cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

keyctl.c (50681B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/* Userspace key control operations
      3 *
      4 * Copyright (C) 2004-5 Red Hat, Inc. All Rights Reserved.
      5 * Written by David Howells (dhowells@redhat.com)
      6 */
      7
      8#include <linux/init.h>
      9#include <linux/sched.h>
     10#include <linux/sched/task.h>
     11#include <linux/slab.h>
     12#include <linux/syscalls.h>
     13#include <linux/key.h>
     14#include <linux/keyctl.h>
     15#include <linux/fs.h>
     16#include <linux/capability.h>
     17#include <linux/cred.h>
     18#include <linux/string.h>
     19#include <linux/err.h>
     20#include <linux/vmalloc.h>
     21#include <linux/security.h>
     22#include <linux/uio.h>
     23#include <linux/uaccess.h>
     24#include <keys/request_key_auth-type.h>
     25#include "internal.h"
     26
     27#define KEY_MAX_DESC_SIZE 4096
     28
     29static const unsigned char keyrings_capabilities[2] = {
     30	[0] = (KEYCTL_CAPS0_CAPABILITIES |
     31	       (IS_ENABLED(CONFIG_PERSISTENT_KEYRINGS)	? KEYCTL_CAPS0_PERSISTENT_KEYRINGS : 0) |
     32	       (IS_ENABLED(CONFIG_KEY_DH_OPERATIONS)	? KEYCTL_CAPS0_DIFFIE_HELLMAN : 0) |
     33	       (IS_ENABLED(CONFIG_ASYMMETRIC_KEY_TYPE)	? KEYCTL_CAPS0_PUBLIC_KEY : 0) |
     34	       (IS_ENABLED(CONFIG_BIG_KEYS)		? KEYCTL_CAPS0_BIG_KEY : 0) |
     35	       KEYCTL_CAPS0_INVALIDATE |
     36	       KEYCTL_CAPS0_RESTRICT_KEYRING |
     37	       KEYCTL_CAPS0_MOVE
     38	       ),
     39	[1] = (KEYCTL_CAPS1_NS_KEYRING_NAME |
     40	       KEYCTL_CAPS1_NS_KEY_TAG |
     41	       (IS_ENABLED(CONFIG_KEY_NOTIFICATIONS)	? KEYCTL_CAPS1_NOTIFICATIONS : 0)
     42	       ),
     43};
     44
     45static int key_get_type_from_user(char *type,
     46				  const char __user *_type,
     47				  unsigned len)
     48{
     49	int ret;
     50
     51	ret = strncpy_from_user(type, _type, len);
     52	if (ret < 0)
     53		return ret;
     54	if (ret == 0 || ret >= len)
     55		return -EINVAL;
     56	if (type[0] == '.')
     57		return -EPERM;
     58	type[len - 1] = '\0';
     59	return 0;
     60}
     61
     62/*
     63 * Extract the description of a new key from userspace and either add it as a
     64 * new key to the specified keyring or update a matching key in that keyring.
     65 *
     66 * If the description is NULL or an empty string, the key type is asked to
     67 * generate one from the payload.
     68 *
     69 * The keyring must be writable so that we can attach the key to it.
     70 *
     71 * If successful, the new key's serial number is returned, otherwise an error
     72 * code is returned.
     73 */
     74SYSCALL_DEFINE5(add_key, const char __user *, _type,
     75		const char __user *, _description,
     76		const void __user *, _payload,
     77		size_t, plen,
     78		key_serial_t, ringid)
     79{
     80	key_ref_t keyring_ref, key_ref;
     81	char type[32], *description;
     82	void *payload;
     83	long ret;
     84
     85	ret = -EINVAL;
     86	if (plen > 1024 * 1024 - 1)
     87		goto error;
     88
     89	/* draw all the data into kernel space */
     90	ret = key_get_type_from_user(type, _type, sizeof(type));
     91	if (ret < 0)
     92		goto error;
     93
     94	description = NULL;
     95	if (_description) {
     96		description = strndup_user(_description, KEY_MAX_DESC_SIZE);
     97		if (IS_ERR(description)) {
     98			ret = PTR_ERR(description);
     99			goto error;
    100		}
    101		if (!*description) {
    102			kfree(description);
    103			description = NULL;
    104		} else if ((description[0] == '.') &&
    105			   (strncmp(type, "keyring", 7) == 0)) {
    106			ret = -EPERM;
    107			goto error2;
    108		}
    109	}
    110
    111	/* pull the payload in if one was supplied */
    112	payload = NULL;
    113
    114	if (plen) {
    115		ret = -ENOMEM;
    116		payload = kvmalloc(plen, GFP_KERNEL);
    117		if (!payload)
    118			goto error2;
    119
    120		ret = -EFAULT;
    121		if (copy_from_user(payload, _payload, plen) != 0)
    122			goto error3;
    123	}
    124
    125	/* find the target keyring (which must be writable) */
    126	keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
    127	if (IS_ERR(keyring_ref)) {
    128		ret = PTR_ERR(keyring_ref);
    129		goto error3;
    130	}
    131
    132	/* create or update the requested key and add it to the target
    133	 * keyring */
    134	key_ref = key_create_or_update(keyring_ref, type, description,
    135				       payload, plen, KEY_PERM_UNDEF,
    136				       KEY_ALLOC_IN_QUOTA);
    137	if (!IS_ERR(key_ref)) {
    138		ret = key_ref_to_ptr(key_ref)->serial;
    139		key_ref_put(key_ref);
    140	}
    141	else {
    142		ret = PTR_ERR(key_ref);
    143	}
    144
    145	key_ref_put(keyring_ref);
    146 error3:
    147	kvfree_sensitive(payload, plen);
    148 error2:
    149	kfree(description);
    150 error:
    151	return ret;
    152}
    153
    154/*
    155 * Search the process keyrings and keyring trees linked from those for a
    156 * matching key.  Keyrings must have appropriate Search permission to be
    157 * searched.
    158 *
    159 * If a key is found, it will be attached to the destination keyring if there's
    160 * one specified and the serial number of the key will be returned.
    161 *
    162 * If no key is found, /sbin/request-key will be invoked if _callout_info is
    163 * non-NULL in an attempt to create a key.  The _callout_info string will be
    164 * passed to /sbin/request-key to aid with completing the request.  If the
    165 * _callout_info string is "" then it will be changed to "-".
    166 */
    167SYSCALL_DEFINE4(request_key, const char __user *, _type,
    168		const char __user *, _description,
    169		const char __user *, _callout_info,
    170		key_serial_t, destringid)
    171{
    172	struct key_type *ktype;
    173	struct key *key;
    174	key_ref_t dest_ref;
    175	size_t callout_len;
    176	char type[32], *description, *callout_info;
    177	long ret;
    178
    179	/* pull the type into kernel space */
    180	ret = key_get_type_from_user(type, _type, sizeof(type));
    181	if (ret < 0)
    182		goto error;
    183
    184	/* pull the description into kernel space */
    185	description = strndup_user(_description, KEY_MAX_DESC_SIZE);
    186	if (IS_ERR(description)) {
    187		ret = PTR_ERR(description);
    188		goto error;
    189	}
    190
    191	/* pull the callout info into kernel space */
    192	callout_info = NULL;
    193	callout_len = 0;
    194	if (_callout_info) {
    195		callout_info = strndup_user(_callout_info, PAGE_SIZE);
    196		if (IS_ERR(callout_info)) {
    197			ret = PTR_ERR(callout_info);
    198			goto error2;
    199		}
    200		callout_len = strlen(callout_info);
    201	}
    202
    203	/* get the destination keyring if specified */
    204	dest_ref = NULL;
    205	if (destringid) {
    206		dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
    207					   KEY_NEED_WRITE);
    208		if (IS_ERR(dest_ref)) {
    209			ret = PTR_ERR(dest_ref);
    210			goto error3;
    211		}
    212	}
    213
    214	/* find the key type */
    215	ktype = key_type_lookup(type);
    216	if (IS_ERR(ktype)) {
    217		ret = PTR_ERR(ktype);
    218		goto error4;
    219	}
    220
    221	/* do the search */
    222	key = request_key_and_link(ktype, description, NULL, callout_info,
    223				   callout_len, NULL, key_ref_to_ptr(dest_ref),
    224				   KEY_ALLOC_IN_QUOTA);
    225	if (IS_ERR(key)) {
    226		ret = PTR_ERR(key);
    227		goto error5;
    228	}
    229
    230	/* wait for the key to finish being constructed */
    231	ret = wait_for_key_construction(key, 1);
    232	if (ret < 0)
    233		goto error6;
    234
    235	ret = key->serial;
    236
    237error6:
    238 	key_put(key);
    239error5:
    240	key_type_put(ktype);
    241error4:
    242	key_ref_put(dest_ref);
    243error3:
    244	kfree(callout_info);
    245error2:
    246	kfree(description);
    247error:
    248	return ret;
    249}
    250
    251/*
    252 * Get the ID of the specified process keyring.
    253 *
    254 * The requested keyring must have search permission to be found.
    255 *
    256 * If successful, the ID of the requested keyring will be returned.
    257 */
    258long keyctl_get_keyring_ID(key_serial_t id, int create)
    259{
    260	key_ref_t key_ref;
    261	unsigned long lflags;
    262	long ret;
    263
    264	lflags = create ? KEY_LOOKUP_CREATE : 0;
    265	key_ref = lookup_user_key(id, lflags, KEY_NEED_SEARCH);
    266	if (IS_ERR(key_ref)) {
    267		ret = PTR_ERR(key_ref);
    268		goto error;
    269	}
    270
    271	ret = key_ref_to_ptr(key_ref)->serial;
    272	key_ref_put(key_ref);
    273error:
    274	return ret;
    275}
    276
    277/*
    278 * Join a (named) session keyring.
    279 *
    280 * Create and join an anonymous session keyring or join a named session
    281 * keyring, creating it if necessary.  A named session keyring must have Search
    282 * permission for it to be joined.  Session keyrings without this permit will
    283 * be skipped over.  It is not permitted for userspace to create or join
    284 * keyrings whose name begin with a dot.
    285 *
    286 * If successful, the ID of the joined session keyring will be returned.
    287 */
    288long keyctl_join_session_keyring(const char __user *_name)
    289{
    290	char *name;
    291	long ret;
    292
    293	/* fetch the name from userspace */
    294	name = NULL;
    295	if (_name) {
    296		name = strndup_user(_name, KEY_MAX_DESC_SIZE);
    297		if (IS_ERR(name)) {
    298			ret = PTR_ERR(name);
    299			goto error;
    300		}
    301
    302		ret = -EPERM;
    303		if (name[0] == '.')
    304			goto error_name;
    305	}
    306
    307	/* join the session */
    308	ret = join_session_keyring(name);
    309error_name:
    310	kfree(name);
    311error:
    312	return ret;
    313}
    314
    315/*
    316 * Update a key's data payload from the given data.
    317 *
    318 * The key must grant the caller Write permission and the key type must support
    319 * updating for this to work.  A negative key can be positively instantiated
    320 * with this call.
    321 *
    322 * If successful, 0 will be returned.  If the key type does not support
    323 * updating, then -EOPNOTSUPP will be returned.
    324 */
    325long keyctl_update_key(key_serial_t id,
    326		       const void __user *_payload,
    327		       size_t plen)
    328{
    329	key_ref_t key_ref;
    330	void *payload;
    331	long ret;
    332
    333	ret = -EINVAL;
    334	if (plen > PAGE_SIZE)
    335		goto error;
    336
    337	/* pull the payload in if one was supplied */
    338	payload = NULL;
    339	if (plen) {
    340		ret = -ENOMEM;
    341		payload = kvmalloc(plen, GFP_KERNEL);
    342		if (!payload)
    343			goto error;
    344
    345		ret = -EFAULT;
    346		if (copy_from_user(payload, _payload, plen) != 0)
    347			goto error2;
    348	}
    349
    350	/* find the target key (which must be writable) */
    351	key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
    352	if (IS_ERR(key_ref)) {
    353		ret = PTR_ERR(key_ref);
    354		goto error2;
    355	}
    356
    357	/* update the key */
    358	ret = key_update(key_ref, payload, plen);
    359
    360	key_ref_put(key_ref);
    361error2:
    362	kvfree_sensitive(payload, plen);
    363error:
    364	return ret;
    365}
    366
    367/*
    368 * Revoke a key.
    369 *
    370 * The key must be grant the caller Write or Setattr permission for this to
    371 * work.  The key type should give up its quota claim when revoked.  The key
    372 * and any links to the key will be automatically garbage collected after a
    373 * certain amount of time (/proc/sys/kernel/keys/gc_delay).
    374 *
    375 * Keys with KEY_FLAG_KEEP set should not be revoked.
    376 *
    377 * If successful, 0 is returned.
    378 */
    379long keyctl_revoke_key(key_serial_t id)
    380{
    381	key_ref_t key_ref;
    382	struct key *key;
    383	long ret;
    384
    385	key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
    386	if (IS_ERR(key_ref)) {
    387		ret = PTR_ERR(key_ref);
    388		if (ret != -EACCES)
    389			goto error;
    390		key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
    391		if (IS_ERR(key_ref)) {
    392			ret = PTR_ERR(key_ref);
    393			goto error;
    394		}
    395	}
    396
    397	key = key_ref_to_ptr(key_ref);
    398	ret = 0;
    399	if (test_bit(KEY_FLAG_KEEP, &key->flags))
    400		ret = -EPERM;
    401	else
    402		key_revoke(key);
    403
    404	key_ref_put(key_ref);
    405error:
    406	return ret;
    407}
    408
    409/*
    410 * Invalidate a key.
    411 *
    412 * The key must be grant the caller Invalidate permission for this to work.
    413 * The key and any links to the key will be automatically garbage collected
    414 * immediately.
    415 *
    416 * Keys with KEY_FLAG_KEEP set should not be invalidated.
    417 *
    418 * If successful, 0 is returned.
    419 */
    420long keyctl_invalidate_key(key_serial_t id)
    421{
    422	key_ref_t key_ref;
    423	struct key *key;
    424	long ret;
    425
    426	kenter("%d", id);
    427
    428	key_ref = lookup_user_key(id, 0, KEY_NEED_SEARCH);
    429	if (IS_ERR(key_ref)) {
    430		ret = PTR_ERR(key_ref);
    431
    432		/* Root is permitted to invalidate certain special keys */
    433		if (capable(CAP_SYS_ADMIN)) {
    434			key_ref = lookup_user_key(id, 0, KEY_SYSADMIN_OVERRIDE);
    435			if (IS_ERR(key_ref))
    436				goto error;
    437			if (test_bit(KEY_FLAG_ROOT_CAN_INVAL,
    438				     &key_ref_to_ptr(key_ref)->flags))
    439				goto invalidate;
    440			goto error_put;
    441		}
    442
    443		goto error;
    444	}
    445
    446invalidate:
    447	key = key_ref_to_ptr(key_ref);
    448	ret = 0;
    449	if (test_bit(KEY_FLAG_KEEP, &key->flags))
    450		ret = -EPERM;
    451	else
    452		key_invalidate(key);
    453error_put:
    454	key_ref_put(key_ref);
    455error:
    456	kleave(" = %ld", ret);
    457	return ret;
    458}
    459
    460/*
    461 * Clear the specified keyring, creating an empty process keyring if one of the
    462 * special keyring IDs is used.
    463 *
    464 * The keyring must grant the caller Write permission and not have
    465 * KEY_FLAG_KEEP set for this to work.  If successful, 0 will be returned.
    466 */
    467long keyctl_keyring_clear(key_serial_t ringid)
    468{
    469	key_ref_t keyring_ref;
    470	struct key *keyring;
    471	long ret;
    472
    473	keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
    474	if (IS_ERR(keyring_ref)) {
    475		ret = PTR_ERR(keyring_ref);
    476
    477		/* Root is permitted to invalidate certain special keyrings */
    478		if (capable(CAP_SYS_ADMIN)) {
    479			keyring_ref = lookup_user_key(ringid, 0,
    480						      KEY_SYSADMIN_OVERRIDE);
    481			if (IS_ERR(keyring_ref))
    482				goto error;
    483			if (test_bit(KEY_FLAG_ROOT_CAN_CLEAR,
    484				     &key_ref_to_ptr(keyring_ref)->flags))
    485				goto clear;
    486			goto error_put;
    487		}
    488
    489		goto error;
    490	}
    491
    492clear:
    493	keyring = key_ref_to_ptr(keyring_ref);
    494	if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
    495		ret = -EPERM;
    496	else
    497		ret = keyring_clear(keyring);
    498error_put:
    499	key_ref_put(keyring_ref);
    500error:
    501	return ret;
    502}
    503
    504/*
    505 * Create a link from a keyring to a key if there's no matching key in the
    506 * keyring, otherwise replace the link to the matching key with a link to the
    507 * new key.
    508 *
    509 * The key must grant the caller Link permission and the keyring must grant
    510 * the caller Write permission.  Furthermore, if an additional link is created,
    511 * the keyring's quota will be extended.
    512 *
    513 * If successful, 0 will be returned.
    514 */
    515long keyctl_keyring_link(key_serial_t id, key_serial_t ringid)
    516{
    517	key_ref_t keyring_ref, key_ref;
    518	long ret;
    519
    520	keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
    521	if (IS_ERR(keyring_ref)) {
    522		ret = PTR_ERR(keyring_ref);
    523		goto error;
    524	}
    525
    526	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK);
    527	if (IS_ERR(key_ref)) {
    528		ret = PTR_ERR(key_ref);
    529		goto error2;
    530	}
    531
    532	ret = key_link(key_ref_to_ptr(keyring_ref), key_ref_to_ptr(key_ref));
    533
    534	key_ref_put(key_ref);
    535error2:
    536	key_ref_put(keyring_ref);
    537error:
    538	return ret;
    539}
    540
    541/*
    542 * Unlink a key from a keyring.
    543 *
    544 * The keyring must grant the caller Write permission for this to work; the key
    545 * itself need not grant the caller anything.  If the last link to a key is
    546 * removed then that key will be scheduled for destruction.
    547 *
    548 * Keys or keyrings with KEY_FLAG_KEEP set should not be unlinked.
    549 *
    550 * If successful, 0 will be returned.
    551 */
    552long keyctl_keyring_unlink(key_serial_t id, key_serial_t ringid)
    553{
    554	key_ref_t keyring_ref, key_ref;
    555	struct key *keyring, *key;
    556	long ret;
    557
    558	keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_WRITE);
    559	if (IS_ERR(keyring_ref)) {
    560		ret = PTR_ERR(keyring_ref);
    561		goto error;
    562	}
    563
    564	key_ref = lookup_user_key(id, KEY_LOOKUP_PARTIAL, KEY_NEED_UNLINK);
    565	if (IS_ERR(key_ref)) {
    566		ret = PTR_ERR(key_ref);
    567		goto error2;
    568	}
    569
    570	keyring = key_ref_to_ptr(keyring_ref);
    571	key = key_ref_to_ptr(key_ref);
    572	if (test_bit(KEY_FLAG_KEEP, &keyring->flags) &&
    573	    test_bit(KEY_FLAG_KEEP, &key->flags))
    574		ret = -EPERM;
    575	else
    576		ret = key_unlink(keyring, key);
    577
    578	key_ref_put(key_ref);
    579error2:
    580	key_ref_put(keyring_ref);
    581error:
    582	return ret;
    583}
    584
    585/*
    586 * Move a link to a key from one keyring to another, displacing any matching
    587 * key from the destination keyring.
    588 *
    589 * The key must grant the caller Link permission and both keyrings must grant
    590 * the caller Write permission.  There must also be a link in the from keyring
    591 * to the key.  If both keyrings are the same, nothing is done.
    592 *
    593 * If successful, 0 will be returned.
    594 */
    595long keyctl_keyring_move(key_serial_t id, key_serial_t from_ringid,
    596			 key_serial_t to_ringid, unsigned int flags)
    597{
    598	key_ref_t key_ref, from_ref, to_ref;
    599	long ret;
    600
    601	if (flags & ~KEYCTL_MOVE_EXCL)
    602		return -EINVAL;
    603
    604	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK);
    605	if (IS_ERR(key_ref))
    606		return PTR_ERR(key_ref);
    607
    608	from_ref = lookup_user_key(from_ringid, 0, KEY_NEED_WRITE);
    609	if (IS_ERR(from_ref)) {
    610		ret = PTR_ERR(from_ref);
    611		goto error2;
    612	}
    613
    614	to_ref = lookup_user_key(to_ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
    615	if (IS_ERR(to_ref)) {
    616		ret = PTR_ERR(to_ref);
    617		goto error3;
    618	}
    619
    620	ret = key_move(key_ref_to_ptr(key_ref), key_ref_to_ptr(from_ref),
    621		       key_ref_to_ptr(to_ref), flags);
    622
    623	key_ref_put(to_ref);
    624error3:
    625	key_ref_put(from_ref);
    626error2:
    627	key_ref_put(key_ref);
    628	return ret;
    629}
    630
    631/*
    632 * Return a description of a key to userspace.
    633 *
    634 * The key must grant the caller View permission for this to work.
    635 *
    636 * If there's a buffer, we place up to buflen bytes of data into it formatted
    637 * in the following way:
    638 *
    639 *	type;uid;gid;perm;description<NUL>
    640 *
    641 * If successful, we return the amount of description available, irrespective
    642 * of how much we may have copied into the buffer.
    643 */
    644long keyctl_describe_key(key_serial_t keyid,
    645			 char __user *buffer,
    646			 size_t buflen)
    647{
    648	struct key *key, *instkey;
    649	key_ref_t key_ref;
    650	char *infobuf;
    651	long ret;
    652	int desclen, infolen;
    653
    654	key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
    655	if (IS_ERR(key_ref)) {
    656		/* viewing a key under construction is permitted if we have the
    657		 * authorisation token handy */
    658		if (PTR_ERR(key_ref) == -EACCES) {
    659			instkey = key_get_instantiation_authkey(keyid);
    660			if (!IS_ERR(instkey)) {
    661				key_put(instkey);
    662				key_ref = lookup_user_key(keyid,
    663							  KEY_LOOKUP_PARTIAL,
    664							  KEY_AUTHTOKEN_OVERRIDE);
    665				if (!IS_ERR(key_ref))
    666					goto okay;
    667			}
    668		}
    669
    670		ret = PTR_ERR(key_ref);
    671		goto error;
    672	}
    673
    674okay:
    675	key = key_ref_to_ptr(key_ref);
    676	desclen = strlen(key->description);
    677
    678	/* calculate how much information we're going to return */
    679	ret = -ENOMEM;
    680	infobuf = kasprintf(GFP_KERNEL,
    681			    "%s;%d;%d;%08x;",
    682			    key->type->name,
    683			    from_kuid_munged(current_user_ns(), key->uid),
    684			    from_kgid_munged(current_user_ns(), key->gid),
    685			    key->perm);
    686	if (!infobuf)
    687		goto error2;
    688	infolen = strlen(infobuf);
    689	ret = infolen + desclen + 1;
    690
    691	/* consider returning the data */
    692	if (buffer && buflen >= ret) {
    693		if (copy_to_user(buffer, infobuf, infolen) != 0 ||
    694		    copy_to_user(buffer + infolen, key->description,
    695				 desclen + 1) != 0)
    696			ret = -EFAULT;
    697	}
    698
    699	kfree(infobuf);
    700error2:
    701	key_ref_put(key_ref);
    702error:
    703	return ret;
    704}
    705
    706/*
    707 * Search the specified keyring and any keyrings it links to for a matching
    708 * key.  Only keyrings that grant the caller Search permission will be searched
    709 * (this includes the starting keyring).  Only keys with Search permission can
    710 * be found.
    711 *
    712 * If successful, the found key will be linked to the destination keyring if
    713 * supplied and the key has Link permission, and the found key ID will be
    714 * returned.
    715 */
    716long keyctl_keyring_search(key_serial_t ringid,
    717			   const char __user *_type,
    718			   const char __user *_description,
    719			   key_serial_t destringid)
    720{
    721	struct key_type *ktype;
    722	key_ref_t keyring_ref, key_ref, dest_ref;
    723	char type[32], *description;
    724	long ret;
    725
    726	/* pull the type and description into kernel space */
    727	ret = key_get_type_from_user(type, _type, sizeof(type));
    728	if (ret < 0)
    729		goto error;
    730
    731	description = strndup_user(_description, KEY_MAX_DESC_SIZE);
    732	if (IS_ERR(description)) {
    733		ret = PTR_ERR(description);
    734		goto error;
    735	}
    736
    737	/* get the keyring at which to begin the search */
    738	keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_SEARCH);
    739	if (IS_ERR(keyring_ref)) {
    740		ret = PTR_ERR(keyring_ref);
    741		goto error2;
    742	}
    743
    744	/* get the destination keyring if specified */
    745	dest_ref = NULL;
    746	if (destringid) {
    747		dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
    748					   KEY_NEED_WRITE);
    749		if (IS_ERR(dest_ref)) {
    750			ret = PTR_ERR(dest_ref);
    751			goto error3;
    752		}
    753	}
    754
    755	/* find the key type */
    756	ktype = key_type_lookup(type);
    757	if (IS_ERR(ktype)) {
    758		ret = PTR_ERR(ktype);
    759		goto error4;
    760	}
    761
    762	/* do the search */
    763	key_ref = keyring_search(keyring_ref, ktype, description, true);
    764	if (IS_ERR(key_ref)) {
    765		ret = PTR_ERR(key_ref);
    766
    767		/* treat lack or presence of a negative key the same */
    768		if (ret == -EAGAIN)
    769			ret = -ENOKEY;
    770		goto error5;
    771	}
    772
    773	/* link the resulting key to the destination keyring if we can */
    774	if (dest_ref) {
    775		ret = key_permission(key_ref, KEY_NEED_LINK);
    776		if (ret < 0)
    777			goto error6;
    778
    779		ret = key_link(key_ref_to_ptr(dest_ref), key_ref_to_ptr(key_ref));
    780		if (ret < 0)
    781			goto error6;
    782	}
    783
    784	ret = key_ref_to_ptr(key_ref)->serial;
    785
    786error6:
    787	key_ref_put(key_ref);
    788error5:
    789	key_type_put(ktype);
    790error4:
    791	key_ref_put(dest_ref);
    792error3:
    793	key_ref_put(keyring_ref);
    794error2:
    795	kfree(description);
    796error:
    797	return ret;
    798}
    799
    800/*
    801 * Call the read method
    802 */
    803static long __keyctl_read_key(struct key *key, char *buffer, size_t buflen)
    804{
    805	long ret;
    806
    807	down_read(&key->sem);
    808	ret = key_validate(key);
    809	if (ret == 0)
    810		ret = key->type->read(key, buffer, buflen);
    811	up_read(&key->sem);
    812	return ret;
    813}
    814
    815/*
    816 * Read a key's payload.
    817 *
    818 * The key must either grant the caller Read permission, or it must grant the
    819 * caller Search permission when searched for from the process keyrings.
    820 *
    821 * If successful, we place up to buflen bytes of data into the buffer, if one
    822 * is provided, and return the amount of data that is available in the key,
    823 * irrespective of how much we copied into the buffer.
    824 */
    825long keyctl_read_key(key_serial_t keyid, char __user *buffer, size_t buflen)
    826{
    827	struct key *key;
    828	key_ref_t key_ref;
    829	long ret;
    830	char *key_data = NULL;
    831	size_t key_data_len;
    832
    833	/* find the key first */
    834	key_ref = lookup_user_key(keyid, 0, KEY_DEFER_PERM_CHECK);
    835	if (IS_ERR(key_ref)) {
    836		ret = -ENOKEY;
    837		goto out;
    838	}
    839
    840	key = key_ref_to_ptr(key_ref);
    841
    842	ret = key_read_state(key);
    843	if (ret < 0)
    844		goto key_put_out; /* Negatively instantiated */
    845
    846	/* see if we can read it directly */
    847	ret = key_permission(key_ref, KEY_NEED_READ);
    848	if (ret == 0)
    849		goto can_read_key;
    850	if (ret != -EACCES)
    851		goto key_put_out;
    852
    853	/* we can't; see if it's searchable from this process's keyrings
    854	 * - we automatically take account of the fact that it may be
    855	 *   dangling off an instantiation key
    856	 */
    857	if (!is_key_possessed(key_ref)) {
    858		ret = -EACCES;
    859		goto key_put_out;
    860	}
    861
    862	/* the key is probably readable - now try to read it */
    863can_read_key:
    864	if (!key->type->read) {
    865		ret = -EOPNOTSUPP;
    866		goto key_put_out;
    867	}
    868
    869	if (!buffer || !buflen) {
    870		/* Get the key length from the read method */
    871		ret = __keyctl_read_key(key, NULL, 0);
    872		goto key_put_out;
    873	}
    874
    875	/*
    876	 * Read the data with the semaphore held (since we might sleep)
    877	 * to protect against the key being updated or revoked.
    878	 *
    879	 * Allocating a temporary buffer to hold the keys before
    880	 * transferring them to user buffer to avoid potential
    881	 * deadlock involving page fault and mmap_lock.
    882	 *
    883	 * key_data_len = (buflen <= PAGE_SIZE)
    884	 *		? buflen : actual length of key data
    885	 *
    886	 * This prevents allocating arbitrary large buffer which can
    887	 * be much larger than the actual key length. In the latter case,
    888	 * at least 2 passes of this loop is required.
    889	 */
    890	key_data_len = (buflen <= PAGE_SIZE) ? buflen : 0;
    891	for (;;) {
    892		if (key_data_len) {
    893			key_data = kvmalloc(key_data_len, GFP_KERNEL);
    894			if (!key_data) {
    895				ret = -ENOMEM;
    896				goto key_put_out;
    897			}
    898		}
    899
    900		ret = __keyctl_read_key(key, key_data, key_data_len);
    901
    902		/*
    903		 * Read methods will just return the required length without
    904		 * any copying if the provided length isn't large enough.
    905		 */
    906		if (ret <= 0 || ret > buflen)
    907			break;
    908
    909		/*
    910		 * The key may change (unlikely) in between 2 consecutive
    911		 * __keyctl_read_key() calls. In this case, we reallocate
    912		 * a larger buffer and redo the key read when
    913		 * key_data_len < ret <= buflen.
    914		 */
    915		if (ret > key_data_len) {
    916			if (unlikely(key_data))
    917				kvfree_sensitive(key_data, key_data_len);
    918			key_data_len = ret;
    919			continue;	/* Allocate buffer */
    920		}
    921
    922		if (copy_to_user(buffer, key_data, ret))
    923			ret = -EFAULT;
    924		break;
    925	}
    926	kvfree_sensitive(key_data, key_data_len);
    927
    928key_put_out:
    929	key_put(key);
    930out:
    931	return ret;
    932}
    933
    934/*
    935 * Change the ownership of a key
    936 *
    937 * The key must grant the caller Setattr permission for this to work, though
    938 * the key need not be fully instantiated yet.  For the UID to be changed, or
    939 * for the GID to be changed to a group the caller is not a member of, the
    940 * caller must have sysadmin capability.  If either uid or gid is -1 then that
    941 * attribute is not changed.
    942 *
    943 * If the UID is to be changed, the new user must have sufficient quota to
    944 * accept the key.  The quota deduction will be removed from the old user to
    945 * the new user should the attribute be changed.
    946 *
    947 * If successful, 0 will be returned.
    948 */
    949long keyctl_chown_key(key_serial_t id, uid_t user, gid_t group)
    950{
    951	struct key_user *newowner, *zapowner = NULL;
    952	struct key *key;
    953	key_ref_t key_ref;
    954	long ret;
    955	kuid_t uid;
    956	kgid_t gid;
    957
    958	uid = make_kuid(current_user_ns(), user);
    959	gid = make_kgid(current_user_ns(), group);
    960	ret = -EINVAL;
    961	if ((user != (uid_t) -1) && !uid_valid(uid))
    962		goto error;
    963	if ((group != (gid_t) -1) && !gid_valid(gid))
    964		goto error;
    965
    966	ret = 0;
    967	if (user == (uid_t) -1 && group == (gid_t) -1)
    968		goto error;
    969
    970	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
    971				  KEY_NEED_SETATTR);
    972	if (IS_ERR(key_ref)) {
    973		ret = PTR_ERR(key_ref);
    974		goto error;
    975	}
    976
    977	key = key_ref_to_ptr(key_ref);
    978
    979	/* make the changes with the locks held to prevent chown/chown races */
    980	ret = -EACCES;
    981	down_write(&key->sem);
    982
    983	if (!capable(CAP_SYS_ADMIN)) {
    984		/* only the sysadmin can chown a key to some other UID */
    985		if (user != (uid_t) -1 && !uid_eq(key->uid, uid))
    986			goto error_put;
    987
    988		/* only the sysadmin can set the key's GID to a group other
    989		 * than one of those that the current process subscribes to */
    990		if (group != (gid_t) -1 && !gid_eq(gid, key->gid) && !in_group_p(gid))
    991			goto error_put;
    992	}
    993
    994	/* change the UID */
    995	if (user != (uid_t) -1 && !uid_eq(uid, key->uid)) {
    996		ret = -ENOMEM;
    997		newowner = key_user_lookup(uid);
    998		if (!newowner)
    999			goto error_put;
   1000
   1001		/* transfer the quota burden to the new user */
   1002		if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
   1003			unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
   1004				key_quota_root_maxkeys : key_quota_maxkeys;
   1005			unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
   1006				key_quota_root_maxbytes : key_quota_maxbytes;
   1007
   1008			spin_lock(&newowner->lock);
   1009			if (newowner->qnkeys + 1 > maxkeys ||
   1010			    newowner->qnbytes + key->quotalen > maxbytes ||
   1011			    newowner->qnbytes + key->quotalen <
   1012			    newowner->qnbytes)
   1013				goto quota_overrun;
   1014
   1015			newowner->qnkeys++;
   1016			newowner->qnbytes += key->quotalen;
   1017			spin_unlock(&newowner->lock);
   1018
   1019			spin_lock(&key->user->lock);
   1020			key->user->qnkeys--;
   1021			key->user->qnbytes -= key->quotalen;
   1022			spin_unlock(&key->user->lock);
   1023		}
   1024
   1025		atomic_dec(&key->user->nkeys);
   1026		atomic_inc(&newowner->nkeys);
   1027
   1028		if (key->state != KEY_IS_UNINSTANTIATED) {
   1029			atomic_dec(&key->user->nikeys);
   1030			atomic_inc(&newowner->nikeys);
   1031		}
   1032
   1033		zapowner = key->user;
   1034		key->user = newowner;
   1035		key->uid = uid;
   1036	}
   1037
   1038	/* change the GID */
   1039	if (group != (gid_t) -1)
   1040		key->gid = gid;
   1041
   1042	notify_key(key, NOTIFY_KEY_SETATTR, 0);
   1043	ret = 0;
   1044
   1045error_put:
   1046	up_write(&key->sem);
   1047	key_put(key);
   1048	if (zapowner)
   1049		key_user_put(zapowner);
   1050error:
   1051	return ret;
   1052
   1053quota_overrun:
   1054	spin_unlock(&newowner->lock);
   1055	zapowner = newowner;
   1056	ret = -EDQUOT;
   1057	goto error_put;
   1058}
   1059
   1060/*
   1061 * Change the permission mask on a key.
   1062 *
   1063 * The key must grant the caller Setattr permission for this to work, though
   1064 * the key need not be fully instantiated yet.  If the caller does not have
   1065 * sysadmin capability, it may only change the permission on keys that it owns.
   1066 */
   1067long keyctl_setperm_key(key_serial_t id, key_perm_t perm)
   1068{
   1069	struct key *key;
   1070	key_ref_t key_ref;
   1071	long ret;
   1072
   1073	ret = -EINVAL;
   1074	if (perm & ~(KEY_POS_ALL | KEY_USR_ALL | KEY_GRP_ALL | KEY_OTH_ALL))
   1075		goto error;
   1076
   1077	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
   1078				  KEY_NEED_SETATTR);
   1079	if (IS_ERR(key_ref)) {
   1080		ret = PTR_ERR(key_ref);
   1081		goto error;
   1082	}
   1083
   1084	key = key_ref_to_ptr(key_ref);
   1085
   1086	/* make the changes with the locks held to prevent chown/chmod races */
   1087	ret = -EACCES;
   1088	down_write(&key->sem);
   1089
   1090	/* if we're not the sysadmin, we can only change a key that we own */
   1091	if (capable(CAP_SYS_ADMIN) || uid_eq(key->uid, current_fsuid())) {
   1092		key->perm = perm;
   1093		notify_key(key, NOTIFY_KEY_SETATTR, 0);
   1094		ret = 0;
   1095	}
   1096
   1097	up_write(&key->sem);
   1098	key_put(key);
   1099error:
   1100	return ret;
   1101}
   1102
   1103/*
   1104 * Get the destination keyring for instantiation and check that the caller has
   1105 * Write permission on it.
   1106 */
   1107static long get_instantiation_keyring(key_serial_t ringid,
   1108				      struct request_key_auth *rka,
   1109				      struct key **_dest_keyring)
   1110{
   1111	key_ref_t dkref;
   1112
   1113	*_dest_keyring = NULL;
   1114
   1115	/* just return a NULL pointer if we weren't asked to make a link */
   1116	if (ringid == 0)
   1117		return 0;
   1118
   1119	/* if a specific keyring is nominated by ID, then use that */
   1120	if (ringid > 0) {
   1121		dkref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
   1122		if (IS_ERR(dkref))
   1123			return PTR_ERR(dkref);
   1124		*_dest_keyring = key_ref_to_ptr(dkref);
   1125		return 0;
   1126	}
   1127
   1128	if (ringid == KEY_SPEC_REQKEY_AUTH_KEY)
   1129		return -EINVAL;
   1130
   1131	/* otherwise specify the destination keyring recorded in the
   1132	 * authorisation key (any KEY_SPEC_*_KEYRING) */
   1133	if (ringid >= KEY_SPEC_REQUESTOR_KEYRING) {
   1134		*_dest_keyring = key_get(rka->dest_keyring);
   1135		return 0;
   1136	}
   1137
   1138	return -ENOKEY;
   1139}
   1140
   1141/*
   1142 * Change the request_key authorisation key on the current process.
   1143 */
   1144static int keyctl_change_reqkey_auth(struct key *key)
   1145{
   1146	struct cred *new;
   1147
   1148	new = prepare_creds();
   1149	if (!new)
   1150		return -ENOMEM;
   1151
   1152	key_put(new->request_key_auth);
   1153	new->request_key_auth = key_get(key);
   1154
   1155	return commit_creds(new);
   1156}
   1157
   1158/*
   1159 * Instantiate a key with the specified payload and link the key into the
   1160 * destination keyring if one is given.
   1161 *
   1162 * The caller must have the appropriate instantiation permit set for this to
   1163 * work (see keyctl_assume_authority).  No other permissions are required.
   1164 *
   1165 * If successful, 0 will be returned.
   1166 */
   1167static long keyctl_instantiate_key_common(key_serial_t id,
   1168				   struct iov_iter *from,
   1169				   key_serial_t ringid)
   1170{
   1171	const struct cred *cred = current_cred();
   1172	struct request_key_auth *rka;
   1173	struct key *instkey, *dest_keyring;
   1174	size_t plen = from ? iov_iter_count(from) : 0;
   1175	void *payload;
   1176	long ret;
   1177
   1178	kenter("%d,,%zu,%d", id, plen, ringid);
   1179
   1180	if (!plen)
   1181		from = NULL;
   1182
   1183	ret = -EINVAL;
   1184	if (plen > 1024 * 1024 - 1)
   1185		goto error;
   1186
   1187	/* the appropriate instantiation authorisation key must have been
   1188	 * assumed before calling this */
   1189	ret = -EPERM;
   1190	instkey = cred->request_key_auth;
   1191	if (!instkey)
   1192		goto error;
   1193
   1194	rka = instkey->payload.data[0];
   1195	if (rka->target_key->serial != id)
   1196		goto error;
   1197
   1198	/* pull the payload in if one was supplied */
   1199	payload = NULL;
   1200
   1201	if (from) {
   1202		ret = -ENOMEM;
   1203		payload = kvmalloc(plen, GFP_KERNEL);
   1204		if (!payload)
   1205			goto error;
   1206
   1207		ret = -EFAULT;
   1208		if (!copy_from_iter_full(payload, plen, from))
   1209			goto error2;
   1210	}
   1211
   1212	/* find the destination keyring amongst those belonging to the
   1213	 * requesting task */
   1214	ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
   1215	if (ret < 0)
   1216		goto error2;
   1217
   1218	/* instantiate the key and link it into a keyring */
   1219	ret = key_instantiate_and_link(rka->target_key, payload, plen,
   1220				       dest_keyring, instkey);
   1221
   1222	key_put(dest_keyring);
   1223
   1224	/* discard the assumed authority if it's just been disabled by
   1225	 * instantiation of the key */
   1226	if (ret == 0)
   1227		keyctl_change_reqkey_auth(NULL);
   1228
   1229error2:
   1230	kvfree_sensitive(payload, plen);
   1231error:
   1232	return ret;
   1233}
   1234
   1235/*
   1236 * Instantiate a key with the specified payload and link the key into the
   1237 * destination keyring if one is given.
   1238 *
   1239 * The caller must have the appropriate instantiation permit set for this to
   1240 * work (see keyctl_assume_authority).  No other permissions are required.
   1241 *
   1242 * If successful, 0 will be returned.
   1243 */
   1244long keyctl_instantiate_key(key_serial_t id,
   1245			    const void __user *_payload,
   1246			    size_t plen,
   1247			    key_serial_t ringid)
   1248{
   1249	if (_payload && plen) {
   1250		struct iovec iov;
   1251		struct iov_iter from;
   1252		int ret;
   1253
   1254		ret = import_single_range(WRITE, (void __user *)_payload, plen,
   1255					  &iov, &from);
   1256		if (unlikely(ret))
   1257			return ret;
   1258
   1259		return keyctl_instantiate_key_common(id, &from, ringid);
   1260	}
   1261
   1262	return keyctl_instantiate_key_common(id, NULL, ringid);
   1263}
   1264
   1265/*
   1266 * Instantiate a key with the specified multipart payload and link the key into
   1267 * the destination keyring if one is given.
   1268 *
   1269 * The caller must have the appropriate instantiation permit set for this to
   1270 * work (see keyctl_assume_authority).  No other permissions are required.
   1271 *
   1272 * If successful, 0 will be returned.
   1273 */
   1274long keyctl_instantiate_key_iov(key_serial_t id,
   1275				const struct iovec __user *_payload_iov,
   1276				unsigned ioc,
   1277				key_serial_t ringid)
   1278{
   1279	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
   1280	struct iov_iter from;
   1281	long ret;
   1282
   1283	if (!_payload_iov)
   1284		ioc = 0;
   1285
   1286	ret = import_iovec(WRITE, _payload_iov, ioc,
   1287				    ARRAY_SIZE(iovstack), &iov, &from);
   1288	if (ret < 0)
   1289		return ret;
   1290	ret = keyctl_instantiate_key_common(id, &from, ringid);
   1291	kfree(iov);
   1292	return ret;
   1293}
   1294
   1295/*
   1296 * Negatively instantiate the key with the given timeout (in seconds) and link
   1297 * the key into the destination keyring if one is given.
   1298 *
   1299 * The caller must have the appropriate instantiation permit set for this to
   1300 * work (see keyctl_assume_authority).  No other permissions are required.
   1301 *
   1302 * The key and any links to the key will be automatically garbage collected
   1303 * after the timeout expires.
   1304 *
   1305 * Negative keys are used to rate limit repeated request_key() calls by causing
   1306 * them to return -ENOKEY until the negative key expires.
   1307 *
   1308 * If successful, 0 will be returned.
   1309 */
   1310long keyctl_negate_key(key_serial_t id, unsigned timeout, key_serial_t ringid)
   1311{
   1312	return keyctl_reject_key(id, timeout, ENOKEY, ringid);
   1313}
   1314
   1315/*
   1316 * Negatively instantiate the key with the given timeout (in seconds) and error
   1317 * code and link the key into the destination keyring if one is given.
   1318 *
   1319 * The caller must have the appropriate instantiation permit set for this to
   1320 * work (see keyctl_assume_authority).  No other permissions are required.
   1321 *
   1322 * The key and any links to the key will be automatically garbage collected
   1323 * after the timeout expires.
   1324 *
   1325 * Negative keys are used to rate limit repeated request_key() calls by causing
   1326 * them to return the specified error code until the negative key expires.
   1327 *
   1328 * If successful, 0 will be returned.
   1329 */
   1330long keyctl_reject_key(key_serial_t id, unsigned timeout, unsigned error,
   1331		       key_serial_t ringid)
   1332{
   1333	const struct cred *cred = current_cred();
   1334	struct request_key_auth *rka;
   1335	struct key *instkey, *dest_keyring;
   1336	long ret;
   1337
   1338	kenter("%d,%u,%u,%d", id, timeout, error, ringid);
   1339
   1340	/* must be a valid error code and mustn't be a kernel special */
   1341	if (error <= 0 ||
   1342	    error >= MAX_ERRNO ||
   1343	    error == ERESTARTSYS ||
   1344	    error == ERESTARTNOINTR ||
   1345	    error == ERESTARTNOHAND ||
   1346	    error == ERESTART_RESTARTBLOCK)
   1347		return -EINVAL;
   1348
   1349	/* the appropriate instantiation authorisation key must have been
   1350	 * assumed before calling this */
   1351	ret = -EPERM;
   1352	instkey = cred->request_key_auth;
   1353	if (!instkey)
   1354		goto error;
   1355
   1356	rka = instkey->payload.data[0];
   1357	if (rka->target_key->serial != id)
   1358		goto error;
   1359
   1360	/* find the destination keyring if present (which must also be
   1361	 * writable) */
   1362	ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
   1363	if (ret < 0)
   1364		goto error;
   1365
   1366	/* instantiate the key and link it into a keyring */
   1367	ret = key_reject_and_link(rka->target_key, timeout, error,
   1368				  dest_keyring, instkey);
   1369
   1370	key_put(dest_keyring);
   1371
   1372	/* discard the assumed authority if it's just been disabled by
   1373	 * instantiation of the key */
   1374	if (ret == 0)
   1375		keyctl_change_reqkey_auth(NULL);
   1376
   1377error:
   1378	return ret;
   1379}
   1380
   1381/*
   1382 * Read or set the default keyring in which request_key() will cache keys and
   1383 * return the old setting.
   1384 *
   1385 * If a thread or process keyring is specified then it will be created if it
   1386 * doesn't yet exist.  The old setting will be returned if successful.
   1387 */
   1388long keyctl_set_reqkey_keyring(int reqkey_defl)
   1389{
   1390	struct cred *new;
   1391	int ret, old_setting;
   1392
   1393	old_setting = current_cred_xxx(jit_keyring);
   1394
   1395	if (reqkey_defl == KEY_REQKEY_DEFL_NO_CHANGE)
   1396		return old_setting;
   1397
   1398	new = prepare_creds();
   1399	if (!new)
   1400		return -ENOMEM;
   1401
   1402	switch (reqkey_defl) {
   1403	case KEY_REQKEY_DEFL_THREAD_KEYRING:
   1404		ret = install_thread_keyring_to_cred(new);
   1405		if (ret < 0)
   1406			goto error;
   1407		goto set;
   1408
   1409	case KEY_REQKEY_DEFL_PROCESS_KEYRING:
   1410		ret = install_process_keyring_to_cred(new);
   1411		if (ret < 0)
   1412			goto error;
   1413		goto set;
   1414
   1415	case KEY_REQKEY_DEFL_DEFAULT:
   1416	case KEY_REQKEY_DEFL_SESSION_KEYRING:
   1417	case KEY_REQKEY_DEFL_USER_KEYRING:
   1418	case KEY_REQKEY_DEFL_USER_SESSION_KEYRING:
   1419	case KEY_REQKEY_DEFL_REQUESTOR_KEYRING:
   1420		goto set;
   1421
   1422	case KEY_REQKEY_DEFL_NO_CHANGE:
   1423	case KEY_REQKEY_DEFL_GROUP_KEYRING:
   1424	default:
   1425		ret = -EINVAL;
   1426		goto error;
   1427	}
   1428
   1429set:
   1430	new->jit_keyring = reqkey_defl;
   1431	commit_creds(new);
   1432	return old_setting;
   1433error:
   1434	abort_creds(new);
   1435	return ret;
   1436}
   1437
   1438/*
   1439 * Set or clear the timeout on a key.
   1440 *
   1441 * Either the key must grant the caller Setattr permission or else the caller
   1442 * must hold an instantiation authorisation token for the key.
   1443 *
   1444 * The timeout is either 0 to clear the timeout, or a number of seconds from
   1445 * the current time.  The key and any links to the key will be automatically
   1446 * garbage collected after the timeout expires.
   1447 *
   1448 * Keys with KEY_FLAG_KEEP set should not be timed out.
   1449 *
   1450 * If successful, 0 is returned.
   1451 */
   1452long keyctl_set_timeout(key_serial_t id, unsigned timeout)
   1453{
   1454	struct key *key, *instkey;
   1455	key_ref_t key_ref;
   1456	long ret;
   1457
   1458	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
   1459				  KEY_NEED_SETATTR);
   1460	if (IS_ERR(key_ref)) {
   1461		/* setting the timeout on a key under construction is permitted
   1462		 * if we have the authorisation token handy */
   1463		if (PTR_ERR(key_ref) == -EACCES) {
   1464			instkey = key_get_instantiation_authkey(id);
   1465			if (!IS_ERR(instkey)) {
   1466				key_put(instkey);
   1467				key_ref = lookup_user_key(id,
   1468							  KEY_LOOKUP_PARTIAL,
   1469							  KEY_AUTHTOKEN_OVERRIDE);
   1470				if (!IS_ERR(key_ref))
   1471					goto okay;
   1472			}
   1473		}
   1474
   1475		ret = PTR_ERR(key_ref);
   1476		goto error;
   1477	}
   1478
   1479okay:
   1480	key = key_ref_to_ptr(key_ref);
   1481	ret = 0;
   1482	if (test_bit(KEY_FLAG_KEEP, &key->flags)) {
   1483		ret = -EPERM;
   1484	} else {
   1485		key_set_timeout(key, timeout);
   1486		notify_key(key, NOTIFY_KEY_SETATTR, 0);
   1487	}
   1488	key_put(key);
   1489
   1490error:
   1491	return ret;
   1492}
   1493
   1494/*
   1495 * Assume (or clear) the authority to instantiate the specified key.
   1496 *
   1497 * This sets the authoritative token currently in force for key instantiation.
   1498 * This must be done for a key to be instantiated.  It has the effect of making
   1499 * available all the keys from the caller of the request_key() that created a
   1500 * key to request_key() calls made by the caller of this function.
   1501 *
   1502 * The caller must have the instantiation key in their process keyrings with a
   1503 * Search permission grant available to the caller.
   1504 *
   1505 * If the ID given is 0, then the setting will be cleared and 0 returned.
   1506 *
   1507 * If the ID given has a matching an authorisation key, then that key will be
   1508 * set and its ID will be returned.  The authorisation key can be read to get
   1509 * the callout information passed to request_key().
   1510 */
   1511long keyctl_assume_authority(key_serial_t id)
   1512{
   1513	struct key *authkey;
   1514	long ret;
   1515
   1516	/* special key IDs aren't permitted */
   1517	ret = -EINVAL;
   1518	if (id < 0)
   1519		goto error;
   1520
   1521	/* we divest ourselves of authority if given an ID of 0 */
   1522	if (id == 0) {
   1523		ret = keyctl_change_reqkey_auth(NULL);
   1524		goto error;
   1525	}
   1526
   1527	/* attempt to assume the authority temporarily granted to us whilst we
   1528	 * instantiate the specified key
   1529	 * - the authorisation key must be in the current task's keyrings
   1530	 *   somewhere
   1531	 */
   1532	authkey = key_get_instantiation_authkey(id);
   1533	if (IS_ERR(authkey)) {
   1534		ret = PTR_ERR(authkey);
   1535		goto error;
   1536	}
   1537
   1538	ret = keyctl_change_reqkey_auth(authkey);
   1539	if (ret == 0)
   1540		ret = authkey->serial;
   1541	key_put(authkey);
   1542error:
   1543	return ret;
   1544}
   1545
   1546/*
   1547 * Get a key's the LSM security label.
   1548 *
   1549 * The key must grant the caller View permission for this to work.
   1550 *
   1551 * If there's a buffer, then up to buflen bytes of data will be placed into it.
   1552 *
   1553 * If successful, the amount of information available will be returned,
   1554 * irrespective of how much was copied (including the terminal NUL).
   1555 */
   1556long keyctl_get_security(key_serial_t keyid,
   1557			 char __user *buffer,
   1558			 size_t buflen)
   1559{
   1560	struct key *key, *instkey;
   1561	key_ref_t key_ref;
   1562	char *context;
   1563	long ret;
   1564
   1565	key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
   1566	if (IS_ERR(key_ref)) {
   1567		if (PTR_ERR(key_ref) != -EACCES)
   1568			return PTR_ERR(key_ref);
   1569
   1570		/* viewing a key under construction is also permitted if we
   1571		 * have the authorisation token handy */
   1572		instkey = key_get_instantiation_authkey(keyid);
   1573		if (IS_ERR(instkey))
   1574			return PTR_ERR(instkey);
   1575		key_put(instkey);
   1576
   1577		key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL,
   1578					  KEY_AUTHTOKEN_OVERRIDE);
   1579		if (IS_ERR(key_ref))
   1580			return PTR_ERR(key_ref);
   1581	}
   1582
   1583	key = key_ref_to_ptr(key_ref);
   1584	ret = security_key_getsecurity(key, &context);
   1585	if (ret == 0) {
   1586		/* if no information was returned, give userspace an empty
   1587		 * string */
   1588		ret = 1;
   1589		if (buffer && buflen > 0 &&
   1590		    copy_to_user(buffer, "", 1) != 0)
   1591			ret = -EFAULT;
   1592	} else if (ret > 0) {
   1593		/* return as much data as there's room for */
   1594		if (buffer && buflen > 0) {
   1595			if (buflen > ret)
   1596				buflen = ret;
   1597
   1598			if (copy_to_user(buffer, context, buflen) != 0)
   1599				ret = -EFAULT;
   1600		}
   1601
   1602		kfree(context);
   1603	}
   1604
   1605	key_ref_put(key_ref);
   1606	return ret;
   1607}
   1608
   1609/*
   1610 * Attempt to install the calling process's session keyring on the process's
   1611 * parent process.
   1612 *
   1613 * The keyring must exist and must grant the caller LINK permission, and the
   1614 * parent process must be single-threaded and must have the same effective
   1615 * ownership as this process and mustn't be SUID/SGID.
   1616 *
   1617 * The keyring will be emplaced on the parent when it next resumes userspace.
   1618 *
   1619 * If successful, 0 will be returned.
   1620 */
   1621long keyctl_session_to_parent(void)
   1622{
   1623	struct task_struct *me, *parent;
   1624	const struct cred *mycred, *pcred;
   1625	struct callback_head *newwork, *oldwork;
   1626	key_ref_t keyring_r;
   1627	struct cred *cred;
   1628	int ret;
   1629
   1630	keyring_r = lookup_user_key(KEY_SPEC_SESSION_KEYRING, 0, KEY_NEED_LINK);
   1631	if (IS_ERR(keyring_r))
   1632		return PTR_ERR(keyring_r);
   1633
   1634	ret = -ENOMEM;
   1635
   1636	/* our parent is going to need a new cred struct, a new tgcred struct
   1637	 * and new security data, so we allocate them here to prevent ENOMEM in
   1638	 * our parent */
   1639	cred = cred_alloc_blank();
   1640	if (!cred)
   1641		goto error_keyring;
   1642	newwork = &cred->rcu;
   1643
   1644	cred->session_keyring = key_ref_to_ptr(keyring_r);
   1645	keyring_r = NULL;
   1646	init_task_work(newwork, key_change_session_keyring);
   1647
   1648	me = current;
   1649	rcu_read_lock();
   1650	write_lock_irq(&tasklist_lock);
   1651
   1652	ret = -EPERM;
   1653	oldwork = NULL;
   1654	parent = rcu_dereference_protected(me->real_parent,
   1655					   lockdep_is_held(&tasklist_lock));
   1656
   1657	/* the parent mustn't be init and mustn't be a kernel thread */
   1658	if (parent->pid <= 1 || !parent->mm)
   1659		goto unlock;
   1660
   1661	/* the parent must be single threaded */
   1662	if (!thread_group_empty(parent))
   1663		goto unlock;
   1664
   1665	/* the parent and the child must have different session keyrings or
   1666	 * there's no point */
   1667	mycred = current_cred();
   1668	pcred = __task_cred(parent);
   1669	if (mycred == pcred ||
   1670	    mycred->session_keyring == pcred->session_keyring) {
   1671		ret = 0;
   1672		goto unlock;
   1673	}
   1674
   1675	/* the parent must have the same effective ownership and mustn't be
   1676	 * SUID/SGID */
   1677	if (!uid_eq(pcred->uid,	 mycred->euid) ||
   1678	    !uid_eq(pcred->euid, mycred->euid) ||
   1679	    !uid_eq(pcred->suid, mycred->euid) ||
   1680	    !gid_eq(pcred->gid,	 mycred->egid) ||
   1681	    !gid_eq(pcred->egid, mycred->egid) ||
   1682	    !gid_eq(pcred->sgid, mycred->egid))
   1683		goto unlock;
   1684
   1685	/* the keyrings must have the same UID */
   1686	if ((pcred->session_keyring &&
   1687	     !uid_eq(pcred->session_keyring->uid, mycred->euid)) ||
   1688	    !uid_eq(mycred->session_keyring->uid, mycred->euid))
   1689		goto unlock;
   1690
   1691	/* cancel an already pending keyring replacement */
   1692	oldwork = task_work_cancel(parent, key_change_session_keyring);
   1693
   1694	/* the replacement session keyring is applied just prior to userspace
   1695	 * restarting */
   1696	ret = task_work_add(parent, newwork, TWA_RESUME);
   1697	if (!ret)
   1698		newwork = NULL;
   1699unlock:
   1700	write_unlock_irq(&tasklist_lock);
   1701	rcu_read_unlock();
   1702	if (oldwork)
   1703		put_cred(container_of(oldwork, struct cred, rcu));
   1704	if (newwork)
   1705		put_cred(cred);
   1706	return ret;
   1707
   1708error_keyring:
   1709	key_ref_put(keyring_r);
   1710	return ret;
   1711}
   1712
   1713/*
   1714 * Apply a restriction to a given keyring.
   1715 *
   1716 * The caller must have Setattr permission to change keyring restrictions.
   1717 *
   1718 * The requested type name may be a NULL pointer to reject all attempts
   1719 * to link to the keyring.  In this case, _restriction must also be NULL.
   1720 * Otherwise, both _type and _restriction must be non-NULL.
   1721 *
   1722 * Returns 0 if successful.
   1723 */
   1724long keyctl_restrict_keyring(key_serial_t id, const char __user *_type,
   1725			     const char __user *_restriction)
   1726{
   1727	key_ref_t key_ref;
   1728	char type[32];
   1729	char *restriction = NULL;
   1730	long ret;
   1731
   1732	key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
   1733	if (IS_ERR(key_ref))
   1734		return PTR_ERR(key_ref);
   1735
   1736	ret = -EINVAL;
   1737	if (_type) {
   1738		if (!_restriction)
   1739			goto error;
   1740
   1741		ret = key_get_type_from_user(type, _type, sizeof(type));
   1742		if (ret < 0)
   1743			goto error;
   1744
   1745		restriction = strndup_user(_restriction, PAGE_SIZE);
   1746		if (IS_ERR(restriction)) {
   1747			ret = PTR_ERR(restriction);
   1748			goto error;
   1749		}
   1750	} else {
   1751		if (_restriction)
   1752			goto error;
   1753	}
   1754
   1755	ret = keyring_restrict(key_ref, _type ? type : NULL, restriction);
   1756	kfree(restriction);
   1757error:
   1758	key_ref_put(key_ref);
   1759	return ret;
   1760}
   1761
   1762#ifdef CONFIG_KEY_NOTIFICATIONS
   1763/*
   1764 * Watch for changes to a key.
   1765 *
   1766 * The caller must have View permission to watch a key or keyring.
   1767 */
   1768long keyctl_watch_key(key_serial_t id, int watch_queue_fd, int watch_id)
   1769{
   1770	struct watch_queue *wqueue;
   1771	struct watch_list *wlist = NULL;
   1772	struct watch *watch = NULL;
   1773	struct key *key;
   1774	key_ref_t key_ref;
   1775	long ret;
   1776
   1777	if (watch_id < -1 || watch_id > 0xff)
   1778		return -EINVAL;
   1779
   1780	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_VIEW);
   1781	if (IS_ERR(key_ref))
   1782		return PTR_ERR(key_ref);
   1783	key = key_ref_to_ptr(key_ref);
   1784
   1785	wqueue = get_watch_queue(watch_queue_fd);
   1786	if (IS_ERR(wqueue)) {
   1787		ret = PTR_ERR(wqueue);
   1788		goto err_key;
   1789	}
   1790
   1791	if (watch_id >= 0) {
   1792		ret = -ENOMEM;
   1793		if (!key->watchers) {
   1794			wlist = kzalloc(sizeof(*wlist), GFP_KERNEL);
   1795			if (!wlist)
   1796				goto err_wqueue;
   1797			init_watch_list(wlist, NULL);
   1798		}
   1799
   1800		watch = kzalloc(sizeof(*watch), GFP_KERNEL);
   1801		if (!watch)
   1802			goto err_wlist;
   1803
   1804		init_watch(watch, wqueue);
   1805		watch->id	= key->serial;
   1806		watch->info_id	= (u32)watch_id << WATCH_INFO_ID__SHIFT;
   1807
   1808		ret = security_watch_key(key);
   1809		if (ret < 0)
   1810			goto err_watch;
   1811
   1812		down_write(&key->sem);
   1813		if (!key->watchers) {
   1814			key->watchers = wlist;
   1815			wlist = NULL;
   1816		}
   1817
   1818		ret = add_watch_to_object(watch, key->watchers);
   1819		up_write(&key->sem);
   1820
   1821		if (ret == 0)
   1822			watch = NULL;
   1823	} else {
   1824		ret = -EBADSLT;
   1825		if (key->watchers) {
   1826			down_write(&key->sem);
   1827			ret = remove_watch_from_object(key->watchers,
   1828						       wqueue, key_serial(key),
   1829						       false);
   1830			up_write(&key->sem);
   1831		}
   1832	}
   1833
   1834err_watch:
   1835	kfree(watch);
   1836err_wlist:
   1837	kfree(wlist);
   1838err_wqueue:
   1839	put_watch_queue(wqueue);
   1840err_key:
   1841	key_put(key);
   1842	return ret;
   1843}
   1844#endif /* CONFIG_KEY_NOTIFICATIONS */
   1845
   1846/*
   1847 * Get keyrings subsystem capabilities.
   1848 */
   1849long keyctl_capabilities(unsigned char __user *_buffer, size_t buflen)
   1850{
   1851	size_t size = buflen;
   1852
   1853	if (size > 0) {
   1854		if (size > sizeof(keyrings_capabilities))
   1855			size = sizeof(keyrings_capabilities);
   1856		if (copy_to_user(_buffer, keyrings_capabilities, size) != 0)
   1857			return -EFAULT;
   1858		if (size < buflen &&
   1859		    clear_user(_buffer + size, buflen - size) != 0)
   1860			return -EFAULT;
   1861	}
   1862
   1863	return sizeof(keyrings_capabilities);
   1864}
   1865
   1866/*
   1867 * The key control system call
   1868 */
   1869SYSCALL_DEFINE5(keyctl, int, option, unsigned long, arg2, unsigned long, arg3,
   1870		unsigned long, arg4, unsigned long, arg5)
   1871{
   1872	switch (option) {
   1873	case KEYCTL_GET_KEYRING_ID:
   1874		return keyctl_get_keyring_ID((key_serial_t) arg2,
   1875					     (int) arg3);
   1876
   1877	case KEYCTL_JOIN_SESSION_KEYRING:
   1878		return keyctl_join_session_keyring((const char __user *) arg2);
   1879
   1880	case KEYCTL_UPDATE:
   1881		return keyctl_update_key((key_serial_t) arg2,
   1882					 (const void __user *) arg3,
   1883					 (size_t) arg4);
   1884
   1885	case KEYCTL_REVOKE:
   1886		return keyctl_revoke_key((key_serial_t) arg2);
   1887
   1888	case KEYCTL_DESCRIBE:
   1889		return keyctl_describe_key((key_serial_t) arg2,
   1890					   (char __user *) arg3,
   1891					   (unsigned) arg4);
   1892
   1893	case KEYCTL_CLEAR:
   1894		return keyctl_keyring_clear((key_serial_t) arg2);
   1895
   1896	case KEYCTL_LINK:
   1897		return keyctl_keyring_link((key_serial_t) arg2,
   1898					   (key_serial_t) arg3);
   1899
   1900	case KEYCTL_UNLINK:
   1901		return keyctl_keyring_unlink((key_serial_t) arg2,
   1902					     (key_serial_t) arg3);
   1903
   1904	case KEYCTL_SEARCH:
   1905		return keyctl_keyring_search((key_serial_t) arg2,
   1906					     (const char __user *) arg3,
   1907					     (const char __user *) arg4,
   1908					     (key_serial_t) arg5);
   1909
   1910	case KEYCTL_READ:
   1911		return keyctl_read_key((key_serial_t) arg2,
   1912				       (char __user *) arg3,
   1913				       (size_t) arg4);
   1914
   1915	case KEYCTL_CHOWN:
   1916		return keyctl_chown_key((key_serial_t) arg2,
   1917					(uid_t) arg3,
   1918					(gid_t) arg4);
   1919
   1920	case KEYCTL_SETPERM:
   1921		return keyctl_setperm_key((key_serial_t) arg2,
   1922					  (key_perm_t) arg3);
   1923
   1924	case KEYCTL_INSTANTIATE:
   1925		return keyctl_instantiate_key((key_serial_t) arg2,
   1926					      (const void __user *) arg3,
   1927					      (size_t) arg4,
   1928					      (key_serial_t) arg5);
   1929
   1930	case KEYCTL_NEGATE:
   1931		return keyctl_negate_key((key_serial_t) arg2,
   1932					 (unsigned) arg3,
   1933					 (key_serial_t) arg4);
   1934
   1935	case KEYCTL_SET_REQKEY_KEYRING:
   1936		return keyctl_set_reqkey_keyring(arg2);
   1937
   1938	case KEYCTL_SET_TIMEOUT:
   1939		return keyctl_set_timeout((key_serial_t) arg2,
   1940					  (unsigned) arg3);
   1941
   1942	case KEYCTL_ASSUME_AUTHORITY:
   1943		return keyctl_assume_authority((key_serial_t) arg2);
   1944
   1945	case KEYCTL_GET_SECURITY:
   1946		return keyctl_get_security((key_serial_t) arg2,
   1947					   (char __user *) arg3,
   1948					   (size_t) arg4);
   1949
   1950	case KEYCTL_SESSION_TO_PARENT:
   1951		return keyctl_session_to_parent();
   1952
   1953	case KEYCTL_REJECT:
   1954		return keyctl_reject_key((key_serial_t) arg2,
   1955					 (unsigned) arg3,
   1956					 (unsigned) arg4,
   1957					 (key_serial_t) arg5);
   1958
   1959	case KEYCTL_INSTANTIATE_IOV:
   1960		return keyctl_instantiate_key_iov(
   1961			(key_serial_t) arg2,
   1962			(const struct iovec __user *) arg3,
   1963			(unsigned) arg4,
   1964			(key_serial_t) arg5);
   1965
   1966	case KEYCTL_INVALIDATE:
   1967		return keyctl_invalidate_key((key_serial_t) arg2);
   1968
   1969	case KEYCTL_GET_PERSISTENT:
   1970		return keyctl_get_persistent((uid_t)arg2, (key_serial_t)arg3);
   1971
   1972	case KEYCTL_DH_COMPUTE:
   1973		return keyctl_dh_compute((struct keyctl_dh_params __user *) arg2,
   1974					 (char __user *) arg3, (size_t) arg4,
   1975					 (struct keyctl_kdf_params __user *) arg5);
   1976
   1977	case KEYCTL_RESTRICT_KEYRING:
   1978		return keyctl_restrict_keyring((key_serial_t) arg2,
   1979					       (const char __user *) arg3,
   1980					       (const char __user *) arg4);
   1981
   1982	case KEYCTL_PKEY_QUERY:
   1983		if (arg3 != 0)
   1984			return -EINVAL;
   1985		return keyctl_pkey_query((key_serial_t)arg2,
   1986					 (const char __user *)arg4,
   1987					 (struct keyctl_pkey_query __user *)arg5);
   1988
   1989	case KEYCTL_PKEY_ENCRYPT:
   1990	case KEYCTL_PKEY_DECRYPT:
   1991	case KEYCTL_PKEY_SIGN:
   1992		return keyctl_pkey_e_d_s(
   1993			option,
   1994			(const struct keyctl_pkey_params __user *)arg2,
   1995			(const char __user *)arg3,
   1996			(const void __user *)arg4,
   1997			(void __user *)arg5);
   1998
   1999	case KEYCTL_PKEY_VERIFY:
   2000		return keyctl_pkey_verify(
   2001			(const struct keyctl_pkey_params __user *)arg2,
   2002			(const char __user *)arg3,
   2003			(const void __user *)arg4,
   2004			(const void __user *)arg5);
   2005
   2006	case KEYCTL_MOVE:
   2007		return keyctl_keyring_move((key_serial_t)arg2,
   2008					   (key_serial_t)arg3,
   2009					   (key_serial_t)arg4,
   2010					   (unsigned int)arg5);
   2011
   2012	case KEYCTL_CAPABILITIES:
   2013		return keyctl_capabilities((unsigned char __user *)arg2, (size_t)arg3);
   2014
   2015	case KEYCTL_WATCH_KEY:
   2016		return keyctl_watch_key((key_serial_t)arg2, (int)arg3, (int)arg4);
   2017
   2018	default:
   2019		return -EOPNOTSUPP;
   2020	}
   2021}