cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

keyring.c (48873B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/* Keyring handling
      3 *
      4 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
      5 * Written by David Howells (dhowells@redhat.com)
      6 */
      7
      8#include <linux/export.h>
      9#include <linux/init.h>
     10#include <linux/sched.h>
     11#include <linux/slab.h>
     12#include <linux/security.h>
     13#include <linux/seq_file.h>
     14#include <linux/err.h>
     15#include <linux/user_namespace.h>
     16#include <linux/nsproxy.h>
     17#include <keys/keyring-type.h>
     18#include <keys/user-type.h>
     19#include <linux/assoc_array_priv.h>
     20#include <linux/uaccess.h>
     21#include <net/net_namespace.h>
     22#include "internal.h"
     23
     24/*
     25 * When plumbing the depths of the key tree, this sets a hard limit
     26 * set on how deep we're willing to go.
     27 */
     28#define KEYRING_SEARCH_MAX_DEPTH 6
     29
     30/*
     31 * We mark pointers we pass to the associative array with bit 1 set if
     32 * they're keyrings and clear otherwise.
     33 */
     34#define KEYRING_PTR_SUBTYPE	0x2UL
     35
     36static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
     37{
     38	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
     39}
     40static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
     41{
     42	void *object = assoc_array_ptr_to_leaf(x);
     43	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
     44}
     45static inline void *keyring_key_to_ptr(struct key *key)
     46{
     47	if (key->type == &key_type_keyring)
     48		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
     49	return key;
     50}
     51
     52static DEFINE_RWLOCK(keyring_name_lock);
     53
     54/*
     55 * Clean up the bits of user_namespace that belong to us.
     56 */
     57void key_free_user_ns(struct user_namespace *ns)
     58{
     59	write_lock(&keyring_name_lock);
     60	list_del_init(&ns->keyring_name_list);
     61	write_unlock(&keyring_name_lock);
     62
     63	key_put(ns->user_keyring_register);
     64#ifdef CONFIG_PERSISTENT_KEYRINGS
     65	key_put(ns->persistent_keyring_register);
     66#endif
     67}
     68
     69/*
     70 * The keyring key type definition.  Keyrings are simply keys of this type and
     71 * can be treated as ordinary keys in addition to having their own special
     72 * operations.
     73 */
     74static int keyring_preparse(struct key_preparsed_payload *prep);
     75static void keyring_free_preparse(struct key_preparsed_payload *prep);
     76static int keyring_instantiate(struct key *keyring,
     77			       struct key_preparsed_payload *prep);
     78static void keyring_revoke(struct key *keyring);
     79static void keyring_destroy(struct key *keyring);
     80static void keyring_describe(const struct key *keyring, struct seq_file *m);
     81static long keyring_read(const struct key *keyring,
     82			 char __user *buffer, size_t buflen);
     83
     84struct key_type key_type_keyring = {
     85	.name		= "keyring",
     86	.def_datalen	= 0,
     87	.preparse	= keyring_preparse,
     88	.free_preparse	= keyring_free_preparse,
     89	.instantiate	= keyring_instantiate,
     90	.revoke		= keyring_revoke,
     91	.destroy	= keyring_destroy,
     92	.describe	= keyring_describe,
     93	.read		= keyring_read,
     94};
     95EXPORT_SYMBOL(key_type_keyring);
     96
     97/*
     98 * Semaphore to serialise link/link calls to prevent two link calls in parallel
     99 * introducing a cycle.
    100 */
    101static DEFINE_MUTEX(keyring_serialise_link_lock);
    102
    103/*
    104 * Publish the name of a keyring so that it can be found by name (if it has
    105 * one and it doesn't begin with a dot).
    106 */
    107static void keyring_publish_name(struct key *keyring)
    108{
    109	struct user_namespace *ns = current_user_ns();
    110
    111	if (keyring->description &&
    112	    keyring->description[0] &&
    113	    keyring->description[0] != '.') {
    114		write_lock(&keyring_name_lock);
    115		list_add_tail(&keyring->name_link, &ns->keyring_name_list);
    116		write_unlock(&keyring_name_lock);
    117	}
    118}
    119
    120/*
    121 * Preparse a keyring payload
    122 */
    123static int keyring_preparse(struct key_preparsed_payload *prep)
    124{
    125	return prep->datalen != 0 ? -EINVAL : 0;
    126}
    127
    128/*
    129 * Free a preparse of a user defined key payload
    130 */
    131static void keyring_free_preparse(struct key_preparsed_payload *prep)
    132{
    133}
    134
    135/*
    136 * Initialise a keyring.
    137 *
    138 * Returns 0 on success, -EINVAL if given any data.
    139 */
    140static int keyring_instantiate(struct key *keyring,
    141			       struct key_preparsed_payload *prep)
    142{
    143	assoc_array_init(&keyring->keys);
    144	/* make the keyring available by name if it has one */
    145	keyring_publish_name(keyring);
    146	return 0;
    147}
    148
    149/*
    150 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
    151 * fold the carry back too, but that requires inline asm.
    152 */
    153static u64 mult_64x32_and_fold(u64 x, u32 y)
    154{
    155	u64 hi = (u64)(u32)(x >> 32) * y;
    156	u64 lo = (u64)(u32)(x) * y;
    157	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
    158}
    159
    160/*
    161 * Hash a key type and description.
    162 */
    163static void hash_key_type_and_desc(struct keyring_index_key *index_key)
    164{
    165	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
    166	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
    167	const char *description = index_key->description;
    168	unsigned long hash, type;
    169	u32 piece;
    170	u64 acc;
    171	int n, desc_len = index_key->desc_len;
    172
    173	type = (unsigned long)index_key->type;
    174	acc = mult_64x32_and_fold(type, desc_len + 13);
    175	acc = mult_64x32_and_fold(acc, 9207);
    176	piece = (unsigned long)index_key->domain_tag;
    177	acc = mult_64x32_and_fold(acc, piece);
    178	acc = mult_64x32_and_fold(acc, 9207);
    179
    180	for (;;) {
    181		n = desc_len;
    182		if (n <= 0)
    183			break;
    184		if (n > 4)
    185			n = 4;
    186		piece = 0;
    187		memcpy(&piece, description, n);
    188		description += n;
    189		desc_len -= n;
    190		acc = mult_64x32_and_fold(acc, piece);
    191		acc = mult_64x32_and_fold(acc, 9207);
    192	}
    193
    194	/* Fold the hash down to 32 bits if need be. */
    195	hash = acc;
    196	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
    197		hash ^= acc >> 32;
    198
    199	/* Squidge all the keyrings into a separate part of the tree to
    200	 * ordinary keys by making sure the lowest level segment in the hash is
    201	 * zero for keyrings and non-zero otherwise.
    202	 */
    203	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
    204		hash |= (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
    205	else if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
    206		hash = (hash + (hash << level_shift)) & ~fan_mask;
    207	index_key->hash = hash;
    208}
    209
    210/*
    211 * Finalise an index key to include a part of the description actually in the
    212 * index key, to set the domain tag and to calculate the hash.
    213 */
    214void key_set_index_key(struct keyring_index_key *index_key)
    215{
    216	static struct key_tag default_domain_tag = { .usage = REFCOUNT_INIT(1), };
    217	size_t n = min_t(size_t, index_key->desc_len, sizeof(index_key->desc));
    218
    219	memcpy(index_key->desc, index_key->description, n);
    220
    221	if (!index_key->domain_tag) {
    222		if (index_key->type->flags & KEY_TYPE_NET_DOMAIN)
    223			index_key->domain_tag = current->nsproxy->net_ns->key_domain;
    224		else
    225			index_key->domain_tag = &default_domain_tag;
    226	}
    227
    228	hash_key_type_and_desc(index_key);
    229}
    230
    231/**
    232 * key_put_tag - Release a ref on a tag.
    233 * @tag: The tag to release.
    234 *
    235 * This releases a reference the given tag and returns true if that ref was the
    236 * last one.
    237 */
    238bool key_put_tag(struct key_tag *tag)
    239{
    240	if (refcount_dec_and_test(&tag->usage)) {
    241		kfree_rcu(tag, rcu);
    242		return true;
    243	}
    244
    245	return false;
    246}
    247
    248/**
    249 * key_remove_domain - Kill off a key domain and gc its keys
    250 * @domain_tag: The domain tag to release.
    251 *
    252 * This marks a domain tag as being dead and releases a ref on it.  If that
    253 * wasn't the last reference, the garbage collector is poked to try and delete
    254 * all keys that were in the domain.
    255 */
    256void key_remove_domain(struct key_tag *domain_tag)
    257{
    258	domain_tag->removed = true;
    259	if (!key_put_tag(domain_tag))
    260		key_schedule_gc_links();
    261}
    262
    263/*
    264 * Build the next index key chunk.
    265 *
    266 * We return it one word-sized chunk at a time.
    267 */
    268static unsigned long keyring_get_key_chunk(const void *data, int level)
    269{
    270	const struct keyring_index_key *index_key = data;
    271	unsigned long chunk = 0;
    272	const u8 *d;
    273	int desc_len = index_key->desc_len, n = sizeof(chunk);
    274
    275	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
    276	switch (level) {
    277	case 0:
    278		return index_key->hash;
    279	case 1:
    280		return index_key->x;
    281	case 2:
    282		return (unsigned long)index_key->type;
    283	case 3:
    284		return (unsigned long)index_key->domain_tag;
    285	default:
    286		level -= 4;
    287		if (desc_len <= sizeof(index_key->desc))
    288			return 0;
    289
    290		d = index_key->description + sizeof(index_key->desc);
    291		d += level * sizeof(long);
    292		desc_len -= sizeof(index_key->desc);
    293		if (desc_len > n)
    294			desc_len = n;
    295		do {
    296			chunk <<= 8;
    297			chunk |= *d++;
    298		} while (--desc_len > 0);
    299		return chunk;
    300	}
    301}
    302
    303static unsigned long keyring_get_object_key_chunk(const void *object, int level)
    304{
    305	const struct key *key = keyring_ptr_to_key(object);
    306	return keyring_get_key_chunk(&key->index_key, level);
    307}
    308
    309static bool keyring_compare_object(const void *object, const void *data)
    310{
    311	const struct keyring_index_key *index_key = data;
    312	const struct key *key = keyring_ptr_to_key(object);
    313
    314	return key->index_key.type == index_key->type &&
    315		key->index_key.domain_tag == index_key->domain_tag &&
    316		key->index_key.desc_len == index_key->desc_len &&
    317		memcmp(key->index_key.description, index_key->description,
    318		       index_key->desc_len) == 0;
    319}
    320
    321/*
    322 * Compare the index keys of a pair of objects and determine the bit position
    323 * at which they differ - if they differ.
    324 */
    325static int keyring_diff_objects(const void *object, const void *data)
    326{
    327	const struct key *key_a = keyring_ptr_to_key(object);
    328	const struct keyring_index_key *a = &key_a->index_key;
    329	const struct keyring_index_key *b = data;
    330	unsigned long seg_a, seg_b;
    331	int level, i;
    332
    333	level = 0;
    334	seg_a = a->hash;
    335	seg_b = b->hash;
    336	if ((seg_a ^ seg_b) != 0)
    337		goto differ;
    338	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
    339
    340	/* The number of bits contributed by the hash is controlled by a
    341	 * constant in the assoc_array headers.  Everything else thereafter we
    342	 * can deal with as being machine word-size dependent.
    343	 */
    344	seg_a = a->x;
    345	seg_b = b->x;
    346	if ((seg_a ^ seg_b) != 0)
    347		goto differ;
    348	level += sizeof(unsigned long);
    349
    350	/* The next bit may not work on big endian */
    351	seg_a = (unsigned long)a->type;
    352	seg_b = (unsigned long)b->type;
    353	if ((seg_a ^ seg_b) != 0)
    354		goto differ;
    355	level += sizeof(unsigned long);
    356
    357	seg_a = (unsigned long)a->domain_tag;
    358	seg_b = (unsigned long)b->domain_tag;
    359	if ((seg_a ^ seg_b) != 0)
    360		goto differ;
    361	level += sizeof(unsigned long);
    362
    363	i = sizeof(a->desc);
    364	if (a->desc_len <= i)
    365		goto same;
    366
    367	for (; i < a->desc_len; i++) {
    368		seg_a = *(unsigned char *)(a->description + i);
    369		seg_b = *(unsigned char *)(b->description + i);
    370		if ((seg_a ^ seg_b) != 0)
    371			goto differ_plus_i;
    372	}
    373
    374same:
    375	return -1;
    376
    377differ_plus_i:
    378	level += i;
    379differ:
    380	i = level * 8 + __ffs(seg_a ^ seg_b);
    381	return i;
    382}
    383
    384/*
    385 * Free an object after stripping the keyring flag off of the pointer.
    386 */
    387static void keyring_free_object(void *object)
    388{
    389	key_put(keyring_ptr_to_key(object));
    390}
    391
    392/*
    393 * Operations for keyring management by the index-tree routines.
    394 */
    395static const struct assoc_array_ops keyring_assoc_array_ops = {
    396	.get_key_chunk		= keyring_get_key_chunk,
    397	.get_object_key_chunk	= keyring_get_object_key_chunk,
    398	.compare_object		= keyring_compare_object,
    399	.diff_objects		= keyring_diff_objects,
    400	.free_object		= keyring_free_object,
    401};
    402
    403/*
    404 * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
    405 * and dispose of its data.
    406 *
    407 * The garbage collector detects the final key_put(), removes the keyring from
    408 * the serial number tree and then does RCU synchronisation before coming here,
    409 * so we shouldn't need to worry about code poking around here with the RCU
    410 * readlock held by this time.
    411 */
    412static void keyring_destroy(struct key *keyring)
    413{
    414	if (keyring->description) {
    415		write_lock(&keyring_name_lock);
    416
    417		if (keyring->name_link.next != NULL &&
    418		    !list_empty(&keyring->name_link))
    419			list_del(&keyring->name_link);
    420
    421		write_unlock(&keyring_name_lock);
    422	}
    423
    424	if (keyring->restrict_link) {
    425		struct key_restriction *keyres = keyring->restrict_link;
    426
    427		key_put(keyres->key);
    428		kfree(keyres);
    429	}
    430
    431	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
    432}
    433
    434/*
    435 * Describe a keyring for /proc.
    436 */
    437static void keyring_describe(const struct key *keyring, struct seq_file *m)
    438{
    439	if (keyring->description)
    440		seq_puts(m, keyring->description);
    441	else
    442		seq_puts(m, "[anon]");
    443
    444	if (key_is_positive(keyring)) {
    445		if (keyring->keys.nr_leaves_on_tree != 0)
    446			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
    447		else
    448			seq_puts(m, ": empty");
    449	}
    450}
    451
    452struct keyring_read_iterator_context {
    453	size_t			buflen;
    454	size_t			count;
    455	key_serial_t		*buffer;
    456};
    457
    458static int keyring_read_iterator(const void *object, void *data)
    459{
    460	struct keyring_read_iterator_context *ctx = data;
    461	const struct key *key = keyring_ptr_to_key(object);
    462
    463	kenter("{%s,%d},,{%zu/%zu}",
    464	       key->type->name, key->serial, ctx->count, ctx->buflen);
    465
    466	if (ctx->count >= ctx->buflen)
    467		return 1;
    468
    469	*ctx->buffer++ = key->serial;
    470	ctx->count += sizeof(key->serial);
    471	return 0;
    472}
    473
    474/*
    475 * Read a list of key IDs from the keyring's contents in binary form
    476 *
    477 * The keyring's semaphore is read-locked by the caller.  This prevents someone
    478 * from modifying it under us - which could cause us to read key IDs multiple
    479 * times.
    480 */
    481static long keyring_read(const struct key *keyring,
    482			 char *buffer, size_t buflen)
    483{
    484	struct keyring_read_iterator_context ctx;
    485	long ret;
    486
    487	kenter("{%d},,%zu", key_serial(keyring), buflen);
    488
    489	if (buflen & (sizeof(key_serial_t) - 1))
    490		return -EINVAL;
    491
    492	/* Copy as many key IDs as fit into the buffer */
    493	if (buffer && buflen) {
    494		ctx.buffer = (key_serial_t *)buffer;
    495		ctx.buflen = buflen;
    496		ctx.count = 0;
    497		ret = assoc_array_iterate(&keyring->keys,
    498					  keyring_read_iterator, &ctx);
    499		if (ret < 0) {
    500			kleave(" = %ld [iterate]", ret);
    501			return ret;
    502		}
    503	}
    504
    505	/* Return the size of the buffer needed */
    506	ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
    507	if (ret <= buflen)
    508		kleave("= %ld [ok]", ret);
    509	else
    510		kleave("= %ld [buffer too small]", ret);
    511	return ret;
    512}
    513
    514/*
    515 * Allocate a keyring and link into the destination keyring.
    516 */
    517struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
    518			  const struct cred *cred, key_perm_t perm,
    519			  unsigned long flags,
    520			  struct key_restriction *restrict_link,
    521			  struct key *dest)
    522{
    523	struct key *keyring;
    524	int ret;
    525
    526	keyring = key_alloc(&key_type_keyring, description,
    527			    uid, gid, cred, perm, flags, restrict_link);
    528	if (!IS_ERR(keyring)) {
    529		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
    530		if (ret < 0) {
    531			key_put(keyring);
    532			keyring = ERR_PTR(ret);
    533		}
    534	}
    535
    536	return keyring;
    537}
    538EXPORT_SYMBOL(keyring_alloc);
    539
    540/**
    541 * restrict_link_reject - Give -EPERM to restrict link
    542 * @keyring: The keyring being added to.
    543 * @type: The type of key being added.
    544 * @payload: The payload of the key intended to be added.
    545 * @restriction_key: Keys providing additional data for evaluating restriction.
    546 *
    547 * Reject the addition of any links to a keyring.  It can be overridden by
    548 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
    549 * adding a key to a keyring.
    550 *
    551 * This is meant to be stored in a key_restriction structure which is passed
    552 * in the restrict_link parameter to keyring_alloc().
    553 */
    554int restrict_link_reject(struct key *keyring,
    555			 const struct key_type *type,
    556			 const union key_payload *payload,
    557			 struct key *restriction_key)
    558{
    559	return -EPERM;
    560}
    561
    562/*
    563 * By default, we keys found by getting an exact match on their descriptions.
    564 */
    565bool key_default_cmp(const struct key *key,
    566		     const struct key_match_data *match_data)
    567{
    568	return strcmp(key->description, match_data->raw_data) == 0;
    569}
    570
    571/*
    572 * Iteration function to consider each key found.
    573 */
    574static int keyring_search_iterator(const void *object, void *iterator_data)
    575{
    576	struct keyring_search_context *ctx = iterator_data;
    577	const struct key *key = keyring_ptr_to_key(object);
    578	unsigned long kflags = READ_ONCE(key->flags);
    579	short state = READ_ONCE(key->state);
    580
    581	kenter("{%d}", key->serial);
    582
    583	/* ignore keys not of this type */
    584	if (key->type != ctx->index_key.type) {
    585		kleave(" = 0 [!type]");
    586		return 0;
    587	}
    588
    589	/* skip invalidated, revoked and expired keys */
    590	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
    591		time64_t expiry = READ_ONCE(key->expiry);
    592
    593		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
    594			      (1 << KEY_FLAG_REVOKED))) {
    595			ctx->result = ERR_PTR(-EKEYREVOKED);
    596			kleave(" = %d [invrev]", ctx->skipped_ret);
    597			goto skipped;
    598		}
    599
    600		if (expiry && ctx->now >= expiry) {
    601			if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
    602				ctx->result = ERR_PTR(-EKEYEXPIRED);
    603			kleave(" = %d [expire]", ctx->skipped_ret);
    604			goto skipped;
    605		}
    606	}
    607
    608	/* keys that don't match */
    609	if (!ctx->match_data.cmp(key, &ctx->match_data)) {
    610		kleave(" = 0 [!match]");
    611		return 0;
    612	}
    613
    614	/* key must have search permissions */
    615	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
    616	    key_task_permission(make_key_ref(key, ctx->possessed),
    617				ctx->cred, KEY_NEED_SEARCH) < 0) {
    618		ctx->result = ERR_PTR(-EACCES);
    619		kleave(" = %d [!perm]", ctx->skipped_ret);
    620		goto skipped;
    621	}
    622
    623	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
    624		/* we set a different error code if we pass a negative key */
    625		if (state < 0) {
    626			ctx->result = ERR_PTR(state);
    627			kleave(" = %d [neg]", ctx->skipped_ret);
    628			goto skipped;
    629		}
    630	}
    631
    632	/* Found */
    633	ctx->result = make_key_ref(key, ctx->possessed);
    634	kleave(" = 1 [found]");
    635	return 1;
    636
    637skipped:
    638	return ctx->skipped_ret;
    639}
    640
    641/*
    642 * Search inside a keyring for a key.  We can search by walking to it
    643 * directly based on its index-key or we can iterate over the entire
    644 * tree looking for it, based on the match function.
    645 */
    646static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
    647{
    648	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
    649		const void *object;
    650
    651		object = assoc_array_find(&keyring->keys,
    652					  &keyring_assoc_array_ops,
    653					  &ctx->index_key);
    654		return object ? ctx->iterator(object, ctx) : 0;
    655	}
    656	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
    657}
    658
    659/*
    660 * Search a tree of keyrings that point to other keyrings up to the maximum
    661 * depth.
    662 */
    663static bool search_nested_keyrings(struct key *keyring,
    664				   struct keyring_search_context *ctx)
    665{
    666	struct {
    667		struct key *keyring;
    668		struct assoc_array_node *node;
    669		int slot;
    670	} stack[KEYRING_SEARCH_MAX_DEPTH];
    671
    672	struct assoc_array_shortcut *shortcut;
    673	struct assoc_array_node *node;
    674	struct assoc_array_ptr *ptr;
    675	struct key *key;
    676	int sp = 0, slot;
    677
    678	kenter("{%d},{%s,%s}",
    679	       keyring->serial,
    680	       ctx->index_key.type->name,
    681	       ctx->index_key.description);
    682
    683#define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
    684	BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
    685	       (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
    686
    687	if (ctx->index_key.description)
    688		key_set_index_key(&ctx->index_key);
    689
    690	/* Check to see if this top-level keyring is what we are looking for
    691	 * and whether it is valid or not.
    692	 */
    693	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
    694	    keyring_compare_object(keyring, &ctx->index_key)) {
    695		ctx->skipped_ret = 2;
    696		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
    697		case 1:
    698			goto found;
    699		case 2:
    700			return false;
    701		default:
    702			break;
    703		}
    704	}
    705
    706	ctx->skipped_ret = 0;
    707
    708	/* Start processing a new keyring */
    709descend_to_keyring:
    710	kdebug("descend to %d", keyring->serial);
    711	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
    712			      (1 << KEY_FLAG_REVOKED)))
    713		goto not_this_keyring;
    714
    715	/* Search through the keys in this keyring before its searching its
    716	 * subtrees.
    717	 */
    718	if (search_keyring(keyring, ctx))
    719		goto found;
    720
    721	/* Then manually iterate through the keyrings nested in this one.
    722	 *
    723	 * Start from the root node of the index tree.  Because of the way the
    724	 * hash function has been set up, keyrings cluster on the leftmost
    725	 * branch of the root node (root slot 0) or in the root node itself.
    726	 * Non-keyrings avoid the leftmost branch of the root entirely (root
    727	 * slots 1-15).
    728	 */
    729	if (!(ctx->flags & KEYRING_SEARCH_RECURSE))
    730		goto not_this_keyring;
    731
    732	ptr = READ_ONCE(keyring->keys.root);
    733	if (!ptr)
    734		goto not_this_keyring;
    735
    736	if (assoc_array_ptr_is_shortcut(ptr)) {
    737		/* If the root is a shortcut, either the keyring only contains
    738		 * keyring pointers (everything clusters behind root slot 0) or
    739		 * doesn't contain any keyring pointers.
    740		 */
    741		shortcut = assoc_array_ptr_to_shortcut(ptr);
    742		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
    743			goto not_this_keyring;
    744
    745		ptr = READ_ONCE(shortcut->next_node);
    746		node = assoc_array_ptr_to_node(ptr);
    747		goto begin_node;
    748	}
    749
    750	node = assoc_array_ptr_to_node(ptr);
    751	ptr = node->slots[0];
    752	if (!assoc_array_ptr_is_meta(ptr))
    753		goto begin_node;
    754
    755descend_to_node:
    756	/* Descend to a more distal node in this keyring's content tree and go
    757	 * through that.
    758	 */
    759	kdebug("descend");
    760	if (assoc_array_ptr_is_shortcut(ptr)) {
    761		shortcut = assoc_array_ptr_to_shortcut(ptr);
    762		ptr = READ_ONCE(shortcut->next_node);
    763		BUG_ON(!assoc_array_ptr_is_node(ptr));
    764	}
    765	node = assoc_array_ptr_to_node(ptr);
    766
    767begin_node:
    768	kdebug("begin_node");
    769	slot = 0;
    770ascend_to_node:
    771	/* Go through the slots in a node */
    772	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
    773		ptr = READ_ONCE(node->slots[slot]);
    774
    775		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
    776			goto descend_to_node;
    777
    778		if (!keyring_ptr_is_keyring(ptr))
    779			continue;
    780
    781		key = keyring_ptr_to_key(ptr);
    782
    783		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
    784			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
    785				ctx->result = ERR_PTR(-ELOOP);
    786				return false;
    787			}
    788			goto not_this_keyring;
    789		}
    790
    791		/* Search a nested keyring */
    792		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
    793		    key_task_permission(make_key_ref(key, ctx->possessed),
    794					ctx->cred, KEY_NEED_SEARCH) < 0)
    795			continue;
    796
    797		/* stack the current position */
    798		stack[sp].keyring = keyring;
    799		stack[sp].node = node;
    800		stack[sp].slot = slot;
    801		sp++;
    802
    803		/* begin again with the new keyring */
    804		keyring = key;
    805		goto descend_to_keyring;
    806	}
    807
    808	/* We've dealt with all the slots in the current node, so now we need
    809	 * to ascend to the parent and continue processing there.
    810	 */
    811	ptr = READ_ONCE(node->back_pointer);
    812	slot = node->parent_slot;
    813
    814	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
    815		shortcut = assoc_array_ptr_to_shortcut(ptr);
    816		ptr = READ_ONCE(shortcut->back_pointer);
    817		slot = shortcut->parent_slot;
    818	}
    819	if (!ptr)
    820		goto not_this_keyring;
    821	node = assoc_array_ptr_to_node(ptr);
    822	slot++;
    823
    824	/* If we've ascended to the root (zero backpointer), we must have just
    825	 * finished processing the leftmost branch rather than the root slots -
    826	 * so there can't be any more keyrings for us to find.
    827	 */
    828	if (node->back_pointer) {
    829		kdebug("ascend %d", slot);
    830		goto ascend_to_node;
    831	}
    832
    833	/* The keyring we're looking at was disqualified or didn't contain a
    834	 * matching key.
    835	 */
    836not_this_keyring:
    837	kdebug("not_this_keyring %d", sp);
    838	if (sp <= 0) {
    839		kleave(" = false");
    840		return false;
    841	}
    842
    843	/* Resume the processing of a keyring higher up in the tree */
    844	sp--;
    845	keyring = stack[sp].keyring;
    846	node = stack[sp].node;
    847	slot = stack[sp].slot + 1;
    848	kdebug("ascend to %d [%d]", keyring->serial, slot);
    849	goto ascend_to_node;
    850
    851	/* We found a viable match */
    852found:
    853	key = key_ref_to_ptr(ctx->result);
    854	key_check(key);
    855	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
    856		key->last_used_at = ctx->now;
    857		keyring->last_used_at = ctx->now;
    858		while (sp > 0)
    859			stack[--sp].keyring->last_used_at = ctx->now;
    860	}
    861	kleave(" = true");
    862	return true;
    863}
    864
    865/**
    866 * keyring_search_rcu - Search a keyring tree for a matching key under RCU
    867 * @keyring_ref: A pointer to the keyring with possession indicator.
    868 * @ctx: The keyring search context.
    869 *
    870 * Search the supplied keyring tree for a key that matches the criteria given.
    871 * The root keyring and any linked keyrings must grant Search permission to the
    872 * caller to be searchable and keys can only be found if they too grant Search
    873 * to the caller. The possession flag on the root keyring pointer controls use
    874 * of the possessor bits in permissions checking of the entire tree.  In
    875 * addition, the LSM gets to forbid keyring searches and key matches.
    876 *
    877 * The search is performed as a breadth-then-depth search up to the prescribed
    878 * limit (KEYRING_SEARCH_MAX_DEPTH).  The caller must hold the RCU read lock to
    879 * prevent keyrings from being destroyed or rearranged whilst they are being
    880 * searched.
    881 *
    882 * Keys are matched to the type provided and are then filtered by the match
    883 * function, which is given the description to use in any way it sees fit.  The
    884 * match function may use any attributes of a key that it wishes to
    885 * determine the match.  Normally the match function from the key type would be
    886 * used.
    887 *
    888 * RCU can be used to prevent the keyring key lists from disappearing without
    889 * the need to take lots of locks.
    890 *
    891 * Returns a pointer to the found key and increments the key usage count if
    892 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
    893 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
    894 * specified keyring wasn't a keyring.
    895 *
    896 * In the case of a successful return, the possession attribute from
    897 * @keyring_ref is propagated to the returned key reference.
    898 */
    899key_ref_t keyring_search_rcu(key_ref_t keyring_ref,
    900			     struct keyring_search_context *ctx)
    901{
    902	struct key *keyring;
    903	long err;
    904
    905	ctx->iterator = keyring_search_iterator;
    906	ctx->possessed = is_key_possessed(keyring_ref);
    907	ctx->result = ERR_PTR(-EAGAIN);
    908
    909	keyring = key_ref_to_ptr(keyring_ref);
    910	key_check(keyring);
    911
    912	if (keyring->type != &key_type_keyring)
    913		return ERR_PTR(-ENOTDIR);
    914
    915	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
    916		err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
    917		if (err < 0)
    918			return ERR_PTR(err);
    919	}
    920
    921	ctx->now = ktime_get_real_seconds();
    922	if (search_nested_keyrings(keyring, ctx))
    923		__key_get(key_ref_to_ptr(ctx->result));
    924	return ctx->result;
    925}
    926
    927/**
    928 * keyring_search - Search the supplied keyring tree for a matching key
    929 * @keyring: The root of the keyring tree to be searched.
    930 * @type: The type of keyring we want to find.
    931 * @description: The name of the keyring we want to find.
    932 * @recurse: True to search the children of @keyring also
    933 *
    934 * As keyring_search_rcu() above, but using the current task's credentials and
    935 * type's default matching function and preferred search method.
    936 */
    937key_ref_t keyring_search(key_ref_t keyring,
    938			 struct key_type *type,
    939			 const char *description,
    940			 bool recurse)
    941{
    942	struct keyring_search_context ctx = {
    943		.index_key.type		= type,
    944		.index_key.description	= description,
    945		.index_key.desc_len	= strlen(description),
    946		.cred			= current_cred(),
    947		.match_data.cmp		= key_default_cmp,
    948		.match_data.raw_data	= description,
    949		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
    950		.flags			= KEYRING_SEARCH_DO_STATE_CHECK,
    951	};
    952	key_ref_t key;
    953	int ret;
    954
    955	if (recurse)
    956		ctx.flags |= KEYRING_SEARCH_RECURSE;
    957	if (type->match_preparse) {
    958		ret = type->match_preparse(&ctx.match_data);
    959		if (ret < 0)
    960			return ERR_PTR(ret);
    961	}
    962
    963	rcu_read_lock();
    964	key = keyring_search_rcu(keyring, &ctx);
    965	rcu_read_unlock();
    966
    967	if (type->match_free)
    968		type->match_free(&ctx.match_data);
    969	return key;
    970}
    971EXPORT_SYMBOL(keyring_search);
    972
    973static struct key_restriction *keyring_restriction_alloc(
    974	key_restrict_link_func_t check)
    975{
    976	struct key_restriction *keyres =
    977		kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
    978
    979	if (!keyres)
    980		return ERR_PTR(-ENOMEM);
    981
    982	keyres->check = check;
    983
    984	return keyres;
    985}
    986
    987/*
    988 * Semaphore to serialise restriction setup to prevent reference count
    989 * cycles through restriction key pointers.
    990 */
    991static DECLARE_RWSEM(keyring_serialise_restrict_sem);
    992
    993/*
    994 * Check for restriction cycles that would prevent keyring garbage collection.
    995 * keyring_serialise_restrict_sem must be held.
    996 */
    997static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
    998					     struct key_restriction *keyres)
    999{
   1000	while (keyres && keyres->key &&
   1001	       keyres->key->type == &key_type_keyring) {
   1002		if (keyres->key == dest_keyring)
   1003			return true;
   1004
   1005		keyres = keyres->key->restrict_link;
   1006	}
   1007
   1008	return false;
   1009}
   1010
   1011/**
   1012 * keyring_restrict - Look up and apply a restriction to a keyring
   1013 * @keyring_ref: The keyring to be restricted
   1014 * @type: The key type that will provide the restriction checker.
   1015 * @restriction: The restriction options to apply to the keyring
   1016 *
   1017 * Look up a keyring and apply a restriction to it.  The restriction is managed
   1018 * by the specific key type, but can be configured by the options specified in
   1019 * the restriction string.
   1020 */
   1021int keyring_restrict(key_ref_t keyring_ref, const char *type,
   1022		     const char *restriction)
   1023{
   1024	struct key *keyring;
   1025	struct key_type *restrict_type = NULL;
   1026	struct key_restriction *restrict_link;
   1027	int ret = 0;
   1028
   1029	keyring = key_ref_to_ptr(keyring_ref);
   1030	key_check(keyring);
   1031
   1032	if (keyring->type != &key_type_keyring)
   1033		return -ENOTDIR;
   1034
   1035	if (!type) {
   1036		restrict_link = keyring_restriction_alloc(restrict_link_reject);
   1037	} else {
   1038		restrict_type = key_type_lookup(type);
   1039
   1040		if (IS_ERR(restrict_type))
   1041			return PTR_ERR(restrict_type);
   1042
   1043		if (!restrict_type->lookup_restriction) {
   1044			ret = -ENOENT;
   1045			goto error;
   1046		}
   1047
   1048		restrict_link = restrict_type->lookup_restriction(restriction);
   1049	}
   1050
   1051	if (IS_ERR(restrict_link)) {
   1052		ret = PTR_ERR(restrict_link);
   1053		goto error;
   1054	}
   1055
   1056	down_write(&keyring->sem);
   1057	down_write(&keyring_serialise_restrict_sem);
   1058
   1059	if (keyring->restrict_link) {
   1060		ret = -EEXIST;
   1061	} else if (keyring_detect_restriction_cycle(keyring, restrict_link)) {
   1062		ret = -EDEADLK;
   1063	} else {
   1064		keyring->restrict_link = restrict_link;
   1065		notify_key(keyring, NOTIFY_KEY_SETATTR, 0);
   1066	}
   1067
   1068	up_write(&keyring_serialise_restrict_sem);
   1069	up_write(&keyring->sem);
   1070
   1071	if (ret < 0) {
   1072		key_put(restrict_link->key);
   1073		kfree(restrict_link);
   1074	}
   1075
   1076error:
   1077	if (restrict_type)
   1078		key_type_put(restrict_type);
   1079
   1080	return ret;
   1081}
   1082EXPORT_SYMBOL(keyring_restrict);
   1083
   1084/*
   1085 * Search the given keyring for a key that might be updated.
   1086 *
   1087 * The caller must guarantee that the keyring is a keyring and that the
   1088 * permission is granted to modify the keyring as no check is made here.  The
   1089 * caller must also hold a lock on the keyring semaphore.
   1090 *
   1091 * Returns a pointer to the found key with usage count incremented if
   1092 * successful and returns NULL if not found.  Revoked and invalidated keys are
   1093 * skipped over.
   1094 *
   1095 * If successful, the possession indicator is propagated from the keyring ref
   1096 * to the returned key reference.
   1097 */
   1098key_ref_t find_key_to_update(key_ref_t keyring_ref,
   1099			     const struct keyring_index_key *index_key)
   1100{
   1101	struct key *keyring, *key;
   1102	const void *object;
   1103
   1104	keyring = key_ref_to_ptr(keyring_ref);
   1105
   1106	kenter("{%d},{%s,%s}",
   1107	       keyring->serial, index_key->type->name, index_key->description);
   1108
   1109	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
   1110				  index_key);
   1111
   1112	if (object)
   1113		goto found;
   1114
   1115	kleave(" = NULL");
   1116	return NULL;
   1117
   1118found:
   1119	key = keyring_ptr_to_key(object);
   1120	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
   1121			  (1 << KEY_FLAG_REVOKED))) {
   1122		kleave(" = NULL [x]");
   1123		return NULL;
   1124	}
   1125	__key_get(key);
   1126	kleave(" = {%d}", key->serial);
   1127	return make_key_ref(key, is_key_possessed(keyring_ref));
   1128}
   1129
   1130/*
   1131 * Find a keyring with the specified name.
   1132 *
   1133 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
   1134 * user in the current user namespace are considered.  If @uid_keyring is %true,
   1135 * the keyring additionally must have been allocated as a user or user session
   1136 * keyring; otherwise, it must grant Search permission directly to the caller.
   1137 *
   1138 * Returns a pointer to the keyring with the keyring's refcount having being
   1139 * incremented on success.  -ENOKEY is returned if a key could not be found.
   1140 */
   1141struct key *find_keyring_by_name(const char *name, bool uid_keyring)
   1142{
   1143	struct user_namespace *ns = current_user_ns();
   1144	struct key *keyring;
   1145
   1146	if (!name)
   1147		return ERR_PTR(-EINVAL);
   1148
   1149	read_lock(&keyring_name_lock);
   1150
   1151	/* Search this hash bucket for a keyring with a matching name that
   1152	 * grants Search permission and that hasn't been revoked
   1153	 */
   1154	list_for_each_entry(keyring, &ns->keyring_name_list, name_link) {
   1155		if (!kuid_has_mapping(ns, keyring->user->uid))
   1156			continue;
   1157
   1158		if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
   1159			continue;
   1160
   1161		if (strcmp(keyring->description, name) != 0)
   1162			continue;
   1163
   1164		if (uid_keyring) {
   1165			if (!test_bit(KEY_FLAG_UID_KEYRING,
   1166				      &keyring->flags))
   1167				continue;
   1168		} else {
   1169			if (key_permission(make_key_ref(keyring, 0),
   1170					   KEY_NEED_SEARCH) < 0)
   1171				continue;
   1172		}
   1173
   1174		/* we've got a match but we might end up racing with
   1175		 * key_cleanup() if the keyring is currently 'dead'
   1176		 * (ie. it has a zero usage count) */
   1177		if (!refcount_inc_not_zero(&keyring->usage))
   1178			continue;
   1179		keyring->last_used_at = ktime_get_real_seconds();
   1180		goto out;
   1181	}
   1182
   1183	keyring = ERR_PTR(-ENOKEY);
   1184out:
   1185	read_unlock(&keyring_name_lock);
   1186	return keyring;
   1187}
   1188
   1189static int keyring_detect_cycle_iterator(const void *object,
   1190					 void *iterator_data)
   1191{
   1192	struct keyring_search_context *ctx = iterator_data;
   1193	const struct key *key = keyring_ptr_to_key(object);
   1194
   1195	kenter("{%d}", key->serial);
   1196
   1197	/* We might get a keyring with matching index-key that is nonetheless a
   1198	 * different keyring. */
   1199	if (key != ctx->match_data.raw_data)
   1200		return 0;
   1201
   1202	ctx->result = ERR_PTR(-EDEADLK);
   1203	return 1;
   1204}
   1205
   1206/*
   1207 * See if a cycle will be created by inserting acyclic tree B in acyclic
   1208 * tree A at the topmost level (ie: as a direct child of A).
   1209 *
   1210 * Since we are adding B to A at the top level, checking for cycles should just
   1211 * be a matter of seeing if node A is somewhere in tree B.
   1212 */
   1213static int keyring_detect_cycle(struct key *A, struct key *B)
   1214{
   1215	struct keyring_search_context ctx = {
   1216		.index_key		= A->index_key,
   1217		.match_data.raw_data	= A,
   1218		.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
   1219		.iterator		= keyring_detect_cycle_iterator,
   1220		.flags			= (KEYRING_SEARCH_NO_STATE_CHECK |
   1221					   KEYRING_SEARCH_NO_UPDATE_TIME |
   1222					   KEYRING_SEARCH_NO_CHECK_PERM |
   1223					   KEYRING_SEARCH_DETECT_TOO_DEEP |
   1224					   KEYRING_SEARCH_RECURSE),
   1225	};
   1226
   1227	rcu_read_lock();
   1228	search_nested_keyrings(B, &ctx);
   1229	rcu_read_unlock();
   1230	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
   1231}
   1232
   1233/*
   1234 * Lock keyring for link.
   1235 */
   1236int __key_link_lock(struct key *keyring,
   1237		    const struct keyring_index_key *index_key)
   1238	__acquires(&keyring->sem)
   1239	__acquires(&keyring_serialise_link_lock)
   1240{
   1241	if (keyring->type != &key_type_keyring)
   1242		return -ENOTDIR;
   1243
   1244	down_write(&keyring->sem);
   1245
   1246	/* Serialise link/link calls to prevent parallel calls causing a cycle
   1247	 * when linking two keyring in opposite orders.
   1248	 */
   1249	if (index_key->type == &key_type_keyring)
   1250		mutex_lock(&keyring_serialise_link_lock);
   1251
   1252	return 0;
   1253}
   1254
   1255/*
   1256 * Lock keyrings for move (link/unlink combination).
   1257 */
   1258int __key_move_lock(struct key *l_keyring, struct key *u_keyring,
   1259		    const struct keyring_index_key *index_key)
   1260	__acquires(&l_keyring->sem)
   1261	__acquires(&u_keyring->sem)
   1262	__acquires(&keyring_serialise_link_lock)
   1263{
   1264	if (l_keyring->type != &key_type_keyring ||
   1265	    u_keyring->type != &key_type_keyring)
   1266		return -ENOTDIR;
   1267
   1268	/* We have to be very careful here to take the keyring locks in the
   1269	 * right order, lest we open ourselves to deadlocking against another
   1270	 * move operation.
   1271	 */
   1272	if (l_keyring < u_keyring) {
   1273		down_write(&l_keyring->sem);
   1274		down_write_nested(&u_keyring->sem, 1);
   1275	} else {
   1276		down_write(&u_keyring->sem);
   1277		down_write_nested(&l_keyring->sem, 1);
   1278	}
   1279
   1280	/* Serialise link/link calls to prevent parallel calls causing a cycle
   1281	 * when linking two keyring in opposite orders.
   1282	 */
   1283	if (index_key->type == &key_type_keyring)
   1284		mutex_lock(&keyring_serialise_link_lock);
   1285
   1286	return 0;
   1287}
   1288
   1289/*
   1290 * Preallocate memory so that a key can be linked into to a keyring.
   1291 */
   1292int __key_link_begin(struct key *keyring,
   1293		     const struct keyring_index_key *index_key,
   1294		     struct assoc_array_edit **_edit)
   1295{
   1296	struct assoc_array_edit *edit;
   1297	int ret;
   1298
   1299	kenter("%d,%s,%s,",
   1300	       keyring->serial, index_key->type->name, index_key->description);
   1301
   1302	BUG_ON(index_key->desc_len == 0);
   1303	BUG_ON(*_edit != NULL);
   1304
   1305	*_edit = NULL;
   1306
   1307	ret = -EKEYREVOKED;
   1308	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
   1309		goto error;
   1310
   1311	/* Create an edit script that will insert/replace the key in the
   1312	 * keyring tree.
   1313	 */
   1314	edit = assoc_array_insert(&keyring->keys,
   1315				  &keyring_assoc_array_ops,
   1316				  index_key,
   1317				  NULL);
   1318	if (IS_ERR(edit)) {
   1319		ret = PTR_ERR(edit);
   1320		goto error;
   1321	}
   1322
   1323	/* If we're not replacing a link in-place then we're going to need some
   1324	 * extra quota.
   1325	 */
   1326	if (!edit->dead_leaf) {
   1327		ret = key_payload_reserve(keyring,
   1328					  keyring->datalen + KEYQUOTA_LINK_BYTES);
   1329		if (ret < 0)
   1330			goto error_cancel;
   1331	}
   1332
   1333	*_edit = edit;
   1334	kleave(" = 0");
   1335	return 0;
   1336
   1337error_cancel:
   1338	assoc_array_cancel_edit(edit);
   1339error:
   1340	kleave(" = %d", ret);
   1341	return ret;
   1342}
   1343
   1344/*
   1345 * Check already instantiated keys aren't going to be a problem.
   1346 *
   1347 * The caller must have called __key_link_begin(). Don't need to call this for
   1348 * keys that were created since __key_link_begin() was called.
   1349 */
   1350int __key_link_check_live_key(struct key *keyring, struct key *key)
   1351{
   1352	if (key->type == &key_type_keyring)
   1353		/* check that we aren't going to create a cycle by linking one
   1354		 * keyring to another */
   1355		return keyring_detect_cycle(keyring, key);
   1356	return 0;
   1357}
   1358
   1359/*
   1360 * Link a key into to a keyring.
   1361 *
   1362 * Must be called with __key_link_begin() having being called.  Discards any
   1363 * already extant link to matching key if there is one, so that each keyring
   1364 * holds at most one link to any given key of a particular type+description
   1365 * combination.
   1366 */
   1367void __key_link(struct key *keyring, struct key *key,
   1368		struct assoc_array_edit **_edit)
   1369{
   1370	__key_get(key);
   1371	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
   1372	assoc_array_apply_edit(*_edit);
   1373	*_edit = NULL;
   1374	notify_key(keyring, NOTIFY_KEY_LINKED, key_serial(key));
   1375}
   1376
   1377/*
   1378 * Finish linking a key into to a keyring.
   1379 *
   1380 * Must be called with __key_link_begin() having being called.
   1381 */
   1382void __key_link_end(struct key *keyring,
   1383		    const struct keyring_index_key *index_key,
   1384		    struct assoc_array_edit *edit)
   1385	__releases(&keyring->sem)
   1386	__releases(&keyring_serialise_link_lock)
   1387{
   1388	BUG_ON(index_key->type == NULL);
   1389	kenter("%d,%s,", keyring->serial, index_key->type->name);
   1390
   1391	if (edit) {
   1392		if (!edit->dead_leaf) {
   1393			key_payload_reserve(keyring,
   1394				keyring->datalen - KEYQUOTA_LINK_BYTES);
   1395		}
   1396		assoc_array_cancel_edit(edit);
   1397	}
   1398	up_write(&keyring->sem);
   1399
   1400	if (index_key->type == &key_type_keyring)
   1401		mutex_unlock(&keyring_serialise_link_lock);
   1402}
   1403
   1404/*
   1405 * Check addition of keys to restricted keyrings.
   1406 */
   1407static int __key_link_check_restriction(struct key *keyring, struct key *key)
   1408{
   1409	if (!keyring->restrict_link || !keyring->restrict_link->check)
   1410		return 0;
   1411	return keyring->restrict_link->check(keyring, key->type, &key->payload,
   1412					     keyring->restrict_link->key);
   1413}
   1414
   1415/**
   1416 * key_link - Link a key to a keyring
   1417 * @keyring: The keyring to make the link in.
   1418 * @key: The key to link to.
   1419 *
   1420 * Make a link in a keyring to a key, such that the keyring holds a reference
   1421 * on that key and the key can potentially be found by searching that keyring.
   1422 *
   1423 * This function will write-lock the keyring's semaphore and will consume some
   1424 * of the user's key data quota to hold the link.
   1425 *
   1426 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
   1427 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
   1428 * full, -EDQUOT if there is insufficient key data quota remaining to add
   1429 * another link or -ENOMEM if there's insufficient memory.
   1430 *
   1431 * It is assumed that the caller has checked that it is permitted for a link to
   1432 * be made (the keyring should have Write permission and the key Link
   1433 * permission).
   1434 */
   1435int key_link(struct key *keyring, struct key *key)
   1436{
   1437	struct assoc_array_edit *edit = NULL;
   1438	int ret;
   1439
   1440	kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
   1441
   1442	key_check(keyring);
   1443	key_check(key);
   1444
   1445	ret = __key_link_lock(keyring, &key->index_key);
   1446	if (ret < 0)
   1447		goto error;
   1448
   1449	ret = __key_link_begin(keyring, &key->index_key, &edit);
   1450	if (ret < 0)
   1451		goto error_end;
   1452
   1453	kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
   1454	ret = __key_link_check_restriction(keyring, key);
   1455	if (ret == 0)
   1456		ret = __key_link_check_live_key(keyring, key);
   1457	if (ret == 0)
   1458		__key_link(keyring, key, &edit);
   1459
   1460error_end:
   1461	__key_link_end(keyring, &key->index_key, edit);
   1462error:
   1463	kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
   1464	return ret;
   1465}
   1466EXPORT_SYMBOL(key_link);
   1467
   1468/*
   1469 * Lock a keyring for unlink.
   1470 */
   1471static int __key_unlink_lock(struct key *keyring)
   1472	__acquires(&keyring->sem)
   1473{
   1474	if (keyring->type != &key_type_keyring)
   1475		return -ENOTDIR;
   1476
   1477	down_write(&keyring->sem);
   1478	return 0;
   1479}
   1480
   1481/*
   1482 * Begin the process of unlinking a key from a keyring.
   1483 */
   1484static int __key_unlink_begin(struct key *keyring, struct key *key,
   1485			      struct assoc_array_edit **_edit)
   1486{
   1487	struct assoc_array_edit *edit;
   1488
   1489	BUG_ON(*_edit != NULL);
   1490
   1491	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
   1492				  &key->index_key);
   1493	if (IS_ERR(edit))
   1494		return PTR_ERR(edit);
   1495
   1496	if (!edit)
   1497		return -ENOENT;
   1498
   1499	*_edit = edit;
   1500	return 0;
   1501}
   1502
   1503/*
   1504 * Apply an unlink change.
   1505 */
   1506static void __key_unlink(struct key *keyring, struct key *key,
   1507			 struct assoc_array_edit **_edit)
   1508{
   1509	assoc_array_apply_edit(*_edit);
   1510	notify_key(keyring, NOTIFY_KEY_UNLINKED, key_serial(key));
   1511	*_edit = NULL;
   1512	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
   1513}
   1514
   1515/*
   1516 * Finish unlinking a key from to a keyring.
   1517 */
   1518static void __key_unlink_end(struct key *keyring,
   1519			     struct key *key,
   1520			     struct assoc_array_edit *edit)
   1521	__releases(&keyring->sem)
   1522{
   1523	if (edit)
   1524		assoc_array_cancel_edit(edit);
   1525	up_write(&keyring->sem);
   1526}
   1527
   1528/**
   1529 * key_unlink - Unlink the first link to a key from a keyring.
   1530 * @keyring: The keyring to remove the link from.
   1531 * @key: The key the link is to.
   1532 *
   1533 * Remove a link from a keyring to a key.
   1534 *
   1535 * This function will write-lock the keyring's semaphore.
   1536 *
   1537 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
   1538 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
   1539 * memory.
   1540 *
   1541 * It is assumed that the caller has checked that it is permitted for a link to
   1542 * be removed (the keyring should have Write permission; no permissions are
   1543 * required on the key).
   1544 */
   1545int key_unlink(struct key *keyring, struct key *key)
   1546{
   1547	struct assoc_array_edit *edit = NULL;
   1548	int ret;
   1549
   1550	key_check(keyring);
   1551	key_check(key);
   1552
   1553	ret = __key_unlink_lock(keyring);
   1554	if (ret < 0)
   1555		return ret;
   1556
   1557	ret = __key_unlink_begin(keyring, key, &edit);
   1558	if (ret == 0)
   1559		__key_unlink(keyring, key, &edit);
   1560	__key_unlink_end(keyring, key, edit);
   1561	return ret;
   1562}
   1563EXPORT_SYMBOL(key_unlink);
   1564
   1565/**
   1566 * key_move - Move a key from one keyring to another
   1567 * @key: The key to move
   1568 * @from_keyring: The keyring to remove the link from.
   1569 * @to_keyring: The keyring to make the link in.
   1570 * @flags: Qualifying flags, such as KEYCTL_MOVE_EXCL.
   1571 *
   1572 * Make a link in @to_keyring to a key, such that the keyring holds a reference
   1573 * on that key and the key can potentially be found by searching that keyring
   1574 * whilst simultaneously removing a link to the key from @from_keyring.
   1575 *
   1576 * This function will write-lock both keyring's semaphores and will consume
   1577 * some of the user's key data quota to hold the link on @to_keyring.
   1578 *
   1579 * Returns 0 if successful, -ENOTDIR if either keyring isn't a keyring,
   1580 * -EKEYREVOKED if either keyring has been revoked, -ENFILE if the second
   1581 * keyring is full, -EDQUOT if there is insufficient key data quota remaining
   1582 * to add another link or -ENOMEM if there's insufficient memory.  If
   1583 * KEYCTL_MOVE_EXCL is set, then -EEXIST will be returned if there's already a
   1584 * matching key in @to_keyring.
   1585 *
   1586 * It is assumed that the caller has checked that it is permitted for a link to
   1587 * be made (the keyring should have Write permission and the key Link
   1588 * permission).
   1589 */
   1590int key_move(struct key *key,
   1591	     struct key *from_keyring,
   1592	     struct key *to_keyring,
   1593	     unsigned int flags)
   1594{
   1595	struct assoc_array_edit *from_edit = NULL, *to_edit = NULL;
   1596	int ret;
   1597
   1598	kenter("%d,%d,%d", key->serial, from_keyring->serial, to_keyring->serial);
   1599
   1600	if (from_keyring == to_keyring)
   1601		return 0;
   1602
   1603	key_check(key);
   1604	key_check(from_keyring);
   1605	key_check(to_keyring);
   1606
   1607	ret = __key_move_lock(from_keyring, to_keyring, &key->index_key);
   1608	if (ret < 0)
   1609		goto out;
   1610	ret = __key_unlink_begin(from_keyring, key, &from_edit);
   1611	if (ret < 0)
   1612		goto error;
   1613	ret = __key_link_begin(to_keyring, &key->index_key, &to_edit);
   1614	if (ret < 0)
   1615		goto error;
   1616
   1617	ret = -EEXIST;
   1618	if (to_edit->dead_leaf && (flags & KEYCTL_MOVE_EXCL))
   1619		goto error;
   1620
   1621	ret = __key_link_check_restriction(to_keyring, key);
   1622	if (ret < 0)
   1623		goto error;
   1624	ret = __key_link_check_live_key(to_keyring, key);
   1625	if (ret < 0)
   1626		goto error;
   1627
   1628	__key_unlink(from_keyring, key, &from_edit);
   1629	__key_link(to_keyring, key, &to_edit);
   1630error:
   1631	__key_link_end(to_keyring, &key->index_key, to_edit);
   1632	__key_unlink_end(from_keyring, key, from_edit);
   1633out:
   1634	kleave(" = %d", ret);
   1635	return ret;
   1636}
   1637EXPORT_SYMBOL(key_move);
   1638
   1639/**
   1640 * keyring_clear - Clear a keyring
   1641 * @keyring: The keyring to clear.
   1642 *
   1643 * Clear the contents of the specified keyring.
   1644 *
   1645 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
   1646 */
   1647int keyring_clear(struct key *keyring)
   1648{
   1649	struct assoc_array_edit *edit;
   1650	int ret;
   1651
   1652	if (keyring->type != &key_type_keyring)
   1653		return -ENOTDIR;
   1654
   1655	down_write(&keyring->sem);
   1656
   1657	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
   1658	if (IS_ERR(edit)) {
   1659		ret = PTR_ERR(edit);
   1660	} else {
   1661		if (edit)
   1662			assoc_array_apply_edit(edit);
   1663		notify_key(keyring, NOTIFY_KEY_CLEARED, 0);
   1664		key_payload_reserve(keyring, 0);
   1665		ret = 0;
   1666	}
   1667
   1668	up_write(&keyring->sem);
   1669	return ret;
   1670}
   1671EXPORT_SYMBOL(keyring_clear);
   1672
   1673/*
   1674 * Dispose of the links from a revoked keyring.
   1675 *
   1676 * This is called with the key sem write-locked.
   1677 */
   1678static void keyring_revoke(struct key *keyring)
   1679{
   1680	struct assoc_array_edit *edit;
   1681
   1682	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
   1683	if (!IS_ERR(edit)) {
   1684		if (edit)
   1685			assoc_array_apply_edit(edit);
   1686		key_payload_reserve(keyring, 0);
   1687	}
   1688}
   1689
   1690static bool keyring_gc_select_iterator(void *object, void *iterator_data)
   1691{
   1692	struct key *key = keyring_ptr_to_key(object);
   1693	time64_t *limit = iterator_data;
   1694
   1695	if (key_is_dead(key, *limit))
   1696		return false;
   1697	key_get(key);
   1698	return true;
   1699}
   1700
   1701static int keyring_gc_check_iterator(const void *object, void *iterator_data)
   1702{
   1703	const struct key *key = keyring_ptr_to_key(object);
   1704	time64_t *limit = iterator_data;
   1705
   1706	key_check(key);
   1707	return key_is_dead(key, *limit);
   1708}
   1709
   1710/*
   1711 * Garbage collect pointers from a keyring.
   1712 *
   1713 * Not called with any locks held.  The keyring's key struct will not be
   1714 * deallocated under us as only our caller may deallocate it.
   1715 */
   1716void keyring_gc(struct key *keyring, time64_t limit)
   1717{
   1718	int result;
   1719
   1720	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
   1721
   1722	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
   1723			      (1 << KEY_FLAG_REVOKED)))
   1724		goto dont_gc;
   1725
   1726	/* scan the keyring looking for dead keys */
   1727	rcu_read_lock();
   1728	result = assoc_array_iterate(&keyring->keys,
   1729				     keyring_gc_check_iterator, &limit);
   1730	rcu_read_unlock();
   1731	if (result == true)
   1732		goto do_gc;
   1733
   1734dont_gc:
   1735	kleave(" [no gc]");
   1736	return;
   1737
   1738do_gc:
   1739	down_write(&keyring->sem);
   1740	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
   1741		       keyring_gc_select_iterator, &limit);
   1742	up_write(&keyring->sem);
   1743	kleave(" [gc]");
   1744}
   1745
   1746/*
   1747 * Garbage collect restriction pointers from a keyring.
   1748 *
   1749 * Keyring restrictions are associated with a key type, and must be cleaned
   1750 * up if the key type is unregistered. The restriction is altered to always
   1751 * reject additional keys so a keyring cannot be opened up by unregistering
   1752 * a key type.
   1753 *
   1754 * Not called with any keyring locks held. The keyring's key struct will not
   1755 * be deallocated under us as only our caller may deallocate it.
   1756 *
   1757 * The caller is required to hold key_types_sem and dead_type->sem. This is
   1758 * fulfilled by key_gc_keytype() holding the locks on behalf of
   1759 * key_garbage_collector(), which it invokes on a workqueue.
   1760 */
   1761void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
   1762{
   1763	struct key_restriction *keyres;
   1764
   1765	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
   1766
   1767	/*
   1768	 * keyring->restrict_link is only assigned at key allocation time
   1769	 * or with the key type locked, so the only values that could be
   1770	 * concurrently assigned to keyring->restrict_link are for key
   1771	 * types other than dead_type. Given this, it's ok to check
   1772	 * the key type before acquiring keyring->sem.
   1773	 */
   1774	if (!dead_type || !keyring->restrict_link ||
   1775	    keyring->restrict_link->keytype != dead_type) {
   1776		kleave(" [no restriction gc]");
   1777		return;
   1778	}
   1779
   1780	/* Lock the keyring to ensure that a link is not in progress */
   1781	down_write(&keyring->sem);
   1782
   1783	keyres = keyring->restrict_link;
   1784
   1785	keyres->check = restrict_link_reject;
   1786
   1787	key_put(keyres->key);
   1788	keyres->key = NULL;
   1789	keyres->keytype = NULL;
   1790
   1791	up_write(&keyring->sem);
   1792
   1793	kleave(" [restriction gc]");
   1794}