keyring.c (48873B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* Keyring handling 3 * 4 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8#include <linux/export.h> 9#include <linux/init.h> 10#include <linux/sched.h> 11#include <linux/slab.h> 12#include <linux/security.h> 13#include <linux/seq_file.h> 14#include <linux/err.h> 15#include <linux/user_namespace.h> 16#include <linux/nsproxy.h> 17#include <keys/keyring-type.h> 18#include <keys/user-type.h> 19#include <linux/assoc_array_priv.h> 20#include <linux/uaccess.h> 21#include <net/net_namespace.h> 22#include "internal.h" 23 24/* 25 * When plumbing the depths of the key tree, this sets a hard limit 26 * set on how deep we're willing to go. 27 */ 28#define KEYRING_SEARCH_MAX_DEPTH 6 29 30/* 31 * We mark pointers we pass to the associative array with bit 1 set if 32 * they're keyrings and clear otherwise. 33 */ 34#define KEYRING_PTR_SUBTYPE 0x2UL 35 36static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x) 37{ 38 return (unsigned long)x & KEYRING_PTR_SUBTYPE; 39} 40static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x) 41{ 42 void *object = assoc_array_ptr_to_leaf(x); 43 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE); 44} 45static inline void *keyring_key_to_ptr(struct key *key) 46{ 47 if (key->type == &key_type_keyring) 48 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE); 49 return key; 50} 51 52static DEFINE_RWLOCK(keyring_name_lock); 53 54/* 55 * Clean up the bits of user_namespace that belong to us. 56 */ 57void key_free_user_ns(struct user_namespace *ns) 58{ 59 write_lock(&keyring_name_lock); 60 list_del_init(&ns->keyring_name_list); 61 write_unlock(&keyring_name_lock); 62 63 key_put(ns->user_keyring_register); 64#ifdef CONFIG_PERSISTENT_KEYRINGS 65 key_put(ns->persistent_keyring_register); 66#endif 67} 68 69/* 70 * The keyring key type definition. Keyrings are simply keys of this type and 71 * can be treated as ordinary keys in addition to having their own special 72 * operations. 73 */ 74static int keyring_preparse(struct key_preparsed_payload *prep); 75static void keyring_free_preparse(struct key_preparsed_payload *prep); 76static int keyring_instantiate(struct key *keyring, 77 struct key_preparsed_payload *prep); 78static void keyring_revoke(struct key *keyring); 79static void keyring_destroy(struct key *keyring); 80static void keyring_describe(const struct key *keyring, struct seq_file *m); 81static long keyring_read(const struct key *keyring, 82 char __user *buffer, size_t buflen); 83 84struct key_type key_type_keyring = { 85 .name = "keyring", 86 .def_datalen = 0, 87 .preparse = keyring_preparse, 88 .free_preparse = keyring_free_preparse, 89 .instantiate = keyring_instantiate, 90 .revoke = keyring_revoke, 91 .destroy = keyring_destroy, 92 .describe = keyring_describe, 93 .read = keyring_read, 94}; 95EXPORT_SYMBOL(key_type_keyring); 96 97/* 98 * Semaphore to serialise link/link calls to prevent two link calls in parallel 99 * introducing a cycle. 100 */ 101static DEFINE_MUTEX(keyring_serialise_link_lock); 102 103/* 104 * Publish the name of a keyring so that it can be found by name (if it has 105 * one and it doesn't begin with a dot). 106 */ 107static void keyring_publish_name(struct key *keyring) 108{ 109 struct user_namespace *ns = current_user_ns(); 110 111 if (keyring->description && 112 keyring->description[0] && 113 keyring->description[0] != '.') { 114 write_lock(&keyring_name_lock); 115 list_add_tail(&keyring->name_link, &ns->keyring_name_list); 116 write_unlock(&keyring_name_lock); 117 } 118} 119 120/* 121 * Preparse a keyring payload 122 */ 123static int keyring_preparse(struct key_preparsed_payload *prep) 124{ 125 return prep->datalen != 0 ? -EINVAL : 0; 126} 127 128/* 129 * Free a preparse of a user defined key payload 130 */ 131static void keyring_free_preparse(struct key_preparsed_payload *prep) 132{ 133} 134 135/* 136 * Initialise a keyring. 137 * 138 * Returns 0 on success, -EINVAL if given any data. 139 */ 140static int keyring_instantiate(struct key *keyring, 141 struct key_preparsed_payload *prep) 142{ 143 assoc_array_init(&keyring->keys); 144 /* make the keyring available by name if it has one */ 145 keyring_publish_name(keyring); 146 return 0; 147} 148 149/* 150 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd 151 * fold the carry back too, but that requires inline asm. 152 */ 153static u64 mult_64x32_and_fold(u64 x, u32 y) 154{ 155 u64 hi = (u64)(u32)(x >> 32) * y; 156 u64 lo = (u64)(u32)(x) * y; 157 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32); 158} 159 160/* 161 * Hash a key type and description. 162 */ 163static void hash_key_type_and_desc(struct keyring_index_key *index_key) 164{ 165 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP; 166 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK; 167 const char *description = index_key->description; 168 unsigned long hash, type; 169 u32 piece; 170 u64 acc; 171 int n, desc_len = index_key->desc_len; 172 173 type = (unsigned long)index_key->type; 174 acc = mult_64x32_and_fold(type, desc_len + 13); 175 acc = mult_64x32_and_fold(acc, 9207); 176 piece = (unsigned long)index_key->domain_tag; 177 acc = mult_64x32_and_fold(acc, piece); 178 acc = mult_64x32_and_fold(acc, 9207); 179 180 for (;;) { 181 n = desc_len; 182 if (n <= 0) 183 break; 184 if (n > 4) 185 n = 4; 186 piece = 0; 187 memcpy(&piece, description, n); 188 description += n; 189 desc_len -= n; 190 acc = mult_64x32_and_fold(acc, piece); 191 acc = mult_64x32_and_fold(acc, 9207); 192 } 193 194 /* Fold the hash down to 32 bits if need be. */ 195 hash = acc; 196 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32) 197 hash ^= acc >> 32; 198 199 /* Squidge all the keyrings into a separate part of the tree to 200 * ordinary keys by making sure the lowest level segment in the hash is 201 * zero for keyrings and non-zero otherwise. 202 */ 203 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0) 204 hash |= (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1; 205 else if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0) 206 hash = (hash + (hash << level_shift)) & ~fan_mask; 207 index_key->hash = hash; 208} 209 210/* 211 * Finalise an index key to include a part of the description actually in the 212 * index key, to set the domain tag and to calculate the hash. 213 */ 214void key_set_index_key(struct keyring_index_key *index_key) 215{ 216 static struct key_tag default_domain_tag = { .usage = REFCOUNT_INIT(1), }; 217 size_t n = min_t(size_t, index_key->desc_len, sizeof(index_key->desc)); 218 219 memcpy(index_key->desc, index_key->description, n); 220 221 if (!index_key->domain_tag) { 222 if (index_key->type->flags & KEY_TYPE_NET_DOMAIN) 223 index_key->domain_tag = current->nsproxy->net_ns->key_domain; 224 else 225 index_key->domain_tag = &default_domain_tag; 226 } 227 228 hash_key_type_and_desc(index_key); 229} 230 231/** 232 * key_put_tag - Release a ref on a tag. 233 * @tag: The tag to release. 234 * 235 * This releases a reference the given tag and returns true if that ref was the 236 * last one. 237 */ 238bool key_put_tag(struct key_tag *tag) 239{ 240 if (refcount_dec_and_test(&tag->usage)) { 241 kfree_rcu(tag, rcu); 242 return true; 243 } 244 245 return false; 246} 247 248/** 249 * key_remove_domain - Kill off a key domain and gc its keys 250 * @domain_tag: The domain tag to release. 251 * 252 * This marks a domain tag as being dead and releases a ref on it. If that 253 * wasn't the last reference, the garbage collector is poked to try and delete 254 * all keys that were in the domain. 255 */ 256void key_remove_domain(struct key_tag *domain_tag) 257{ 258 domain_tag->removed = true; 259 if (!key_put_tag(domain_tag)) 260 key_schedule_gc_links(); 261} 262 263/* 264 * Build the next index key chunk. 265 * 266 * We return it one word-sized chunk at a time. 267 */ 268static unsigned long keyring_get_key_chunk(const void *data, int level) 269{ 270 const struct keyring_index_key *index_key = data; 271 unsigned long chunk = 0; 272 const u8 *d; 273 int desc_len = index_key->desc_len, n = sizeof(chunk); 274 275 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE; 276 switch (level) { 277 case 0: 278 return index_key->hash; 279 case 1: 280 return index_key->x; 281 case 2: 282 return (unsigned long)index_key->type; 283 case 3: 284 return (unsigned long)index_key->domain_tag; 285 default: 286 level -= 4; 287 if (desc_len <= sizeof(index_key->desc)) 288 return 0; 289 290 d = index_key->description + sizeof(index_key->desc); 291 d += level * sizeof(long); 292 desc_len -= sizeof(index_key->desc); 293 if (desc_len > n) 294 desc_len = n; 295 do { 296 chunk <<= 8; 297 chunk |= *d++; 298 } while (--desc_len > 0); 299 return chunk; 300 } 301} 302 303static unsigned long keyring_get_object_key_chunk(const void *object, int level) 304{ 305 const struct key *key = keyring_ptr_to_key(object); 306 return keyring_get_key_chunk(&key->index_key, level); 307} 308 309static bool keyring_compare_object(const void *object, const void *data) 310{ 311 const struct keyring_index_key *index_key = data; 312 const struct key *key = keyring_ptr_to_key(object); 313 314 return key->index_key.type == index_key->type && 315 key->index_key.domain_tag == index_key->domain_tag && 316 key->index_key.desc_len == index_key->desc_len && 317 memcmp(key->index_key.description, index_key->description, 318 index_key->desc_len) == 0; 319} 320 321/* 322 * Compare the index keys of a pair of objects and determine the bit position 323 * at which they differ - if they differ. 324 */ 325static int keyring_diff_objects(const void *object, const void *data) 326{ 327 const struct key *key_a = keyring_ptr_to_key(object); 328 const struct keyring_index_key *a = &key_a->index_key; 329 const struct keyring_index_key *b = data; 330 unsigned long seg_a, seg_b; 331 int level, i; 332 333 level = 0; 334 seg_a = a->hash; 335 seg_b = b->hash; 336 if ((seg_a ^ seg_b) != 0) 337 goto differ; 338 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8; 339 340 /* The number of bits contributed by the hash is controlled by a 341 * constant in the assoc_array headers. Everything else thereafter we 342 * can deal with as being machine word-size dependent. 343 */ 344 seg_a = a->x; 345 seg_b = b->x; 346 if ((seg_a ^ seg_b) != 0) 347 goto differ; 348 level += sizeof(unsigned long); 349 350 /* The next bit may not work on big endian */ 351 seg_a = (unsigned long)a->type; 352 seg_b = (unsigned long)b->type; 353 if ((seg_a ^ seg_b) != 0) 354 goto differ; 355 level += sizeof(unsigned long); 356 357 seg_a = (unsigned long)a->domain_tag; 358 seg_b = (unsigned long)b->domain_tag; 359 if ((seg_a ^ seg_b) != 0) 360 goto differ; 361 level += sizeof(unsigned long); 362 363 i = sizeof(a->desc); 364 if (a->desc_len <= i) 365 goto same; 366 367 for (; i < a->desc_len; i++) { 368 seg_a = *(unsigned char *)(a->description + i); 369 seg_b = *(unsigned char *)(b->description + i); 370 if ((seg_a ^ seg_b) != 0) 371 goto differ_plus_i; 372 } 373 374same: 375 return -1; 376 377differ_plus_i: 378 level += i; 379differ: 380 i = level * 8 + __ffs(seg_a ^ seg_b); 381 return i; 382} 383 384/* 385 * Free an object after stripping the keyring flag off of the pointer. 386 */ 387static void keyring_free_object(void *object) 388{ 389 key_put(keyring_ptr_to_key(object)); 390} 391 392/* 393 * Operations for keyring management by the index-tree routines. 394 */ 395static const struct assoc_array_ops keyring_assoc_array_ops = { 396 .get_key_chunk = keyring_get_key_chunk, 397 .get_object_key_chunk = keyring_get_object_key_chunk, 398 .compare_object = keyring_compare_object, 399 .diff_objects = keyring_diff_objects, 400 .free_object = keyring_free_object, 401}; 402 403/* 404 * Clean up a keyring when it is destroyed. Unpublish its name if it had one 405 * and dispose of its data. 406 * 407 * The garbage collector detects the final key_put(), removes the keyring from 408 * the serial number tree and then does RCU synchronisation before coming here, 409 * so we shouldn't need to worry about code poking around here with the RCU 410 * readlock held by this time. 411 */ 412static void keyring_destroy(struct key *keyring) 413{ 414 if (keyring->description) { 415 write_lock(&keyring_name_lock); 416 417 if (keyring->name_link.next != NULL && 418 !list_empty(&keyring->name_link)) 419 list_del(&keyring->name_link); 420 421 write_unlock(&keyring_name_lock); 422 } 423 424 if (keyring->restrict_link) { 425 struct key_restriction *keyres = keyring->restrict_link; 426 427 key_put(keyres->key); 428 kfree(keyres); 429 } 430 431 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops); 432} 433 434/* 435 * Describe a keyring for /proc. 436 */ 437static void keyring_describe(const struct key *keyring, struct seq_file *m) 438{ 439 if (keyring->description) 440 seq_puts(m, keyring->description); 441 else 442 seq_puts(m, "[anon]"); 443 444 if (key_is_positive(keyring)) { 445 if (keyring->keys.nr_leaves_on_tree != 0) 446 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree); 447 else 448 seq_puts(m, ": empty"); 449 } 450} 451 452struct keyring_read_iterator_context { 453 size_t buflen; 454 size_t count; 455 key_serial_t *buffer; 456}; 457 458static int keyring_read_iterator(const void *object, void *data) 459{ 460 struct keyring_read_iterator_context *ctx = data; 461 const struct key *key = keyring_ptr_to_key(object); 462 463 kenter("{%s,%d},,{%zu/%zu}", 464 key->type->name, key->serial, ctx->count, ctx->buflen); 465 466 if (ctx->count >= ctx->buflen) 467 return 1; 468 469 *ctx->buffer++ = key->serial; 470 ctx->count += sizeof(key->serial); 471 return 0; 472} 473 474/* 475 * Read a list of key IDs from the keyring's contents in binary form 476 * 477 * The keyring's semaphore is read-locked by the caller. This prevents someone 478 * from modifying it under us - which could cause us to read key IDs multiple 479 * times. 480 */ 481static long keyring_read(const struct key *keyring, 482 char *buffer, size_t buflen) 483{ 484 struct keyring_read_iterator_context ctx; 485 long ret; 486 487 kenter("{%d},,%zu", key_serial(keyring), buflen); 488 489 if (buflen & (sizeof(key_serial_t) - 1)) 490 return -EINVAL; 491 492 /* Copy as many key IDs as fit into the buffer */ 493 if (buffer && buflen) { 494 ctx.buffer = (key_serial_t *)buffer; 495 ctx.buflen = buflen; 496 ctx.count = 0; 497 ret = assoc_array_iterate(&keyring->keys, 498 keyring_read_iterator, &ctx); 499 if (ret < 0) { 500 kleave(" = %ld [iterate]", ret); 501 return ret; 502 } 503 } 504 505 /* Return the size of the buffer needed */ 506 ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t); 507 if (ret <= buflen) 508 kleave("= %ld [ok]", ret); 509 else 510 kleave("= %ld [buffer too small]", ret); 511 return ret; 512} 513 514/* 515 * Allocate a keyring and link into the destination keyring. 516 */ 517struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid, 518 const struct cred *cred, key_perm_t perm, 519 unsigned long flags, 520 struct key_restriction *restrict_link, 521 struct key *dest) 522{ 523 struct key *keyring; 524 int ret; 525 526 keyring = key_alloc(&key_type_keyring, description, 527 uid, gid, cred, perm, flags, restrict_link); 528 if (!IS_ERR(keyring)) { 529 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL); 530 if (ret < 0) { 531 key_put(keyring); 532 keyring = ERR_PTR(ret); 533 } 534 } 535 536 return keyring; 537} 538EXPORT_SYMBOL(keyring_alloc); 539 540/** 541 * restrict_link_reject - Give -EPERM to restrict link 542 * @keyring: The keyring being added to. 543 * @type: The type of key being added. 544 * @payload: The payload of the key intended to be added. 545 * @restriction_key: Keys providing additional data for evaluating restriction. 546 * 547 * Reject the addition of any links to a keyring. It can be overridden by 548 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when 549 * adding a key to a keyring. 550 * 551 * This is meant to be stored in a key_restriction structure which is passed 552 * in the restrict_link parameter to keyring_alloc(). 553 */ 554int restrict_link_reject(struct key *keyring, 555 const struct key_type *type, 556 const union key_payload *payload, 557 struct key *restriction_key) 558{ 559 return -EPERM; 560} 561 562/* 563 * By default, we keys found by getting an exact match on their descriptions. 564 */ 565bool key_default_cmp(const struct key *key, 566 const struct key_match_data *match_data) 567{ 568 return strcmp(key->description, match_data->raw_data) == 0; 569} 570 571/* 572 * Iteration function to consider each key found. 573 */ 574static int keyring_search_iterator(const void *object, void *iterator_data) 575{ 576 struct keyring_search_context *ctx = iterator_data; 577 const struct key *key = keyring_ptr_to_key(object); 578 unsigned long kflags = READ_ONCE(key->flags); 579 short state = READ_ONCE(key->state); 580 581 kenter("{%d}", key->serial); 582 583 /* ignore keys not of this type */ 584 if (key->type != ctx->index_key.type) { 585 kleave(" = 0 [!type]"); 586 return 0; 587 } 588 589 /* skip invalidated, revoked and expired keys */ 590 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 591 time64_t expiry = READ_ONCE(key->expiry); 592 593 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 594 (1 << KEY_FLAG_REVOKED))) { 595 ctx->result = ERR_PTR(-EKEYREVOKED); 596 kleave(" = %d [invrev]", ctx->skipped_ret); 597 goto skipped; 598 } 599 600 if (expiry && ctx->now >= expiry) { 601 if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED)) 602 ctx->result = ERR_PTR(-EKEYEXPIRED); 603 kleave(" = %d [expire]", ctx->skipped_ret); 604 goto skipped; 605 } 606 } 607 608 /* keys that don't match */ 609 if (!ctx->match_data.cmp(key, &ctx->match_data)) { 610 kleave(" = 0 [!match]"); 611 return 0; 612 } 613 614 /* key must have search permissions */ 615 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 616 key_task_permission(make_key_ref(key, ctx->possessed), 617 ctx->cred, KEY_NEED_SEARCH) < 0) { 618 ctx->result = ERR_PTR(-EACCES); 619 kleave(" = %d [!perm]", ctx->skipped_ret); 620 goto skipped; 621 } 622 623 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 624 /* we set a different error code if we pass a negative key */ 625 if (state < 0) { 626 ctx->result = ERR_PTR(state); 627 kleave(" = %d [neg]", ctx->skipped_ret); 628 goto skipped; 629 } 630 } 631 632 /* Found */ 633 ctx->result = make_key_ref(key, ctx->possessed); 634 kleave(" = 1 [found]"); 635 return 1; 636 637skipped: 638 return ctx->skipped_ret; 639} 640 641/* 642 * Search inside a keyring for a key. We can search by walking to it 643 * directly based on its index-key or we can iterate over the entire 644 * tree looking for it, based on the match function. 645 */ 646static int search_keyring(struct key *keyring, struct keyring_search_context *ctx) 647{ 648 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) { 649 const void *object; 650 651 object = assoc_array_find(&keyring->keys, 652 &keyring_assoc_array_ops, 653 &ctx->index_key); 654 return object ? ctx->iterator(object, ctx) : 0; 655 } 656 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx); 657} 658 659/* 660 * Search a tree of keyrings that point to other keyrings up to the maximum 661 * depth. 662 */ 663static bool search_nested_keyrings(struct key *keyring, 664 struct keyring_search_context *ctx) 665{ 666 struct { 667 struct key *keyring; 668 struct assoc_array_node *node; 669 int slot; 670 } stack[KEYRING_SEARCH_MAX_DEPTH]; 671 672 struct assoc_array_shortcut *shortcut; 673 struct assoc_array_node *node; 674 struct assoc_array_ptr *ptr; 675 struct key *key; 676 int sp = 0, slot; 677 678 kenter("{%d},{%s,%s}", 679 keyring->serial, 680 ctx->index_key.type->name, 681 ctx->index_key.description); 682 683#define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK) 684 BUG_ON((ctx->flags & STATE_CHECKS) == 0 || 685 (ctx->flags & STATE_CHECKS) == STATE_CHECKS); 686 687 if (ctx->index_key.description) 688 key_set_index_key(&ctx->index_key); 689 690 /* Check to see if this top-level keyring is what we are looking for 691 * and whether it is valid or not. 692 */ 693 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE || 694 keyring_compare_object(keyring, &ctx->index_key)) { 695 ctx->skipped_ret = 2; 696 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) { 697 case 1: 698 goto found; 699 case 2: 700 return false; 701 default: 702 break; 703 } 704 } 705 706 ctx->skipped_ret = 0; 707 708 /* Start processing a new keyring */ 709descend_to_keyring: 710 kdebug("descend to %d", keyring->serial); 711 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 712 (1 << KEY_FLAG_REVOKED))) 713 goto not_this_keyring; 714 715 /* Search through the keys in this keyring before its searching its 716 * subtrees. 717 */ 718 if (search_keyring(keyring, ctx)) 719 goto found; 720 721 /* Then manually iterate through the keyrings nested in this one. 722 * 723 * Start from the root node of the index tree. Because of the way the 724 * hash function has been set up, keyrings cluster on the leftmost 725 * branch of the root node (root slot 0) or in the root node itself. 726 * Non-keyrings avoid the leftmost branch of the root entirely (root 727 * slots 1-15). 728 */ 729 if (!(ctx->flags & KEYRING_SEARCH_RECURSE)) 730 goto not_this_keyring; 731 732 ptr = READ_ONCE(keyring->keys.root); 733 if (!ptr) 734 goto not_this_keyring; 735 736 if (assoc_array_ptr_is_shortcut(ptr)) { 737 /* If the root is a shortcut, either the keyring only contains 738 * keyring pointers (everything clusters behind root slot 0) or 739 * doesn't contain any keyring pointers. 740 */ 741 shortcut = assoc_array_ptr_to_shortcut(ptr); 742 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0) 743 goto not_this_keyring; 744 745 ptr = READ_ONCE(shortcut->next_node); 746 node = assoc_array_ptr_to_node(ptr); 747 goto begin_node; 748 } 749 750 node = assoc_array_ptr_to_node(ptr); 751 ptr = node->slots[0]; 752 if (!assoc_array_ptr_is_meta(ptr)) 753 goto begin_node; 754 755descend_to_node: 756 /* Descend to a more distal node in this keyring's content tree and go 757 * through that. 758 */ 759 kdebug("descend"); 760 if (assoc_array_ptr_is_shortcut(ptr)) { 761 shortcut = assoc_array_ptr_to_shortcut(ptr); 762 ptr = READ_ONCE(shortcut->next_node); 763 BUG_ON(!assoc_array_ptr_is_node(ptr)); 764 } 765 node = assoc_array_ptr_to_node(ptr); 766 767begin_node: 768 kdebug("begin_node"); 769 slot = 0; 770ascend_to_node: 771 /* Go through the slots in a node */ 772 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 773 ptr = READ_ONCE(node->slots[slot]); 774 775 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer) 776 goto descend_to_node; 777 778 if (!keyring_ptr_is_keyring(ptr)) 779 continue; 780 781 key = keyring_ptr_to_key(ptr); 782 783 if (sp >= KEYRING_SEARCH_MAX_DEPTH) { 784 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) { 785 ctx->result = ERR_PTR(-ELOOP); 786 return false; 787 } 788 goto not_this_keyring; 789 } 790 791 /* Search a nested keyring */ 792 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 793 key_task_permission(make_key_ref(key, ctx->possessed), 794 ctx->cred, KEY_NEED_SEARCH) < 0) 795 continue; 796 797 /* stack the current position */ 798 stack[sp].keyring = keyring; 799 stack[sp].node = node; 800 stack[sp].slot = slot; 801 sp++; 802 803 /* begin again with the new keyring */ 804 keyring = key; 805 goto descend_to_keyring; 806 } 807 808 /* We've dealt with all the slots in the current node, so now we need 809 * to ascend to the parent and continue processing there. 810 */ 811 ptr = READ_ONCE(node->back_pointer); 812 slot = node->parent_slot; 813 814 if (ptr && assoc_array_ptr_is_shortcut(ptr)) { 815 shortcut = assoc_array_ptr_to_shortcut(ptr); 816 ptr = READ_ONCE(shortcut->back_pointer); 817 slot = shortcut->parent_slot; 818 } 819 if (!ptr) 820 goto not_this_keyring; 821 node = assoc_array_ptr_to_node(ptr); 822 slot++; 823 824 /* If we've ascended to the root (zero backpointer), we must have just 825 * finished processing the leftmost branch rather than the root slots - 826 * so there can't be any more keyrings for us to find. 827 */ 828 if (node->back_pointer) { 829 kdebug("ascend %d", slot); 830 goto ascend_to_node; 831 } 832 833 /* The keyring we're looking at was disqualified or didn't contain a 834 * matching key. 835 */ 836not_this_keyring: 837 kdebug("not_this_keyring %d", sp); 838 if (sp <= 0) { 839 kleave(" = false"); 840 return false; 841 } 842 843 /* Resume the processing of a keyring higher up in the tree */ 844 sp--; 845 keyring = stack[sp].keyring; 846 node = stack[sp].node; 847 slot = stack[sp].slot + 1; 848 kdebug("ascend to %d [%d]", keyring->serial, slot); 849 goto ascend_to_node; 850 851 /* We found a viable match */ 852found: 853 key = key_ref_to_ptr(ctx->result); 854 key_check(key); 855 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) { 856 key->last_used_at = ctx->now; 857 keyring->last_used_at = ctx->now; 858 while (sp > 0) 859 stack[--sp].keyring->last_used_at = ctx->now; 860 } 861 kleave(" = true"); 862 return true; 863} 864 865/** 866 * keyring_search_rcu - Search a keyring tree for a matching key under RCU 867 * @keyring_ref: A pointer to the keyring with possession indicator. 868 * @ctx: The keyring search context. 869 * 870 * Search the supplied keyring tree for a key that matches the criteria given. 871 * The root keyring and any linked keyrings must grant Search permission to the 872 * caller to be searchable and keys can only be found if they too grant Search 873 * to the caller. The possession flag on the root keyring pointer controls use 874 * of the possessor bits in permissions checking of the entire tree. In 875 * addition, the LSM gets to forbid keyring searches and key matches. 876 * 877 * The search is performed as a breadth-then-depth search up to the prescribed 878 * limit (KEYRING_SEARCH_MAX_DEPTH). The caller must hold the RCU read lock to 879 * prevent keyrings from being destroyed or rearranged whilst they are being 880 * searched. 881 * 882 * Keys are matched to the type provided and are then filtered by the match 883 * function, which is given the description to use in any way it sees fit. The 884 * match function may use any attributes of a key that it wishes to 885 * determine the match. Normally the match function from the key type would be 886 * used. 887 * 888 * RCU can be used to prevent the keyring key lists from disappearing without 889 * the need to take lots of locks. 890 * 891 * Returns a pointer to the found key and increments the key usage count if 892 * successful; -EAGAIN if no matching keys were found, or if expired or revoked 893 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the 894 * specified keyring wasn't a keyring. 895 * 896 * In the case of a successful return, the possession attribute from 897 * @keyring_ref is propagated to the returned key reference. 898 */ 899key_ref_t keyring_search_rcu(key_ref_t keyring_ref, 900 struct keyring_search_context *ctx) 901{ 902 struct key *keyring; 903 long err; 904 905 ctx->iterator = keyring_search_iterator; 906 ctx->possessed = is_key_possessed(keyring_ref); 907 ctx->result = ERR_PTR(-EAGAIN); 908 909 keyring = key_ref_to_ptr(keyring_ref); 910 key_check(keyring); 911 912 if (keyring->type != &key_type_keyring) 913 return ERR_PTR(-ENOTDIR); 914 915 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) { 916 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH); 917 if (err < 0) 918 return ERR_PTR(err); 919 } 920 921 ctx->now = ktime_get_real_seconds(); 922 if (search_nested_keyrings(keyring, ctx)) 923 __key_get(key_ref_to_ptr(ctx->result)); 924 return ctx->result; 925} 926 927/** 928 * keyring_search - Search the supplied keyring tree for a matching key 929 * @keyring: The root of the keyring tree to be searched. 930 * @type: The type of keyring we want to find. 931 * @description: The name of the keyring we want to find. 932 * @recurse: True to search the children of @keyring also 933 * 934 * As keyring_search_rcu() above, but using the current task's credentials and 935 * type's default matching function and preferred search method. 936 */ 937key_ref_t keyring_search(key_ref_t keyring, 938 struct key_type *type, 939 const char *description, 940 bool recurse) 941{ 942 struct keyring_search_context ctx = { 943 .index_key.type = type, 944 .index_key.description = description, 945 .index_key.desc_len = strlen(description), 946 .cred = current_cred(), 947 .match_data.cmp = key_default_cmp, 948 .match_data.raw_data = description, 949 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 950 .flags = KEYRING_SEARCH_DO_STATE_CHECK, 951 }; 952 key_ref_t key; 953 int ret; 954 955 if (recurse) 956 ctx.flags |= KEYRING_SEARCH_RECURSE; 957 if (type->match_preparse) { 958 ret = type->match_preparse(&ctx.match_data); 959 if (ret < 0) 960 return ERR_PTR(ret); 961 } 962 963 rcu_read_lock(); 964 key = keyring_search_rcu(keyring, &ctx); 965 rcu_read_unlock(); 966 967 if (type->match_free) 968 type->match_free(&ctx.match_data); 969 return key; 970} 971EXPORT_SYMBOL(keyring_search); 972 973static struct key_restriction *keyring_restriction_alloc( 974 key_restrict_link_func_t check) 975{ 976 struct key_restriction *keyres = 977 kzalloc(sizeof(struct key_restriction), GFP_KERNEL); 978 979 if (!keyres) 980 return ERR_PTR(-ENOMEM); 981 982 keyres->check = check; 983 984 return keyres; 985} 986 987/* 988 * Semaphore to serialise restriction setup to prevent reference count 989 * cycles through restriction key pointers. 990 */ 991static DECLARE_RWSEM(keyring_serialise_restrict_sem); 992 993/* 994 * Check for restriction cycles that would prevent keyring garbage collection. 995 * keyring_serialise_restrict_sem must be held. 996 */ 997static bool keyring_detect_restriction_cycle(const struct key *dest_keyring, 998 struct key_restriction *keyres) 999{ 1000 while (keyres && keyres->key && 1001 keyres->key->type == &key_type_keyring) { 1002 if (keyres->key == dest_keyring) 1003 return true; 1004 1005 keyres = keyres->key->restrict_link; 1006 } 1007 1008 return false; 1009} 1010 1011/** 1012 * keyring_restrict - Look up and apply a restriction to a keyring 1013 * @keyring_ref: The keyring to be restricted 1014 * @type: The key type that will provide the restriction checker. 1015 * @restriction: The restriction options to apply to the keyring 1016 * 1017 * Look up a keyring and apply a restriction to it. The restriction is managed 1018 * by the specific key type, but can be configured by the options specified in 1019 * the restriction string. 1020 */ 1021int keyring_restrict(key_ref_t keyring_ref, const char *type, 1022 const char *restriction) 1023{ 1024 struct key *keyring; 1025 struct key_type *restrict_type = NULL; 1026 struct key_restriction *restrict_link; 1027 int ret = 0; 1028 1029 keyring = key_ref_to_ptr(keyring_ref); 1030 key_check(keyring); 1031 1032 if (keyring->type != &key_type_keyring) 1033 return -ENOTDIR; 1034 1035 if (!type) { 1036 restrict_link = keyring_restriction_alloc(restrict_link_reject); 1037 } else { 1038 restrict_type = key_type_lookup(type); 1039 1040 if (IS_ERR(restrict_type)) 1041 return PTR_ERR(restrict_type); 1042 1043 if (!restrict_type->lookup_restriction) { 1044 ret = -ENOENT; 1045 goto error; 1046 } 1047 1048 restrict_link = restrict_type->lookup_restriction(restriction); 1049 } 1050 1051 if (IS_ERR(restrict_link)) { 1052 ret = PTR_ERR(restrict_link); 1053 goto error; 1054 } 1055 1056 down_write(&keyring->sem); 1057 down_write(&keyring_serialise_restrict_sem); 1058 1059 if (keyring->restrict_link) { 1060 ret = -EEXIST; 1061 } else if (keyring_detect_restriction_cycle(keyring, restrict_link)) { 1062 ret = -EDEADLK; 1063 } else { 1064 keyring->restrict_link = restrict_link; 1065 notify_key(keyring, NOTIFY_KEY_SETATTR, 0); 1066 } 1067 1068 up_write(&keyring_serialise_restrict_sem); 1069 up_write(&keyring->sem); 1070 1071 if (ret < 0) { 1072 key_put(restrict_link->key); 1073 kfree(restrict_link); 1074 } 1075 1076error: 1077 if (restrict_type) 1078 key_type_put(restrict_type); 1079 1080 return ret; 1081} 1082EXPORT_SYMBOL(keyring_restrict); 1083 1084/* 1085 * Search the given keyring for a key that might be updated. 1086 * 1087 * The caller must guarantee that the keyring is a keyring and that the 1088 * permission is granted to modify the keyring as no check is made here. The 1089 * caller must also hold a lock on the keyring semaphore. 1090 * 1091 * Returns a pointer to the found key with usage count incremented if 1092 * successful and returns NULL if not found. Revoked and invalidated keys are 1093 * skipped over. 1094 * 1095 * If successful, the possession indicator is propagated from the keyring ref 1096 * to the returned key reference. 1097 */ 1098key_ref_t find_key_to_update(key_ref_t keyring_ref, 1099 const struct keyring_index_key *index_key) 1100{ 1101 struct key *keyring, *key; 1102 const void *object; 1103 1104 keyring = key_ref_to_ptr(keyring_ref); 1105 1106 kenter("{%d},{%s,%s}", 1107 keyring->serial, index_key->type->name, index_key->description); 1108 1109 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops, 1110 index_key); 1111 1112 if (object) 1113 goto found; 1114 1115 kleave(" = NULL"); 1116 return NULL; 1117 1118found: 1119 key = keyring_ptr_to_key(object); 1120 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) | 1121 (1 << KEY_FLAG_REVOKED))) { 1122 kleave(" = NULL [x]"); 1123 return NULL; 1124 } 1125 __key_get(key); 1126 kleave(" = {%d}", key->serial); 1127 return make_key_ref(key, is_key_possessed(keyring_ref)); 1128} 1129 1130/* 1131 * Find a keyring with the specified name. 1132 * 1133 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a 1134 * user in the current user namespace are considered. If @uid_keyring is %true, 1135 * the keyring additionally must have been allocated as a user or user session 1136 * keyring; otherwise, it must grant Search permission directly to the caller. 1137 * 1138 * Returns a pointer to the keyring with the keyring's refcount having being 1139 * incremented on success. -ENOKEY is returned if a key could not be found. 1140 */ 1141struct key *find_keyring_by_name(const char *name, bool uid_keyring) 1142{ 1143 struct user_namespace *ns = current_user_ns(); 1144 struct key *keyring; 1145 1146 if (!name) 1147 return ERR_PTR(-EINVAL); 1148 1149 read_lock(&keyring_name_lock); 1150 1151 /* Search this hash bucket for a keyring with a matching name that 1152 * grants Search permission and that hasn't been revoked 1153 */ 1154 list_for_each_entry(keyring, &ns->keyring_name_list, name_link) { 1155 if (!kuid_has_mapping(ns, keyring->user->uid)) 1156 continue; 1157 1158 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 1159 continue; 1160 1161 if (strcmp(keyring->description, name) != 0) 1162 continue; 1163 1164 if (uid_keyring) { 1165 if (!test_bit(KEY_FLAG_UID_KEYRING, 1166 &keyring->flags)) 1167 continue; 1168 } else { 1169 if (key_permission(make_key_ref(keyring, 0), 1170 KEY_NEED_SEARCH) < 0) 1171 continue; 1172 } 1173 1174 /* we've got a match but we might end up racing with 1175 * key_cleanup() if the keyring is currently 'dead' 1176 * (ie. it has a zero usage count) */ 1177 if (!refcount_inc_not_zero(&keyring->usage)) 1178 continue; 1179 keyring->last_used_at = ktime_get_real_seconds(); 1180 goto out; 1181 } 1182 1183 keyring = ERR_PTR(-ENOKEY); 1184out: 1185 read_unlock(&keyring_name_lock); 1186 return keyring; 1187} 1188 1189static int keyring_detect_cycle_iterator(const void *object, 1190 void *iterator_data) 1191{ 1192 struct keyring_search_context *ctx = iterator_data; 1193 const struct key *key = keyring_ptr_to_key(object); 1194 1195 kenter("{%d}", key->serial); 1196 1197 /* We might get a keyring with matching index-key that is nonetheless a 1198 * different keyring. */ 1199 if (key != ctx->match_data.raw_data) 1200 return 0; 1201 1202 ctx->result = ERR_PTR(-EDEADLK); 1203 return 1; 1204} 1205 1206/* 1207 * See if a cycle will be created by inserting acyclic tree B in acyclic 1208 * tree A at the topmost level (ie: as a direct child of A). 1209 * 1210 * Since we are adding B to A at the top level, checking for cycles should just 1211 * be a matter of seeing if node A is somewhere in tree B. 1212 */ 1213static int keyring_detect_cycle(struct key *A, struct key *B) 1214{ 1215 struct keyring_search_context ctx = { 1216 .index_key = A->index_key, 1217 .match_data.raw_data = A, 1218 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 1219 .iterator = keyring_detect_cycle_iterator, 1220 .flags = (KEYRING_SEARCH_NO_STATE_CHECK | 1221 KEYRING_SEARCH_NO_UPDATE_TIME | 1222 KEYRING_SEARCH_NO_CHECK_PERM | 1223 KEYRING_SEARCH_DETECT_TOO_DEEP | 1224 KEYRING_SEARCH_RECURSE), 1225 }; 1226 1227 rcu_read_lock(); 1228 search_nested_keyrings(B, &ctx); 1229 rcu_read_unlock(); 1230 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result); 1231} 1232 1233/* 1234 * Lock keyring for link. 1235 */ 1236int __key_link_lock(struct key *keyring, 1237 const struct keyring_index_key *index_key) 1238 __acquires(&keyring->sem) 1239 __acquires(&keyring_serialise_link_lock) 1240{ 1241 if (keyring->type != &key_type_keyring) 1242 return -ENOTDIR; 1243 1244 down_write(&keyring->sem); 1245 1246 /* Serialise link/link calls to prevent parallel calls causing a cycle 1247 * when linking two keyring in opposite orders. 1248 */ 1249 if (index_key->type == &key_type_keyring) 1250 mutex_lock(&keyring_serialise_link_lock); 1251 1252 return 0; 1253} 1254 1255/* 1256 * Lock keyrings for move (link/unlink combination). 1257 */ 1258int __key_move_lock(struct key *l_keyring, struct key *u_keyring, 1259 const struct keyring_index_key *index_key) 1260 __acquires(&l_keyring->sem) 1261 __acquires(&u_keyring->sem) 1262 __acquires(&keyring_serialise_link_lock) 1263{ 1264 if (l_keyring->type != &key_type_keyring || 1265 u_keyring->type != &key_type_keyring) 1266 return -ENOTDIR; 1267 1268 /* We have to be very careful here to take the keyring locks in the 1269 * right order, lest we open ourselves to deadlocking against another 1270 * move operation. 1271 */ 1272 if (l_keyring < u_keyring) { 1273 down_write(&l_keyring->sem); 1274 down_write_nested(&u_keyring->sem, 1); 1275 } else { 1276 down_write(&u_keyring->sem); 1277 down_write_nested(&l_keyring->sem, 1); 1278 } 1279 1280 /* Serialise link/link calls to prevent parallel calls causing a cycle 1281 * when linking two keyring in opposite orders. 1282 */ 1283 if (index_key->type == &key_type_keyring) 1284 mutex_lock(&keyring_serialise_link_lock); 1285 1286 return 0; 1287} 1288 1289/* 1290 * Preallocate memory so that a key can be linked into to a keyring. 1291 */ 1292int __key_link_begin(struct key *keyring, 1293 const struct keyring_index_key *index_key, 1294 struct assoc_array_edit **_edit) 1295{ 1296 struct assoc_array_edit *edit; 1297 int ret; 1298 1299 kenter("%d,%s,%s,", 1300 keyring->serial, index_key->type->name, index_key->description); 1301 1302 BUG_ON(index_key->desc_len == 0); 1303 BUG_ON(*_edit != NULL); 1304 1305 *_edit = NULL; 1306 1307 ret = -EKEYREVOKED; 1308 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 1309 goto error; 1310 1311 /* Create an edit script that will insert/replace the key in the 1312 * keyring tree. 1313 */ 1314 edit = assoc_array_insert(&keyring->keys, 1315 &keyring_assoc_array_ops, 1316 index_key, 1317 NULL); 1318 if (IS_ERR(edit)) { 1319 ret = PTR_ERR(edit); 1320 goto error; 1321 } 1322 1323 /* If we're not replacing a link in-place then we're going to need some 1324 * extra quota. 1325 */ 1326 if (!edit->dead_leaf) { 1327 ret = key_payload_reserve(keyring, 1328 keyring->datalen + KEYQUOTA_LINK_BYTES); 1329 if (ret < 0) 1330 goto error_cancel; 1331 } 1332 1333 *_edit = edit; 1334 kleave(" = 0"); 1335 return 0; 1336 1337error_cancel: 1338 assoc_array_cancel_edit(edit); 1339error: 1340 kleave(" = %d", ret); 1341 return ret; 1342} 1343 1344/* 1345 * Check already instantiated keys aren't going to be a problem. 1346 * 1347 * The caller must have called __key_link_begin(). Don't need to call this for 1348 * keys that were created since __key_link_begin() was called. 1349 */ 1350int __key_link_check_live_key(struct key *keyring, struct key *key) 1351{ 1352 if (key->type == &key_type_keyring) 1353 /* check that we aren't going to create a cycle by linking one 1354 * keyring to another */ 1355 return keyring_detect_cycle(keyring, key); 1356 return 0; 1357} 1358 1359/* 1360 * Link a key into to a keyring. 1361 * 1362 * Must be called with __key_link_begin() having being called. Discards any 1363 * already extant link to matching key if there is one, so that each keyring 1364 * holds at most one link to any given key of a particular type+description 1365 * combination. 1366 */ 1367void __key_link(struct key *keyring, struct key *key, 1368 struct assoc_array_edit **_edit) 1369{ 1370 __key_get(key); 1371 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key)); 1372 assoc_array_apply_edit(*_edit); 1373 *_edit = NULL; 1374 notify_key(keyring, NOTIFY_KEY_LINKED, key_serial(key)); 1375} 1376 1377/* 1378 * Finish linking a key into to a keyring. 1379 * 1380 * Must be called with __key_link_begin() having being called. 1381 */ 1382void __key_link_end(struct key *keyring, 1383 const struct keyring_index_key *index_key, 1384 struct assoc_array_edit *edit) 1385 __releases(&keyring->sem) 1386 __releases(&keyring_serialise_link_lock) 1387{ 1388 BUG_ON(index_key->type == NULL); 1389 kenter("%d,%s,", keyring->serial, index_key->type->name); 1390 1391 if (edit) { 1392 if (!edit->dead_leaf) { 1393 key_payload_reserve(keyring, 1394 keyring->datalen - KEYQUOTA_LINK_BYTES); 1395 } 1396 assoc_array_cancel_edit(edit); 1397 } 1398 up_write(&keyring->sem); 1399 1400 if (index_key->type == &key_type_keyring) 1401 mutex_unlock(&keyring_serialise_link_lock); 1402} 1403 1404/* 1405 * Check addition of keys to restricted keyrings. 1406 */ 1407static int __key_link_check_restriction(struct key *keyring, struct key *key) 1408{ 1409 if (!keyring->restrict_link || !keyring->restrict_link->check) 1410 return 0; 1411 return keyring->restrict_link->check(keyring, key->type, &key->payload, 1412 keyring->restrict_link->key); 1413} 1414 1415/** 1416 * key_link - Link a key to a keyring 1417 * @keyring: The keyring to make the link in. 1418 * @key: The key to link to. 1419 * 1420 * Make a link in a keyring to a key, such that the keyring holds a reference 1421 * on that key and the key can potentially be found by searching that keyring. 1422 * 1423 * This function will write-lock the keyring's semaphore and will consume some 1424 * of the user's key data quota to hold the link. 1425 * 1426 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, 1427 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is 1428 * full, -EDQUOT if there is insufficient key data quota remaining to add 1429 * another link or -ENOMEM if there's insufficient memory. 1430 * 1431 * It is assumed that the caller has checked that it is permitted for a link to 1432 * be made (the keyring should have Write permission and the key Link 1433 * permission). 1434 */ 1435int key_link(struct key *keyring, struct key *key) 1436{ 1437 struct assoc_array_edit *edit = NULL; 1438 int ret; 1439 1440 kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage)); 1441 1442 key_check(keyring); 1443 key_check(key); 1444 1445 ret = __key_link_lock(keyring, &key->index_key); 1446 if (ret < 0) 1447 goto error; 1448 1449 ret = __key_link_begin(keyring, &key->index_key, &edit); 1450 if (ret < 0) 1451 goto error_end; 1452 1453 kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage)); 1454 ret = __key_link_check_restriction(keyring, key); 1455 if (ret == 0) 1456 ret = __key_link_check_live_key(keyring, key); 1457 if (ret == 0) 1458 __key_link(keyring, key, &edit); 1459 1460error_end: 1461 __key_link_end(keyring, &key->index_key, edit); 1462error: 1463 kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage)); 1464 return ret; 1465} 1466EXPORT_SYMBOL(key_link); 1467 1468/* 1469 * Lock a keyring for unlink. 1470 */ 1471static int __key_unlink_lock(struct key *keyring) 1472 __acquires(&keyring->sem) 1473{ 1474 if (keyring->type != &key_type_keyring) 1475 return -ENOTDIR; 1476 1477 down_write(&keyring->sem); 1478 return 0; 1479} 1480 1481/* 1482 * Begin the process of unlinking a key from a keyring. 1483 */ 1484static int __key_unlink_begin(struct key *keyring, struct key *key, 1485 struct assoc_array_edit **_edit) 1486{ 1487 struct assoc_array_edit *edit; 1488 1489 BUG_ON(*_edit != NULL); 1490 1491 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops, 1492 &key->index_key); 1493 if (IS_ERR(edit)) 1494 return PTR_ERR(edit); 1495 1496 if (!edit) 1497 return -ENOENT; 1498 1499 *_edit = edit; 1500 return 0; 1501} 1502 1503/* 1504 * Apply an unlink change. 1505 */ 1506static void __key_unlink(struct key *keyring, struct key *key, 1507 struct assoc_array_edit **_edit) 1508{ 1509 assoc_array_apply_edit(*_edit); 1510 notify_key(keyring, NOTIFY_KEY_UNLINKED, key_serial(key)); 1511 *_edit = NULL; 1512 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES); 1513} 1514 1515/* 1516 * Finish unlinking a key from to a keyring. 1517 */ 1518static void __key_unlink_end(struct key *keyring, 1519 struct key *key, 1520 struct assoc_array_edit *edit) 1521 __releases(&keyring->sem) 1522{ 1523 if (edit) 1524 assoc_array_cancel_edit(edit); 1525 up_write(&keyring->sem); 1526} 1527 1528/** 1529 * key_unlink - Unlink the first link to a key from a keyring. 1530 * @keyring: The keyring to remove the link from. 1531 * @key: The key the link is to. 1532 * 1533 * Remove a link from a keyring to a key. 1534 * 1535 * This function will write-lock the keyring's semaphore. 1536 * 1537 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if 1538 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient 1539 * memory. 1540 * 1541 * It is assumed that the caller has checked that it is permitted for a link to 1542 * be removed (the keyring should have Write permission; no permissions are 1543 * required on the key). 1544 */ 1545int key_unlink(struct key *keyring, struct key *key) 1546{ 1547 struct assoc_array_edit *edit = NULL; 1548 int ret; 1549 1550 key_check(keyring); 1551 key_check(key); 1552 1553 ret = __key_unlink_lock(keyring); 1554 if (ret < 0) 1555 return ret; 1556 1557 ret = __key_unlink_begin(keyring, key, &edit); 1558 if (ret == 0) 1559 __key_unlink(keyring, key, &edit); 1560 __key_unlink_end(keyring, key, edit); 1561 return ret; 1562} 1563EXPORT_SYMBOL(key_unlink); 1564 1565/** 1566 * key_move - Move a key from one keyring to another 1567 * @key: The key to move 1568 * @from_keyring: The keyring to remove the link from. 1569 * @to_keyring: The keyring to make the link in. 1570 * @flags: Qualifying flags, such as KEYCTL_MOVE_EXCL. 1571 * 1572 * Make a link in @to_keyring to a key, such that the keyring holds a reference 1573 * on that key and the key can potentially be found by searching that keyring 1574 * whilst simultaneously removing a link to the key from @from_keyring. 1575 * 1576 * This function will write-lock both keyring's semaphores and will consume 1577 * some of the user's key data quota to hold the link on @to_keyring. 1578 * 1579 * Returns 0 if successful, -ENOTDIR if either keyring isn't a keyring, 1580 * -EKEYREVOKED if either keyring has been revoked, -ENFILE if the second 1581 * keyring is full, -EDQUOT if there is insufficient key data quota remaining 1582 * to add another link or -ENOMEM if there's insufficient memory. If 1583 * KEYCTL_MOVE_EXCL is set, then -EEXIST will be returned if there's already a 1584 * matching key in @to_keyring. 1585 * 1586 * It is assumed that the caller has checked that it is permitted for a link to 1587 * be made (the keyring should have Write permission and the key Link 1588 * permission). 1589 */ 1590int key_move(struct key *key, 1591 struct key *from_keyring, 1592 struct key *to_keyring, 1593 unsigned int flags) 1594{ 1595 struct assoc_array_edit *from_edit = NULL, *to_edit = NULL; 1596 int ret; 1597 1598 kenter("%d,%d,%d", key->serial, from_keyring->serial, to_keyring->serial); 1599 1600 if (from_keyring == to_keyring) 1601 return 0; 1602 1603 key_check(key); 1604 key_check(from_keyring); 1605 key_check(to_keyring); 1606 1607 ret = __key_move_lock(from_keyring, to_keyring, &key->index_key); 1608 if (ret < 0) 1609 goto out; 1610 ret = __key_unlink_begin(from_keyring, key, &from_edit); 1611 if (ret < 0) 1612 goto error; 1613 ret = __key_link_begin(to_keyring, &key->index_key, &to_edit); 1614 if (ret < 0) 1615 goto error; 1616 1617 ret = -EEXIST; 1618 if (to_edit->dead_leaf && (flags & KEYCTL_MOVE_EXCL)) 1619 goto error; 1620 1621 ret = __key_link_check_restriction(to_keyring, key); 1622 if (ret < 0) 1623 goto error; 1624 ret = __key_link_check_live_key(to_keyring, key); 1625 if (ret < 0) 1626 goto error; 1627 1628 __key_unlink(from_keyring, key, &from_edit); 1629 __key_link(to_keyring, key, &to_edit); 1630error: 1631 __key_link_end(to_keyring, &key->index_key, to_edit); 1632 __key_unlink_end(from_keyring, key, from_edit); 1633out: 1634 kleave(" = %d", ret); 1635 return ret; 1636} 1637EXPORT_SYMBOL(key_move); 1638 1639/** 1640 * keyring_clear - Clear a keyring 1641 * @keyring: The keyring to clear. 1642 * 1643 * Clear the contents of the specified keyring. 1644 * 1645 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring. 1646 */ 1647int keyring_clear(struct key *keyring) 1648{ 1649 struct assoc_array_edit *edit; 1650 int ret; 1651 1652 if (keyring->type != &key_type_keyring) 1653 return -ENOTDIR; 1654 1655 down_write(&keyring->sem); 1656 1657 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1658 if (IS_ERR(edit)) { 1659 ret = PTR_ERR(edit); 1660 } else { 1661 if (edit) 1662 assoc_array_apply_edit(edit); 1663 notify_key(keyring, NOTIFY_KEY_CLEARED, 0); 1664 key_payload_reserve(keyring, 0); 1665 ret = 0; 1666 } 1667 1668 up_write(&keyring->sem); 1669 return ret; 1670} 1671EXPORT_SYMBOL(keyring_clear); 1672 1673/* 1674 * Dispose of the links from a revoked keyring. 1675 * 1676 * This is called with the key sem write-locked. 1677 */ 1678static void keyring_revoke(struct key *keyring) 1679{ 1680 struct assoc_array_edit *edit; 1681 1682 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1683 if (!IS_ERR(edit)) { 1684 if (edit) 1685 assoc_array_apply_edit(edit); 1686 key_payload_reserve(keyring, 0); 1687 } 1688} 1689 1690static bool keyring_gc_select_iterator(void *object, void *iterator_data) 1691{ 1692 struct key *key = keyring_ptr_to_key(object); 1693 time64_t *limit = iterator_data; 1694 1695 if (key_is_dead(key, *limit)) 1696 return false; 1697 key_get(key); 1698 return true; 1699} 1700 1701static int keyring_gc_check_iterator(const void *object, void *iterator_data) 1702{ 1703 const struct key *key = keyring_ptr_to_key(object); 1704 time64_t *limit = iterator_data; 1705 1706 key_check(key); 1707 return key_is_dead(key, *limit); 1708} 1709 1710/* 1711 * Garbage collect pointers from a keyring. 1712 * 1713 * Not called with any locks held. The keyring's key struct will not be 1714 * deallocated under us as only our caller may deallocate it. 1715 */ 1716void keyring_gc(struct key *keyring, time64_t limit) 1717{ 1718 int result; 1719 1720 kenter("%x{%s}", keyring->serial, keyring->description ?: ""); 1721 1722 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 1723 (1 << KEY_FLAG_REVOKED))) 1724 goto dont_gc; 1725 1726 /* scan the keyring looking for dead keys */ 1727 rcu_read_lock(); 1728 result = assoc_array_iterate(&keyring->keys, 1729 keyring_gc_check_iterator, &limit); 1730 rcu_read_unlock(); 1731 if (result == true) 1732 goto do_gc; 1733 1734dont_gc: 1735 kleave(" [no gc]"); 1736 return; 1737 1738do_gc: 1739 down_write(&keyring->sem); 1740 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops, 1741 keyring_gc_select_iterator, &limit); 1742 up_write(&keyring->sem); 1743 kleave(" [gc]"); 1744} 1745 1746/* 1747 * Garbage collect restriction pointers from a keyring. 1748 * 1749 * Keyring restrictions are associated with a key type, and must be cleaned 1750 * up if the key type is unregistered. The restriction is altered to always 1751 * reject additional keys so a keyring cannot be opened up by unregistering 1752 * a key type. 1753 * 1754 * Not called with any keyring locks held. The keyring's key struct will not 1755 * be deallocated under us as only our caller may deallocate it. 1756 * 1757 * The caller is required to hold key_types_sem and dead_type->sem. This is 1758 * fulfilled by key_gc_keytype() holding the locks on behalf of 1759 * key_garbage_collector(), which it invokes on a workqueue. 1760 */ 1761void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type) 1762{ 1763 struct key_restriction *keyres; 1764 1765 kenter("%x{%s}", keyring->serial, keyring->description ?: ""); 1766 1767 /* 1768 * keyring->restrict_link is only assigned at key allocation time 1769 * or with the key type locked, so the only values that could be 1770 * concurrently assigned to keyring->restrict_link are for key 1771 * types other than dead_type. Given this, it's ok to check 1772 * the key type before acquiring keyring->sem. 1773 */ 1774 if (!dead_type || !keyring->restrict_link || 1775 keyring->restrict_link->keytype != dead_type) { 1776 kleave(" [no restriction gc]"); 1777 return; 1778 } 1779 1780 /* Lock the keyring to ensure that a link is not in progress */ 1781 down_write(&keyring->sem); 1782 1783 keyres = keyring->restrict_link; 1784 1785 keyres->check = restrict_link_reject; 1786 1787 key_put(keyres->key); 1788 keyres->key = NULL; 1789 keyres->keytype = NULL; 1790 1791 up_write(&keyring->sem); 1792 1793 kleave(" [restriction gc]"); 1794}