.length == sizeof(struct iw_scan_req))
   2746		wreq = (struct iw_scan_req *)extra;
   2747
   2748	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
   2749
   2750	if (IS_ERR(rdev))
   2751		return PTR_ERR(rdev);
   2752
   2753	if (rdev->scan_req || rdev->scan_msg)
   2754		return -EBUSY;
   2755
   2756	wiphy = &rdev->wiphy;
   2757
   2758	/* Determine number of channels, needed to allocate creq */
   2759	if (wreq && wreq->num_channels)
   2760		n_channels = wreq->num_channels;
   2761	else
   2762		n_channels = ieee80211_get_num_supported_channels(wiphy);
   2763
   2764	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
   2765		       n_channels * sizeof(void *),
   2766		       GFP_ATOMIC);
   2767	if (!creq)
   2768		return -ENOMEM;
   2769
   2770	creq->wiphy = wiphy;
   2771	creq->wdev = dev->ieee80211_ptr;
   2772	/* SSIDs come after channels */
   2773	creq->ssids = (void *)&creq->channels[n_channels];
   2774	creq->n_channels = n_channels;
   2775	creq->n_ssids = 1;
   2776	creq->scan_start = jiffies;
   2777
   2778	/* translate "Scan on frequencies" request */
   2779	i = 0;
   2780	for (band = 0; band < NUM_NL80211_BANDS; band++) {
   2781		int j;
   2782
   2783		if (!wiphy->bands[band])
   2784			continue;
   2785
   2786		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
   2787			/* ignore disabled channels */
   2788			if (wiphy->bands[band]->channels[j].flags &
   2789						IEEE80211_CHAN_DISABLED)
   2790				continue;
   2791
   2792			/* If we have a wireless request structure and the
   2793			 * wireless request specifies frequencies, then search
   2794			 * for the matching hardware channel.
   2795			 */
   2796			if (wreq && wreq->num_channels) {
   2797				int k;
   2798				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
   2799				for (k = 0; k < wreq->num_channels; k++) {
   2800					struct iw_freq *freq =
   2801						&wreq->channel_list[k];
   2802					int wext_freq =
   2803						cfg80211_wext_freq(freq);
   2804
   2805					if (wext_freq == wiphy_freq)
   2806						goto wext_freq_found;
   2807				}
   2808				goto wext_freq_not_found;
   2809			}
   2810
   2811		wext_freq_found:
   2812			creq->channels[i] = &wiphy->bands[band]->channels[j];
   2813			i++;
   2814		wext_freq_not_found: ;
   2815		}
   2816	}
   2817	/* No channels found? */
   2818	if (!i) {
   2819		err = -EINVAL;
   2820		goto out;
   2821	}
   2822
   2823	/* Set real number of channels specified in creq->channels[] */
   2824	creq->n_channels = i;
   2825
   2826	/* translate "Scan for SSID" request */
   2827	if (wreq) {
   2828		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
   2829			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
   2830				err = -EINVAL;
   2831				goto out;
   2832			}
   2833			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
   2834			creq->ssids[0].ssid_len = wreq->essid_len;
   2835		}
   2836		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
   2837			creq->n_ssids = 0;
   2838	}
   2839
   2840	for (i = 0; i < NUM_NL80211_BANDS; i++)
   2841		if (wiphy->bands[i])
   2842			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
   2843
   2844	eth_broadcast_addr(creq->bssid);
   2845
   2846	wiphy_lock(&rdev->wiphy);
   2847
   2848	rdev->scan_req = creq;
   2849	err = rdev_scan(rdev, creq);
   2850	if (err) {
   2851		rdev->scan_req = NULL;
   2852		/* creq will be freed below */
   2853	} else {
   2854		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
   2855		/* creq now owned by driver */
   2856		creq = NULL;
   2857		dev_hold(dev);
   2858	}
   2859	wiphy_unlock(&rdev->wiphy);
   2860 out:
   2861	kfree(creq);
   2862	return err;
   2863}
   2864EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
   2865
   2866static char *ieee80211_scan_add_ies(struct iw_request_info *info,
   2867				    const struct cfg80211_bss_ies *ies,
   2868				    char *current_ev, char *end_buf)
   2869{
   2870	const u8 *pos, *end, *next;
   2871	struct iw_event iwe;
   2872
   2873	if (!ies)
   2874		return current_ev;
   2875
   2876	/*
   2877	 * If needed, fragment the IEs buffer (at IE boundaries) into short
   2878	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
   2879	 */
   2880	pos = ies->data;
   2881	end = pos + ies->len;
   2882
   2883	while (end - pos > IW_GENERIC_IE_MAX) {
   2884		next = pos + 2 + pos[1];
   2885		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
   2886			next = next + 2 + next[1];
   2887
   2888		memset(&iwe, 0, sizeof(iwe));
   2889		iwe.cmd = IWEVGENIE;
   2890		iwe.u.data.length = next - pos;
   2891		current_ev = iwe_stream_add_point_check(info, current_ev,
   2892							end_buf, &iwe,
   2893							(void *)pos);
   2894		if (IS_ERR(current_ev))
   2895			return current_ev;
   2896		pos = next;
   2897	}
   2898
   2899	if (end > pos) {
   2900		memset(&iwe, 0, sizeof(iwe));
   2901		iwe.cmd = IWEVGENIE;
   2902		iwe.u.data.length = end - pos;
   2903		current_ev = iwe_stream_add_point_check(info, current_ev,
   2904							end_buf, &iwe,
   2905							(void *)pos);
   2906		if (IS_ERR(current_ev))
   2907			return current_ev;
   2908	}
   2909
   2910	return current_ev;
   2911}
   2912
   2913static char *
   2914ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
   2915	      struct cfg80211_internal_bss *bss, char *current_ev,
   2916	      char *end_buf)
   2917{
   2918	const struct cfg80211_bss_ies *ies;
   2919	struct iw_event iwe;
   2920	const u8 *ie;
   2921	u8 buf[50];
   2922	u8 *cfg, *p, *tmp;
   2923	int rem, i, sig;
   2924	bool ismesh = false;
   2925
   2926	memset(&iwe, 0, sizeof(iwe));
   2927	iwe.cmd = SIOCGIWAP;
   2928	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
   2929	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
   2930	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
   2931						IW_EV_ADDR_LEN);
   2932	if (IS_ERR(current_ev))
   2933		return current_ev;
   2934
   2935	memset(&iwe, 0, sizeof(iwe));
   2936	iwe.cmd = SIOCGIWFREQ;
   2937	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
   2938	iwe.u.freq.e = 0;
   2939	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
   2940						IW_EV_FREQ_LEN);
   2941	if (IS_ERR(current_ev))
   2942		return current_ev;
   2943
   2944	memset(&iwe, 0, sizeof(iwe));
   2945	iwe.cmd = SIOCGIWFREQ;
   2946	iwe.u.freq.m = bss->pub.channel->center_freq;
   2947	iwe.u.freq.e = 6;
   2948	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
   2949						IW_EV_FREQ_LEN);
   2950	if (IS_ERR(current_ev))
   2951		return current_ev;
   2952
   2953	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
   2954		memset(&iwe, 0, sizeof(iwe));
   2955		iwe.cmd = IWEVQUAL;
   2956		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
   2957				     IW_QUAL_NOISE_INVALID |
   2958				     IW_QUAL_QUAL_UPDATED;
   2959		switch (wiphy->signal_type) {
   2960		case CFG80211_SIGNAL_TYPE_MBM:
   2961			sig = bss->pub.signal / 100;
   2962			iwe.u.qual.level = sig;
   2963			iwe.u.qual.updated |= IW_QUAL_DBM;
   2964			if (sig < -110)		/* rather bad */
   2965				sig = -110;
   2966			else if (sig > -40)	/* perfect */
   2967				sig = -40;
   2968			/* will give a range of 0 .. 70 */
   2969			iwe.u.qual.qual = sig + 110;
   2970			break;
   2971		case CFG80211_SIGNAL_TYPE_UNSPEC:
   2972			iwe.u.qual.level = bss->pub.signal;
   2973			/* will give range 0 .. 100 */
   2974			iwe.u.qual.qual = bss->pub.signal;
   2975			break;
   2976		default:
   2977			/* not reached */
   2978			break;
   2979		}
   2980		current_ev = iwe_stream_add_event_check(info, current_ev,
   2981							end_buf, &iwe,
   2982							IW_EV_QUAL_LEN);
   2983		if (IS_ERR(current_ev))
   2984			return current_ev;
   2985	}
   2986
   2987	memset(&iwe, 0, sizeof(iwe));
   2988	iwe.cmd = SIOCGIWENCODE;
   2989	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
   2990		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
   2991	else
   2992		iwe.u.data.flags = IW_ENCODE_DISABLED;
   2993	iwe.u.data.length = 0;
   2994	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
   2995						&iwe, "");
   2996	if (IS_ERR(current_ev))
   2997		return current_ev;
   2998
   2999	rcu_read_lock();
   3000	ies = rcu_dereference(bss->pub.ies);
   3001	rem = ies->len;
   3002	ie = ies->data;
   3003
   3004	while (rem >= 2) {
   3005		/* invalid data */
   3006		if (ie[1] > rem - 2)
   3007			break;
   3008
   3009		switch (ie[0]) {
   3010		case WLAN_EID_SSID:
   3011			memset(&iwe, 0, sizeof(iwe));
   3012			iwe.cmd = SIOCGIWESSID;
   3013			iwe.u.data.length = ie[1];
   3014			iwe.u.data.flags = 1;
   3015			current_ev = iwe_stream_add_point_check(info,
   3016								current_ev,
   3017								end_buf, &iwe,
   3018								(u8 *)ie + 2);
   3019			if (IS_ERR(current_ev))
   3020				goto unlock;
   3021			break;
   3022		case WLAN_EID_MESH_ID:
   3023			memset(&iwe, 0, sizeof(iwe));
   3024			iwe.cmd = SIOCGIWESSID;
   3025			iwe.u.data.length = ie[1];
   3026			iwe.u.data.flags = 1;
   3027			current_ev = iwe_stream_add_point_check(info,
   3028								current_ev,
   3029								end_buf, &iwe,
   3030								(u8 *)ie + 2);
   3031			if (IS_ERR(current_ev))
   3032				goto unlock;
   3033			break;
   3034		case WLAN_EID_MESH_CONFIG:
   3035			ismesh = true;
   3036			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
   3037				break;
   3038			cfg = (u8 *)ie + 2;
   3039			memset(&iwe, 0, sizeof(iwe));
   3040			iwe.cmd = IWEVCUSTOM;
   3041			sprintf(buf, "Mesh Network Path Selection Protocol ID: "
   3042				"0x%02X", cfg[0]);
   3043			iwe.u.data.length = strlen(buf);
   3044			current_ev = iwe_stream_add_point_check(info,
   3045								current_ev,
   3046								end_buf,
   3047								&iwe, buf);
   3048			if (IS_ERR(current_ev))
   3049				goto unlock;
   3050			sprintf(buf, "Path Selection Metric ID: 0x%02X",
   3051				cfg[1]);
   3052			iwe.u.data.length = strlen(buf);
   3053			current_ev = iwe_stream_add_point_check(info,
   3054								current_ev,
   3055								end_buf,
   3056								&iwe, buf);
   3057			if (IS_ERR(current_ev))
   3058				goto unlock;
   3059			sprintf(buf, "Congestion Control Mode ID: 0x%02X",
   3060				cfg[2]);
   3061			iwe.u.data.length = strlen(buf);
   3062			current_ev = iwe_stream_add_point_check(info,
   3063								current_ev,
   3064								end_buf,
   3065								&iwe, buf);
   3066			if (IS_ERR(current_ev))
   3067				goto unlock;
   3068			sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
   3069			iwe.u.data.length = strlen(buf);
   3070			current_ev = iwe_stream_add_point_check(info,
   3071								current_ev,
   3072								end_buf,
   3073								&iwe, buf);
   3074			if (IS_ERR(current_ev))
   3075				goto unlock;
   3076			sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
   3077			iwe.u.data.length = strlen(buf);
   3078			current_ev = iwe_stream_add_point_check(info,
   3079								current_ev,
   3080								end_buf,
   3081								&iwe, buf);
   3082			if (IS_ERR(current_ev))
   3083				goto unlock;
   3084			sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
   3085			iwe.u.data.length = strlen(buf);
   3086			current_ev = iwe_stream_add_point_check(info,
   3087								current_ev,
   3088								end_buf,
   3089								&iwe, buf);
   3090			if (IS_ERR(current_ev))
   3091				goto unlock;
   3092			sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
   3093			iwe.u.data.length = strlen(buf);
   3094			current_ev = iwe_stream_add_point_check(info,
   3095								current_ev,
   3096								end_buf,
   3097								&iwe, buf);
   3098			if (IS_ERR(current_ev))
   3099				goto unlock;
   3100			break;
   3101		case WLAN_EID_SUPP_RATES:
   3102		case WLAN_EID_EXT_SUPP_RATES:
   3103			/* display all supported rates in readable format */
   3104			p = current_ev + iwe_stream_lcp_len(info);
   3105
   3106			memset(&iwe, 0, sizeof(iwe));
   3107			iwe.cmd = SIOCGIWRATE;
   3108			/* Those two flags are ignored... */
   3109			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
   3110
   3111			for (i = 0; i < ie[1]; i++) {
   3112				iwe.u.bitrate.value =
   3113					((ie[i + 2] & 0x7f) * 500000);
   3114				tmp = p;
   3115				p = iwe_stream_add_value(info, current_ev, p,
   3116							 end_buf, &iwe,
   3117							 IW_EV_PARAM_LEN);
   3118				if (p == tmp) {
   3119					current_ev = ERR_PTR(-E2BIG);
   3120					goto unlock;
   3121				}
   3122			}
   3123			current_ev = p;
   3124			break;
   3125		}
   3126		rem -= ie[1] + 2;
   3127		ie += ie[1] + 2;
   3128	}
   3129
   3130	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
   3131	    ismesh) {
   3132		memset(&iwe, 0, sizeof(iwe));
   3133		iwe.cmd = SIOCGIWMODE;
   3134		if (ismesh)
   3135			iwe.u.mode = IW_MODE_MESH;
   3136		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
   3137			iwe.u.mode = IW_MODE_MASTER;
   3138		else
   3139			iwe.u.mode = IW_MODE_ADHOC;
   3140		current_ev = iwe_stream_add_event_check(info, current_ev,
   3141							end_buf, &iwe,
   3142							IW_EV_UINT_LEN);
   3143		if (IS_ERR(current_ev))
   3144			goto unlock;
   3145	}
   3146
   3147	memset(&iwe, 0, sizeof(iwe));
   3148	iwe.cmd = IWEVCUSTOM;
   3149	sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
   3150	iwe.u.data.length = strlen(buf);
   3151	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
   3152						&iwe, buf);
   3153	if (IS_ERR(current_ev))
   3154		goto unlock;
   3155	memset(&iwe, 0, sizeof(iwe));
   3156	iwe.cmd = IWEVCUSTOM;
   3157	sprintf(buf, " Last beacon: %ums ago",
   3158		elapsed_jiffies_msecs(bss->ts));
   3159	iwe.u.data.length = strlen(buf);
   3160	current_ev = iwe_stream_add_point_check(info, current_ev,
   3161						end_buf, &iwe, buf);
   3162	if (IS_ERR(current_ev))
   3163		goto unlock;
   3164
   3165	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
   3166
   3167 unlock:
   3168	rcu_read_unlock();
   3169	return current_ev;
   3170}
   3171
   3172
   3173static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
   3174				  struct iw_request_info *info,
   3175				  char *buf, size_t len)
   3176{
   3177	char *current_ev = buf;
   3178	char *end_buf = buf + len;
   3179	struct cfg80211_internal_bss *bss;
   3180	int err = 0;
   3181
   3182	spin_lock_bh(&rdev->bss_lock);
   3183	cfg80211_bss_expire(rdev);
   3184
   3185	list_for_each_entry(bss, &rdev->bss_list, list) {
   3186		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
   3187			err = -E2BIG;
   3188			break;
   3189		}
   3190		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
   3191					   current_ev, end_buf);
   3192		if (IS_ERR(current_ev)) {
   3193			err = PTR_ERR(current_ev);
   3194			break;
   3195		}
   3196	}
   3197	spin_unlock_bh(&rdev->bss_lock);
   3198
   3199	if (err)
   3200		return err;
   3201	return current_ev - buf;
   3202}
   3203
   3204
   3205int cfg80211_wext_giwscan(struct net_device *dev,
   3206			  struct iw_request_info *info,
   3207			  struct iw_point *data, char *extra)
   3208{
   3209	struct cfg80211_registered_device *rdev;
   3210	int res;
   3211
   3212	if (!netif_running(dev))
   3213		return -ENETDOWN;
   3214
   3215	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
   3216
   3217	if (IS_ERR(rdev))
   3218		return PTR_ERR(rdev);
   3219
   3220	if (rdev->scan_req || rdev->scan_msg)
   3221		return -EAGAIN;
   3222
   3223	res = ieee80211_scan_results(rdev, info, extra, data->length);
   3224	data->length = 0;
   3225	if (res >= 0) {
   3226		data->length = res;
   3227		res = 0;
   3228	}
   3229
   3230	return res;
   3231}
   3232EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
   3233#endif