cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

util.c (60248B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Wireless utility functions
      4 *
      5 * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
      6 * Copyright 2013-2014  Intel Mobile Communications GmbH
      7 * Copyright 2017	Intel Deutschland GmbH
      8 * Copyright (C) 2018-2021 Intel Corporation
      9 */
     10#include <linux/export.h>
     11#include <linux/bitops.h>
     12#include <linux/etherdevice.h>
     13#include <linux/slab.h>
     14#include <linux/ieee80211.h>
     15#include <net/cfg80211.h>
     16#include <net/ip.h>
     17#include <net/dsfield.h>
     18#include <linux/if_vlan.h>
     19#include <linux/mpls.h>
     20#include <linux/gcd.h>
     21#include <linux/bitfield.h>
     22#include <linux/nospec.h>
     23#include "core.h"
     24#include "rdev-ops.h"
     25
     26
     27const struct ieee80211_rate *
     28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
     29			    u32 basic_rates, int bitrate)
     30{
     31	struct ieee80211_rate *result = &sband->bitrates[0];
     32	int i;
     33
     34	for (i = 0; i < sband->n_bitrates; i++) {
     35		if (!(basic_rates & BIT(i)))
     36			continue;
     37		if (sband->bitrates[i].bitrate > bitrate)
     38			continue;
     39		result = &sband->bitrates[i];
     40	}
     41
     42	return result;
     43}
     44EXPORT_SYMBOL(ieee80211_get_response_rate);
     45
     46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
     47			      enum nl80211_bss_scan_width scan_width)
     48{
     49	struct ieee80211_rate *bitrates;
     50	u32 mandatory_rates = 0;
     51	enum ieee80211_rate_flags mandatory_flag;
     52	int i;
     53
     54	if (WARN_ON(!sband))
     55		return 1;
     56
     57	if (sband->band == NL80211_BAND_2GHZ) {
     58		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
     59		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
     60			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
     61		else
     62			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
     63	} else {
     64		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
     65	}
     66
     67	bitrates = sband->bitrates;
     68	for (i = 0; i < sband->n_bitrates; i++)
     69		if (bitrates[i].flags & mandatory_flag)
     70			mandatory_rates |= BIT(i);
     71	return mandatory_rates;
     72}
     73EXPORT_SYMBOL(ieee80211_mandatory_rates);
     74
     75u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
     76{
     77	/* see 802.11 17.3.8.3.2 and Annex J
     78	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
     79	if (chan <= 0)
     80		return 0; /* not supported */
     81	switch (band) {
     82	case NL80211_BAND_2GHZ:
     83	case NL80211_BAND_LC:
     84		if (chan == 14)
     85			return MHZ_TO_KHZ(2484);
     86		else if (chan < 14)
     87			return MHZ_TO_KHZ(2407 + chan * 5);
     88		break;
     89	case NL80211_BAND_5GHZ:
     90		if (chan >= 182 && chan <= 196)
     91			return MHZ_TO_KHZ(4000 + chan * 5);
     92		else
     93			return MHZ_TO_KHZ(5000 + chan * 5);
     94		break;
     95	case NL80211_BAND_6GHZ:
     96		/* see 802.11ax D6.1 27.3.23.2 */
     97		if (chan == 2)
     98			return MHZ_TO_KHZ(5935);
     99		if (chan <= 233)
    100			return MHZ_TO_KHZ(5950 + chan * 5);
    101		break;
    102	case NL80211_BAND_60GHZ:
    103		if (chan < 7)
    104			return MHZ_TO_KHZ(56160 + chan * 2160);
    105		break;
    106	case NL80211_BAND_S1GHZ:
    107		return 902000 + chan * 500;
    108	default:
    109		;
    110	}
    111	return 0; /* not supported */
    112}
    113EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
    114
    115enum nl80211_chan_width
    116ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
    117{
    118	if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
    119		return NL80211_CHAN_WIDTH_20_NOHT;
    120
    121	/*S1G defines a single allowed channel width per channel.
    122	 * Extract that width here.
    123	 */
    124	if (chan->flags & IEEE80211_CHAN_1MHZ)
    125		return NL80211_CHAN_WIDTH_1;
    126	else if (chan->flags & IEEE80211_CHAN_2MHZ)
    127		return NL80211_CHAN_WIDTH_2;
    128	else if (chan->flags & IEEE80211_CHAN_4MHZ)
    129		return NL80211_CHAN_WIDTH_4;
    130	else if (chan->flags & IEEE80211_CHAN_8MHZ)
    131		return NL80211_CHAN_WIDTH_8;
    132	else if (chan->flags & IEEE80211_CHAN_16MHZ)
    133		return NL80211_CHAN_WIDTH_16;
    134
    135	pr_err("unknown channel width for channel at %dKHz?\n",
    136	       ieee80211_channel_to_khz(chan));
    137
    138	return NL80211_CHAN_WIDTH_1;
    139}
    140EXPORT_SYMBOL(ieee80211_s1g_channel_width);
    141
    142int ieee80211_freq_khz_to_channel(u32 freq)
    143{
    144	/* TODO: just handle MHz for now */
    145	freq = KHZ_TO_MHZ(freq);
    146
    147	/* see 802.11 17.3.8.3.2 and Annex J */
    148	if (freq == 2484)
    149		return 14;
    150	else if (freq < 2484)
    151		return (freq - 2407) / 5;
    152	else if (freq >= 4910 && freq <= 4980)
    153		return (freq - 4000) / 5;
    154	else if (freq < 5925)
    155		return (freq - 5000) / 5;
    156	else if (freq == 5935)
    157		return 2;
    158	else if (freq <= 45000) /* DMG band lower limit */
    159		/* see 802.11ax D6.1 27.3.22.2 */
    160		return (freq - 5950) / 5;
    161	else if (freq >= 58320 && freq <= 70200)
    162		return (freq - 56160) / 2160;
    163	else
    164		return 0;
    165}
    166EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
    167
    168struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
    169						    u32 freq)
    170{
    171	enum nl80211_band band;
    172	struct ieee80211_supported_band *sband;
    173	int i;
    174
    175	for (band = 0; band < NUM_NL80211_BANDS; band++) {
    176		sband = wiphy->bands[band];
    177
    178		if (!sband)
    179			continue;
    180
    181		for (i = 0; i < sband->n_channels; i++) {
    182			struct ieee80211_channel *chan = &sband->channels[i];
    183
    184			if (ieee80211_channel_to_khz(chan) == freq)
    185				return chan;
    186		}
    187	}
    188
    189	return NULL;
    190}
    191EXPORT_SYMBOL(ieee80211_get_channel_khz);
    192
    193static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
    194{
    195	int i, want;
    196
    197	switch (sband->band) {
    198	case NL80211_BAND_5GHZ:
    199	case NL80211_BAND_6GHZ:
    200		want = 3;
    201		for (i = 0; i < sband->n_bitrates; i++) {
    202			if (sband->bitrates[i].bitrate == 60 ||
    203			    sband->bitrates[i].bitrate == 120 ||
    204			    sband->bitrates[i].bitrate == 240) {
    205				sband->bitrates[i].flags |=
    206					IEEE80211_RATE_MANDATORY_A;
    207				want--;
    208			}
    209		}
    210		WARN_ON(want);
    211		break;
    212	case NL80211_BAND_2GHZ:
    213	case NL80211_BAND_LC:
    214		want = 7;
    215		for (i = 0; i < sband->n_bitrates; i++) {
    216			switch (sband->bitrates[i].bitrate) {
    217			case 10:
    218			case 20:
    219			case 55:
    220			case 110:
    221				sband->bitrates[i].flags |=
    222					IEEE80211_RATE_MANDATORY_B |
    223					IEEE80211_RATE_MANDATORY_G;
    224				want--;
    225				break;
    226			case 60:
    227			case 120:
    228			case 240:
    229				sband->bitrates[i].flags |=
    230					IEEE80211_RATE_MANDATORY_G;
    231				want--;
    232				fallthrough;
    233			default:
    234				sband->bitrates[i].flags |=
    235					IEEE80211_RATE_ERP_G;
    236				break;
    237			}
    238		}
    239		WARN_ON(want != 0 && want != 3);
    240		break;
    241	case NL80211_BAND_60GHZ:
    242		/* check for mandatory HT MCS 1..4 */
    243		WARN_ON(!sband->ht_cap.ht_supported);
    244		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
    245		break;
    246	case NL80211_BAND_S1GHZ:
    247		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
    248		 * mandatory is ok.
    249		 */
    250		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
    251		break;
    252	case NUM_NL80211_BANDS:
    253	default:
    254		WARN_ON(1);
    255		break;
    256	}
    257}
    258
    259void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
    260{
    261	enum nl80211_band band;
    262
    263	for (band = 0; band < NUM_NL80211_BANDS; band++)
    264		if (wiphy->bands[band])
    265			set_mandatory_flags_band(wiphy->bands[band]);
    266}
    267
    268bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
    269{
    270	int i;
    271	for (i = 0; i < wiphy->n_cipher_suites; i++)
    272		if (cipher == wiphy->cipher_suites[i])
    273			return true;
    274	return false;
    275}
    276
    277static bool
    278cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
    279{
    280	struct wiphy *wiphy = &rdev->wiphy;
    281	int i;
    282
    283	for (i = 0; i < wiphy->n_cipher_suites; i++) {
    284		switch (wiphy->cipher_suites[i]) {
    285		case WLAN_CIPHER_SUITE_AES_CMAC:
    286		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
    287		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
    288		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
    289			return true;
    290		}
    291	}
    292
    293	return false;
    294}
    295
    296bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
    297			    int key_idx, bool pairwise)
    298{
    299	int max_key_idx;
    300
    301	if (pairwise)
    302		max_key_idx = 3;
    303	else if (wiphy_ext_feature_isset(&rdev->wiphy,
    304					 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
    305		 wiphy_ext_feature_isset(&rdev->wiphy,
    306					 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
    307		max_key_idx = 7;
    308	else if (cfg80211_igtk_cipher_supported(rdev))
    309		max_key_idx = 5;
    310	else
    311		max_key_idx = 3;
    312
    313	if (key_idx < 0 || key_idx > max_key_idx)
    314		return false;
    315
    316	return true;
    317}
    318
    319int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
    320				   struct key_params *params, int key_idx,
    321				   bool pairwise, const u8 *mac_addr)
    322{
    323	if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
    324		return -EINVAL;
    325
    326	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
    327		return -EINVAL;
    328
    329	if (pairwise && !mac_addr)
    330		return -EINVAL;
    331
    332	switch (params->cipher) {
    333	case WLAN_CIPHER_SUITE_TKIP:
    334		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
    335		if ((pairwise && key_idx) ||
    336		    params->mode != NL80211_KEY_RX_TX)
    337			return -EINVAL;
    338		break;
    339	case WLAN_CIPHER_SUITE_CCMP:
    340	case WLAN_CIPHER_SUITE_CCMP_256:
    341	case WLAN_CIPHER_SUITE_GCMP:
    342	case WLAN_CIPHER_SUITE_GCMP_256:
    343		/* IEEE802.11-2016 allows only 0 and - when supporting
    344		 * Extended Key ID - 1 as index for pairwise keys.
    345		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
    346		 * the driver supports Extended Key ID.
    347		 * @NL80211_KEY_SET_TX can't be set when installing and
    348		 * validating a key.
    349		 */
    350		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
    351		    params->mode == NL80211_KEY_SET_TX)
    352			return -EINVAL;
    353		if (wiphy_ext_feature_isset(&rdev->wiphy,
    354					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
    355			if (pairwise && (key_idx < 0 || key_idx > 1))
    356				return -EINVAL;
    357		} else if (pairwise && key_idx) {
    358			return -EINVAL;
    359		}
    360		break;
    361	case WLAN_CIPHER_SUITE_AES_CMAC:
    362	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
    363	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
    364	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
    365		/* Disallow BIP (group-only) cipher as pairwise cipher */
    366		if (pairwise)
    367			return -EINVAL;
    368		if (key_idx < 4)
    369			return -EINVAL;
    370		break;
    371	case WLAN_CIPHER_SUITE_WEP40:
    372	case WLAN_CIPHER_SUITE_WEP104:
    373		if (key_idx > 3)
    374			return -EINVAL;
    375		break;
    376	default:
    377		break;
    378	}
    379
    380	switch (params->cipher) {
    381	case WLAN_CIPHER_SUITE_WEP40:
    382		if (params->key_len != WLAN_KEY_LEN_WEP40)
    383			return -EINVAL;
    384		break;
    385	case WLAN_CIPHER_SUITE_TKIP:
    386		if (params->key_len != WLAN_KEY_LEN_TKIP)
    387			return -EINVAL;
    388		break;
    389	case WLAN_CIPHER_SUITE_CCMP:
    390		if (params->key_len != WLAN_KEY_LEN_CCMP)
    391			return -EINVAL;
    392		break;
    393	case WLAN_CIPHER_SUITE_CCMP_256:
    394		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
    395			return -EINVAL;
    396		break;
    397	case WLAN_CIPHER_SUITE_GCMP:
    398		if (params->key_len != WLAN_KEY_LEN_GCMP)
    399			return -EINVAL;
    400		break;
    401	case WLAN_CIPHER_SUITE_GCMP_256:
    402		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
    403			return -EINVAL;
    404		break;
    405	case WLAN_CIPHER_SUITE_WEP104:
    406		if (params->key_len != WLAN_KEY_LEN_WEP104)
    407			return -EINVAL;
    408		break;
    409	case WLAN_CIPHER_SUITE_AES_CMAC:
    410		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
    411			return -EINVAL;
    412		break;
    413	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
    414		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
    415			return -EINVAL;
    416		break;
    417	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
    418		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
    419			return -EINVAL;
    420		break;
    421	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
    422		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
    423			return -EINVAL;
    424		break;
    425	default:
    426		/*
    427		 * We don't know anything about this algorithm,
    428		 * allow using it -- but the driver must check
    429		 * all parameters! We still check below whether
    430		 * or not the driver supports this algorithm,
    431		 * of course.
    432		 */
    433		break;
    434	}
    435
    436	if (params->seq) {
    437		switch (params->cipher) {
    438		case WLAN_CIPHER_SUITE_WEP40:
    439		case WLAN_CIPHER_SUITE_WEP104:
    440			/* These ciphers do not use key sequence */
    441			return -EINVAL;
    442		case WLAN_CIPHER_SUITE_TKIP:
    443		case WLAN_CIPHER_SUITE_CCMP:
    444		case WLAN_CIPHER_SUITE_CCMP_256:
    445		case WLAN_CIPHER_SUITE_GCMP:
    446		case WLAN_CIPHER_SUITE_GCMP_256:
    447		case WLAN_CIPHER_SUITE_AES_CMAC:
    448		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
    449		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
    450		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
    451			if (params->seq_len != 6)
    452				return -EINVAL;
    453			break;
    454		}
    455	}
    456
    457	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
    458		return -EINVAL;
    459
    460	return 0;
    461}
    462
    463unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
    464{
    465	unsigned int hdrlen = 24;
    466
    467	if (ieee80211_is_ext(fc)) {
    468		hdrlen = 4;
    469		goto out;
    470	}
    471
    472	if (ieee80211_is_data(fc)) {
    473		if (ieee80211_has_a4(fc))
    474			hdrlen = 30;
    475		if (ieee80211_is_data_qos(fc)) {
    476			hdrlen += IEEE80211_QOS_CTL_LEN;
    477			if (ieee80211_has_order(fc))
    478				hdrlen += IEEE80211_HT_CTL_LEN;
    479		}
    480		goto out;
    481	}
    482
    483	if (ieee80211_is_mgmt(fc)) {
    484		if (ieee80211_has_order(fc))
    485			hdrlen += IEEE80211_HT_CTL_LEN;
    486		goto out;
    487	}
    488
    489	if (ieee80211_is_ctl(fc)) {
    490		/*
    491		 * ACK and CTS are 10 bytes, all others 16. To see how
    492		 * to get this condition consider
    493		 *   subtype mask:   0b0000000011110000 (0x00F0)
    494		 *   ACK subtype:    0b0000000011010000 (0x00D0)
    495		 *   CTS subtype:    0b0000000011000000 (0x00C0)
    496		 *   bits that matter:         ^^^      (0x00E0)
    497		 *   value of those: 0b0000000011000000 (0x00C0)
    498		 */
    499		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
    500			hdrlen = 10;
    501		else
    502			hdrlen = 16;
    503	}
    504out:
    505	return hdrlen;
    506}
    507EXPORT_SYMBOL(ieee80211_hdrlen);
    508
    509unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
    510{
    511	const struct ieee80211_hdr *hdr =
    512			(const struct ieee80211_hdr *)skb->data;
    513	unsigned int hdrlen;
    514
    515	if (unlikely(skb->len < 10))
    516		return 0;
    517	hdrlen = ieee80211_hdrlen(hdr->frame_control);
    518	if (unlikely(hdrlen > skb->len))
    519		return 0;
    520	return hdrlen;
    521}
    522EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
    523
    524static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
    525{
    526	int ae = flags & MESH_FLAGS_AE;
    527	/* 802.11-2012, 8.2.4.7.3 */
    528	switch (ae) {
    529	default:
    530	case 0:
    531		return 6;
    532	case MESH_FLAGS_AE_A4:
    533		return 12;
    534	case MESH_FLAGS_AE_A5_A6:
    535		return 18;
    536	}
    537}
    538
    539unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
    540{
    541	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
    542}
    543EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
    544
    545int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
    546				  const u8 *addr, enum nl80211_iftype iftype,
    547				  u8 data_offset, bool is_amsdu)
    548{
    549	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
    550	struct {
    551		u8 hdr[ETH_ALEN] __aligned(2);
    552		__be16 proto;
    553	} payload;
    554	struct ethhdr tmp;
    555	u16 hdrlen;
    556	u8 mesh_flags = 0;
    557
    558	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
    559		return -1;
    560
    561	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
    562	if (skb->len < hdrlen + 8)
    563		return -1;
    564
    565	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
    566	 * header
    567	 * IEEE 802.11 address fields:
    568	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
    569	 *   0     0   DA    SA    BSSID n/a
    570	 *   0     1   DA    BSSID SA    n/a
    571	 *   1     0   BSSID SA    DA    n/a
    572	 *   1     1   RA    TA    DA    SA
    573	 */
    574	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
    575	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
    576
    577	if (iftype == NL80211_IFTYPE_MESH_POINT)
    578		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
    579
    580	mesh_flags &= MESH_FLAGS_AE;
    581
    582	switch (hdr->frame_control &
    583		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
    584	case cpu_to_le16(IEEE80211_FCTL_TODS):
    585		if (unlikely(iftype != NL80211_IFTYPE_AP &&
    586			     iftype != NL80211_IFTYPE_AP_VLAN &&
    587			     iftype != NL80211_IFTYPE_P2P_GO))
    588			return -1;
    589		break;
    590	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
    591		if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
    592			     iftype != NL80211_IFTYPE_AP_VLAN &&
    593			     iftype != NL80211_IFTYPE_STATION))
    594			return -1;
    595		if (iftype == NL80211_IFTYPE_MESH_POINT) {
    596			if (mesh_flags == MESH_FLAGS_AE_A4)
    597				return -1;
    598			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
    599				skb_copy_bits(skb, hdrlen +
    600					offsetof(struct ieee80211s_hdr, eaddr1),
    601					tmp.h_dest, 2 * ETH_ALEN);
    602			}
    603			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
    604		}
    605		break;
    606	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
    607		if ((iftype != NL80211_IFTYPE_STATION &&
    608		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
    609		     iftype != NL80211_IFTYPE_MESH_POINT) ||
    610		    (is_multicast_ether_addr(tmp.h_dest) &&
    611		     ether_addr_equal(tmp.h_source, addr)))
    612			return -1;
    613		if (iftype == NL80211_IFTYPE_MESH_POINT) {
    614			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
    615				return -1;
    616			if (mesh_flags == MESH_FLAGS_AE_A4)
    617				skb_copy_bits(skb, hdrlen +
    618					offsetof(struct ieee80211s_hdr, eaddr1),
    619					tmp.h_source, ETH_ALEN);
    620			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
    621		}
    622		break;
    623	case cpu_to_le16(0):
    624		if (iftype != NL80211_IFTYPE_ADHOC &&
    625		    iftype != NL80211_IFTYPE_STATION &&
    626		    iftype != NL80211_IFTYPE_OCB)
    627				return -1;
    628		break;
    629	}
    630
    631	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
    632	tmp.h_proto = payload.proto;
    633
    634	if (likely((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) &&
    635		    tmp.h_proto != htons(ETH_P_AARP) &&
    636		    tmp.h_proto != htons(ETH_P_IPX)) ||
    637		   ether_addr_equal(payload.hdr, bridge_tunnel_header))) {
    638		/* remove RFC1042 or Bridge-Tunnel encapsulation and
    639		 * replace EtherType */
    640		hdrlen += ETH_ALEN + 2;
    641		skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
    642	} else {
    643		tmp.h_proto = htons(skb->len - hdrlen);
    644	}
    645
    646	pskb_pull(skb, hdrlen);
    647
    648	if (!ehdr)
    649		ehdr = skb_push(skb, sizeof(struct ethhdr));
    650	memcpy(ehdr, &tmp, sizeof(tmp));
    651
    652	return 0;
    653}
    654EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
    655
    656static void
    657__frame_add_frag(struct sk_buff *skb, struct page *page,
    658		 void *ptr, int len, int size)
    659{
    660	struct skb_shared_info *sh = skb_shinfo(skb);
    661	int page_offset;
    662
    663	get_page(page);
    664	page_offset = ptr - page_address(page);
    665	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
    666}
    667
    668static void
    669__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
    670			    int offset, int len)
    671{
    672	struct skb_shared_info *sh = skb_shinfo(skb);
    673	const skb_frag_t *frag = &sh->frags[0];
    674	struct page *frag_page;
    675	void *frag_ptr;
    676	int frag_len, frag_size;
    677	int head_size = skb->len - skb->data_len;
    678	int cur_len;
    679
    680	frag_page = virt_to_head_page(skb->head);
    681	frag_ptr = skb->data;
    682	frag_size = head_size;
    683
    684	while (offset >= frag_size) {
    685		offset -= frag_size;
    686		frag_page = skb_frag_page(frag);
    687		frag_ptr = skb_frag_address(frag);
    688		frag_size = skb_frag_size(frag);
    689		frag++;
    690	}
    691
    692	frag_ptr += offset;
    693	frag_len = frag_size - offset;
    694
    695	cur_len = min(len, frag_len);
    696
    697	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
    698	len -= cur_len;
    699
    700	while (len > 0) {
    701		frag_len = skb_frag_size(frag);
    702		cur_len = min(len, frag_len);
    703		__frame_add_frag(frame, skb_frag_page(frag),
    704				 skb_frag_address(frag), cur_len, frag_len);
    705		len -= cur_len;
    706		frag++;
    707	}
    708}
    709
    710static struct sk_buff *
    711__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
    712		       int offset, int len, bool reuse_frag)
    713{
    714	struct sk_buff *frame;
    715	int cur_len = len;
    716
    717	if (skb->len - offset < len)
    718		return NULL;
    719
    720	/*
    721	 * When reusing framents, copy some data to the head to simplify
    722	 * ethernet header handling and speed up protocol header processing
    723	 * in the stack later.
    724	 */
    725	if (reuse_frag)
    726		cur_len = min_t(int, len, 32);
    727
    728	/*
    729	 * Allocate and reserve two bytes more for payload
    730	 * alignment since sizeof(struct ethhdr) is 14.
    731	 */
    732	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
    733	if (!frame)
    734		return NULL;
    735
    736	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
    737	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
    738
    739	len -= cur_len;
    740	if (!len)
    741		return frame;
    742
    743	offset += cur_len;
    744	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
    745
    746	return frame;
    747}
    748
    749void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
    750			      const u8 *addr, enum nl80211_iftype iftype,
    751			      const unsigned int extra_headroom,
    752			      const u8 *check_da, const u8 *check_sa)
    753{
    754	unsigned int hlen = ALIGN(extra_headroom, 4);
    755	struct sk_buff *frame = NULL;
    756	u16 ethertype;
    757	u8 *payload;
    758	int offset = 0, remaining;
    759	struct ethhdr eth;
    760	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
    761	bool reuse_skb = false;
    762	bool last = false;
    763
    764	while (!last) {
    765		unsigned int subframe_len;
    766		int len;
    767		u8 padding;
    768
    769		skb_copy_bits(skb, offset, &eth, sizeof(eth));
    770		len = ntohs(eth.h_proto);
    771		subframe_len = sizeof(struct ethhdr) + len;
    772		padding = (4 - subframe_len) & 0x3;
    773
    774		/* the last MSDU has no padding */
    775		remaining = skb->len - offset;
    776		if (subframe_len > remaining)
    777			goto purge;
    778		/* mitigate A-MSDU aggregation injection attacks */
    779		if (ether_addr_equal(eth.h_dest, rfc1042_header))
    780			goto purge;
    781
    782		offset += sizeof(struct ethhdr);
    783		last = remaining <= subframe_len + padding;
    784
    785		/* FIXME: should we really accept multicast DA? */
    786		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
    787		     !ether_addr_equal(check_da, eth.h_dest)) ||
    788		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
    789			offset += len + padding;
    790			continue;
    791		}
    792
    793		/* reuse skb for the last subframe */
    794		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
    795			skb_pull(skb, offset);
    796			frame = skb;
    797			reuse_skb = true;
    798		} else {
    799			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
    800						       reuse_frag);
    801			if (!frame)
    802				goto purge;
    803
    804			offset += len + padding;
    805		}
    806
    807		skb_reset_network_header(frame);
    808		frame->dev = skb->dev;
    809		frame->priority = skb->priority;
    810
    811		payload = frame->data;
    812		ethertype = (payload[6] << 8) | payload[7];
    813		if (likely((ether_addr_equal(payload, rfc1042_header) &&
    814			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
    815			   ether_addr_equal(payload, bridge_tunnel_header))) {
    816			eth.h_proto = htons(ethertype);
    817			skb_pull(frame, ETH_ALEN + 2);
    818		}
    819
    820		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
    821		__skb_queue_tail(list, frame);
    822	}
    823
    824	if (!reuse_skb)
    825		dev_kfree_skb(skb);
    826
    827	return;
    828
    829 purge:
    830	__skb_queue_purge(list);
    831	dev_kfree_skb(skb);
    832}
    833EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
    834
    835/* Given a data frame determine the 802.1p/1d tag to use. */
    836unsigned int cfg80211_classify8021d(struct sk_buff *skb,
    837				    struct cfg80211_qos_map *qos_map)
    838{
    839	unsigned int dscp;
    840	unsigned char vlan_priority;
    841	unsigned int ret;
    842
    843	/* skb->priority values from 256->263 are magic values to
    844	 * directly indicate a specific 802.1d priority.  This is used
    845	 * to allow 802.1d priority to be passed directly in from VLAN
    846	 * tags, etc.
    847	 */
    848	if (skb->priority >= 256 && skb->priority <= 263) {
    849		ret = skb->priority - 256;
    850		goto out;
    851	}
    852
    853	if (skb_vlan_tag_present(skb)) {
    854		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
    855			>> VLAN_PRIO_SHIFT;
    856		if (vlan_priority > 0) {
    857			ret = vlan_priority;
    858			goto out;
    859		}
    860	}
    861
    862	switch (skb->protocol) {
    863	case htons(ETH_P_IP):
    864		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
    865		break;
    866	case htons(ETH_P_IPV6):
    867		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
    868		break;
    869	case htons(ETH_P_MPLS_UC):
    870	case htons(ETH_P_MPLS_MC): {
    871		struct mpls_label mpls_tmp, *mpls;
    872
    873		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
    874					  sizeof(*mpls), &mpls_tmp);
    875		if (!mpls)
    876			return 0;
    877
    878		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
    879			>> MPLS_LS_TC_SHIFT;
    880		goto out;
    881	}
    882	case htons(ETH_P_80221):
    883		/* 802.21 is always network control traffic */
    884		return 7;
    885	default:
    886		return 0;
    887	}
    888
    889	if (qos_map) {
    890		unsigned int i, tmp_dscp = dscp >> 2;
    891
    892		for (i = 0; i < qos_map->num_des; i++) {
    893			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
    894				ret = qos_map->dscp_exception[i].up;
    895				goto out;
    896			}
    897		}
    898
    899		for (i = 0; i < 8; i++) {
    900			if (tmp_dscp >= qos_map->up[i].low &&
    901			    tmp_dscp <= qos_map->up[i].high) {
    902				ret = i;
    903				goto out;
    904			}
    905		}
    906	}
    907
    908	ret = dscp >> 5;
    909out:
    910	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
    911}
    912EXPORT_SYMBOL(cfg80211_classify8021d);
    913
    914const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
    915{
    916	const struct cfg80211_bss_ies *ies;
    917
    918	ies = rcu_dereference(bss->ies);
    919	if (!ies)
    920		return NULL;
    921
    922	return cfg80211_find_elem(id, ies->data, ies->len);
    923}
    924EXPORT_SYMBOL(ieee80211_bss_get_elem);
    925
    926void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
    927{
    928	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
    929	struct net_device *dev = wdev->netdev;
    930	int i;
    931
    932	if (!wdev->connect_keys)
    933		return;
    934
    935	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
    936		if (!wdev->connect_keys->params[i].cipher)
    937			continue;
    938		if (rdev_add_key(rdev, dev, i, false, NULL,
    939				 &wdev->connect_keys->params[i])) {
    940			netdev_err(dev, "failed to set key %d\n", i);
    941			continue;
    942		}
    943		if (wdev->connect_keys->def == i &&
    944		    rdev_set_default_key(rdev, dev, i, true, true)) {
    945			netdev_err(dev, "failed to set defkey %d\n", i);
    946			continue;
    947		}
    948	}
    949
    950	kfree_sensitive(wdev->connect_keys);
    951	wdev->connect_keys = NULL;
    952}
    953
    954void cfg80211_process_wdev_events(struct wireless_dev *wdev)
    955{
    956	struct cfg80211_event *ev;
    957	unsigned long flags;
    958
    959	spin_lock_irqsave(&wdev->event_lock, flags);
    960	while (!list_empty(&wdev->event_list)) {
    961		ev = list_first_entry(&wdev->event_list,
    962				      struct cfg80211_event, list);
    963		list_del(&ev->list);
    964		spin_unlock_irqrestore(&wdev->event_lock, flags);
    965
    966		wdev_lock(wdev);
    967		switch (ev->type) {
    968		case EVENT_CONNECT_RESULT:
    969			__cfg80211_connect_result(
    970				wdev->netdev,
    971				&ev->cr,
    972				ev->cr.status == WLAN_STATUS_SUCCESS);
    973			break;
    974		case EVENT_ROAMED:
    975			__cfg80211_roamed(wdev, &ev->rm);
    976			break;
    977		case EVENT_DISCONNECTED:
    978			__cfg80211_disconnected(wdev->netdev,
    979						ev->dc.ie, ev->dc.ie_len,
    980						ev->dc.reason,
    981						!ev->dc.locally_generated);
    982			break;
    983		case EVENT_IBSS_JOINED:
    984			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
    985					       ev->ij.channel);
    986			break;
    987		case EVENT_STOPPED:
    988			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
    989			break;
    990		case EVENT_PORT_AUTHORIZED:
    991			__cfg80211_port_authorized(wdev, ev->pa.bssid);
    992			break;
    993		}
    994		wdev_unlock(wdev);
    995
    996		kfree(ev);
    997
    998		spin_lock_irqsave(&wdev->event_lock, flags);
    999	}
   1000	spin_unlock_irqrestore(&wdev->event_lock, flags);
   1001}
   1002
   1003void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
   1004{
   1005	struct wireless_dev *wdev;
   1006
   1007	lockdep_assert_held(&rdev->wiphy.mtx);
   1008
   1009	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
   1010		cfg80211_process_wdev_events(wdev);
   1011}
   1012
   1013int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
   1014			  struct net_device *dev, enum nl80211_iftype ntype,
   1015			  struct vif_params *params)
   1016{
   1017	int err;
   1018	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
   1019
   1020	lockdep_assert_held(&rdev->wiphy.mtx);
   1021
   1022	/* don't support changing VLANs, you just re-create them */
   1023	if (otype == NL80211_IFTYPE_AP_VLAN)
   1024		return -EOPNOTSUPP;
   1025
   1026	/* cannot change into P2P device or NAN */
   1027	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
   1028	    ntype == NL80211_IFTYPE_NAN)
   1029		return -EOPNOTSUPP;
   1030
   1031	if (!rdev->ops->change_virtual_intf ||
   1032	    !(rdev->wiphy.interface_modes & (1 << ntype)))
   1033		return -EOPNOTSUPP;
   1034
   1035	if (ntype != otype) {
   1036		/* if it's part of a bridge, reject changing type to station/ibss */
   1037		if (netif_is_bridge_port(dev) &&
   1038		    (ntype == NL80211_IFTYPE_ADHOC ||
   1039		     ntype == NL80211_IFTYPE_STATION ||
   1040		     ntype == NL80211_IFTYPE_P2P_CLIENT))
   1041			return -EBUSY;
   1042
   1043		dev->ieee80211_ptr->use_4addr = false;
   1044		dev->ieee80211_ptr->mesh_id_up_len = 0;
   1045		wdev_lock(dev->ieee80211_ptr);
   1046		rdev_set_qos_map(rdev, dev, NULL);
   1047		wdev_unlock(dev->ieee80211_ptr);
   1048
   1049		switch (otype) {
   1050		case NL80211_IFTYPE_AP:
   1051		case NL80211_IFTYPE_P2P_GO:
   1052			cfg80211_stop_ap(rdev, dev, true);
   1053			break;
   1054		case NL80211_IFTYPE_ADHOC:
   1055			cfg80211_leave_ibss(rdev, dev, false);
   1056			break;
   1057		case NL80211_IFTYPE_STATION:
   1058		case NL80211_IFTYPE_P2P_CLIENT:
   1059			wdev_lock(dev->ieee80211_ptr);
   1060			cfg80211_disconnect(rdev, dev,
   1061					    WLAN_REASON_DEAUTH_LEAVING, true);
   1062			wdev_unlock(dev->ieee80211_ptr);
   1063			break;
   1064		case NL80211_IFTYPE_MESH_POINT:
   1065			/* mesh should be handled? */
   1066			break;
   1067		case NL80211_IFTYPE_OCB:
   1068			cfg80211_leave_ocb(rdev, dev);
   1069			break;
   1070		default:
   1071			break;
   1072		}
   1073
   1074		cfg80211_process_rdev_events(rdev);
   1075		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
   1076	}
   1077
   1078	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
   1079
   1080	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
   1081
   1082	if (!err && params && params->use_4addr != -1)
   1083		dev->ieee80211_ptr->use_4addr = params->use_4addr;
   1084
   1085	if (!err) {
   1086		dev->priv_flags &= ~IFF_DONT_BRIDGE;
   1087		switch (ntype) {
   1088		case NL80211_IFTYPE_STATION:
   1089			if (dev->ieee80211_ptr->use_4addr)
   1090				break;
   1091			fallthrough;
   1092		case NL80211_IFTYPE_OCB:
   1093		case NL80211_IFTYPE_P2P_CLIENT:
   1094		case NL80211_IFTYPE_ADHOC:
   1095			dev->priv_flags |= IFF_DONT_BRIDGE;
   1096			break;
   1097		case NL80211_IFTYPE_P2P_GO:
   1098		case NL80211_IFTYPE_AP:
   1099		case NL80211_IFTYPE_AP_VLAN:
   1100		case NL80211_IFTYPE_MESH_POINT:
   1101			/* bridging OK */
   1102			break;
   1103		case NL80211_IFTYPE_MONITOR:
   1104			/* monitor can't bridge anyway */
   1105			break;
   1106		case NL80211_IFTYPE_UNSPECIFIED:
   1107		case NUM_NL80211_IFTYPES:
   1108			/* not happening */
   1109			break;
   1110		case NL80211_IFTYPE_P2P_DEVICE:
   1111		case NL80211_IFTYPE_WDS:
   1112		case NL80211_IFTYPE_NAN:
   1113			WARN_ON(1);
   1114			break;
   1115		}
   1116	}
   1117
   1118	if (!err && ntype != otype && netif_running(dev)) {
   1119		cfg80211_update_iface_num(rdev, ntype, 1);
   1120		cfg80211_update_iface_num(rdev, otype, -1);
   1121	}
   1122
   1123	return err;
   1124}
   1125
   1126static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
   1127{
   1128	int modulation, streams, bitrate;
   1129
   1130	/* the formula below does only work for MCS values smaller than 32 */
   1131	if (WARN_ON_ONCE(rate->mcs >= 32))
   1132		return 0;
   1133
   1134	modulation = rate->mcs & 7;
   1135	streams = (rate->mcs >> 3) + 1;
   1136
   1137	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
   1138
   1139	if (modulation < 4)
   1140		bitrate *= (modulation + 1);
   1141	else if (modulation == 4)
   1142		bitrate *= (modulation + 2);
   1143	else
   1144		bitrate *= (modulation + 3);
   1145
   1146	bitrate *= streams;
   1147
   1148	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
   1149		bitrate = (bitrate / 9) * 10;
   1150
   1151	/* do NOT round down here */
   1152	return (bitrate + 50000) / 100000;
   1153}
   1154
   1155static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
   1156{
   1157	static const u32 __mcs2bitrate[] = {
   1158		/* control PHY */
   1159		[0] =   275,
   1160		/* SC PHY */
   1161		[1] =  3850,
   1162		[2] =  7700,
   1163		[3] =  9625,
   1164		[4] = 11550,
   1165		[5] = 12512, /* 1251.25 mbps */
   1166		[6] = 15400,
   1167		[7] = 19250,
   1168		[8] = 23100,
   1169		[9] = 25025,
   1170		[10] = 30800,
   1171		[11] = 38500,
   1172		[12] = 46200,
   1173		/* OFDM PHY */
   1174		[13] =  6930,
   1175		[14] =  8662, /* 866.25 mbps */
   1176		[15] = 13860,
   1177		[16] = 17325,
   1178		[17] = 20790,
   1179		[18] = 27720,
   1180		[19] = 34650,
   1181		[20] = 41580,
   1182		[21] = 45045,
   1183		[22] = 51975,
   1184		[23] = 62370,
   1185		[24] = 67568, /* 6756.75 mbps */
   1186		/* LP-SC PHY */
   1187		[25] =  6260,
   1188		[26] =  8340,
   1189		[27] = 11120,
   1190		[28] = 12510,
   1191		[29] = 16680,
   1192		[30] = 22240,
   1193		[31] = 25030,
   1194	};
   1195
   1196	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
   1197		return 0;
   1198
   1199	return __mcs2bitrate[rate->mcs];
   1200}
   1201
   1202static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
   1203{
   1204	static const u32 __mcs2bitrate[] = {
   1205		[6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
   1206		[7 - 6] = 50050, /* MCS 12.1 */
   1207		[8 - 6] = 53900,
   1208		[9 - 6] = 57750,
   1209		[10 - 6] = 63900,
   1210		[11 - 6] = 75075,
   1211		[12 - 6] = 80850,
   1212	};
   1213
   1214	/* Extended SC MCS not defined for base MCS below 6 or above 12 */
   1215	if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
   1216		return 0;
   1217
   1218	return __mcs2bitrate[rate->mcs - 6];
   1219}
   1220
   1221static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
   1222{
   1223	static const u32 __mcs2bitrate[] = {
   1224		/* control PHY */
   1225		[0] =   275,
   1226		/* SC PHY */
   1227		[1] =  3850,
   1228		[2] =  7700,
   1229		[3] =  9625,
   1230		[4] = 11550,
   1231		[5] = 12512, /* 1251.25 mbps */
   1232		[6] = 13475,
   1233		[7] = 15400,
   1234		[8] = 19250,
   1235		[9] = 23100,
   1236		[10] = 25025,
   1237		[11] = 26950,
   1238		[12] = 30800,
   1239		[13] = 38500,
   1240		[14] = 46200,
   1241		[15] = 50050,
   1242		[16] = 53900,
   1243		[17] = 57750,
   1244		[18] = 69300,
   1245		[19] = 75075,
   1246		[20] = 80850,
   1247	};
   1248
   1249	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
   1250		return 0;
   1251
   1252	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
   1253}
   1254
   1255static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
   1256{
   1257	static const u32 base[4][12] = {
   1258		{   6500000,
   1259		   13000000,
   1260		   19500000,
   1261		   26000000,
   1262		   39000000,
   1263		   52000000,
   1264		   58500000,
   1265		   65000000,
   1266		   78000000,
   1267		/* not in the spec, but some devices use this: */
   1268		   86700000,
   1269		   97500000,
   1270		  108300000,
   1271		},
   1272		{  13500000,
   1273		   27000000,
   1274		   40500000,
   1275		   54000000,
   1276		   81000000,
   1277		  108000000,
   1278		  121500000,
   1279		  135000000,
   1280		  162000000,
   1281		  180000000,
   1282		  202500000,
   1283		  225000000,
   1284		},
   1285		{  29300000,
   1286		   58500000,
   1287		   87800000,
   1288		  117000000,
   1289		  175500000,
   1290		  234000000,
   1291		  263300000,
   1292		  292500000,
   1293		  351000000,
   1294		  390000000,
   1295		  438800000,
   1296		  487500000,
   1297		},
   1298		{  58500000,
   1299		  117000000,
   1300		  175500000,
   1301		  234000000,
   1302		  351000000,
   1303		  468000000,
   1304		  526500000,
   1305		  585000000,
   1306		  702000000,
   1307		  780000000,
   1308		  877500000,
   1309		  975000000,
   1310		},
   1311	};
   1312	u32 bitrate;
   1313	int idx;
   1314
   1315	if (rate->mcs > 11)
   1316		goto warn;
   1317
   1318	switch (rate->bw) {
   1319	case RATE_INFO_BW_160:
   1320		idx = 3;
   1321		break;
   1322	case RATE_INFO_BW_80:
   1323		idx = 2;
   1324		break;
   1325	case RATE_INFO_BW_40:
   1326		idx = 1;
   1327		break;
   1328	case RATE_INFO_BW_5:
   1329	case RATE_INFO_BW_10:
   1330	default:
   1331		goto warn;
   1332	case RATE_INFO_BW_20:
   1333		idx = 0;
   1334	}
   1335
   1336	bitrate = base[idx][rate->mcs];
   1337	bitrate *= rate->nss;
   1338
   1339	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
   1340		bitrate = (bitrate / 9) * 10;
   1341
   1342	/* do NOT round down here */
   1343	return (bitrate + 50000) / 100000;
   1344 warn:
   1345	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
   1346		  rate->bw, rate->mcs, rate->nss);
   1347	return 0;
   1348}
   1349
   1350static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
   1351{
   1352#define SCALE 6144
   1353	u32 mcs_divisors[14] = {
   1354		102399, /* 16.666666... */
   1355		 51201, /*  8.333333... */
   1356		 34134, /*  5.555555... */
   1357		 25599, /*  4.166666... */
   1358		 17067, /*  2.777777... */
   1359		 12801, /*  2.083333... */
   1360		 11769, /*  1.851851... */
   1361		 10239, /*  1.666666... */
   1362		  8532, /*  1.388888... */
   1363		  7680, /*  1.250000... */
   1364		  6828, /*  1.111111... */
   1365		  6144, /*  1.000000... */
   1366		  5690, /*  0.926106... */
   1367		  5120, /*  0.833333... */
   1368	};
   1369	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
   1370	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
   1371	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
   1372	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
   1373	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
   1374	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
   1375	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
   1376	u64 tmp;
   1377	u32 result;
   1378
   1379	if (WARN_ON_ONCE(rate->mcs > 13))
   1380		return 0;
   1381
   1382	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
   1383		return 0;
   1384	if (WARN_ON_ONCE(rate->he_ru_alloc >
   1385			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
   1386		return 0;
   1387	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
   1388		return 0;
   1389
   1390	if (rate->bw == RATE_INFO_BW_160)
   1391		result = rates_160M[rate->he_gi];
   1392	else if (rate->bw == RATE_INFO_BW_80 ||
   1393		 (rate->bw == RATE_INFO_BW_HE_RU &&
   1394		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
   1395		result = rates_969[rate->he_gi];
   1396	else if (rate->bw == RATE_INFO_BW_40 ||
   1397		 (rate->bw == RATE_INFO_BW_HE_RU &&
   1398		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
   1399		result = rates_484[rate->he_gi];
   1400	else if (rate->bw == RATE_INFO_BW_20 ||
   1401		 (rate->bw == RATE_INFO_BW_HE_RU &&
   1402		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
   1403		result = rates_242[rate->he_gi];
   1404	else if (rate->bw == RATE_INFO_BW_HE_RU &&
   1405		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
   1406		result = rates_106[rate->he_gi];
   1407	else if (rate->bw == RATE_INFO_BW_HE_RU &&
   1408		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
   1409		result = rates_52[rate->he_gi];
   1410	else if (rate->bw == RATE_INFO_BW_HE_RU &&
   1411		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
   1412		result = rates_26[rate->he_gi];
   1413	else {
   1414		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
   1415		     rate->bw, rate->he_ru_alloc);
   1416		return 0;
   1417	}
   1418
   1419	/* now scale to the appropriate MCS */
   1420	tmp = result;
   1421	tmp *= SCALE;
   1422	do_div(tmp, mcs_divisors[rate->mcs]);
   1423	result = tmp;
   1424
   1425	/* and take NSS, DCM into account */
   1426	result = (result * rate->nss) / 8;
   1427	if (rate->he_dcm)
   1428		result /= 2;
   1429
   1430	return result / 10000;
   1431}
   1432
   1433static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
   1434{
   1435#define SCALE 6144
   1436	static const u32 mcs_divisors[16] = {
   1437		102399, /* 16.666666... */
   1438		 51201, /*  8.333333... */
   1439		 34134, /*  5.555555... */
   1440		 25599, /*  4.166666... */
   1441		 17067, /*  2.777777... */
   1442		 12801, /*  2.083333... */
   1443		 11769, /*  1.851851... */
   1444		 10239, /*  1.666666... */
   1445		  8532, /*  1.388888... */
   1446		  7680, /*  1.250000... */
   1447		  6828, /*  1.111111... */
   1448		  6144, /*  1.000000... */
   1449		  5690, /*  0.926106... */
   1450		  5120, /*  0.833333... */
   1451		409600, /* 66.666666... */
   1452		204800, /* 33.333333... */
   1453	};
   1454	static const u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
   1455	static const u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
   1456	static const u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
   1457	static const u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
   1458	static const u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
   1459	static const u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
   1460	u64 tmp;
   1461	u32 result;
   1462
   1463	if (WARN_ON_ONCE(rate->mcs > 15))
   1464		return 0;
   1465	if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
   1466		return 0;
   1467	if (WARN_ON_ONCE(rate->eht_ru_alloc >
   1468			 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
   1469		return 0;
   1470	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
   1471		return 0;
   1472
   1473	/* Bandwidth checks for MCS 14 */
   1474	if (rate->mcs == 14) {
   1475		if ((rate->bw != RATE_INFO_BW_EHT_RU &&
   1476		     rate->bw != RATE_INFO_BW_80 &&
   1477		     rate->bw != RATE_INFO_BW_160 &&
   1478		     rate->bw != RATE_INFO_BW_320) ||
   1479		    (rate->bw == RATE_INFO_BW_EHT_RU &&
   1480		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
   1481		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
   1482		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
   1483			WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
   1484			     rate->bw, rate->eht_ru_alloc);
   1485			return 0;
   1486		}
   1487	}
   1488
   1489	if (rate->bw == RATE_INFO_BW_320 ||
   1490	    (rate->bw == RATE_INFO_BW_EHT_RU &&
   1491	     rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
   1492		result = 4 * rates_996[rate->eht_gi];
   1493	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
   1494		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
   1495		result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
   1496	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
   1497		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
   1498		result = 3 * rates_996[rate->eht_gi];
   1499	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
   1500		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
   1501		result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
   1502	else if (rate->bw == RATE_INFO_BW_160 ||
   1503		 (rate->bw == RATE_INFO_BW_EHT_RU &&
   1504		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
   1505		result = 2 * rates_996[rate->eht_gi];
   1506	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
   1507		 rate->eht_ru_alloc ==
   1508		 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
   1509		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
   1510			 + rates_242[rate->eht_gi];
   1511	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
   1512		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
   1513		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
   1514	else if (rate->bw == RATE_INFO_BW_80 ||
   1515		 (rate->bw == RATE_INFO_BW_EHT_RU &&
   1516		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
   1517		result = rates_996[rate->eht_gi];
   1518	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
   1519		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
   1520		result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
   1521	else if (rate->bw == RATE_INFO_BW_40 ||
   1522		 (rate->bw == RATE_INFO_BW_EHT_RU &&
   1523		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
   1524		result = rates_484[rate->eht_gi];
   1525	else if (rate->bw == RATE_INFO_BW_20 ||
   1526		 (rate->bw == RATE_INFO_BW_EHT_RU &&
   1527		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
   1528		result = rates_242[rate->eht_gi];
   1529	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
   1530		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
   1531		result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
   1532	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
   1533		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
   1534		result = rates_106[rate->eht_gi];
   1535	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
   1536		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
   1537		result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
   1538	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
   1539		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
   1540		result = rates_52[rate->eht_gi];
   1541	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
   1542		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
   1543		result = rates_26[rate->eht_gi];
   1544	else {
   1545		WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
   1546		     rate->bw, rate->eht_ru_alloc);
   1547		return 0;
   1548	}
   1549
   1550	/* now scale to the appropriate MCS */
   1551	tmp = result;
   1552	tmp *= SCALE;
   1553	do_div(tmp, mcs_divisors[rate->mcs]);
   1554	result = tmp;
   1555
   1556	/* and take NSS */
   1557	result = (result * rate->nss) / 8;
   1558
   1559	return result / 10000;
   1560}
   1561
   1562u32 cfg80211_calculate_bitrate(struct rate_info *rate)
   1563{
   1564	if (rate->flags & RATE_INFO_FLAGS_MCS)
   1565		return cfg80211_calculate_bitrate_ht(rate);
   1566	if (rate->flags & RATE_INFO_FLAGS_DMG)
   1567		return cfg80211_calculate_bitrate_dmg(rate);
   1568	if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
   1569		return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
   1570	if (rate->flags & RATE_INFO_FLAGS_EDMG)
   1571		return cfg80211_calculate_bitrate_edmg(rate);
   1572	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
   1573		return cfg80211_calculate_bitrate_vht(rate);
   1574	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
   1575		return cfg80211_calculate_bitrate_he(rate);
   1576	if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
   1577		return cfg80211_calculate_bitrate_eht(rate);
   1578
   1579	return rate->legacy;
   1580}
   1581EXPORT_SYMBOL(cfg80211_calculate_bitrate);
   1582
   1583int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
   1584			  enum ieee80211_p2p_attr_id attr,
   1585			  u8 *buf, unsigned int bufsize)
   1586{
   1587	u8 *out = buf;
   1588	u16 attr_remaining = 0;
   1589	bool desired_attr = false;
   1590	u16 desired_len = 0;
   1591
   1592	while (len > 0) {
   1593		unsigned int iedatalen;
   1594		unsigned int copy;
   1595		const u8 *iedata;
   1596
   1597		if (len < 2)
   1598			return -EILSEQ;
   1599		iedatalen = ies[1];
   1600		if (iedatalen + 2 > len)
   1601			return -EILSEQ;
   1602
   1603		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
   1604			goto cont;
   1605
   1606		if (iedatalen < 4)
   1607			goto cont;
   1608
   1609		iedata = ies + 2;
   1610
   1611		/* check WFA OUI, P2P subtype */
   1612		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
   1613		    iedata[2] != 0x9a || iedata[3] != 0x09)
   1614			goto cont;
   1615
   1616		iedatalen -= 4;
   1617		iedata += 4;
   1618
   1619		/* check attribute continuation into this IE */
   1620		copy = min_t(unsigned int, attr_remaining, iedatalen);
   1621		if (copy && desired_attr) {
   1622			desired_len += copy;
   1623			if (out) {
   1624				memcpy(out, iedata, min(bufsize, copy));
   1625				out += min(bufsize, copy);
   1626				bufsize -= min(bufsize, copy);
   1627			}
   1628
   1629
   1630			if (copy == attr_remaining)
   1631				return desired_len;
   1632		}
   1633
   1634		attr_remaining -= copy;
   1635		if (attr_remaining)
   1636			goto cont;
   1637
   1638		iedatalen -= copy;
   1639		iedata += copy;
   1640
   1641		while (iedatalen > 0) {
   1642			u16 attr_len;
   1643
   1644			/* P2P attribute ID & size must fit */
   1645			if (iedatalen < 3)
   1646				return -EILSEQ;
   1647			desired_attr = iedata[0] == attr;
   1648			attr_len = get_unaligned_le16(iedata + 1);
   1649			iedatalen -= 3;
   1650			iedata += 3;
   1651
   1652			copy = min_t(unsigned int, attr_len, iedatalen);
   1653
   1654			if (desired_attr) {
   1655				desired_len += copy;
   1656				if (out) {
   1657					memcpy(out, iedata, min(bufsize, copy));
   1658					out += min(bufsize, copy);
   1659					bufsize -= min(bufsize, copy);
   1660				}
   1661
   1662				if (copy == attr_len)
   1663					return desired_len;
   1664			}
   1665
   1666			iedata += copy;
   1667			iedatalen -= copy;
   1668			attr_remaining = attr_len - copy;
   1669		}
   1670
   1671 cont:
   1672		len -= ies[1] + 2;
   1673		ies += ies[1] + 2;
   1674	}
   1675
   1676	if (attr_remaining && desired_attr)
   1677		return -EILSEQ;
   1678
   1679	return -ENOENT;
   1680}
   1681EXPORT_SYMBOL(cfg80211_get_p2p_attr);
   1682
   1683static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
   1684{
   1685	int i;
   1686
   1687	/* Make sure array values are legal */
   1688	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
   1689		return false;
   1690
   1691	i = 0;
   1692	while (i < n_ids) {
   1693		if (ids[i] == WLAN_EID_EXTENSION) {
   1694			if (id_ext && (ids[i + 1] == id))
   1695				return true;
   1696
   1697			i += 2;
   1698			continue;
   1699		}
   1700
   1701		if (ids[i] == id && !id_ext)
   1702			return true;
   1703
   1704		i++;
   1705	}
   1706	return false;
   1707}
   1708
   1709static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
   1710{
   1711	/* we assume a validly formed IEs buffer */
   1712	u8 len = ies[pos + 1];
   1713
   1714	pos += 2 + len;
   1715
   1716	/* the IE itself must have 255 bytes for fragments to follow */
   1717	if (len < 255)
   1718		return pos;
   1719
   1720	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
   1721		len = ies[pos + 1];
   1722		pos += 2 + len;
   1723	}
   1724
   1725	return pos;
   1726}
   1727
   1728size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
   1729			      const u8 *ids, int n_ids,
   1730			      const u8 *after_ric, int n_after_ric,
   1731			      size_t offset)
   1732{
   1733	size_t pos = offset;
   1734
   1735	while (pos < ielen) {
   1736		u8 ext = 0;
   1737
   1738		if (ies[pos] == WLAN_EID_EXTENSION)
   1739			ext = 2;
   1740		if ((pos + ext) >= ielen)
   1741			break;
   1742
   1743		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
   1744					  ies[pos] == WLAN_EID_EXTENSION))
   1745			break;
   1746
   1747		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
   1748			pos = skip_ie(ies, ielen, pos);
   1749
   1750			while (pos < ielen) {
   1751				if (ies[pos] == WLAN_EID_EXTENSION)
   1752					ext = 2;
   1753				else
   1754					ext = 0;
   1755
   1756				if ((pos + ext) >= ielen)
   1757					break;
   1758
   1759				if (!ieee80211_id_in_list(after_ric,
   1760							  n_after_ric,
   1761							  ies[pos + ext],
   1762							  ext == 2))
   1763					pos = skip_ie(ies, ielen, pos);
   1764				else
   1765					break;
   1766			}
   1767		} else {
   1768			pos = skip_ie(ies, ielen, pos);
   1769		}
   1770	}
   1771
   1772	return pos;
   1773}
   1774EXPORT_SYMBOL(ieee80211_ie_split_ric);
   1775
   1776bool ieee80211_operating_class_to_band(u8 operating_class,
   1777				       enum nl80211_band *band)
   1778{
   1779	switch (operating_class) {
   1780	case 112:
   1781	case 115 ... 127:
   1782	case 128 ... 130:
   1783		*band = NL80211_BAND_5GHZ;
   1784		return true;
   1785	case 131 ... 135:
   1786		*band = NL80211_BAND_6GHZ;
   1787		return true;
   1788	case 81:
   1789	case 82:
   1790	case 83:
   1791	case 84:
   1792		*band = NL80211_BAND_2GHZ;
   1793		return true;
   1794	case 180:
   1795		*band = NL80211_BAND_60GHZ;
   1796		return true;
   1797	}
   1798
   1799	return false;
   1800}
   1801EXPORT_SYMBOL(ieee80211_operating_class_to_band);
   1802
   1803bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
   1804					  u8 *op_class)
   1805{
   1806	u8 vht_opclass;
   1807	u32 freq = chandef->center_freq1;
   1808
   1809	if (freq >= 2412 && freq <= 2472) {
   1810		if (chandef->width > NL80211_CHAN_WIDTH_40)
   1811			return false;
   1812
   1813		/* 2.407 GHz, channels 1..13 */
   1814		if (chandef->width == NL80211_CHAN_WIDTH_40) {
   1815			if (freq > chandef->chan->center_freq)
   1816				*op_class = 83; /* HT40+ */
   1817			else
   1818				*op_class = 84; /* HT40- */
   1819		} else {
   1820			*op_class = 81;
   1821		}
   1822
   1823		return true;
   1824	}
   1825
   1826	if (freq == 2484) {
   1827		/* channel 14 is only for IEEE 802.11b */
   1828		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
   1829			return false;
   1830
   1831		*op_class = 82; /* channel 14 */
   1832		return true;
   1833	}
   1834
   1835	switch (chandef->width) {
   1836	case NL80211_CHAN_WIDTH_80:
   1837		vht_opclass = 128;
   1838		break;
   1839	case NL80211_CHAN_WIDTH_160:
   1840		vht_opclass = 129;
   1841		break;
   1842	case NL80211_CHAN_WIDTH_80P80:
   1843		vht_opclass = 130;
   1844		break;
   1845	case NL80211_CHAN_WIDTH_10:
   1846	case NL80211_CHAN_WIDTH_5:
   1847		return false; /* unsupported for now */
   1848	default:
   1849		vht_opclass = 0;
   1850		break;
   1851	}
   1852
   1853	/* 5 GHz, channels 36..48 */
   1854	if (freq >= 5180 && freq <= 5240) {
   1855		if (vht_opclass) {
   1856			*op_class = vht_opclass;
   1857		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
   1858			if (freq > chandef->chan->center_freq)
   1859				*op_class = 116;
   1860			else
   1861				*op_class = 117;
   1862		} else {
   1863			*op_class = 115;
   1864		}
   1865
   1866		return true;
   1867	}
   1868
   1869	/* 5 GHz, channels 52..64 */
   1870	if (freq >= 5260 && freq <= 5320) {
   1871		if (vht_opclass) {
   1872			*op_class = vht_opclass;
   1873		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
   1874			if (freq > chandef->chan->center_freq)
   1875				*op_class = 119;
   1876			else
   1877				*op_class = 120;
   1878		} else {
   1879			*op_class = 118;
   1880		}
   1881
   1882		return true;
   1883	}
   1884
   1885	/* 5 GHz, channels 100..144 */
   1886	if (freq >= 5500 && freq <= 5720) {
   1887		if (vht_opclass) {
   1888			*op_class = vht_opclass;
   1889		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
   1890			if (freq > chandef->chan->center_freq)
   1891				*op_class = 122;
   1892			else
   1893				*op_class = 123;
   1894		} else {
   1895			*op_class = 121;
   1896		}
   1897
   1898		return true;
   1899	}
   1900
   1901	/* 5 GHz, channels 149..169 */
   1902	if (freq >= 5745 && freq <= 5845) {
   1903		if (vht_opclass) {
   1904			*op_class = vht_opclass;
   1905		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
   1906			if (freq > chandef->chan->center_freq)
   1907				*op_class = 126;
   1908			else
   1909				*op_class = 127;
   1910		} else if (freq <= 5805) {
   1911			*op_class = 124;
   1912		} else {
   1913			*op_class = 125;
   1914		}
   1915
   1916		return true;
   1917	}
   1918
   1919	/* 56.16 GHz, channel 1..4 */
   1920	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
   1921		if (chandef->width >= NL80211_CHAN_WIDTH_40)
   1922			return false;
   1923
   1924		*op_class = 180;
   1925		return true;
   1926	}
   1927
   1928	/* not supported yet */
   1929	return false;
   1930}
   1931EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
   1932
   1933static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
   1934				       u32 *beacon_int_gcd,
   1935				       bool *beacon_int_different)
   1936{
   1937	struct wireless_dev *wdev;
   1938
   1939	*beacon_int_gcd = 0;
   1940	*beacon_int_different = false;
   1941
   1942	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
   1943		if (!wdev->beacon_interval)
   1944			continue;
   1945
   1946		if (!*beacon_int_gcd) {
   1947			*beacon_int_gcd = wdev->beacon_interval;
   1948			continue;
   1949		}
   1950
   1951		if (wdev->beacon_interval == *beacon_int_gcd)
   1952			continue;
   1953
   1954		*beacon_int_different = true;
   1955		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
   1956	}
   1957
   1958	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
   1959		if (*beacon_int_gcd)
   1960			*beacon_int_different = true;
   1961		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
   1962	}
   1963}
   1964
   1965int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
   1966				 enum nl80211_iftype iftype, u32 beacon_int)
   1967{
   1968	/*
   1969	 * This is just a basic pre-condition check; if interface combinations
   1970	 * are possible the driver must already be checking those with a call
   1971	 * to cfg80211_check_combinations(), in which case we'll validate more
   1972	 * through the cfg80211_calculate_bi_data() call and code in
   1973	 * cfg80211_iter_combinations().
   1974	 */
   1975
   1976	if (beacon_int < 10 || beacon_int > 10000)
   1977		return -EINVAL;
   1978
   1979	return 0;
   1980}
   1981
   1982int cfg80211_iter_combinations(struct wiphy *wiphy,
   1983			       struct iface_combination_params *params,
   1984			       void (*iter)(const struct ieee80211_iface_combination *c,
   1985					    void *data),
   1986			       void *data)
   1987{
   1988	const struct ieee80211_regdomain *regdom;
   1989	enum nl80211_dfs_regions region = 0;
   1990	int i, j, iftype;
   1991	int num_interfaces = 0;
   1992	u32 used_iftypes = 0;
   1993	u32 beacon_int_gcd;
   1994	bool beacon_int_different;
   1995
   1996	/*
   1997	 * This is a bit strange, since the iteration used to rely only on
   1998	 * the data given by the driver, but here it now relies on context,
   1999	 * in form of the currently operating interfaces.
   2000	 * This is OK for all current users, and saves us from having to
   2001	 * push the GCD calculations into all the drivers.
   2002	 * In the future, this should probably rely more on data that's in
   2003	 * cfg80211 already - the only thing not would appear to be any new
   2004	 * interfaces (while being brought up) and channel/radar data.
   2005	 */
   2006	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
   2007				   &beacon_int_gcd, &beacon_int_different);
   2008
   2009	if (params->radar_detect) {
   2010		rcu_read_lock();
   2011		regdom = rcu_dereference(cfg80211_regdomain);
   2012		if (regdom)
   2013			region = regdom->dfs_region;
   2014		rcu_read_unlock();
   2015	}
   2016
   2017	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
   2018		num_interfaces += params->iftype_num[iftype];
   2019		if (params->iftype_num[iftype] > 0 &&
   2020		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
   2021			used_iftypes |= BIT(iftype);
   2022	}
   2023
   2024	for (i = 0; i < wiphy->n_iface_combinations; i++) {
   2025		const struct ieee80211_iface_combination *c;
   2026		struct ieee80211_iface_limit *limits;
   2027		u32 all_iftypes = 0;
   2028
   2029		c = &wiphy->iface_combinations[i];
   2030
   2031		if (num_interfaces > c->max_interfaces)
   2032			continue;
   2033		if (params->num_different_channels > c->num_different_channels)
   2034			continue;
   2035
   2036		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
   2037				 GFP_KERNEL);
   2038		if (!limits)
   2039			return -ENOMEM;
   2040
   2041		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
   2042			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
   2043				continue;
   2044			for (j = 0; j < c->n_limits; j++) {
   2045				all_iftypes |= limits[j].types;
   2046				if (!(limits[j].types & BIT(iftype)))
   2047					continue;
   2048				if (limits[j].max < params->iftype_num[iftype])
   2049					goto cont;
   2050				limits[j].max -= params->iftype_num[iftype];
   2051			}
   2052		}
   2053
   2054		if (params->radar_detect !=
   2055			(c->radar_detect_widths & params->radar_detect))
   2056			goto cont;
   2057
   2058		if (params->radar_detect && c->radar_detect_regions &&
   2059		    !(c->radar_detect_regions & BIT(region)))
   2060			goto cont;
   2061
   2062		/* Finally check that all iftypes that we're currently
   2063		 * using are actually part of this combination. If they
   2064		 * aren't then we can't use this combination and have
   2065		 * to continue to the next.
   2066		 */
   2067		if ((all_iftypes & used_iftypes) != used_iftypes)
   2068			goto cont;
   2069
   2070		if (beacon_int_gcd) {
   2071			if (c->beacon_int_min_gcd &&
   2072			    beacon_int_gcd < c->beacon_int_min_gcd)
   2073				goto cont;
   2074			if (!c->beacon_int_min_gcd && beacon_int_different)
   2075				goto cont;
   2076		}
   2077
   2078		/* This combination covered all interface types and
   2079		 * supported the requested numbers, so we're good.
   2080		 */
   2081
   2082		(*iter)(c, data);
   2083 cont:
   2084		kfree(limits);
   2085	}
   2086
   2087	return 0;
   2088}
   2089EXPORT_SYMBOL(cfg80211_iter_combinations);
   2090
   2091static void
   2092cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
   2093			  void *data)
   2094{
   2095	int *num = data;
   2096	(*num)++;
   2097}
   2098
   2099int cfg80211_check_combinations(struct wiphy *wiphy,
   2100				struct iface_combination_params *params)
   2101{
   2102	int err, num = 0;
   2103
   2104	err = cfg80211_iter_combinations(wiphy, params,
   2105					 cfg80211_iter_sum_ifcombs, &num);
   2106	if (err)
   2107		return err;
   2108	if (num == 0)
   2109		return -EBUSY;
   2110
   2111	return 0;
   2112}
   2113EXPORT_SYMBOL(cfg80211_check_combinations);
   2114
   2115int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
   2116			   const u8 *rates, unsigned int n_rates,
   2117			   u32 *mask)
   2118{
   2119	int i, j;
   2120
   2121	if (!sband)
   2122		return -EINVAL;
   2123
   2124	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
   2125		return -EINVAL;
   2126
   2127	*mask = 0;
   2128
   2129	for (i = 0; i < n_rates; i++) {
   2130		int rate = (rates[i] & 0x7f) * 5;
   2131		bool found = false;
   2132
   2133		for (j = 0; j < sband->n_bitrates; j++) {
   2134			if (sband->bitrates[j].bitrate == rate) {
   2135				found = true;
   2136				*mask |= BIT(j);
   2137				break;
   2138			}
   2139		}
   2140		if (!found)
   2141			return -EINVAL;
   2142	}
   2143
   2144	/*
   2145	 * mask must have at least one bit set here since we
   2146	 * didn't accept a 0-length rates array nor allowed
   2147	 * entries in the array that didn't exist
   2148	 */
   2149
   2150	return 0;
   2151}
   2152
   2153unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
   2154{
   2155	enum nl80211_band band;
   2156	unsigned int n_channels = 0;
   2157
   2158	for (band = 0; band < NUM_NL80211_BANDS; band++)
   2159		if (wiphy->bands[band])
   2160			n_channels += wiphy->bands[band]->n_channels;
   2161
   2162	return n_channels;
   2163}
   2164EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
   2165
   2166int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
   2167			 struct station_info *sinfo)
   2168{
   2169	struct cfg80211_registered_device *rdev;
   2170	struct wireless_dev *wdev;
   2171
   2172	wdev = dev->ieee80211_ptr;
   2173	if (!wdev)
   2174		return -EOPNOTSUPP;
   2175
   2176	rdev = wiphy_to_rdev(wdev->wiphy);
   2177	if (!rdev->ops->get_station)
   2178		return -EOPNOTSUPP;
   2179
   2180	memset(sinfo, 0, sizeof(*sinfo));
   2181
   2182	return rdev_get_station(rdev, dev, mac_addr, sinfo);
   2183}
   2184EXPORT_SYMBOL(cfg80211_get_station);
   2185
   2186void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
   2187{
   2188	int i;
   2189
   2190	if (!f)
   2191		return;
   2192
   2193	kfree(f->serv_spec_info);
   2194	kfree(f->srf_bf);
   2195	kfree(f->srf_macs);
   2196	for (i = 0; i < f->num_rx_filters; i++)
   2197		kfree(f->rx_filters[i].filter);
   2198
   2199	for (i = 0; i < f->num_tx_filters; i++)
   2200		kfree(f->tx_filters[i].filter);
   2201
   2202	kfree(f->rx_filters);
   2203	kfree(f->tx_filters);
   2204	kfree(f);
   2205}
   2206EXPORT_SYMBOL(cfg80211_free_nan_func);
   2207
   2208bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
   2209				u32 center_freq_khz, u32 bw_khz)
   2210{
   2211	u32 start_freq_khz, end_freq_khz;
   2212
   2213	start_freq_khz = center_freq_khz - (bw_khz / 2);
   2214	end_freq_khz = center_freq_khz + (bw_khz / 2);
   2215
   2216	if (start_freq_khz >= freq_range->start_freq_khz &&
   2217	    end_freq_khz <= freq_range->end_freq_khz)
   2218		return true;
   2219
   2220	return false;
   2221}
   2222
   2223int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
   2224{
   2225	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
   2226				sizeof(*(sinfo->pertid)),
   2227				gfp);
   2228	if (!sinfo->pertid)
   2229		return -ENOMEM;
   2230
   2231	return 0;
   2232}
   2233EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
   2234
   2235/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
   2236/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
   2237const unsigned char rfc1042_header[] __aligned(2) =
   2238	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
   2239EXPORT_SYMBOL(rfc1042_header);
   2240
   2241/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
   2242const unsigned char bridge_tunnel_header[] __aligned(2) =
   2243	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
   2244EXPORT_SYMBOL(bridge_tunnel_header);
   2245
   2246/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
   2247struct iapp_layer2_update {
   2248	u8 da[ETH_ALEN];	/* broadcast */
   2249	u8 sa[ETH_ALEN];	/* STA addr */
   2250	__be16 len;		/* 6 */
   2251	u8 dsap;		/* 0 */
   2252	u8 ssap;		/* 0 */
   2253	u8 control;
   2254	u8 xid_info[3];
   2255} __packed;
   2256
   2257void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
   2258{
   2259	struct iapp_layer2_update *msg;
   2260	struct sk_buff *skb;
   2261
   2262	/* Send Level 2 Update Frame to update forwarding tables in layer 2
   2263	 * bridge devices */
   2264
   2265	skb = dev_alloc_skb(sizeof(*msg));
   2266	if (!skb)
   2267		return;
   2268	msg = skb_put(skb, sizeof(*msg));
   2269
   2270	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
   2271	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
   2272
   2273	eth_broadcast_addr(msg->da);
   2274	ether_addr_copy(msg->sa, addr);
   2275	msg->len = htons(6);
   2276	msg->dsap = 0;
   2277	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
   2278	msg->control = 0xaf;	/* XID response lsb.1111F101.
   2279				 * F=0 (no poll command; unsolicited frame) */
   2280	msg->xid_info[0] = 0x81;	/* XID format identifier */
   2281	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
   2282	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
   2283
   2284	skb->dev = dev;
   2285	skb->protocol = eth_type_trans(skb, dev);
   2286	memset(skb->cb, 0, sizeof(skb->cb));
   2287	netif_rx(skb);
   2288}
   2289EXPORT_SYMBOL(cfg80211_send_layer2_update);
   2290
   2291int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
   2292			      enum ieee80211_vht_chanwidth bw,
   2293			      int mcs, bool ext_nss_bw_capable,
   2294			      unsigned int max_vht_nss)
   2295{
   2296	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
   2297	int ext_nss_bw;
   2298	int supp_width;
   2299	int i, mcs_encoding;
   2300
   2301	if (map == 0xffff)
   2302		return 0;
   2303
   2304	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
   2305		return 0;
   2306	if (mcs <= 7)
   2307		mcs_encoding = 0;
   2308	else if (mcs == 8)
   2309		mcs_encoding = 1;
   2310	else
   2311		mcs_encoding = 2;
   2312
   2313	if (!max_vht_nss) {
   2314		/* find max_vht_nss for the given MCS */
   2315		for (i = 7; i >= 0; i--) {
   2316			int supp = (map >> (2 * i)) & 3;
   2317
   2318			if (supp == 3)
   2319				continue;
   2320
   2321			if (supp >= mcs_encoding) {
   2322				max_vht_nss = i + 1;
   2323				break;
   2324			}
   2325		}
   2326	}
   2327
   2328	if (!(cap->supp_mcs.tx_mcs_map &
   2329			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
   2330		return max_vht_nss;
   2331
   2332	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
   2333				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
   2334	supp_width = le32_get_bits(cap->vht_cap_info,
   2335				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
   2336
   2337	/* if not capable, treat ext_nss_bw as 0 */
   2338	if (!ext_nss_bw_capable)
   2339		ext_nss_bw = 0;
   2340
   2341	/* This is invalid */
   2342	if (supp_width == 3)
   2343		return 0;
   2344
   2345	/* This is an invalid combination so pretend nothing is supported */
   2346	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
   2347		return 0;
   2348
   2349	/*
   2350	 * Cover all the special cases according to IEEE 802.11-2016
   2351	 * Table 9-250. All other cases are either factor of 1 or not
   2352	 * valid/supported.
   2353	 */
   2354	switch (bw) {
   2355	case IEEE80211_VHT_CHANWIDTH_USE_HT:
   2356	case IEEE80211_VHT_CHANWIDTH_80MHZ:
   2357		if ((supp_width == 1 || supp_width == 2) &&
   2358		    ext_nss_bw == 3)
   2359			return 2 * max_vht_nss;
   2360		break;
   2361	case IEEE80211_VHT_CHANWIDTH_160MHZ:
   2362		if (supp_width == 0 &&
   2363		    (ext_nss_bw == 1 || ext_nss_bw == 2))
   2364			return max_vht_nss / 2;
   2365		if (supp_width == 0 &&
   2366		    ext_nss_bw == 3)
   2367			return (3 * max_vht_nss) / 4;
   2368		if (supp_width == 1 &&
   2369		    ext_nss_bw == 3)
   2370			return 2 * max_vht_nss;
   2371		break;
   2372	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
   2373		if (supp_width == 0 && ext_nss_bw == 1)
   2374			return 0; /* not possible */
   2375		if (supp_width == 0 &&
   2376		    ext_nss_bw == 2)
   2377			return max_vht_nss / 2;
   2378		if (supp_width == 0 &&
   2379		    ext_nss_bw == 3)
   2380			return (3 * max_vht_nss) / 4;
   2381		if (supp_width == 1 &&
   2382		    ext_nss_bw == 0)
   2383			return 0; /* not possible */
   2384		if (supp_width == 1 &&
   2385		    ext_nss_bw == 1)
   2386			return max_vht_nss / 2;
   2387		if (supp_width == 1 &&
   2388		    ext_nss_bw == 2)
   2389			return (3 * max_vht_nss) / 4;
   2390		break;
   2391	}
   2392
   2393	/* not covered or invalid combination received */
   2394	return max_vht_nss;
   2395}
   2396EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
   2397
   2398bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
   2399			     bool is_4addr, u8 check_swif)
   2400
   2401{
   2402	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
   2403
   2404	switch (check_swif) {
   2405	case 0:
   2406		if (is_vlan && is_4addr)
   2407			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
   2408		return wiphy->interface_modes & BIT(iftype);
   2409	case 1:
   2410		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
   2411			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
   2412		return wiphy->software_iftypes & BIT(iftype);
   2413	default:
   2414		break;
   2415	}
   2416
   2417	return false;
   2418}
   2419EXPORT_SYMBOL(cfg80211_iftype_allowed);