security.c (67979B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11#define pr_fmt(fmt) "LSM: " fmt 12 13#include <linux/bpf.h> 14#include <linux/capability.h> 15#include <linux/dcache.h> 16#include <linux/export.h> 17#include <linux/init.h> 18#include <linux/kernel.h> 19#include <linux/kernel_read_file.h> 20#include <linux/lsm_hooks.h> 21#include <linux/integrity.h> 22#include <linux/ima.h> 23#include <linux/evm.h> 24#include <linux/fsnotify.h> 25#include <linux/mman.h> 26#include <linux/mount.h> 27#include <linux/personality.h> 28#include <linux/backing-dev.h> 29#include <linux/string.h> 30#include <linux/msg.h> 31#include <net/flow.h> 32 33#define MAX_LSM_EVM_XATTR 2 34 35/* How many LSMs were built into the kernel? */ 36#define LSM_COUNT (__end_lsm_info - __start_lsm_info) 37 38/* 39 * These are descriptions of the reasons that can be passed to the 40 * security_locked_down() LSM hook. Placing this array here allows 41 * all security modules to use the same descriptions for auditing 42 * purposes. 43 */ 44const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = { 45 [LOCKDOWN_NONE] = "none", 46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 49 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 50 [LOCKDOWN_HIBERNATION] = "hibernation", 51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 52 [LOCKDOWN_IOPORT] = "raw io port access", 53 [LOCKDOWN_MSR] = "raw MSR access", 54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 59 [LOCKDOWN_DEBUGFS] = "debugfs access", 60 [LOCKDOWN_XMON_WR] = "xmon write access", 61 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 62 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", 63 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 64 [LOCKDOWN_KCORE] = "/proc/kcore access", 65 [LOCKDOWN_KPROBES] = "use of kprobes", 66 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 67 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", 68 [LOCKDOWN_PERF] = "unsafe use of perf", 69 [LOCKDOWN_TRACEFS] = "use of tracefs", 70 [LOCKDOWN_XMON_RW] = "xmon read and write access", 71 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 72 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 73}; 74 75struct security_hook_heads security_hook_heads __lsm_ro_after_init; 76static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 77 78static struct kmem_cache *lsm_file_cache; 79static struct kmem_cache *lsm_inode_cache; 80 81char *lsm_names; 82static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 83 84/* Boot-time LSM user choice */ 85static __initdata const char *chosen_lsm_order; 86static __initdata const char *chosen_major_lsm; 87 88static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 89 90/* Ordered list of LSMs to initialize. */ 91static __initdata struct lsm_info **ordered_lsms; 92static __initdata struct lsm_info *exclusive; 93 94static __initdata bool debug; 95#define init_debug(...) \ 96 do { \ 97 if (debug) \ 98 pr_info(__VA_ARGS__); \ 99 } while (0) 100 101static bool __init is_enabled(struct lsm_info *lsm) 102{ 103 if (!lsm->enabled) 104 return false; 105 106 return *lsm->enabled; 107} 108 109/* Mark an LSM's enabled flag. */ 110static int lsm_enabled_true __initdata = 1; 111static int lsm_enabled_false __initdata = 0; 112static void __init set_enabled(struct lsm_info *lsm, bool enabled) 113{ 114 /* 115 * When an LSM hasn't configured an enable variable, we can use 116 * a hard-coded location for storing the default enabled state. 117 */ 118 if (!lsm->enabled) { 119 if (enabled) 120 lsm->enabled = &lsm_enabled_true; 121 else 122 lsm->enabled = &lsm_enabled_false; 123 } else if (lsm->enabled == &lsm_enabled_true) { 124 if (!enabled) 125 lsm->enabled = &lsm_enabled_false; 126 } else if (lsm->enabled == &lsm_enabled_false) { 127 if (enabled) 128 lsm->enabled = &lsm_enabled_true; 129 } else { 130 *lsm->enabled = enabled; 131 } 132} 133 134/* Is an LSM already listed in the ordered LSMs list? */ 135static bool __init exists_ordered_lsm(struct lsm_info *lsm) 136{ 137 struct lsm_info **check; 138 139 for (check = ordered_lsms; *check; check++) 140 if (*check == lsm) 141 return true; 142 143 return false; 144} 145 146/* Append an LSM to the list of ordered LSMs to initialize. */ 147static int last_lsm __initdata; 148static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 149{ 150 /* Ignore duplicate selections. */ 151 if (exists_ordered_lsm(lsm)) 152 return; 153 154 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 155 return; 156 157 /* Enable this LSM, if it is not already set. */ 158 if (!lsm->enabled) 159 lsm->enabled = &lsm_enabled_true; 160 ordered_lsms[last_lsm++] = lsm; 161 162 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 163 is_enabled(lsm) ? "en" : "dis"); 164} 165 166/* Is an LSM allowed to be initialized? */ 167static bool __init lsm_allowed(struct lsm_info *lsm) 168{ 169 /* Skip if the LSM is disabled. */ 170 if (!is_enabled(lsm)) 171 return false; 172 173 /* Not allowed if another exclusive LSM already initialized. */ 174 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 175 init_debug("exclusive disabled: %s\n", lsm->name); 176 return false; 177 } 178 179 return true; 180} 181 182static void __init lsm_set_blob_size(int *need, int *lbs) 183{ 184 int offset; 185 186 if (*need > 0) { 187 offset = *lbs; 188 *lbs += *need; 189 *need = offset; 190 } 191} 192 193static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 194{ 195 if (!needed) 196 return; 197 198 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 199 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 200 /* 201 * The inode blob gets an rcu_head in addition to 202 * what the modules might need. 203 */ 204 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 205 blob_sizes.lbs_inode = sizeof(struct rcu_head); 206 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 207 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 208 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 209 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 210 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 211} 212 213/* Prepare LSM for initialization. */ 214static void __init prepare_lsm(struct lsm_info *lsm) 215{ 216 int enabled = lsm_allowed(lsm); 217 218 /* Record enablement (to handle any following exclusive LSMs). */ 219 set_enabled(lsm, enabled); 220 221 /* If enabled, do pre-initialization work. */ 222 if (enabled) { 223 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 224 exclusive = lsm; 225 init_debug("exclusive chosen: %s\n", lsm->name); 226 } 227 228 lsm_set_blob_sizes(lsm->blobs); 229 } 230} 231 232/* Initialize a given LSM, if it is enabled. */ 233static void __init initialize_lsm(struct lsm_info *lsm) 234{ 235 if (is_enabled(lsm)) { 236 int ret; 237 238 init_debug("initializing %s\n", lsm->name); 239 ret = lsm->init(); 240 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 241 } 242} 243 244/* Populate ordered LSMs list from comma-separated LSM name list. */ 245static void __init ordered_lsm_parse(const char *order, const char *origin) 246{ 247 struct lsm_info *lsm; 248 char *sep, *name, *next; 249 250 /* LSM_ORDER_FIRST is always first. */ 251 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 252 if (lsm->order == LSM_ORDER_FIRST) 253 append_ordered_lsm(lsm, "first"); 254 } 255 256 /* Process "security=", if given. */ 257 if (chosen_major_lsm) { 258 struct lsm_info *major; 259 260 /* 261 * To match the original "security=" behavior, this 262 * explicitly does NOT fallback to another Legacy Major 263 * if the selected one was separately disabled: disable 264 * all non-matching Legacy Major LSMs. 265 */ 266 for (major = __start_lsm_info; major < __end_lsm_info; 267 major++) { 268 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 269 strcmp(major->name, chosen_major_lsm) != 0) { 270 set_enabled(major, false); 271 init_debug("security=%s disabled: %s\n", 272 chosen_major_lsm, major->name); 273 } 274 } 275 } 276 277 sep = kstrdup(order, GFP_KERNEL); 278 next = sep; 279 /* Walk the list, looking for matching LSMs. */ 280 while ((name = strsep(&next, ",")) != NULL) { 281 bool found = false; 282 283 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 284 if (lsm->order == LSM_ORDER_MUTABLE && 285 strcmp(lsm->name, name) == 0) { 286 append_ordered_lsm(lsm, origin); 287 found = true; 288 } 289 } 290 291 if (!found) 292 init_debug("%s ignored: %s\n", origin, name); 293 } 294 295 /* Process "security=", if given. */ 296 if (chosen_major_lsm) { 297 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 298 if (exists_ordered_lsm(lsm)) 299 continue; 300 if (strcmp(lsm->name, chosen_major_lsm) == 0) 301 append_ordered_lsm(lsm, "security="); 302 } 303 } 304 305 /* Disable all LSMs not in the ordered list. */ 306 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 307 if (exists_ordered_lsm(lsm)) 308 continue; 309 set_enabled(lsm, false); 310 init_debug("%s disabled: %s\n", origin, lsm->name); 311 } 312 313 kfree(sep); 314} 315 316static void __init lsm_early_cred(struct cred *cred); 317static void __init lsm_early_task(struct task_struct *task); 318 319static int lsm_append(const char *new, char **result); 320 321static void __init ordered_lsm_init(void) 322{ 323 struct lsm_info **lsm; 324 325 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 326 GFP_KERNEL); 327 328 if (chosen_lsm_order) { 329 if (chosen_major_lsm) { 330 pr_info("security= is ignored because it is superseded by lsm=\n"); 331 chosen_major_lsm = NULL; 332 } 333 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 334 } else 335 ordered_lsm_parse(builtin_lsm_order, "builtin"); 336 337 for (lsm = ordered_lsms; *lsm; lsm++) 338 prepare_lsm(*lsm); 339 340 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 341 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 342 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 343 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 344 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 345 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 346 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 347 348 /* 349 * Create any kmem_caches needed for blobs 350 */ 351 if (blob_sizes.lbs_file) 352 lsm_file_cache = kmem_cache_create("lsm_file_cache", 353 blob_sizes.lbs_file, 0, 354 SLAB_PANIC, NULL); 355 if (blob_sizes.lbs_inode) 356 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 357 blob_sizes.lbs_inode, 0, 358 SLAB_PANIC, NULL); 359 360 lsm_early_cred((struct cred *) current->cred); 361 lsm_early_task(current); 362 for (lsm = ordered_lsms; *lsm; lsm++) 363 initialize_lsm(*lsm); 364 365 kfree(ordered_lsms); 366} 367 368int __init early_security_init(void) 369{ 370 struct lsm_info *lsm; 371 372#define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 373 INIT_HLIST_HEAD(&security_hook_heads.NAME); 374#include "linux/lsm_hook_defs.h" 375#undef LSM_HOOK 376 377 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 378 if (!lsm->enabled) 379 lsm->enabled = &lsm_enabled_true; 380 prepare_lsm(lsm); 381 initialize_lsm(lsm); 382 } 383 384 return 0; 385} 386 387/** 388 * security_init - initializes the security framework 389 * 390 * This should be called early in the kernel initialization sequence. 391 */ 392int __init security_init(void) 393{ 394 struct lsm_info *lsm; 395 396 pr_info("Security Framework initializing\n"); 397 398 /* 399 * Append the names of the early LSM modules now that kmalloc() is 400 * available 401 */ 402 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 403 if (lsm->enabled) 404 lsm_append(lsm->name, &lsm_names); 405 } 406 407 /* Load LSMs in specified order. */ 408 ordered_lsm_init(); 409 410 return 0; 411} 412 413/* Save user chosen LSM */ 414static int __init choose_major_lsm(char *str) 415{ 416 chosen_major_lsm = str; 417 return 1; 418} 419__setup("security=", choose_major_lsm); 420 421/* Explicitly choose LSM initialization order. */ 422static int __init choose_lsm_order(char *str) 423{ 424 chosen_lsm_order = str; 425 return 1; 426} 427__setup("lsm=", choose_lsm_order); 428 429/* Enable LSM order debugging. */ 430static int __init enable_debug(char *str) 431{ 432 debug = true; 433 return 1; 434} 435__setup("lsm.debug", enable_debug); 436 437static bool match_last_lsm(const char *list, const char *lsm) 438{ 439 const char *last; 440 441 if (WARN_ON(!list || !lsm)) 442 return false; 443 last = strrchr(list, ','); 444 if (last) 445 /* Pass the comma, strcmp() will check for '\0' */ 446 last++; 447 else 448 last = list; 449 return !strcmp(last, lsm); 450} 451 452static int lsm_append(const char *new, char **result) 453{ 454 char *cp; 455 456 if (*result == NULL) { 457 *result = kstrdup(new, GFP_KERNEL); 458 if (*result == NULL) 459 return -ENOMEM; 460 } else { 461 /* Check if it is the last registered name */ 462 if (match_last_lsm(*result, new)) 463 return 0; 464 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 465 if (cp == NULL) 466 return -ENOMEM; 467 kfree(*result); 468 *result = cp; 469 } 470 return 0; 471} 472 473/** 474 * security_add_hooks - Add a modules hooks to the hook lists. 475 * @hooks: the hooks to add 476 * @count: the number of hooks to add 477 * @lsm: the name of the security module 478 * 479 * Each LSM has to register its hooks with the infrastructure. 480 */ 481void __init security_add_hooks(struct security_hook_list *hooks, int count, 482 const char *lsm) 483{ 484 int i; 485 486 for (i = 0; i < count; i++) { 487 hooks[i].lsm = lsm; 488 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 489 } 490 491 /* 492 * Don't try to append during early_security_init(), we'll come back 493 * and fix this up afterwards. 494 */ 495 if (slab_is_available()) { 496 if (lsm_append(lsm, &lsm_names) < 0) 497 panic("%s - Cannot get early memory.\n", __func__); 498 } 499} 500 501int call_blocking_lsm_notifier(enum lsm_event event, void *data) 502{ 503 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 504 event, data); 505} 506EXPORT_SYMBOL(call_blocking_lsm_notifier); 507 508int register_blocking_lsm_notifier(struct notifier_block *nb) 509{ 510 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 511 nb); 512} 513EXPORT_SYMBOL(register_blocking_lsm_notifier); 514 515int unregister_blocking_lsm_notifier(struct notifier_block *nb) 516{ 517 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 518 nb); 519} 520EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 521 522/** 523 * lsm_cred_alloc - allocate a composite cred blob 524 * @cred: the cred that needs a blob 525 * @gfp: allocation type 526 * 527 * Allocate the cred blob for all the modules 528 * 529 * Returns 0, or -ENOMEM if memory can't be allocated. 530 */ 531static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 532{ 533 if (blob_sizes.lbs_cred == 0) { 534 cred->security = NULL; 535 return 0; 536 } 537 538 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 539 if (cred->security == NULL) 540 return -ENOMEM; 541 return 0; 542} 543 544/** 545 * lsm_early_cred - during initialization allocate a composite cred blob 546 * @cred: the cred that needs a blob 547 * 548 * Allocate the cred blob for all the modules 549 */ 550static void __init lsm_early_cred(struct cred *cred) 551{ 552 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 553 554 if (rc) 555 panic("%s: Early cred alloc failed.\n", __func__); 556} 557 558/** 559 * lsm_file_alloc - allocate a composite file blob 560 * @file: the file that needs a blob 561 * 562 * Allocate the file blob for all the modules 563 * 564 * Returns 0, or -ENOMEM if memory can't be allocated. 565 */ 566static int lsm_file_alloc(struct file *file) 567{ 568 if (!lsm_file_cache) { 569 file->f_security = NULL; 570 return 0; 571 } 572 573 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 574 if (file->f_security == NULL) 575 return -ENOMEM; 576 return 0; 577} 578 579/** 580 * lsm_inode_alloc - allocate a composite inode blob 581 * @inode: the inode that needs a blob 582 * 583 * Allocate the inode blob for all the modules 584 * 585 * Returns 0, or -ENOMEM if memory can't be allocated. 586 */ 587int lsm_inode_alloc(struct inode *inode) 588{ 589 if (!lsm_inode_cache) { 590 inode->i_security = NULL; 591 return 0; 592 } 593 594 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 595 if (inode->i_security == NULL) 596 return -ENOMEM; 597 return 0; 598} 599 600/** 601 * lsm_task_alloc - allocate a composite task blob 602 * @task: the task that needs a blob 603 * 604 * Allocate the task blob for all the modules 605 * 606 * Returns 0, or -ENOMEM if memory can't be allocated. 607 */ 608static int lsm_task_alloc(struct task_struct *task) 609{ 610 if (blob_sizes.lbs_task == 0) { 611 task->security = NULL; 612 return 0; 613 } 614 615 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 616 if (task->security == NULL) 617 return -ENOMEM; 618 return 0; 619} 620 621/** 622 * lsm_ipc_alloc - allocate a composite ipc blob 623 * @kip: the ipc that needs a blob 624 * 625 * Allocate the ipc blob for all the modules 626 * 627 * Returns 0, or -ENOMEM if memory can't be allocated. 628 */ 629static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 630{ 631 if (blob_sizes.lbs_ipc == 0) { 632 kip->security = NULL; 633 return 0; 634 } 635 636 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 637 if (kip->security == NULL) 638 return -ENOMEM; 639 return 0; 640} 641 642/** 643 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 644 * @mp: the msg_msg that needs a blob 645 * 646 * Allocate the ipc blob for all the modules 647 * 648 * Returns 0, or -ENOMEM if memory can't be allocated. 649 */ 650static int lsm_msg_msg_alloc(struct msg_msg *mp) 651{ 652 if (blob_sizes.lbs_msg_msg == 0) { 653 mp->security = NULL; 654 return 0; 655 } 656 657 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 658 if (mp->security == NULL) 659 return -ENOMEM; 660 return 0; 661} 662 663/** 664 * lsm_early_task - during initialization allocate a composite task blob 665 * @task: the task that needs a blob 666 * 667 * Allocate the task blob for all the modules 668 */ 669static void __init lsm_early_task(struct task_struct *task) 670{ 671 int rc = lsm_task_alloc(task); 672 673 if (rc) 674 panic("%s: Early task alloc failed.\n", __func__); 675} 676 677/** 678 * lsm_superblock_alloc - allocate a composite superblock blob 679 * @sb: the superblock that needs a blob 680 * 681 * Allocate the superblock blob for all the modules 682 * 683 * Returns 0, or -ENOMEM if memory can't be allocated. 684 */ 685static int lsm_superblock_alloc(struct super_block *sb) 686{ 687 if (blob_sizes.lbs_superblock == 0) { 688 sb->s_security = NULL; 689 return 0; 690 } 691 692 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 693 if (sb->s_security == NULL) 694 return -ENOMEM; 695 return 0; 696} 697 698/* 699 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 700 * can be accessed with: 701 * 702 * LSM_RET_DEFAULT(<hook_name>) 703 * 704 * The macros below define static constants for the default value of each 705 * LSM hook. 706 */ 707#define LSM_RET_DEFAULT(NAME) (NAME##_default) 708#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 709#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 710 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 711#define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 712 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 713 714#include <linux/lsm_hook_defs.h> 715#undef LSM_HOOK 716 717/* 718 * Hook list operation macros. 719 * 720 * call_void_hook: 721 * This is a hook that does not return a value. 722 * 723 * call_int_hook: 724 * This is a hook that returns a value. 725 */ 726 727#define call_void_hook(FUNC, ...) \ 728 do { \ 729 struct security_hook_list *P; \ 730 \ 731 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 732 P->hook.FUNC(__VA_ARGS__); \ 733 } while (0) 734 735#define call_int_hook(FUNC, IRC, ...) ({ \ 736 int RC = IRC; \ 737 do { \ 738 struct security_hook_list *P; \ 739 \ 740 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 741 RC = P->hook.FUNC(__VA_ARGS__); \ 742 if (RC != 0) \ 743 break; \ 744 } \ 745 } while (0); \ 746 RC; \ 747}) 748 749/* Security operations */ 750 751int security_binder_set_context_mgr(const struct cred *mgr) 752{ 753 return call_int_hook(binder_set_context_mgr, 0, mgr); 754} 755 756int security_binder_transaction(const struct cred *from, 757 const struct cred *to) 758{ 759 return call_int_hook(binder_transaction, 0, from, to); 760} 761 762int security_binder_transfer_binder(const struct cred *from, 763 const struct cred *to) 764{ 765 return call_int_hook(binder_transfer_binder, 0, from, to); 766} 767 768int security_binder_transfer_file(const struct cred *from, 769 const struct cred *to, struct file *file) 770{ 771 return call_int_hook(binder_transfer_file, 0, from, to, file); 772} 773 774int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 775{ 776 return call_int_hook(ptrace_access_check, 0, child, mode); 777} 778 779int security_ptrace_traceme(struct task_struct *parent) 780{ 781 return call_int_hook(ptrace_traceme, 0, parent); 782} 783 784int security_capget(struct task_struct *target, 785 kernel_cap_t *effective, 786 kernel_cap_t *inheritable, 787 kernel_cap_t *permitted) 788{ 789 return call_int_hook(capget, 0, target, 790 effective, inheritable, permitted); 791} 792 793int security_capset(struct cred *new, const struct cred *old, 794 const kernel_cap_t *effective, 795 const kernel_cap_t *inheritable, 796 const kernel_cap_t *permitted) 797{ 798 return call_int_hook(capset, 0, new, old, 799 effective, inheritable, permitted); 800} 801 802int security_capable(const struct cred *cred, 803 struct user_namespace *ns, 804 int cap, 805 unsigned int opts) 806{ 807 return call_int_hook(capable, 0, cred, ns, cap, opts); 808} 809 810int security_quotactl(int cmds, int type, int id, struct super_block *sb) 811{ 812 return call_int_hook(quotactl, 0, cmds, type, id, sb); 813} 814 815int security_quota_on(struct dentry *dentry) 816{ 817 return call_int_hook(quota_on, 0, dentry); 818} 819 820int security_syslog(int type) 821{ 822 return call_int_hook(syslog, 0, type); 823} 824 825int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 826{ 827 return call_int_hook(settime, 0, ts, tz); 828} 829 830int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 831{ 832 struct security_hook_list *hp; 833 int cap_sys_admin = 1; 834 int rc; 835 836 /* 837 * The module will respond with a positive value if 838 * it thinks the __vm_enough_memory() call should be 839 * made with the cap_sys_admin set. If all of the modules 840 * agree that it should be set it will. If any module 841 * thinks it should not be set it won't. 842 */ 843 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 844 rc = hp->hook.vm_enough_memory(mm, pages); 845 if (rc <= 0) { 846 cap_sys_admin = 0; 847 break; 848 } 849 } 850 return __vm_enough_memory(mm, pages, cap_sys_admin); 851} 852 853int security_bprm_creds_for_exec(struct linux_binprm *bprm) 854{ 855 return call_int_hook(bprm_creds_for_exec, 0, bprm); 856} 857 858int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file) 859{ 860 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 861} 862 863int security_bprm_check(struct linux_binprm *bprm) 864{ 865 int ret; 866 867 ret = call_int_hook(bprm_check_security, 0, bprm); 868 if (ret) 869 return ret; 870 return ima_bprm_check(bprm); 871} 872 873void security_bprm_committing_creds(struct linux_binprm *bprm) 874{ 875 call_void_hook(bprm_committing_creds, bprm); 876} 877 878void security_bprm_committed_creds(struct linux_binprm *bprm) 879{ 880 call_void_hook(bprm_committed_creds, bprm); 881} 882 883int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 884{ 885 return call_int_hook(fs_context_dup, 0, fc, src_fc); 886} 887 888int security_fs_context_parse_param(struct fs_context *fc, 889 struct fs_parameter *param) 890{ 891 struct security_hook_list *hp; 892 int trc; 893 int rc = -ENOPARAM; 894 895 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param, 896 list) { 897 trc = hp->hook.fs_context_parse_param(fc, param); 898 if (trc == 0) 899 rc = 0; 900 else if (trc != -ENOPARAM) 901 return trc; 902 } 903 return rc; 904} 905 906int security_sb_alloc(struct super_block *sb) 907{ 908 int rc = lsm_superblock_alloc(sb); 909 910 if (unlikely(rc)) 911 return rc; 912 rc = call_int_hook(sb_alloc_security, 0, sb); 913 if (unlikely(rc)) 914 security_sb_free(sb); 915 return rc; 916} 917 918void security_sb_delete(struct super_block *sb) 919{ 920 call_void_hook(sb_delete, sb); 921} 922 923void security_sb_free(struct super_block *sb) 924{ 925 call_void_hook(sb_free_security, sb); 926 kfree(sb->s_security); 927 sb->s_security = NULL; 928} 929 930void security_free_mnt_opts(void **mnt_opts) 931{ 932 if (!*mnt_opts) 933 return; 934 call_void_hook(sb_free_mnt_opts, *mnt_opts); 935 *mnt_opts = NULL; 936} 937EXPORT_SYMBOL(security_free_mnt_opts); 938 939int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 940{ 941 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 942} 943EXPORT_SYMBOL(security_sb_eat_lsm_opts); 944 945int security_sb_mnt_opts_compat(struct super_block *sb, 946 void *mnt_opts) 947{ 948 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts); 949} 950EXPORT_SYMBOL(security_sb_mnt_opts_compat); 951 952int security_sb_remount(struct super_block *sb, 953 void *mnt_opts) 954{ 955 return call_int_hook(sb_remount, 0, sb, mnt_opts); 956} 957EXPORT_SYMBOL(security_sb_remount); 958 959int security_sb_kern_mount(struct super_block *sb) 960{ 961 return call_int_hook(sb_kern_mount, 0, sb); 962} 963 964int security_sb_show_options(struct seq_file *m, struct super_block *sb) 965{ 966 return call_int_hook(sb_show_options, 0, m, sb); 967} 968 969int security_sb_statfs(struct dentry *dentry) 970{ 971 return call_int_hook(sb_statfs, 0, dentry); 972} 973 974int security_sb_mount(const char *dev_name, const struct path *path, 975 const char *type, unsigned long flags, void *data) 976{ 977 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 978} 979 980int security_sb_umount(struct vfsmount *mnt, int flags) 981{ 982 return call_int_hook(sb_umount, 0, mnt, flags); 983} 984 985int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 986{ 987 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 988} 989 990int security_sb_set_mnt_opts(struct super_block *sb, 991 void *mnt_opts, 992 unsigned long kern_flags, 993 unsigned long *set_kern_flags) 994{ 995 return call_int_hook(sb_set_mnt_opts, 996 mnt_opts ? -EOPNOTSUPP : 0, sb, 997 mnt_opts, kern_flags, set_kern_flags); 998} 999EXPORT_SYMBOL(security_sb_set_mnt_opts); 1000 1001int security_sb_clone_mnt_opts(const struct super_block *oldsb, 1002 struct super_block *newsb, 1003 unsigned long kern_flags, 1004 unsigned long *set_kern_flags) 1005{ 1006 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 1007 kern_flags, set_kern_flags); 1008} 1009EXPORT_SYMBOL(security_sb_clone_mnt_opts); 1010 1011int security_move_mount(const struct path *from_path, const struct path *to_path) 1012{ 1013 return call_int_hook(move_mount, 0, from_path, to_path); 1014} 1015 1016int security_path_notify(const struct path *path, u64 mask, 1017 unsigned int obj_type) 1018{ 1019 return call_int_hook(path_notify, 0, path, mask, obj_type); 1020} 1021 1022int security_inode_alloc(struct inode *inode) 1023{ 1024 int rc = lsm_inode_alloc(inode); 1025 1026 if (unlikely(rc)) 1027 return rc; 1028 rc = call_int_hook(inode_alloc_security, 0, inode); 1029 if (unlikely(rc)) 1030 security_inode_free(inode); 1031 return rc; 1032} 1033 1034static void inode_free_by_rcu(struct rcu_head *head) 1035{ 1036 /* 1037 * The rcu head is at the start of the inode blob 1038 */ 1039 kmem_cache_free(lsm_inode_cache, head); 1040} 1041 1042void security_inode_free(struct inode *inode) 1043{ 1044 integrity_inode_free(inode); 1045 call_void_hook(inode_free_security, inode); 1046 /* 1047 * The inode may still be referenced in a path walk and 1048 * a call to security_inode_permission() can be made 1049 * after inode_free_security() is called. Ideally, the VFS 1050 * wouldn't do this, but fixing that is a much harder 1051 * job. For now, simply free the i_security via RCU, and 1052 * leave the current inode->i_security pointer intact. 1053 * The inode will be freed after the RCU grace period too. 1054 */ 1055 if (inode->i_security) 1056 call_rcu((struct rcu_head *)inode->i_security, 1057 inode_free_by_rcu); 1058} 1059 1060int security_dentry_init_security(struct dentry *dentry, int mode, 1061 const struct qstr *name, 1062 const char **xattr_name, void **ctx, 1063 u32 *ctxlen) 1064{ 1065 struct security_hook_list *hp; 1066 int rc; 1067 1068 /* 1069 * Only one module will provide a security context. 1070 */ 1071 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) { 1072 rc = hp->hook.dentry_init_security(dentry, mode, name, 1073 xattr_name, ctx, ctxlen); 1074 if (rc != LSM_RET_DEFAULT(dentry_init_security)) 1075 return rc; 1076 } 1077 return LSM_RET_DEFAULT(dentry_init_security); 1078} 1079EXPORT_SYMBOL(security_dentry_init_security); 1080 1081int security_dentry_create_files_as(struct dentry *dentry, int mode, 1082 struct qstr *name, 1083 const struct cred *old, struct cred *new) 1084{ 1085 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1086 name, old, new); 1087} 1088EXPORT_SYMBOL(security_dentry_create_files_as); 1089 1090int security_inode_init_security(struct inode *inode, struct inode *dir, 1091 const struct qstr *qstr, 1092 const initxattrs initxattrs, void *fs_data) 1093{ 1094 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 1095 struct xattr *lsm_xattr, *evm_xattr, *xattr; 1096 int ret; 1097 1098 if (unlikely(IS_PRIVATE(inode))) 1099 return 0; 1100 1101 if (!initxattrs) 1102 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 1103 dir, qstr, NULL, NULL, NULL); 1104 memset(new_xattrs, 0, sizeof(new_xattrs)); 1105 lsm_xattr = new_xattrs; 1106 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 1107 &lsm_xattr->name, 1108 &lsm_xattr->value, 1109 &lsm_xattr->value_len); 1110 if (ret) 1111 goto out; 1112 1113 evm_xattr = lsm_xattr + 1; 1114 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 1115 if (ret) 1116 goto out; 1117 ret = initxattrs(inode, new_xattrs, fs_data); 1118out: 1119 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 1120 kfree(xattr->value); 1121 return (ret == -EOPNOTSUPP) ? 0 : ret; 1122} 1123EXPORT_SYMBOL(security_inode_init_security); 1124 1125int security_inode_init_security_anon(struct inode *inode, 1126 const struct qstr *name, 1127 const struct inode *context_inode) 1128{ 1129 return call_int_hook(inode_init_security_anon, 0, inode, name, 1130 context_inode); 1131} 1132 1133int security_old_inode_init_security(struct inode *inode, struct inode *dir, 1134 const struct qstr *qstr, const char **name, 1135 void **value, size_t *len) 1136{ 1137 if (unlikely(IS_PRIVATE(inode))) 1138 return -EOPNOTSUPP; 1139 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 1140 qstr, name, value, len); 1141} 1142EXPORT_SYMBOL(security_old_inode_init_security); 1143 1144#ifdef CONFIG_SECURITY_PATH 1145int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 1146 unsigned int dev) 1147{ 1148 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1149 return 0; 1150 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1151} 1152EXPORT_SYMBOL(security_path_mknod); 1153 1154int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 1155{ 1156 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1157 return 0; 1158 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1159} 1160EXPORT_SYMBOL(security_path_mkdir); 1161 1162int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1163{ 1164 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1165 return 0; 1166 return call_int_hook(path_rmdir, 0, dir, dentry); 1167} 1168 1169int security_path_unlink(const struct path *dir, struct dentry *dentry) 1170{ 1171 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1172 return 0; 1173 return call_int_hook(path_unlink, 0, dir, dentry); 1174} 1175EXPORT_SYMBOL(security_path_unlink); 1176 1177int security_path_symlink(const struct path *dir, struct dentry *dentry, 1178 const char *old_name) 1179{ 1180 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1181 return 0; 1182 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1183} 1184 1185int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1186 struct dentry *new_dentry) 1187{ 1188 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1189 return 0; 1190 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1191} 1192 1193int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1194 const struct path *new_dir, struct dentry *new_dentry, 1195 unsigned int flags) 1196{ 1197 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1198 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1199 return 0; 1200 1201 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1202 new_dentry, flags); 1203} 1204EXPORT_SYMBOL(security_path_rename); 1205 1206int security_path_truncate(const struct path *path) 1207{ 1208 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1209 return 0; 1210 return call_int_hook(path_truncate, 0, path); 1211} 1212 1213int security_path_chmod(const struct path *path, umode_t mode) 1214{ 1215 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1216 return 0; 1217 return call_int_hook(path_chmod, 0, path, mode); 1218} 1219 1220int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1221{ 1222 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1223 return 0; 1224 return call_int_hook(path_chown, 0, path, uid, gid); 1225} 1226 1227int security_path_chroot(const struct path *path) 1228{ 1229 return call_int_hook(path_chroot, 0, path); 1230} 1231#endif 1232 1233int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1234{ 1235 if (unlikely(IS_PRIVATE(dir))) 1236 return 0; 1237 return call_int_hook(inode_create, 0, dir, dentry, mode); 1238} 1239EXPORT_SYMBOL_GPL(security_inode_create); 1240 1241int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1242 struct dentry *new_dentry) 1243{ 1244 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1245 return 0; 1246 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1247} 1248 1249int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1250{ 1251 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1252 return 0; 1253 return call_int_hook(inode_unlink, 0, dir, dentry); 1254} 1255 1256int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1257 const char *old_name) 1258{ 1259 if (unlikely(IS_PRIVATE(dir))) 1260 return 0; 1261 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1262} 1263 1264int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1265{ 1266 if (unlikely(IS_PRIVATE(dir))) 1267 return 0; 1268 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1269} 1270EXPORT_SYMBOL_GPL(security_inode_mkdir); 1271 1272int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1273{ 1274 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1275 return 0; 1276 return call_int_hook(inode_rmdir, 0, dir, dentry); 1277} 1278 1279int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1280{ 1281 if (unlikely(IS_PRIVATE(dir))) 1282 return 0; 1283 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1284} 1285 1286int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1287 struct inode *new_dir, struct dentry *new_dentry, 1288 unsigned int flags) 1289{ 1290 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1291 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1292 return 0; 1293 1294 if (flags & RENAME_EXCHANGE) { 1295 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1296 old_dir, old_dentry); 1297 if (err) 1298 return err; 1299 } 1300 1301 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1302 new_dir, new_dentry); 1303} 1304 1305int security_inode_readlink(struct dentry *dentry) 1306{ 1307 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1308 return 0; 1309 return call_int_hook(inode_readlink, 0, dentry); 1310} 1311 1312int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1313 bool rcu) 1314{ 1315 if (unlikely(IS_PRIVATE(inode))) 1316 return 0; 1317 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1318} 1319 1320int security_inode_permission(struct inode *inode, int mask) 1321{ 1322 if (unlikely(IS_PRIVATE(inode))) 1323 return 0; 1324 return call_int_hook(inode_permission, 0, inode, mask); 1325} 1326 1327int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 1328{ 1329 int ret; 1330 1331 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1332 return 0; 1333 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1334 if (ret) 1335 return ret; 1336 return evm_inode_setattr(dentry, attr); 1337} 1338EXPORT_SYMBOL_GPL(security_inode_setattr); 1339 1340int security_inode_getattr(const struct path *path) 1341{ 1342 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1343 return 0; 1344 return call_int_hook(inode_getattr, 0, path); 1345} 1346 1347int security_inode_setxattr(struct user_namespace *mnt_userns, 1348 struct dentry *dentry, const char *name, 1349 const void *value, size_t size, int flags) 1350{ 1351 int ret; 1352 1353 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1354 return 0; 1355 /* 1356 * SELinux and Smack integrate the cap call, 1357 * so assume that all LSMs supplying this call do so. 1358 */ 1359 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value, 1360 size, flags); 1361 1362 if (ret == 1) 1363 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1364 if (ret) 1365 return ret; 1366 ret = ima_inode_setxattr(dentry, name, value, size); 1367 if (ret) 1368 return ret; 1369 return evm_inode_setxattr(mnt_userns, dentry, name, value, size); 1370} 1371 1372void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1373 const void *value, size_t size, int flags) 1374{ 1375 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1376 return; 1377 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1378 evm_inode_post_setxattr(dentry, name, value, size); 1379} 1380 1381int security_inode_getxattr(struct dentry *dentry, const char *name) 1382{ 1383 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1384 return 0; 1385 return call_int_hook(inode_getxattr, 0, dentry, name); 1386} 1387 1388int security_inode_listxattr(struct dentry *dentry) 1389{ 1390 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1391 return 0; 1392 return call_int_hook(inode_listxattr, 0, dentry); 1393} 1394 1395int security_inode_removexattr(struct user_namespace *mnt_userns, 1396 struct dentry *dentry, const char *name) 1397{ 1398 int ret; 1399 1400 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1401 return 0; 1402 /* 1403 * SELinux and Smack integrate the cap call, 1404 * so assume that all LSMs supplying this call do so. 1405 */ 1406 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name); 1407 if (ret == 1) 1408 ret = cap_inode_removexattr(mnt_userns, dentry, name); 1409 if (ret) 1410 return ret; 1411 ret = ima_inode_removexattr(dentry, name); 1412 if (ret) 1413 return ret; 1414 return evm_inode_removexattr(mnt_userns, dentry, name); 1415} 1416 1417int security_inode_need_killpriv(struct dentry *dentry) 1418{ 1419 return call_int_hook(inode_need_killpriv, 0, dentry); 1420} 1421 1422int security_inode_killpriv(struct user_namespace *mnt_userns, 1423 struct dentry *dentry) 1424{ 1425 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry); 1426} 1427 1428int security_inode_getsecurity(struct user_namespace *mnt_userns, 1429 struct inode *inode, const char *name, 1430 void **buffer, bool alloc) 1431{ 1432 struct security_hook_list *hp; 1433 int rc; 1434 1435 if (unlikely(IS_PRIVATE(inode))) 1436 return LSM_RET_DEFAULT(inode_getsecurity); 1437 /* 1438 * Only one module will provide an attribute with a given name. 1439 */ 1440 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1441 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc); 1442 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 1443 return rc; 1444 } 1445 return LSM_RET_DEFAULT(inode_getsecurity); 1446} 1447 1448int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1449{ 1450 struct security_hook_list *hp; 1451 int rc; 1452 1453 if (unlikely(IS_PRIVATE(inode))) 1454 return LSM_RET_DEFAULT(inode_setsecurity); 1455 /* 1456 * Only one module will provide an attribute with a given name. 1457 */ 1458 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1459 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1460 flags); 1461 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 1462 return rc; 1463 } 1464 return LSM_RET_DEFAULT(inode_setsecurity); 1465} 1466 1467int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1468{ 1469 if (unlikely(IS_PRIVATE(inode))) 1470 return 0; 1471 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1472} 1473EXPORT_SYMBOL(security_inode_listsecurity); 1474 1475void security_inode_getsecid(struct inode *inode, u32 *secid) 1476{ 1477 call_void_hook(inode_getsecid, inode, secid); 1478} 1479 1480int security_inode_copy_up(struct dentry *src, struct cred **new) 1481{ 1482 return call_int_hook(inode_copy_up, 0, src, new); 1483} 1484EXPORT_SYMBOL(security_inode_copy_up); 1485 1486int security_inode_copy_up_xattr(const char *name) 1487{ 1488 struct security_hook_list *hp; 1489 int rc; 1490 1491 /* 1492 * The implementation can return 0 (accept the xattr), 1 (discard the 1493 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 1494 * any other error code incase of an error. 1495 */ 1496 hlist_for_each_entry(hp, 1497 &security_hook_heads.inode_copy_up_xattr, list) { 1498 rc = hp->hook.inode_copy_up_xattr(name); 1499 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 1500 return rc; 1501 } 1502 1503 return LSM_RET_DEFAULT(inode_copy_up_xattr); 1504} 1505EXPORT_SYMBOL(security_inode_copy_up_xattr); 1506 1507int security_kernfs_init_security(struct kernfs_node *kn_dir, 1508 struct kernfs_node *kn) 1509{ 1510 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1511} 1512 1513int security_file_permission(struct file *file, int mask) 1514{ 1515 int ret; 1516 1517 ret = call_int_hook(file_permission, 0, file, mask); 1518 if (ret) 1519 return ret; 1520 1521 return fsnotify_perm(file, mask); 1522} 1523 1524int security_file_alloc(struct file *file) 1525{ 1526 int rc = lsm_file_alloc(file); 1527 1528 if (rc) 1529 return rc; 1530 rc = call_int_hook(file_alloc_security, 0, file); 1531 if (unlikely(rc)) 1532 security_file_free(file); 1533 return rc; 1534} 1535 1536void security_file_free(struct file *file) 1537{ 1538 void *blob; 1539 1540 call_void_hook(file_free_security, file); 1541 1542 blob = file->f_security; 1543 if (blob) { 1544 file->f_security = NULL; 1545 kmem_cache_free(lsm_file_cache, blob); 1546 } 1547} 1548 1549int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1550{ 1551 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1552} 1553EXPORT_SYMBOL_GPL(security_file_ioctl); 1554 1555static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1556{ 1557 /* 1558 * Does we have PROT_READ and does the application expect 1559 * it to imply PROT_EXEC? If not, nothing to talk about... 1560 */ 1561 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1562 return prot; 1563 if (!(current->personality & READ_IMPLIES_EXEC)) 1564 return prot; 1565 /* 1566 * if that's an anonymous mapping, let it. 1567 */ 1568 if (!file) 1569 return prot | PROT_EXEC; 1570 /* 1571 * ditto if it's not on noexec mount, except that on !MMU we need 1572 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1573 */ 1574 if (!path_noexec(&file->f_path)) { 1575#ifndef CONFIG_MMU 1576 if (file->f_op->mmap_capabilities) { 1577 unsigned caps = file->f_op->mmap_capabilities(file); 1578 if (!(caps & NOMMU_MAP_EXEC)) 1579 return prot; 1580 } 1581#endif 1582 return prot | PROT_EXEC; 1583 } 1584 /* anything on noexec mount won't get PROT_EXEC */ 1585 return prot; 1586} 1587 1588int security_mmap_file(struct file *file, unsigned long prot, 1589 unsigned long flags) 1590{ 1591 int ret; 1592 ret = call_int_hook(mmap_file, 0, file, prot, 1593 mmap_prot(file, prot), flags); 1594 if (ret) 1595 return ret; 1596 return ima_file_mmap(file, prot); 1597} 1598 1599int security_mmap_addr(unsigned long addr) 1600{ 1601 return call_int_hook(mmap_addr, 0, addr); 1602} 1603 1604int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1605 unsigned long prot) 1606{ 1607 int ret; 1608 1609 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1610 if (ret) 1611 return ret; 1612 return ima_file_mprotect(vma, prot); 1613} 1614 1615int security_file_lock(struct file *file, unsigned int cmd) 1616{ 1617 return call_int_hook(file_lock, 0, file, cmd); 1618} 1619 1620int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1621{ 1622 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1623} 1624 1625void security_file_set_fowner(struct file *file) 1626{ 1627 call_void_hook(file_set_fowner, file); 1628} 1629 1630int security_file_send_sigiotask(struct task_struct *tsk, 1631 struct fown_struct *fown, int sig) 1632{ 1633 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1634} 1635 1636int security_file_receive(struct file *file) 1637{ 1638 return call_int_hook(file_receive, 0, file); 1639} 1640 1641int security_file_open(struct file *file) 1642{ 1643 int ret; 1644 1645 ret = call_int_hook(file_open, 0, file); 1646 if (ret) 1647 return ret; 1648 1649 return fsnotify_perm(file, MAY_OPEN); 1650} 1651 1652int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1653{ 1654 int rc = lsm_task_alloc(task); 1655 1656 if (rc) 1657 return rc; 1658 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1659 if (unlikely(rc)) 1660 security_task_free(task); 1661 return rc; 1662} 1663 1664void security_task_free(struct task_struct *task) 1665{ 1666 call_void_hook(task_free, task); 1667 1668 kfree(task->security); 1669 task->security = NULL; 1670} 1671 1672int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1673{ 1674 int rc = lsm_cred_alloc(cred, gfp); 1675 1676 if (rc) 1677 return rc; 1678 1679 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1680 if (unlikely(rc)) 1681 security_cred_free(cred); 1682 return rc; 1683} 1684 1685void security_cred_free(struct cred *cred) 1686{ 1687 /* 1688 * There is a failure case in prepare_creds() that 1689 * may result in a call here with ->security being NULL. 1690 */ 1691 if (unlikely(cred->security == NULL)) 1692 return; 1693 1694 call_void_hook(cred_free, cred); 1695 1696 kfree(cred->security); 1697 cred->security = NULL; 1698} 1699 1700int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1701{ 1702 int rc = lsm_cred_alloc(new, gfp); 1703 1704 if (rc) 1705 return rc; 1706 1707 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1708 if (unlikely(rc)) 1709 security_cred_free(new); 1710 return rc; 1711} 1712 1713void security_transfer_creds(struct cred *new, const struct cred *old) 1714{ 1715 call_void_hook(cred_transfer, new, old); 1716} 1717 1718void security_cred_getsecid(const struct cred *c, u32 *secid) 1719{ 1720 *secid = 0; 1721 call_void_hook(cred_getsecid, c, secid); 1722} 1723EXPORT_SYMBOL(security_cred_getsecid); 1724 1725int security_kernel_act_as(struct cred *new, u32 secid) 1726{ 1727 return call_int_hook(kernel_act_as, 0, new, secid); 1728} 1729 1730int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1731{ 1732 return call_int_hook(kernel_create_files_as, 0, new, inode); 1733} 1734 1735int security_kernel_module_request(char *kmod_name) 1736{ 1737 int ret; 1738 1739 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1740 if (ret) 1741 return ret; 1742 return integrity_kernel_module_request(kmod_name); 1743} 1744 1745int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 1746 bool contents) 1747{ 1748 int ret; 1749 1750 ret = call_int_hook(kernel_read_file, 0, file, id, contents); 1751 if (ret) 1752 return ret; 1753 return ima_read_file(file, id, contents); 1754} 1755EXPORT_SYMBOL_GPL(security_kernel_read_file); 1756 1757int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1758 enum kernel_read_file_id id) 1759{ 1760 int ret; 1761 1762 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1763 if (ret) 1764 return ret; 1765 return ima_post_read_file(file, buf, size, id); 1766} 1767EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1768 1769int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 1770{ 1771 int ret; 1772 1773 ret = call_int_hook(kernel_load_data, 0, id, contents); 1774 if (ret) 1775 return ret; 1776 return ima_load_data(id, contents); 1777} 1778EXPORT_SYMBOL_GPL(security_kernel_load_data); 1779 1780int security_kernel_post_load_data(char *buf, loff_t size, 1781 enum kernel_load_data_id id, 1782 char *description) 1783{ 1784 int ret; 1785 1786 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, 1787 description); 1788 if (ret) 1789 return ret; 1790 return ima_post_load_data(buf, size, id, description); 1791} 1792EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 1793 1794int security_task_fix_setuid(struct cred *new, const struct cred *old, 1795 int flags) 1796{ 1797 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1798} 1799 1800int security_task_fix_setgid(struct cred *new, const struct cred *old, 1801 int flags) 1802{ 1803 return call_int_hook(task_fix_setgid, 0, new, old, flags); 1804} 1805 1806int security_task_setpgid(struct task_struct *p, pid_t pgid) 1807{ 1808 return call_int_hook(task_setpgid, 0, p, pgid); 1809} 1810 1811int security_task_getpgid(struct task_struct *p) 1812{ 1813 return call_int_hook(task_getpgid, 0, p); 1814} 1815 1816int security_task_getsid(struct task_struct *p) 1817{ 1818 return call_int_hook(task_getsid, 0, p); 1819} 1820 1821void security_current_getsecid_subj(u32 *secid) 1822{ 1823 *secid = 0; 1824 call_void_hook(current_getsecid_subj, secid); 1825} 1826EXPORT_SYMBOL(security_current_getsecid_subj); 1827 1828void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 1829{ 1830 *secid = 0; 1831 call_void_hook(task_getsecid_obj, p, secid); 1832} 1833EXPORT_SYMBOL(security_task_getsecid_obj); 1834 1835int security_task_setnice(struct task_struct *p, int nice) 1836{ 1837 return call_int_hook(task_setnice, 0, p, nice); 1838} 1839 1840int security_task_setioprio(struct task_struct *p, int ioprio) 1841{ 1842 return call_int_hook(task_setioprio, 0, p, ioprio); 1843} 1844 1845int security_task_getioprio(struct task_struct *p) 1846{ 1847 return call_int_hook(task_getioprio, 0, p); 1848} 1849 1850int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1851 unsigned int flags) 1852{ 1853 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1854} 1855 1856int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1857 struct rlimit *new_rlim) 1858{ 1859 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1860} 1861 1862int security_task_setscheduler(struct task_struct *p) 1863{ 1864 return call_int_hook(task_setscheduler, 0, p); 1865} 1866 1867int security_task_getscheduler(struct task_struct *p) 1868{ 1869 return call_int_hook(task_getscheduler, 0, p); 1870} 1871 1872int security_task_movememory(struct task_struct *p) 1873{ 1874 return call_int_hook(task_movememory, 0, p); 1875} 1876 1877int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1878 int sig, const struct cred *cred) 1879{ 1880 return call_int_hook(task_kill, 0, p, info, sig, cred); 1881} 1882 1883int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1884 unsigned long arg4, unsigned long arg5) 1885{ 1886 int thisrc; 1887 int rc = LSM_RET_DEFAULT(task_prctl); 1888 struct security_hook_list *hp; 1889 1890 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1891 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1892 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 1893 rc = thisrc; 1894 if (thisrc != 0) 1895 break; 1896 } 1897 } 1898 return rc; 1899} 1900 1901void security_task_to_inode(struct task_struct *p, struct inode *inode) 1902{ 1903 call_void_hook(task_to_inode, p, inode); 1904} 1905 1906int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1907{ 1908 return call_int_hook(ipc_permission, 0, ipcp, flag); 1909} 1910 1911void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1912{ 1913 *secid = 0; 1914 call_void_hook(ipc_getsecid, ipcp, secid); 1915} 1916 1917int security_msg_msg_alloc(struct msg_msg *msg) 1918{ 1919 int rc = lsm_msg_msg_alloc(msg); 1920 1921 if (unlikely(rc)) 1922 return rc; 1923 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1924 if (unlikely(rc)) 1925 security_msg_msg_free(msg); 1926 return rc; 1927} 1928 1929void security_msg_msg_free(struct msg_msg *msg) 1930{ 1931 call_void_hook(msg_msg_free_security, msg); 1932 kfree(msg->security); 1933 msg->security = NULL; 1934} 1935 1936int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1937{ 1938 int rc = lsm_ipc_alloc(msq); 1939 1940 if (unlikely(rc)) 1941 return rc; 1942 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1943 if (unlikely(rc)) 1944 security_msg_queue_free(msq); 1945 return rc; 1946} 1947 1948void security_msg_queue_free(struct kern_ipc_perm *msq) 1949{ 1950 call_void_hook(msg_queue_free_security, msq); 1951 kfree(msq->security); 1952 msq->security = NULL; 1953} 1954 1955int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1956{ 1957 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1958} 1959 1960int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1961{ 1962 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1963} 1964 1965int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1966 struct msg_msg *msg, int msqflg) 1967{ 1968 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1969} 1970 1971int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1972 struct task_struct *target, long type, int mode) 1973{ 1974 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1975} 1976 1977int security_shm_alloc(struct kern_ipc_perm *shp) 1978{ 1979 int rc = lsm_ipc_alloc(shp); 1980 1981 if (unlikely(rc)) 1982 return rc; 1983 rc = call_int_hook(shm_alloc_security, 0, shp); 1984 if (unlikely(rc)) 1985 security_shm_free(shp); 1986 return rc; 1987} 1988 1989void security_shm_free(struct kern_ipc_perm *shp) 1990{ 1991 call_void_hook(shm_free_security, shp); 1992 kfree(shp->security); 1993 shp->security = NULL; 1994} 1995 1996int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1997{ 1998 return call_int_hook(shm_associate, 0, shp, shmflg); 1999} 2000 2001int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 2002{ 2003 return call_int_hook(shm_shmctl, 0, shp, cmd); 2004} 2005 2006int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 2007{ 2008 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 2009} 2010 2011int security_sem_alloc(struct kern_ipc_perm *sma) 2012{ 2013 int rc = lsm_ipc_alloc(sma); 2014 2015 if (unlikely(rc)) 2016 return rc; 2017 rc = call_int_hook(sem_alloc_security, 0, sma); 2018 if (unlikely(rc)) 2019 security_sem_free(sma); 2020 return rc; 2021} 2022 2023void security_sem_free(struct kern_ipc_perm *sma) 2024{ 2025 call_void_hook(sem_free_security, sma); 2026 kfree(sma->security); 2027 sma->security = NULL; 2028} 2029 2030int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 2031{ 2032 return call_int_hook(sem_associate, 0, sma, semflg); 2033} 2034 2035int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 2036{ 2037 return call_int_hook(sem_semctl, 0, sma, cmd); 2038} 2039 2040int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 2041 unsigned nsops, int alter) 2042{ 2043 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 2044} 2045 2046void security_d_instantiate(struct dentry *dentry, struct inode *inode) 2047{ 2048 if (unlikely(inode && IS_PRIVATE(inode))) 2049 return; 2050 call_void_hook(d_instantiate, dentry, inode); 2051} 2052EXPORT_SYMBOL(security_d_instantiate); 2053 2054int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 2055 char **value) 2056{ 2057 struct security_hook_list *hp; 2058 2059 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 2060 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2061 continue; 2062 return hp->hook.getprocattr(p, name, value); 2063 } 2064 return LSM_RET_DEFAULT(getprocattr); 2065} 2066 2067int security_setprocattr(const char *lsm, const char *name, void *value, 2068 size_t size) 2069{ 2070 struct security_hook_list *hp; 2071 2072 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 2073 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2074 continue; 2075 return hp->hook.setprocattr(name, value, size); 2076 } 2077 return LSM_RET_DEFAULT(setprocattr); 2078} 2079 2080int security_netlink_send(struct sock *sk, struct sk_buff *skb) 2081{ 2082 return call_int_hook(netlink_send, 0, sk, skb); 2083} 2084 2085int security_ismaclabel(const char *name) 2086{ 2087 return call_int_hook(ismaclabel, 0, name); 2088} 2089EXPORT_SYMBOL(security_ismaclabel); 2090 2091int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2092{ 2093 struct security_hook_list *hp; 2094 int rc; 2095 2096 /* 2097 * Currently, only one LSM can implement secid_to_secctx (i.e this 2098 * LSM hook is not "stackable"). 2099 */ 2100 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 2101 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 2102 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 2103 return rc; 2104 } 2105 2106 return LSM_RET_DEFAULT(secid_to_secctx); 2107} 2108EXPORT_SYMBOL(security_secid_to_secctx); 2109 2110int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 2111{ 2112 *secid = 0; 2113 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 2114} 2115EXPORT_SYMBOL(security_secctx_to_secid); 2116 2117void security_release_secctx(char *secdata, u32 seclen) 2118{ 2119 call_void_hook(release_secctx, secdata, seclen); 2120} 2121EXPORT_SYMBOL(security_release_secctx); 2122 2123void security_inode_invalidate_secctx(struct inode *inode) 2124{ 2125 call_void_hook(inode_invalidate_secctx, inode); 2126} 2127EXPORT_SYMBOL(security_inode_invalidate_secctx); 2128 2129int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 2130{ 2131 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 2132} 2133EXPORT_SYMBOL(security_inode_notifysecctx); 2134 2135int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 2136{ 2137 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 2138} 2139EXPORT_SYMBOL(security_inode_setsecctx); 2140 2141int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 2142{ 2143 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 2144} 2145EXPORT_SYMBOL(security_inode_getsecctx); 2146 2147#ifdef CONFIG_WATCH_QUEUE 2148int security_post_notification(const struct cred *w_cred, 2149 const struct cred *cred, 2150 struct watch_notification *n) 2151{ 2152 return call_int_hook(post_notification, 0, w_cred, cred, n); 2153} 2154#endif /* CONFIG_WATCH_QUEUE */ 2155 2156#ifdef CONFIG_KEY_NOTIFICATIONS 2157int security_watch_key(struct key *key) 2158{ 2159 return call_int_hook(watch_key, 0, key); 2160} 2161#endif 2162 2163#ifdef CONFIG_SECURITY_NETWORK 2164 2165int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 2166{ 2167 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 2168} 2169EXPORT_SYMBOL(security_unix_stream_connect); 2170 2171int security_unix_may_send(struct socket *sock, struct socket *other) 2172{ 2173 return call_int_hook(unix_may_send, 0, sock, other); 2174} 2175EXPORT_SYMBOL(security_unix_may_send); 2176 2177int security_socket_create(int family, int type, int protocol, int kern) 2178{ 2179 return call_int_hook(socket_create, 0, family, type, protocol, kern); 2180} 2181 2182int security_socket_post_create(struct socket *sock, int family, 2183 int type, int protocol, int kern) 2184{ 2185 return call_int_hook(socket_post_create, 0, sock, family, type, 2186 protocol, kern); 2187} 2188 2189int security_socket_socketpair(struct socket *socka, struct socket *sockb) 2190{ 2191 return call_int_hook(socket_socketpair, 0, socka, sockb); 2192} 2193EXPORT_SYMBOL(security_socket_socketpair); 2194 2195int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 2196{ 2197 return call_int_hook(socket_bind, 0, sock, address, addrlen); 2198} 2199 2200int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 2201{ 2202 return call_int_hook(socket_connect, 0, sock, address, addrlen); 2203} 2204 2205int security_socket_listen(struct socket *sock, int backlog) 2206{ 2207 return call_int_hook(socket_listen, 0, sock, backlog); 2208} 2209 2210int security_socket_accept(struct socket *sock, struct socket *newsock) 2211{ 2212 return call_int_hook(socket_accept, 0, sock, newsock); 2213} 2214 2215int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 2216{ 2217 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 2218} 2219 2220int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2221 int size, int flags) 2222{ 2223 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 2224} 2225 2226int security_socket_getsockname(struct socket *sock) 2227{ 2228 return call_int_hook(socket_getsockname, 0, sock); 2229} 2230 2231int security_socket_getpeername(struct socket *sock) 2232{ 2233 return call_int_hook(socket_getpeername, 0, sock); 2234} 2235 2236int security_socket_getsockopt(struct socket *sock, int level, int optname) 2237{ 2238 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 2239} 2240 2241int security_socket_setsockopt(struct socket *sock, int level, int optname) 2242{ 2243 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 2244} 2245 2246int security_socket_shutdown(struct socket *sock, int how) 2247{ 2248 return call_int_hook(socket_shutdown, 0, sock, how); 2249} 2250 2251int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2252{ 2253 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2254} 2255EXPORT_SYMBOL(security_sock_rcv_skb); 2256 2257int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2258 int __user *optlen, unsigned len) 2259{ 2260 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2261 optval, optlen, len); 2262} 2263 2264int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2265{ 2266 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2267 skb, secid); 2268} 2269EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2270 2271int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2272{ 2273 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2274} 2275 2276void security_sk_free(struct sock *sk) 2277{ 2278 call_void_hook(sk_free_security, sk); 2279} 2280 2281void security_sk_clone(const struct sock *sk, struct sock *newsk) 2282{ 2283 call_void_hook(sk_clone_security, sk, newsk); 2284} 2285EXPORT_SYMBOL(security_sk_clone); 2286 2287void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic) 2288{ 2289 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 2290} 2291EXPORT_SYMBOL(security_sk_classify_flow); 2292 2293void security_req_classify_flow(const struct request_sock *req, 2294 struct flowi_common *flic) 2295{ 2296 call_void_hook(req_classify_flow, req, flic); 2297} 2298EXPORT_SYMBOL(security_req_classify_flow); 2299 2300void security_sock_graft(struct sock *sk, struct socket *parent) 2301{ 2302 call_void_hook(sock_graft, sk, parent); 2303} 2304EXPORT_SYMBOL(security_sock_graft); 2305 2306int security_inet_conn_request(const struct sock *sk, 2307 struct sk_buff *skb, struct request_sock *req) 2308{ 2309 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2310} 2311EXPORT_SYMBOL(security_inet_conn_request); 2312 2313void security_inet_csk_clone(struct sock *newsk, 2314 const struct request_sock *req) 2315{ 2316 call_void_hook(inet_csk_clone, newsk, req); 2317} 2318 2319void security_inet_conn_established(struct sock *sk, 2320 struct sk_buff *skb) 2321{ 2322 call_void_hook(inet_conn_established, sk, skb); 2323} 2324EXPORT_SYMBOL(security_inet_conn_established); 2325 2326int security_secmark_relabel_packet(u32 secid) 2327{ 2328 return call_int_hook(secmark_relabel_packet, 0, secid); 2329} 2330EXPORT_SYMBOL(security_secmark_relabel_packet); 2331 2332void security_secmark_refcount_inc(void) 2333{ 2334 call_void_hook(secmark_refcount_inc); 2335} 2336EXPORT_SYMBOL(security_secmark_refcount_inc); 2337 2338void security_secmark_refcount_dec(void) 2339{ 2340 call_void_hook(secmark_refcount_dec); 2341} 2342EXPORT_SYMBOL(security_secmark_refcount_dec); 2343 2344int security_tun_dev_alloc_security(void **security) 2345{ 2346 return call_int_hook(tun_dev_alloc_security, 0, security); 2347} 2348EXPORT_SYMBOL(security_tun_dev_alloc_security); 2349 2350void security_tun_dev_free_security(void *security) 2351{ 2352 call_void_hook(tun_dev_free_security, security); 2353} 2354EXPORT_SYMBOL(security_tun_dev_free_security); 2355 2356int security_tun_dev_create(void) 2357{ 2358 return call_int_hook(tun_dev_create, 0); 2359} 2360EXPORT_SYMBOL(security_tun_dev_create); 2361 2362int security_tun_dev_attach_queue(void *security) 2363{ 2364 return call_int_hook(tun_dev_attach_queue, 0, security); 2365} 2366EXPORT_SYMBOL(security_tun_dev_attach_queue); 2367 2368int security_tun_dev_attach(struct sock *sk, void *security) 2369{ 2370 return call_int_hook(tun_dev_attach, 0, sk, security); 2371} 2372EXPORT_SYMBOL(security_tun_dev_attach); 2373 2374int security_tun_dev_open(void *security) 2375{ 2376 return call_int_hook(tun_dev_open, 0, security); 2377} 2378EXPORT_SYMBOL(security_tun_dev_open); 2379 2380int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb) 2381{ 2382 return call_int_hook(sctp_assoc_request, 0, asoc, skb); 2383} 2384EXPORT_SYMBOL(security_sctp_assoc_request); 2385 2386int security_sctp_bind_connect(struct sock *sk, int optname, 2387 struct sockaddr *address, int addrlen) 2388{ 2389 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2390 address, addrlen); 2391} 2392EXPORT_SYMBOL(security_sctp_bind_connect); 2393 2394void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 2395 struct sock *newsk) 2396{ 2397 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 2398} 2399EXPORT_SYMBOL(security_sctp_sk_clone); 2400 2401int security_sctp_assoc_established(struct sctp_association *asoc, 2402 struct sk_buff *skb) 2403{ 2404 return call_int_hook(sctp_assoc_established, 0, asoc, skb); 2405} 2406EXPORT_SYMBOL(security_sctp_assoc_established); 2407 2408#endif /* CONFIG_SECURITY_NETWORK */ 2409 2410#ifdef CONFIG_SECURITY_INFINIBAND 2411 2412int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2413{ 2414 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2415} 2416EXPORT_SYMBOL(security_ib_pkey_access); 2417 2418int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2419{ 2420 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2421} 2422EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2423 2424int security_ib_alloc_security(void **sec) 2425{ 2426 return call_int_hook(ib_alloc_security, 0, sec); 2427} 2428EXPORT_SYMBOL(security_ib_alloc_security); 2429 2430void security_ib_free_security(void *sec) 2431{ 2432 call_void_hook(ib_free_security, sec); 2433} 2434EXPORT_SYMBOL(security_ib_free_security); 2435#endif /* CONFIG_SECURITY_INFINIBAND */ 2436 2437#ifdef CONFIG_SECURITY_NETWORK_XFRM 2438 2439int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2440 struct xfrm_user_sec_ctx *sec_ctx, 2441 gfp_t gfp) 2442{ 2443 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2444} 2445EXPORT_SYMBOL(security_xfrm_policy_alloc); 2446 2447int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2448 struct xfrm_sec_ctx **new_ctxp) 2449{ 2450 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2451} 2452 2453void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2454{ 2455 call_void_hook(xfrm_policy_free_security, ctx); 2456} 2457EXPORT_SYMBOL(security_xfrm_policy_free); 2458 2459int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2460{ 2461 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2462} 2463 2464int security_xfrm_state_alloc(struct xfrm_state *x, 2465 struct xfrm_user_sec_ctx *sec_ctx) 2466{ 2467 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2468} 2469EXPORT_SYMBOL(security_xfrm_state_alloc); 2470 2471int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2472 struct xfrm_sec_ctx *polsec, u32 secid) 2473{ 2474 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2475} 2476 2477int security_xfrm_state_delete(struct xfrm_state *x) 2478{ 2479 return call_int_hook(xfrm_state_delete_security, 0, x); 2480} 2481EXPORT_SYMBOL(security_xfrm_state_delete); 2482 2483void security_xfrm_state_free(struct xfrm_state *x) 2484{ 2485 call_void_hook(xfrm_state_free_security, x); 2486} 2487 2488int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 2489{ 2490 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid); 2491} 2492 2493int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2494 struct xfrm_policy *xp, 2495 const struct flowi_common *flic) 2496{ 2497 struct security_hook_list *hp; 2498 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 2499 2500 /* 2501 * Since this function is expected to return 0 or 1, the judgment 2502 * becomes difficult if multiple LSMs supply this call. Fortunately, 2503 * we can use the first LSM's judgment because currently only SELinux 2504 * supplies this call. 2505 * 2506 * For speed optimization, we explicitly break the loop rather than 2507 * using the macro 2508 */ 2509 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2510 list) { 2511 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 2512 break; 2513 } 2514 return rc; 2515} 2516 2517int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2518{ 2519 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2520} 2521 2522void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 2523{ 2524 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 2525 0); 2526 2527 BUG_ON(rc); 2528} 2529EXPORT_SYMBOL(security_skb_classify_flow); 2530 2531#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2532 2533#ifdef CONFIG_KEYS 2534 2535int security_key_alloc(struct key *key, const struct cred *cred, 2536 unsigned long flags) 2537{ 2538 return call_int_hook(key_alloc, 0, key, cred, flags); 2539} 2540 2541void security_key_free(struct key *key) 2542{ 2543 call_void_hook(key_free, key); 2544} 2545 2546int security_key_permission(key_ref_t key_ref, const struct cred *cred, 2547 enum key_need_perm need_perm) 2548{ 2549 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 2550} 2551 2552int security_key_getsecurity(struct key *key, char **_buffer) 2553{ 2554 *_buffer = NULL; 2555 return call_int_hook(key_getsecurity, 0, key, _buffer); 2556} 2557 2558#endif /* CONFIG_KEYS */ 2559 2560#ifdef CONFIG_AUDIT 2561 2562int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2563{ 2564 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2565} 2566 2567int security_audit_rule_known(struct audit_krule *krule) 2568{ 2569 return call_int_hook(audit_rule_known, 0, krule); 2570} 2571 2572void security_audit_rule_free(void *lsmrule) 2573{ 2574 call_void_hook(audit_rule_free, lsmrule); 2575} 2576 2577int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2578{ 2579 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2580} 2581#endif /* CONFIG_AUDIT */ 2582 2583#ifdef CONFIG_BPF_SYSCALL 2584int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2585{ 2586 return call_int_hook(bpf, 0, cmd, attr, size); 2587} 2588int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2589{ 2590 return call_int_hook(bpf_map, 0, map, fmode); 2591} 2592int security_bpf_prog(struct bpf_prog *prog) 2593{ 2594 return call_int_hook(bpf_prog, 0, prog); 2595} 2596int security_bpf_map_alloc(struct bpf_map *map) 2597{ 2598 return call_int_hook(bpf_map_alloc_security, 0, map); 2599} 2600int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2601{ 2602 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2603} 2604void security_bpf_map_free(struct bpf_map *map) 2605{ 2606 call_void_hook(bpf_map_free_security, map); 2607} 2608void security_bpf_prog_free(struct bpf_prog_aux *aux) 2609{ 2610 call_void_hook(bpf_prog_free_security, aux); 2611} 2612#endif /* CONFIG_BPF_SYSCALL */ 2613 2614int security_locked_down(enum lockdown_reason what) 2615{ 2616 return call_int_hook(locked_down, 0, what); 2617} 2618EXPORT_SYMBOL(security_locked_down); 2619 2620#ifdef CONFIG_PERF_EVENTS 2621int security_perf_event_open(struct perf_event_attr *attr, int type) 2622{ 2623 return call_int_hook(perf_event_open, 0, attr, type); 2624} 2625 2626int security_perf_event_alloc(struct perf_event *event) 2627{ 2628 return call_int_hook(perf_event_alloc, 0, event); 2629} 2630 2631void security_perf_event_free(struct perf_event *event) 2632{ 2633 call_void_hook(perf_event_free, event); 2634} 2635 2636int security_perf_event_read(struct perf_event *event) 2637{ 2638 return call_int_hook(perf_event_read, 0, event); 2639} 2640 2641int security_perf_event_write(struct perf_event *event) 2642{ 2643 return call_int_hook(perf_event_write, 0, event); 2644} 2645#endif /* CONFIG_PERF_EVENTS */ 2646 2647#ifdef CONFIG_IO_URING 2648int security_uring_override_creds(const struct cred *new) 2649{ 2650 return call_int_hook(uring_override_creds, 0, new); 2651} 2652 2653int security_uring_sqpoll(void) 2654{ 2655 return call_int_hook(uring_sqpoll, 0); 2656} 2657#endif /* CONFIG_IO_URING */