cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

security.c (67979B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Security plug functions
      4 *
      5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
      6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
      7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
      8 * Copyright (C) 2016 Mellanox Technologies
      9 */
     10
     11#define pr_fmt(fmt) "LSM: " fmt
     12
     13#include <linux/bpf.h>
     14#include <linux/capability.h>
     15#include <linux/dcache.h>
     16#include <linux/export.h>
     17#include <linux/init.h>
     18#include <linux/kernel.h>
     19#include <linux/kernel_read_file.h>
     20#include <linux/lsm_hooks.h>
     21#include <linux/integrity.h>
     22#include <linux/ima.h>
     23#include <linux/evm.h>
     24#include <linux/fsnotify.h>
     25#include <linux/mman.h>
     26#include <linux/mount.h>
     27#include <linux/personality.h>
     28#include <linux/backing-dev.h>
     29#include <linux/string.h>
     30#include <linux/msg.h>
     31#include <net/flow.h>
     32
     33#define MAX_LSM_EVM_XATTR	2
     34
     35/* How many LSMs were built into the kernel? */
     36#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
     37
     38/*
     39 * These are descriptions of the reasons that can be passed to the
     40 * security_locked_down() LSM hook. Placing this array here allows
     41 * all security modules to use the same descriptions for auditing
     42 * purposes.
     43 */
     44const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
     45	[LOCKDOWN_NONE] = "none",
     46	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
     47	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
     48	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
     49	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
     50	[LOCKDOWN_HIBERNATION] = "hibernation",
     51	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
     52	[LOCKDOWN_IOPORT] = "raw io port access",
     53	[LOCKDOWN_MSR] = "raw MSR access",
     54	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
     55	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
     56	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
     57	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
     58	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
     59	[LOCKDOWN_DEBUGFS] = "debugfs access",
     60	[LOCKDOWN_XMON_WR] = "xmon write access",
     61	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
     62	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
     63	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
     64	[LOCKDOWN_KCORE] = "/proc/kcore access",
     65	[LOCKDOWN_KPROBES] = "use of kprobes",
     66	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
     67	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
     68	[LOCKDOWN_PERF] = "unsafe use of perf",
     69	[LOCKDOWN_TRACEFS] = "use of tracefs",
     70	[LOCKDOWN_XMON_RW] = "xmon read and write access",
     71	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
     72	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
     73};
     74
     75struct security_hook_heads security_hook_heads __lsm_ro_after_init;
     76static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
     77
     78static struct kmem_cache *lsm_file_cache;
     79static struct kmem_cache *lsm_inode_cache;
     80
     81char *lsm_names;
     82static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
     83
     84/* Boot-time LSM user choice */
     85static __initdata const char *chosen_lsm_order;
     86static __initdata const char *chosen_major_lsm;
     87
     88static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
     89
     90/* Ordered list of LSMs to initialize. */
     91static __initdata struct lsm_info **ordered_lsms;
     92static __initdata struct lsm_info *exclusive;
     93
     94static __initdata bool debug;
     95#define init_debug(...)						\
     96	do {							\
     97		if (debug)					\
     98			pr_info(__VA_ARGS__);			\
     99	} while (0)
    100
    101static bool __init is_enabled(struct lsm_info *lsm)
    102{
    103	if (!lsm->enabled)
    104		return false;
    105
    106	return *lsm->enabled;
    107}
    108
    109/* Mark an LSM's enabled flag. */
    110static int lsm_enabled_true __initdata = 1;
    111static int lsm_enabled_false __initdata = 0;
    112static void __init set_enabled(struct lsm_info *lsm, bool enabled)
    113{
    114	/*
    115	 * When an LSM hasn't configured an enable variable, we can use
    116	 * a hard-coded location for storing the default enabled state.
    117	 */
    118	if (!lsm->enabled) {
    119		if (enabled)
    120			lsm->enabled = &lsm_enabled_true;
    121		else
    122			lsm->enabled = &lsm_enabled_false;
    123	} else if (lsm->enabled == &lsm_enabled_true) {
    124		if (!enabled)
    125			lsm->enabled = &lsm_enabled_false;
    126	} else if (lsm->enabled == &lsm_enabled_false) {
    127		if (enabled)
    128			lsm->enabled = &lsm_enabled_true;
    129	} else {
    130		*lsm->enabled = enabled;
    131	}
    132}
    133
    134/* Is an LSM already listed in the ordered LSMs list? */
    135static bool __init exists_ordered_lsm(struct lsm_info *lsm)
    136{
    137	struct lsm_info **check;
    138
    139	for (check = ordered_lsms; *check; check++)
    140		if (*check == lsm)
    141			return true;
    142
    143	return false;
    144}
    145
    146/* Append an LSM to the list of ordered LSMs to initialize. */
    147static int last_lsm __initdata;
    148static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
    149{
    150	/* Ignore duplicate selections. */
    151	if (exists_ordered_lsm(lsm))
    152		return;
    153
    154	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
    155		return;
    156
    157	/* Enable this LSM, if it is not already set. */
    158	if (!lsm->enabled)
    159		lsm->enabled = &lsm_enabled_true;
    160	ordered_lsms[last_lsm++] = lsm;
    161
    162	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
    163		   is_enabled(lsm) ? "en" : "dis");
    164}
    165
    166/* Is an LSM allowed to be initialized? */
    167static bool __init lsm_allowed(struct lsm_info *lsm)
    168{
    169	/* Skip if the LSM is disabled. */
    170	if (!is_enabled(lsm))
    171		return false;
    172
    173	/* Not allowed if another exclusive LSM already initialized. */
    174	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
    175		init_debug("exclusive disabled: %s\n", lsm->name);
    176		return false;
    177	}
    178
    179	return true;
    180}
    181
    182static void __init lsm_set_blob_size(int *need, int *lbs)
    183{
    184	int offset;
    185
    186	if (*need > 0) {
    187		offset = *lbs;
    188		*lbs += *need;
    189		*need = offset;
    190	}
    191}
    192
    193static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
    194{
    195	if (!needed)
    196		return;
    197
    198	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
    199	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
    200	/*
    201	 * The inode blob gets an rcu_head in addition to
    202	 * what the modules might need.
    203	 */
    204	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
    205		blob_sizes.lbs_inode = sizeof(struct rcu_head);
    206	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
    207	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
    208	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
    209	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
    210	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
    211}
    212
    213/* Prepare LSM for initialization. */
    214static void __init prepare_lsm(struct lsm_info *lsm)
    215{
    216	int enabled = lsm_allowed(lsm);
    217
    218	/* Record enablement (to handle any following exclusive LSMs). */
    219	set_enabled(lsm, enabled);
    220
    221	/* If enabled, do pre-initialization work. */
    222	if (enabled) {
    223		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
    224			exclusive = lsm;
    225			init_debug("exclusive chosen: %s\n", lsm->name);
    226		}
    227
    228		lsm_set_blob_sizes(lsm->blobs);
    229	}
    230}
    231
    232/* Initialize a given LSM, if it is enabled. */
    233static void __init initialize_lsm(struct lsm_info *lsm)
    234{
    235	if (is_enabled(lsm)) {
    236		int ret;
    237
    238		init_debug("initializing %s\n", lsm->name);
    239		ret = lsm->init();
    240		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
    241	}
    242}
    243
    244/* Populate ordered LSMs list from comma-separated LSM name list. */
    245static void __init ordered_lsm_parse(const char *order, const char *origin)
    246{
    247	struct lsm_info *lsm;
    248	char *sep, *name, *next;
    249
    250	/* LSM_ORDER_FIRST is always first. */
    251	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
    252		if (lsm->order == LSM_ORDER_FIRST)
    253			append_ordered_lsm(lsm, "first");
    254	}
    255
    256	/* Process "security=", if given. */
    257	if (chosen_major_lsm) {
    258		struct lsm_info *major;
    259
    260		/*
    261		 * To match the original "security=" behavior, this
    262		 * explicitly does NOT fallback to another Legacy Major
    263		 * if the selected one was separately disabled: disable
    264		 * all non-matching Legacy Major LSMs.
    265		 */
    266		for (major = __start_lsm_info; major < __end_lsm_info;
    267		     major++) {
    268			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
    269			    strcmp(major->name, chosen_major_lsm) != 0) {
    270				set_enabled(major, false);
    271				init_debug("security=%s disabled: %s\n",
    272					   chosen_major_lsm, major->name);
    273			}
    274		}
    275	}
    276
    277	sep = kstrdup(order, GFP_KERNEL);
    278	next = sep;
    279	/* Walk the list, looking for matching LSMs. */
    280	while ((name = strsep(&next, ",")) != NULL) {
    281		bool found = false;
    282
    283		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
    284			if (lsm->order == LSM_ORDER_MUTABLE &&
    285			    strcmp(lsm->name, name) == 0) {
    286				append_ordered_lsm(lsm, origin);
    287				found = true;
    288			}
    289		}
    290
    291		if (!found)
    292			init_debug("%s ignored: %s\n", origin, name);
    293	}
    294
    295	/* Process "security=", if given. */
    296	if (chosen_major_lsm) {
    297		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
    298			if (exists_ordered_lsm(lsm))
    299				continue;
    300			if (strcmp(lsm->name, chosen_major_lsm) == 0)
    301				append_ordered_lsm(lsm, "security=");
    302		}
    303	}
    304
    305	/* Disable all LSMs not in the ordered list. */
    306	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
    307		if (exists_ordered_lsm(lsm))
    308			continue;
    309		set_enabled(lsm, false);
    310		init_debug("%s disabled: %s\n", origin, lsm->name);
    311	}
    312
    313	kfree(sep);
    314}
    315
    316static void __init lsm_early_cred(struct cred *cred);
    317static void __init lsm_early_task(struct task_struct *task);
    318
    319static int lsm_append(const char *new, char **result);
    320
    321static void __init ordered_lsm_init(void)
    322{
    323	struct lsm_info **lsm;
    324
    325	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
    326				GFP_KERNEL);
    327
    328	if (chosen_lsm_order) {
    329		if (chosen_major_lsm) {
    330			pr_info("security= is ignored because it is superseded by lsm=\n");
    331			chosen_major_lsm = NULL;
    332		}
    333		ordered_lsm_parse(chosen_lsm_order, "cmdline");
    334	} else
    335		ordered_lsm_parse(builtin_lsm_order, "builtin");
    336
    337	for (lsm = ordered_lsms; *lsm; lsm++)
    338		prepare_lsm(*lsm);
    339
    340	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
    341	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
    342	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
    343	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
    344	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
    345	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
    346	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
    347
    348	/*
    349	 * Create any kmem_caches needed for blobs
    350	 */
    351	if (blob_sizes.lbs_file)
    352		lsm_file_cache = kmem_cache_create("lsm_file_cache",
    353						   blob_sizes.lbs_file, 0,
    354						   SLAB_PANIC, NULL);
    355	if (blob_sizes.lbs_inode)
    356		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
    357						    blob_sizes.lbs_inode, 0,
    358						    SLAB_PANIC, NULL);
    359
    360	lsm_early_cred((struct cred *) current->cred);
    361	lsm_early_task(current);
    362	for (lsm = ordered_lsms; *lsm; lsm++)
    363		initialize_lsm(*lsm);
    364
    365	kfree(ordered_lsms);
    366}
    367
    368int __init early_security_init(void)
    369{
    370	struct lsm_info *lsm;
    371
    372#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
    373	INIT_HLIST_HEAD(&security_hook_heads.NAME);
    374#include "linux/lsm_hook_defs.h"
    375#undef LSM_HOOK
    376
    377	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
    378		if (!lsm->enabled)
    379			lsm->enabled = &lsm_enabled_true;
    380		prepare_lsm(lsm);
    381		initialize_lsm(lsm);
    382	}
    383
    384	return 0;
    385}
    386
    387/**
    388 * security_init - initializes the security framework
    389 *
    390 * This should be called early in the kernel initialization sequence.
    391 */
    392int __init security_init(void)
    393{
    394	struct lsm_info *lsm;
    395
    396	pr_info("Security Framework initializing\n");
    397
    398	/*
    399	 * Append the names of the early LSM modules now that kmalloc() is
    400	 * available
    401	 */
    402	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
    403		if (lsm->enabled)
    404			lsm_append(lsm->name, &lsm_names);
    405	}
    406
    407	/* Load LSMs in specified order. */
    408	ordered_lsm_init();
    409
    410	return 0;
    411}
    412
    413/* Save user chosen LSM */
    414static int __init choose_major_lsm(char *str)
    415{
    416	chosen_major_lsm = str;
    417	return 1;
    418}
    419__setup("security=", choose_major_lsm);
    420
    421/* Explicitly choose LSM initialization order. */
    422static int __init choose_lsm_order(char *str)
    423{
    424	chosen_lsm_order = str;
    425	return 1;
    426}
    427__setup("lsm=", choose_lsm_order);
    428
    429/* Enable LSM order debugging. */
    430static int __init enable_debug(char *str)
    431{
    432	debug = true;
    433	return 1;
    434}
    435__setup("lsm.debug", enable_debug);
    436
    437static bool match_last_lsm(const char *list, const char *lsm)
    438{
    439	const char *last;
    440
    441	if (WARN_ON(!list || !lsm))
    442		return false;
    443	last = strrchr(list, ',');
    444	if (last)
    445		/* Pass the comma, strcmp() will check for '\0' */
    446		last++;
    447	else
    448		last = list;
    449	return !strcmp(last, lsm);
    450}
    451
    452static int lsm_append(const char *new, char **result)
    453{
    454	char *cp;
    455
    456	if (*result == NULL) {
    457		*result = kstrdup(new, GFP_KERNEL);
    458		if (*result == NULL)
    459			return -ENOMEM;
    460	} else {
    461		/* Check if it is the last registered name */
    462		if (match_last_lsm(*result, new))
    463			return 0;
    464		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
    465		if (cp == NULL)
    466			return -ENOMEM;
    467		kfree(*result);
    468		*result = cp;
    469	}
    470	return 0;
    471}
    472
    473/**
    474 * security_add_hooks - Add a modules hooks to the hook lists.
    475 * @hooks: the hooks to add
    476 * @count: the number of hooks to add
    477 * @lsm: the name of the security module
    478 *
    479 * Each LSM has to register its hooks with the infrastructure.
    480 */
    481void __init security_add_hooks(struct security_hook_list *hooks, int count,
    482				const char *lsm)
    483{
    484	int i;
    485
    486	for (i = 0; i < count; i++) {
    487		hooks[i].lsm = lsm;
    488		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
    489	}
    490
    491	/*
    492	 * Don't try to append during early_security_init(), we'll come back
    493	 * and fix this up afterwards.
    494	 */
    495	if (slab_is_available()) {
    496		if (lsm_append(lsm, &lsm_names) < 0)
    497			panic("%s - Cannot get early memory.\n", __func__);
    498	}
    499}
    500
    501int call_blocking_lsm_notifier(enum lsm_event event, void *data)
    502{
    503	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
    504					    event, data);
    505}
    506EXPORT_SYMBOL(call_blocking_lsm_notifier);
    507
    508int register_blocking_lsm_notifier(struct notifier_block *nb)
    509{
    510	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
    511						nb);
    512}
    513EXPORT_SYMBOL(register_blocking_lsm_notifier);
    514
    515int unregister_blocking_lsm_notifier(struct notifier_block *nb)
    516{
    517	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
    518						  nb);
    519}
    520EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
    521
    522/**
    523 * lsm_cred_alloc - allocate a composite cred blob
    524 * @cred: the cred that needs a blob
    525 * @gfp: allocation type
    526 *
    527 * Allocate the cred blob for all the modules
    528 *
    529 * Returns 0, or -ENOMEM if memory can't be allocated.
    530 */
    531static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
    532{
    533	if (blob_sizes.lbs_cred == 0) {
    534		cred->security = NULL;
    535		return 0;
    536	}
    537
    538	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
    539	if (cred->security == NULL)
    540		return -ENOMEM;
    541	return 0;
    542}
    543
    544/**
    545 * lsm_early_cred - during initialization allocate a composite cred blob
    546 * @cred: the cred that needs a blob
    547 *
    548 * Allocate the cred blob for all the modules
    549 */
    550static void __init lsm_early_cred(struct cred *cred)
    551{
    552	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
    553
    554	if (rc)
    555		panic("%s: Early cred alloc failed.\n", __func__);
    556}
    557
    558/**
    559 * lsm_file_alloc - allocate a composite file blob
    560 * @file: the file that needs a blob
    561 *
    562 * Allocate the file blob for all the modules
    563 *
    564 * Returns 0, or -ENOMEM if memory can't be allocated.
    565 */
    566static int lsm_file_alloc(struct file *file)
    567{
    568	if (!lsm_file_cache) {
    569		file->f_security = NULL;
    570		return 0;
    571	}
    572
    573	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
    574	if (file->f_security == NULL)
    575		return -ENOMEM;
    576	return 0;
    577}
    578
    579/**
    580 * lsm_inode_alloc - allocate a composite inode blob
    581 * @inode: the inode that needs a blob
    582 *
    583 * Allocate the inode blob for all the modules
    584 *
    585 * Returns 0, or -ENOMEM if memory can't be allocated.
    586 */
    587int lsm_inode_alloc(struct inode *inode)
    588{
    589	if (!lsm_inode_cache) {
    590		inode->i_security = NULL;
    591		return 0;
    592	}
    593
    594	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
    595	if (inode->i_security == NULL)
    596		return -ENOMEM;
    597	return 0;
    598}
    599
    600/**
    601 * lsm_task_alloc - allocate a composite task blob
    602 * @task: the task that needs a blob
    603 *
    604 * Allocate the task blob for all the modules
    605 *
    606 * Returns 0, or -ENOMEM if memory can't be allocated.
    607 */
    608static int lsm_task_alloc(struct task_struct *task)
    609{
    610	if (blob_sizes.lbs_task == 0) {
    611		task->security = NULL;
    612		return 0;
    613	}
    614
    615	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
    616	if (task->security == NULL)
    617		return -ENOMEM;
    618	return 0;
    619}
    620
    621/**
    622 * lsm_ipc_alloc - allocate a composite ipc blob
    623 * @kip: the ipc that needs a blob
    624 *
    625 * Allocate the ipc blob for all the modules
    626 *
    627 * Returns 0, or -ENOMEM if memory can't be allocated.
    628 */
    629static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
    630{
    631	if (blob_sizes.lbs_ipc == 0) {
    632		kip->security = NULL;
    633		return 0;
    634	}
    635
    636	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
    637	if (kip->security == NULL)
    638		return -ENOMEM;
    639	return 0;
    640}
    641
    642/**
    643 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
    644 * @mp: the msg_msg that needs a blob
    645 *
    646 * Allocate the ipc blob for all the modules
    647 *
    648 * Returns 0, or -ENOMEM if memory can't be allocated.
    649 */
    650static int lsm_msg_msg_alloc(struct msg_msg *mp)
    651{
    652	if (blob_sizes.lbs_msg_msg == 0) {
    653		mp->security = NULL;
    654		return 0;
    655	}
    656
    657	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
    658	if (mp->security == NULL)
    659		return -ENOMEM;
    660	return 0;
    661}
    662
    663/**
    664 * lsm_early_task - during initialization allocate a composite task blob
    665 * @task: the task that needs a blob
    666 *
    667 * Allocate the task blob for all the modules
    668 */
    669static void __init lsm_early_task(struct task_struct *task)
    670{
    671	int rc = lsm_task_alloc(task);
    672
    673	if (rc)
    674		panic("%s: Early task alloc failed.\n", __func__);
    675}
    676
    677/**
    678 * lsm_superblock_alloc - allocate a composite superblock blob
    679 * @sb: the superblock that needs a blob
    680 *
    681 * Allocate the superblock blob for all the modules
    682 *
    683 * Returns 0, or -ENOMEM if memory can't be allocated.
    684 */
    685static int lsm_superblock_alloc(struct super_block *sb)
    686{
    687	if (blob_sizes.lbs_superblock == 0) {
    688		sb->s_security = NULL;
    689		return 0;
    690	}
    691
    692	sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
    693	if (sb->s_security == NULL)
    694		return -ENOMEM;
    695	return 0;
    696}
    697
    698/*
    699 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
    700 * can be accessed with:
    701 *
    702 *	LSM_RET_DEFAULT(<hook_name>)
    703 *
    704 * The macros below define static constants for the default value of each
    705 * LSM hook.
    706 */
    707#define LSM_RET_DEFAULT(NAME) (NAME##_default)
    708#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
    709#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
    710	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
    711#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
    712	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
    713
    714#include <linux/lsm_hook_defs.h>
    715#undef LSM_HOOK
    716
    717/*
    718 * Hook list operation macros.
    719 *
    720 * call_void_hook:
    721 *	This is a hook that does not return a value.
    722 *
    723 * call_int_hook:
    724 *	This is a hook that returns a value.
    725 */
    726
    727#define call_void_hook(FUNC, ...)				\
    728	do {							\
    729		struct security_hook_list *P;			\
    730								\
    731		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
    732			P->hook.FUNC(__VA_ARGS__);		\
    733	} while (0)
    734
    735#define call_int_hook(FUNC, IRC, ...) ({			\
    736	int RC = IRC;						\
    737	do {							\
    738		struct security_hook_list *P;			\
    739								\
    740		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
    741			RC = P->hook.FUNC(__VA_ARGS__);		\
    742			if (RC != 0)				\
    743				break;				\
    744		}						\
    745	} while (0);						\
    746	RC;							\
    747})
    748
    749/* Security operations */
    750
    751int security_binder_set_context_mgr(const struct cred *mgr)
    752{
    753	return call_int_hook(binder_set_context_mgr, 0, mgr);
    754}
    755
    756int security_binder_transaction(const struct cred *from,
    757				const struct cred *to)
    758{
    759	return call_int_hook(binder_transaction, 0, from, to);
    760}
    761
    762int security_binder_transfer_binder(const struct cred *from,
    763				    const struct cred *to)
    764{
    765	return call_int_hook(binder_transfer_binder, 0, from, to);
    766}
    767
    768int security_binder_transfer_file(const struct cred *from,
    769				  const struct cred *to, struct file *file)
    770{
    771	return call_int_hook(binder_transfer_file, 0, from, to, file);
    772}
    773
    774int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
    775{
    776	return call_int_hook(ptrace_access_check, 0, child, mode);
    777}
    778
    779int security_ptrace_traceme(struct task_struct *parent)
    780{
    781	return call_int_hook(ptrace_traceme, 0, parent);
    782}
    783
    784int security_capget(struct task_struct *target,
    785		     kernel_cap_t *effective,
    786		     kernel_cap_t *inheritable,
    787		     kernel_cap_t *permitted)
    788{
    789	return call_int_hook(capget, 0, target,
    790				effective, inheritable, permitted);
    791}
    792
    793int security_capset(struct cred *new, const struct cred *old,
    794		    const kernel_cap_t *effective,
    795		    const kernel_cap_t *inheritable,
    796		    const kernel_cap_t *permitted)
    797{
    798	return call_int_hook(capset, 0, new, old,
    799				effective, inheritable, permitted);
    800}
    801
    802int security_capable(const struct cred *cred,
    803		     struct user_namespace *ns,
    804		     int cap,
    805		     unsigned int opts)
    806{
    807	return call_int_hook(capable, 0, cred, ns, cap, opts);
    808}
    809
    810int security_quotactl(int cmds, int type, int id, struct super_block *sb)
    811{
    812	return call_int_hook(quotactl, 0, cmds, type, id, sb);
    813}
    814
    815int security_quota_on(struct dentry *dentry)
    816{
    817	return call_int_hook(quota_on, 0, dentry);
    818}
    819
    820int security_syslog(int type)
    821{
    822	return call_int_hook(syslog, 0, type);
    823}
    824
    825int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
    826{
    827	return call_int_hook(settime, 0, ts, tz);
    828}
    829
    830int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
    831{
    832	struct security_hook_list *hp;
    833	int cap_sys_admin = 1;
    834	int rc;
    835
    836	/*
    837	 * The module will respond with a positive value if
    838	 * it thinks the __vm_enough_memory() call should be
    839	 * made with the cap_sys_admin set. If all of the modules
    840	 * agree that it should be set it will. If any module
    841	 * thinks it should not be set it won't.
    842	 */
    843	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
    844		rc = hp->hook.vm_enough_memory(mm, pages);
    845		if (rc <= 0) {
    846			cap_sys_admin = 0;
    847			break;
    848		}
    849	}
    850	return __vm_enough_memory(mm, pages, cap_sys_admin);
    851}
    852
    853int security_bprm_creds_for_exec(struct linux_binprm *bprm)
    854{
    855	return call_int_hook(bprm_creds_for_exec, 0, bprm);
    856}
    857
    858int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
    859{
    860	return call_int_hook(bprm_creds_from_file, 0, bprm, file);
    861}
    862
    863int security_bprm_check(struct linux_binprm *bprm)
    864{
    865	int ret;
    866
    867	ret = call_int_hook(bprm_check_security, 0, bprm);
    868	if (ret)
    869		return ret;
    870	return ima_bprm_check(bprm);
    871}
    872
    873void security_bprm_committing_creds(struct linux_binprm *bprm)
    874{
    875	call_void_hook(bprm_committing_creds, bprm);
    876}
    877
    878void security_bprm_committed_creds(struct linux_binprm *bprm)
    879{
    880	call_void_hook(bprm_committed_creds, bprm);
    881}
    882
    883int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
    884{
    885	return call_int_hook(fs_context_dup, 0, fc, src_fc);
    886}
    887
    888int security_fs_context_parse_param(struct fs_context *fc,
    889				    struct fs_parameter *param)
    890{
    891	struct security_hook_list *hp;
    892	int trc;
    893	int rc = -ENOPARAM;
    894
    895	hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
    896			     list) {
    897		trc = hp->hook.fs_context_parse_param(fc, param);
    898		if (trc == 0)
    899			rc = 0;
    900		else if (trc != -ENOPARAM)
    901			return trc;
    902	}
    903	return rc;
    904}
    905
    906int security_sb_alloc(struct super_block *sb)
    907{
    908	int rc = lsm_superblock_alloc(sb);
    909
    910	if (unlikely(rc))
    911		return rc;
    912	rc = call_int_hook(sb_alloc_security, 0, sb);
    913	if (unlikely(rc))
    914		security_sb_free(sb);
    915	return rc;
    916}
    917
    918void security_sb_delete(struct super_block *sb)
    919{
    920	call_void_hook(sb_delete, sb);
    921}
    922
    923void security_sb_free(struct super_block *sb)
    924{
    925	call_void_hook(sb_free_security, sb);
    926	kfree(sb->s_security);
    927	sb->s_security = NULL;
    928}
    929
    930void security_free_mnt_opts(void **mnt_opts)
    931{
    932	if (!*mnt_opts)
    933		return;
    934	call_void_hook(sb_free_mnt_opts, *mnt_opts);
    935	*mnt_opts = NULL;
    936}
    937EXPORT_SYMBOL(security_free_mnt_opts);
    938
    939int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
    940{
    941	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
    942}
    943EXPORT_SYMBOL(security_sb_eat_lsm_opts);
    944
    945int security_sb_mnt_opts_compat(struct super_block *sb,
    946				void *mnt_opts)
    947{
    948	return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
    949}
    950EXPORT_SYMBOL(security_sb_mnt_opts_compat);
    951
    952int security_sb_remount(struct super_block *sb,
    953			void *mnt_opts)
    954{
    955	return call_int_hook(sb_remount, 0, sb, mnt_opts);
    956}
    957EXPORT_SYMBOL(security_sb_remount);
    958
    959int security_sb_kern_mount(struct super_block *sb)
    960{
    961	return call_int_hook(sb_kern_mount, 0, sb);
    962}
    963
    964int security_sb_show_options(struct seq_file *m, struct super_block *sb)
    965{
    966	return call_int_hook(sb_show_options, 0, m, sb);
    967}
    968
    969int security_sb_statfs(struct dentry *dentry)
    970{
    971	return call_int_hook(sb_statfs, 0, dentry);
    972}
    973
    974int security_sb_mount(const char *dev_name, const struct path *path,
    975                       const char *type, unsigned long flags, void *data)
    976{
    977	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
    978}
    979
    980int security_sb_umount(struct vfsmount *mnt, int flags)
    981{
    982	return call_int_hook(sb_umount, 0, mnt, flags);
    983}
    984
    985int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
    986{
    987	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
    988}
    989
    990int security_sb_set_mnt_opts(struct super_block *sb,
    991				void *mnt_opts,
    992				unsigned long kern_flags,
    993				unsigned long *set_kern_flags)
    994{
    995	return call_int_hook(sb_set_mnt_opts,
    996				mnt_opts ? -EOPNOTSUPP : 0, sb,
    997				mnt_opts, kern_flags, set_kern_flags);
    998}
    999EXPORT_SYMBOL(security_sb_set_mnt_opts);
   1000
   1001int security_sb_clone_mnt_opts(const struct super_block *oldsb,
   1002				struct super_block *newsb,
   1003				unsigned long kern_flags,
   1004				unsigned long *set_kern_flags)
   1005{
   1006	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
   1007				kern_flags, set_kern_flags);
   1008}
   1009EXPORT_SYMBOL(security_sb_clone_mnt_opts);
   1010
   1011int security_move_mount(const struct path *from_path, const struct path *to_path)
   1012{
   1013	return call_int_hook(move_mount, 0, from_path, to_path);
   1014}
   1015
   1016int security_path_notify(const struct path *path, u64 mask,
   1017				unsigned int obj_type)
   1018{
   1019	return call_int_hook(path_notify, 0, path, mask, obj_type);
   1020}
   1021
   1022int security_inode_alloc(struct inode *inode)
   1023{
   1024	int rc = lsm_inode_alloc(inode);
   1025
   1026	if (unlikely(rc))
   1027		return rc;
   1028	rc = call_int_hook(inode_alloc_security, 0, inode);
   1029	if (unlikely(rc))
   1030		security_inode_free(inode);
   1031	return rc;
   1032}
   1033
   1034static void inode_free_by_rcu(struct rcu_head *head)
   1035{
   1036	/*
   1037	 * The rcu head is at the start of the inode blob
   1038	 */
   1039	kmem_cache_free(lsm_inode_cache, head);
   1040}
   1041
   1042void security_inode_free(struct inode *inode)
   1043{
   1044	integrity_inode_free(inode);
   1045	call_void_hook(inode_free_security, inode);
   1046	/*
   1047	 * The inode may still be referenced in a path walk and
   1048	 * a call to security_inode_permission() can be made
   1049	 * after inode_free_security() is called. Ideally, the VFS
   1050	 * wouldn't do this, but fixing that is a much harder
   1051	 * job. For now, simply free the i_security via RCU, and
   1052	 * leave the current inode->i_security pointer intact.
   1053	 * The inode will be freed after the RCU grace period too.
   1054	 */
   1055	if (inode->i_security)
   1056		call_rcu((struct rcu_head *)inode->i_security,
   1057				inode_free_by_rcu);
   1058}
   1059
   1060int security_dentry_init_security(struct dentry *dentry, int mode,
   1061				  const struct qstr *name,
   1062				  const char **xattr_name, void **ctx,
   1063				  u32 *ctxlen)
   1064{
   1065	struct security_hook_list *hp;
   1066	int rc;
   1067
   1068	/*
   1069	 * Only one module will provide a security context.
   1070	 */
   1071	hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) {
   1072		rc = hp->hook.dentry_init_security(dentry, mode, name,
   1073						   xattr_name, ctx, ctxlen);
   1074		if (rc != LSM_RET_DEFAULT(dentry_init_security))
   1075			return rc;
   1076	}
   1077	return LSM_RET_DEFAULT(dentry_init_security);
   1078}
   1079EXPORT_SYMBOL(security_dentry_init_security);
   1080
   1081int security_dentry_create_files_as(struct dentry *dentry, int mode,
   1082				    struct qstr *name,
   1083				    const struct cred *old, struct cred *new)
   1084{
   1085	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
   1086				name, old, new);
   1087}
   1088EXPORT_SYMBOL(security_dentry_create_files_as);
   1089
   1090int security_inode_init_security(struct inode *inode, struct inode *dir,
   1091				 const struct qstr *qstr,
   1092				 const initxattrs initxattrs, void *fs_data)
   1093{
   1094	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
   1095	struct xattr *lsm_xattr, *evm_xattr, *xattr;
   1096	int ret;
   1097
   1098	if (unlikely(IS_PRIVATE(inode)))
   1099		return 0;
   1100
   1101	if (!initxattrs)
   1102		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
   1103				     dir, qstr, NULL, NULL, NULL);
   1104	memset(new_xattrs, 0, sizeof(new_xattrs));
   1105	lsm_xattr = new_xattrs;
   1106	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
   1107						&lsm_xattr->name,
   1108						&lsm_xattr->value,
   1109						&lsm_xattr->value_len);
   1110	if (ret)
   1111		goto out;
   1112
   1113	evm_xattr = lsm_xattr + 1;
   1114	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
   1115	if (ret)
   1116		goto out;
   1117	ret = initxattrs(inode, new_xattrs, fs_data);
   1118out:
   1119	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
   1120		kfree(xattr->value);
   1121	return (ret == -EOPNOTSUPP) ? 0 : ret;
   1122}
   1123EXPORT_SYMBOL(security_inode_init_security);
   1124
   1125int security_inode_init_security_anon(struct inode *inode,
   1126				      const struct qstr *name,
   1127				      const struct inode *context_inode)
   1128{
   1129	return call_int_hook(inode_init_security_anon, 0, inode, name,
   1130			     context_inode);
   1131}
   1132
   1133int security_old_inode_init_security(struct inode *inode, struct inode *dir,
   1134				     const struct qstr *qstr, const char **name,
   1135				     void **value, size_t *len)
   1136{
   1137	if (unlikely(IS_PRIVATE(inode)))
   1138		return -EOPNOTSUPP;
   1139	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
   1140			     qstr, name, value, len);
   1141}
   1142EXPORT_SYMBOL(security_old_inode_init_security);
   1143
   1144#ifdef CONFIG_SECURITY_PATH
   1145int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
   1146			unsigned int dev)
   1147{
   1148	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
   1149		return 0;
   1150	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
   1151}
   1152EXPORT_SYMBOL(security_path_mknod);
   1153
   1154int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
   1155{
   1156	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
   1157		return 0;
   1158	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
   1159}
   1160EXPORT_SYMBOL(security_path_mkdir);
   1161
   1162int security_path_rmdir(const struct path *dir, struct dentry *dentry)
   1163{
   1164	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
   1165		return 0;
   1166	return call_int_hook(path_rmdir, 0, dir, dentry);
   1167}
   1168
   1169int security_path_unlink(const struct path *dir, struct dentry *dentry)
   1170{
   1171	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
   1172		return 0;
   1173	return call_int_hook(path_unlink, 0, dir, dentry);
   1174}
   1175EXPORT_SYMBOL(security_path_unlink);
   1176
   1177int security_path_symlink(const struct path *dir, struct dentry *dentry,
   1178			  const char *old_name)
   1179{
   1180	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
   1181		return 0;
   1182	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
   1183}
   1184
   1185int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
   1186		       struct dentry *new_dentry)
   1187{
   1188	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
   1189		return 0;
   1190	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
   1191}
   1192
   1193int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
   1194			 const struct path *new_dir, struct dentry *new_dentry,
   1195			 unsigned int flags)
   1196{
   1197	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
   1198		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
   1199		return 0;
   1200
   1201	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
   1202				new_dentry, flags);
   1203}
   1204EXPORT_SYMBOL(security_path_rename);
   1205
   1206int security_path_truncate(const struct path *path)
   1207{
   1208	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
   1209		return 0;
   1210	return call_int_hook(path_truncate, 0, path);
   1211}
   1212
   1213int security_path_chmod(const struct path *path, umode_t mode)
   1214{
   1215	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
   1216		return 0;
   1217	return call_int_hook(path_chmod, 0, path, mode);
   1218}
   1219
   1220int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
   1221{
   1222	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
   1223		return 0;
   1224	return call_int_hook(path_chown, 0, path, uid, gid);
   1225}
   1226
   1227int security_path_chroot(const struct path *path)
   1228{
   1229	return call_int_hook(path_chroot, 0, path);
   1230}
   1231#endif
   1232
   1233int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
   1234{
   1235	if (unlikely(IS_PRIVATE(dir)))
   1236		return 0;
   1237	return call_int_hook(inode_create, 0, dir, dentry, mode);
   1238}
   1239EXPORT_SYMBOL_GPL(security_inode_create);
   1240
   1241int security_inode_link(struct dentry *old_dentry, struct inode *dir,
   1242			 struct dentry *new_dentry)
   1243{
   1244	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
   1245		return 0;
   1246	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
   1247}
   1248
   1249int security_inode_unlink(struct inode *dir, struct dentry *dentry)
   1250{
   1251	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
   1252		return 0;
   1253	return call_int_hook(inode_unlink, 0, dir, dentry);
   1254}
   1255
   1256int security_inode_symlink(struct inode *dir, struct dentry *dentry,
   1257			    const char *old_name)
   1258{
   1259	if (unlikely(IS_PRIVATE(dir)))
   1260		return 0;
   1261	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
   1262}
   1263
   1264int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
   1265{
   1266	if (unlikely(IS_PRIVATE(dir)))
   1267		return 0;
   1268	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
   1269}
   1270EXPORT_SYMBOL_GPL(security_inode_mkdir);
   1271
   1272int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
   1273{
   1274	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
   1275		return 0;
   1276	return call_int_hook(inode_rmdir, 0, dir, dentry);
   1277}
   1278
   1279int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
   1280{
   1281	if (unlikely(IS_PRIVATE(dir)))
   1282		return 0;
   1283	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
   1284}
   1285
   1286int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
   1287			   struct inode *new_dir, struct dentry *new_dentry,
   1288			   unsigned int flags)
   1289{
   1290        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
   1291            (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
   1292		return 0;
   1293
   1294	if (flags & RENAME_EXCHANGE) {
   1295		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
   1296						     old_dir, old_dentry);
   1297		if (err)
   1298			return err;
   1299	}
   1300
   1301	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
   1302					   new_dir, new_dentry);
   1303}
   1304
   1305int security_inode_readlink(struct dentry *dentry)
   1306{
   1307	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
   1308		return 0;
   1309	return call_int_hook(inode_readlink, 0, dentry);
   1310}
   1311
   1312int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
   1313			       bool rcu)
   1314{
   1315	if (unlikely(IS_PRIVATE(inode)))
   1316		return 0;
   1317	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
   1318}
   1319
   1320int security_inode_permission(struct inode *inode, int mask)
   1321{
   1322	if (unlikely(IS_PRIVATE(inode)))
   1323		return 0;
   1324	return call_int_hook(inode_permission, 0, inode, mask);
   1325}
   1326
   1327int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
   1328{
   1329	int ret;
   1330
   1331	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
   1332		return 0;
   1333	ret = call_int_hook(inode_setattr, 0, dentry, attr);
   1334	if (ret)
   1335		return ret;
   1336	return evm_inode_setattr(dentry, attr);
   1337}
   1338EXPORT_SYMBOL_GPL(security_inode_setattr);
   1339
   1340int security_inode_getattr(const struct path *path)
   1341{
   1342	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
   1343		return 0;
   1344	return call_int_hook(inode_getattr, 0, path);
   1345}
   1346
   1347int security_inode_setxattr(struct user_namespace *mnt_userns,
   1348			    struct dentry *dentry, const char *name,
   1349			    const void *value, size_t size, int flags)
   1350{
   1351	int ret;
   1352
   1353	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
   1354		return 0;
   1355	/*
   1356	 * SELinux and Smack integrate the cap call,
   1357	 * so assume that all LSMs supplying this call do so.
   1358	 */
   1359	ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
   1360			    size, flags);
   1361
   1362	if (ret == 1)
   1363		ret = cap_inode_setxattr(dentry, name, value, size, flags);
   1364	if (ret)
   1365		return ret;
   1366	ret = ima_inode_setxattr(dentry, name, value, size);
   1367	if (ret)
   1368		return ret;
   1369	return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
   1370}
   1371
   1372void security_inode_post_setxattr(struct dentry *dentry, const char *name,
   1373				  const void *value, size_t size, int flags)
   1374{
   1375	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
   1376		return;
   1377	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
   1378	evm_inode_post_setxattr(dentry, name, value, size);
   1379}
   1380
   1381int security_inode_getxattr(struct dentry *dentry, const char *name)
   1382{
   1383	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
   1384		return 0;
   1385	return call_int_hook(inode_getxattr, 0, dentry, name);
   1386}
   1387
   1388int security_inode_listxattr(struct dentry *dentry)
   1389{
   1390	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
   1391		return 0;
   1392	return call_int_hook(inode_listxattr, 0, dentry);
   1393}
   1394
   1395int security_inode_removexattr(struct user_namespace *mnt_userns,
   1396			       struct dentry *dentry, const char *name)
   1397{
   1398	int ret;
   1399
   1400	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
   1401		return 0;
   1402	/*
   1403	 * SELinux and Smack integrate the cap call,
   1404	 * so assume that all LSMs supplying this call do so.
   1405	 */
   1406	ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
   1407	if (ret == 1)
   1408		ret = cap_inode_removexattr(mnt_userns, dentry, name);
   1409	if (ret)
   1410		return ret;
   1411	ret = ima_inode_removexattr(dentry, name);
   1412	if (ret)
   1413		return ret;
   1414	return evm_inode_removexattr(mnt_userns, dentry, name);
   1415}
   1416
   1417int security_inode_need_killpriv(struct dentry *dentry)
   1418{
   1419	return call_int_hook(inode_need_killpriv, 0, dentry);
   1420}
   1421
   1422int security_inode_killpriv(struct user_namespace *mnt_userns,
   1423			    struct dentry *dentry)
   1424{
   1425	return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
   1426}
   1427
   1428int security_inode_getsecurity(struct user_namespace *mnt_userns,
   1429			       struct inode *inode, const char *name,
   1430			       void **buffer, bool alloc)
   1431{
   1432	struct security_hook_list *hp;
   1433	int rc;
   1434
   1435	if (unlikely(IS_PRIVATE(inode)))
   1436		return LSM_RET_DEFAULT(inode_getsecurity);
   1437	/*
   1438	 * Only one module will provide an attribute with a given name.
   1439	 */
   1440	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
   1441		rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
   1442		if (rc != LSM_RET_DEFAULT(inode_getsecurity))
   1443			return rc;
   1444	}
   1445	return LSM_RET_DEFAULT(inode_getsecurity);
   1446}
   1447
   1448int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
   1449{
   1450	struct security_hook_list *hp;
   1451	int rc;
   1452
   1453	if (unlikely(IS_PRIVATE(inode)))
   1454		return LSM_RET_DEFAULT(inode_setsecurity);
   1455	/*
   1456	 * Only one module will provide an attribute with a given name.
   1457	 */
   1458	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
   1459		rc = hp->hook.inode_setsecurity(inode, name, value, size,
   1460								flags);
   1461		if (rc != LSM_RET_DEFAULT(inode_setsecurity))
   1462			return rc;
   1463	}
   1464	return LSM_RET_DEFAULT(inode_setsecurity);
   1465}
   1466
   1467int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
   1468{
   1469	if (unlikely(IS_PRIVATE(inode)))
   1470		return 0;
   1471	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
   1472}
   1473EXPORT_SYMBOL(security_inode_listsecurity);
   1474
   1475void security_inode_getsecid(struct inode *inode, u32 *secid)
   1476{
   1477	call_void_hook(inode_getsecid, inode, secid);
   1478}
   1479
   1480int security_inode_copy_up(struct dentry *src, struct cred **new)
   1481{
   1482	return call_int_hook(inode_copy_up, 0, src, new);
   1483}
   1484EXPORT_SYMBOL(security_inode_copy_up);
   1485
   1486int security_inode_copy_up_xattr(const char *name)
   1487{
   1488	struct security_hook_list *hp;
   1489	int rc;
   1490
   1491	/*
   1492	 * The implementation can return 0 (accept the xattr), 1 (discard the
   1493	 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
   1494	 * any other error code incase of an error.
   1495	 */
   1496	hlist_for_each_entry(hp,
   1497		&security_hook_heads.inode_copy_up_xattr, list) {
   1498		rc = hp->hook.inode_copy_up_xattr(name);
   1499		if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
   1500			return rc;
   1501	}
   1502
   1503	return LSM_RET_DEFAULT(inode_copy_up_xattr);
   1504}
   1505EXPORT_SYMBOL(security_inode_copy_up_xattr);
   1506
   1507int security_kernfs_init_security(struct kernfs_node *kn_dir,
   1508				  struct kernfs_node *kn)
   1509{
   1510	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
   1511}
   1512
   1513int security_file_permission(struct file *file, int mask)
   1514{
   1515	int ret;
   1516
   1517	ret = call_int_hook(file_permission, 0, file, mask);
   1518	if (ret)
   1519		return ret;
   1520
   1521	return fsnotify_perm(file, mask);
   1522}
   1523
   1524int security_file_alloc(struct file *file)
   1525{
   1526	int rc = lsm_file_alloc(file);
   1527
   1528	if (rc)
   1529		return rc;
   1530	rc = call_int_hook(file_alloc_security, 0, file);
   1531	if (unlikely(rc))
   1532		security_file_free(file);
   1533	return rc;
   1534}
   1535
   1536void security_file_free(struct file *file)
   1537{
   1538	void *blob;
   1539
   1540	call_void_hook(file_free_security, file);
   1541
   1542	blob = file->f_security;
   1543	if (blob) {
   1544		file->f_security = NULL;
   1545		kmem_cache_free(lsm_file_cache, blob);
   1546	}
   1547}
   1548
   1549int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
   1550{
   1551	return call_int_hook(file_ioctl, 0, file, cmd, arg);
   1552}
   1553EXPORT_SYMBOL_GPL(security_file_ioctl);
   1554
   1555static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
   1556{
   1557	/*
   1558	 * Does we have PROT_READ and does the application expect
   1559	 * it to imply PROT_EXEC?  If not, nothing to talk about...
   1560	 */
   1561	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
   1562		return prot;
   1563	if (!(current->personality & READ_IMPLIES_EXEC))
   1564		return prot;
   1565	/*
   1566	 * if that's an anonymous mapping, let it.
   1567	 */
   1568	if (!file)
   1569		return prot | PROT_EXEC;
   1570	/*
   1571	 * ditto if it's not on noexec mount, except that on !MMU we need
   1572	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
   1573	 */
   1574	if (!path_noexec(&file->f_path)) {
   1575#ifndef CONFIG_MMU
   1576		if (file->f_op->mmap_capabilities) {
   1577			unsigned caps = file->f_op->mmap_capabilities(file);
   1578			if (!(caps & NOMMU_MAP_EXEC))
   1579				return prot;
   1580		}
   1581#endif
   1582		return prot | PROT_EXEC;
   1583	}
   1584	/* anything on noexec mount won't get PROT_EXEC */
   1585	return prot;
   1586}
   1587
   1588int security_mmap_file(struct file *file, unsigned long prot,
   1589			unsigned long flags)
   1590{
   1591	int ret;
   1592	ret = call_int_hook(mmap_file, 0, file, prot,
   1593					mmap_prot(file, prot), flags);
   1594	if (ret)
   1595		return ret;
   1596	return ima_file_mmap(file, prot);
   1597}
   1598
   1599int security_mmap_addr(unsigned long addr)
   1600{
   1601	return call_int_hook(mmap_addr, 0, addr);
   1602}
   1603
   1604int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
   1605			    unsigned long prot)
   1606{
   1607	int ret;
   1608
   1609	ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
   1610	if (ret)
   1611		return ret;
   1612	return ima_file_mprotect(vma, prot);
   1613}
   1614
   1615int security_file_lock(struct file *file, unsigned int cmd)
   1616{
   1617	return call_int_hook(file_lock, 0, file, cmd);
   1618}
   1619
   1620int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
   1621{
   1622	return call_int_hook(file_fcntl, 0, file, cmd, arg);
   1623}
   1624
   1625void security_file_set_fowner(struct file *file)
   1626{
   1627	call_void_hook(file_set_fowner, file);
   1628}
   1629
   1630int security_file_send_sigiotask(struct task_struct *tsk,
   1631				  struct fown_struct *fown, int sig)
   1632{
   1633	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
   1634}
   1635
   1636int security_file_receive(struct file *file)
   1637{
   1638	return call_int_hook(file_receive, 0, file);
   1639}
   1640
   1641int security_file_open(struct file *file)
   1642{
   1643	int ret;
   1644
   1645	ret = call_int_hook(file_open, 0, file);
   1646	if (ret)
   1647		return ret;
   1648
   1649	return fsnotify_perm(file, MAY_OPEN);
   1650}
   1651
   1652int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
   1653{
   1654	int rc = lsm_task_alloc(task);
   1655
   1656	if (rc)
   1657		return rc;
   1658	rc = call_int_hook(task_alloc, 0, task, clone_flags);
   1659	if (unlikely(rc))
   1660		security_task_free(task);
   1661	return rc;
   1662}
   1663
   1664void security_task_free(struct task_struct *task)
   1665{
   1666	call_void_hook(task_free, task);
   1667
   1668	kfree(task->security);
   1669	task->security = NULL;
   1670}
   1671
   1672int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
   1673{
   1674	int rc = lsm_cred_alloc(cred, gfp);
   1675
   1676	if (rc)
   1677		return rc;
   1678
   1679	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
   1680	if (unlikely(rc))
   1681		security_cred_free(cred);
   1682	return rc;
   1683}
   1684
   1685void security_cred_free(struct cred *cred)
   1686{
   1687	/*
   1688	 * There is a failure case in prepare_creds() that
   1689	 * may result in a call here with ->security being NULL.
   1690	 */
   1691	if (unlikely(cred->security == NULL))
   1692		return;
   1693
   1694	call_void_hook(cred_free, cred);
   1695
   1696	kfree(cred->security);
   1697	cred->security = NULL;
   1698}
   1699
   1700int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
   1701{
   1702	int rc = lsm_cred_alloc(new, gfp);
   1703
   1704	if (rc)
   1705		return rc;
   1706
   1707	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
   1708	if (unlikely(rc))
   1709		security_cred_free(new);
   1710	return rc;
   1711}
   1712
   1713void security_transfer_creds(struct cred *new, const struct cred *old)
   1714{
   1715	call_void_hook(cred_transfer, new, old);
   1716}
   1717
   1718void security_cred_getsecid(const struct cred *c, u32 *secid)
   1719{
   1720	*secid = 0;
   1721	call_void_hook(cred_getsecid, c, secid);
   1722}
   1723EXPORT_SYMBOL(security_cred_getsecid);
   1724
   1725int security_kernel_act_as(struct cred *new, u32 secid)
   1726{
   1727	return call_int_hook(kernel_act_as, 0, new, secid);
   1728}
   1729
   1730int security_kernel_create_files_as(struct cred *new, struct inode *inode)
   1731{
   1732	return call_int_hook(kernel_create_files_as, 0, new, inode);
   1733}
   1734
   1735int security_kernel_module_request(char *kmod_name)
   1736{
   1737	int ret;
   1738
   1739	ret = call_int_hook(kernel_module_request, 0, kmod_name);
   1740	if (ret)
   1741		return ret;
   1742	return integrity_kernel_module_request(kmod_name);
   1743}
   1744
   1745int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
   1746			      bool contents)
   1747{
   1748	int ret;
   1749
   1750	ret = call_int_hook(kernel_read_file, 0, file, id, contents);
   1751	if (ret)
   1752		return ret;
   1753	return ima_read_file(file, id, contents);
   1754}
   1755EXPORT_SYMBOL_GPL(security_kernel_read_file);
   1756
   1757int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
   1758				   enum kernel_read_file_id id)
   1759{
   1760	int ret;
   1761
   1762	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
   1763	if (ret)
   1764		return ret;
   1765	return ima_post_read_file(file, buf, size, id);
   1766}
   1767EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
   1768
   1769int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
   1770{
   1771	int ret;
   1772
   1773	ret = call_int_hook(kernel_load_data, 0, id, contents);
   1774	if (ret)
   1775		return ret;
   1776	return ima_load_data(id, contents);
   1777}
   1778EXPORT_SYMBOL_GPL(security_kernel_load_data);
   1779
   1780int security_kernel_post_load_data(char *buf, loff_t size,
   1781				   enum kernel_load_data_id id,
   1782				   char *description)
   1783{
   1784	int ret;
   1785
   1786	ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
   1787			    description);
   1788	if (ret)
   1789		return ret;
   1790	return ima_post_load_data(buf, size, id, description);
   1791}
   1792EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
   1793
   1794int security_task_fix_setuid(struct cred *new, const struct cred *old,
   1795			     int flags)
   1796{
   1797	return call_int_hook(task_fix_setuid, 0, new, old, flags);
   1798}
   1799
   1800int security_task_fix_setgid(struct cred *new, const struct cred *old,
   1801				 int flags)
   1802{
   1803	return call_int_hook(task_fix_setgid, 0, new, old, flags);
   1804}
   1805
   1806int security_task_setpgid(struct task_struct *p, pid_t pgid)
   1807{
   1808	return call_int_hook(task_setpgid, 0, p, pgid);
   1809}
   1810
   1811int security_task_getpgid(struct task_struct *p)
   1812{
   1813	return call_int_hook(task_getpgid, 0, p);
   1814}
   1815
   1816int security_task_getsid(struct task_struct *p)
   1817{
   1818	return call_int_hook(task_getsid, 0, p);
   1819}
   1820
   1821void security_current_getsecid_subj(u32 *secid)
   1822{
   1823	*secid = 0;
   1824	call_void_hook(current_getsecid_subj, secid);
   1825}
   1826EXPORT_SYMBOL(security_current_getsecid_subj);
   1827
   1828void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
   1829{
   1830	*secid = 0;
   1831	call_void_hook(task_getsecid_obj, p, secid);
   1832}
   1833EXPORT_SYMBOL(security_task_getsecid_obj);
   1834
   1835int security_task_setnice(struct task_struct *p, int nice)
   1836{
   1837	return call_int_hook(task_setnice, 0, p, nice);
   1838}
   1839
   1840int security_task_setioprio(struct task_struct *p, int ioprio)
   1841{
   1842	return call_int_hook(task_setioprio, 0, p, ioprio);
   1843}
   1844
   1845int security_task_getioprio(struct task_struct *p)
   1846{
   1847	return call_int_hook(task_getioprio, 0, p);
   1848}
   1849
   1850int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
   1851			  unsigned int flags)
   1852{
   1853	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
   1854}
   1855
   1856int security_task_setrlimit(struct task_struct *p, unsigned int resource,
   1857		struct rlimit *new_rlim)
   1858{
   1859	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
   1860}
   1861
   1862int security_task_setscheduler(struct task_struct *p)
   1863{
   1864	return call_int_hook(task_setscheduler, 0, p);
   1865}
   1866
   1867int security_task_getscheduler(struct task_struct *p)
   1868{
   1869	return call_int_hook(task_getscheduler, 0, p);
   1870}
   1871
   1872int security_task_movememory(struct task_struct *p)
   1873{
   1874	return call_int_hook(task_movememory, 0, p);
   1875}
   1876
   1877int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
   1878			int sig, const struct cred *cred)
   1879{
   1880	return call_int_hook(task_kill, 0, p, info, sig, cred);
   1881}
   1882
   1883int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
   1884			 unsigned long arg4, unsigned long arg5)
   1885{
   1886	int thisrc;
   1887	int rc = LSM_RET_DEFAULT(task_prctl);
   1888	struct security_hook_list *hp;
   1889
   1890	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
   1891		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
   1892		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
   1893			rc = thisrc;
   1894			if (thisrc != 0)
   1895				break;
   1896		}
   1897	}
   1898	return rc;
   1899}
   1900
   1901void security_task_to_inode(struct task_struct *p, struct inode *inode)
   1902{
   1903	call_void_hook(task_to_inode, p, inode);
   1904}
   1905
   1906int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
   1907{
   1908	return call_int_hook(ipc_permission, 0, ipcp, flag);
   1909}
   1910
   1911void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
   1912{
   1913	*secid = 0;
   1914	call_void_hook(ipc_getsecid, ipcp, secid);
   1915}
   1916
   1917int security_msg_msg_alloc(struct msg_msg *msg)
   1918{
   1919	int rc = lsm_msg_msg_alloc(msg);
   1920
   1921	if (unlikely(rc))
   1922		return rc;
   1923	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
   1924	if (unlikely(rc))
   1925		security_msg_msg_free(msg);
   1926	return rc;
   1927}
   1928
   1929void security_msg_msg_free(struct msg_msg *msg)
   1930{
   1931	call_void_hook(msg_msg_free_security, msg);
   1932	kfree(msg->security);
   1933	msg->security = NULL;
   1934}
   1935
   1936int security_msg_queue_alloc(struct kern_ipc_perm *msq)
   1937{
   1938	int rc = lsm_ipc_alloc(msq);
   1939
   1940	if (unlikely(rc))
   1941		return rc;
   1942	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
   1943	if (unlikely(rc))
   1944		security_msg_queue_free(msq);
   1945	return rc;
   1946}
   1947
   1948void security_msg_queue_free(struct kern_ipc_perm *msq)
   1949{
   1950	call_void_hook(msg_queue_free_security, msq);
   1951	kfree(msq->security);
   1952	msq->security = NULL;
   1953}
   1954
   1955int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
   1956{
   1957	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
   1958}
   1959
   1960int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
   1961{
   1962	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
   1963}
   1964
   1965int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
   1966			       struct msg_msg *msg, int msqflg)
   1967{
   1968	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
   1969}
   1970
   1971int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
   1972			       struct task_struct *target, long type, int mode)
   1973{
   1974	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
   1975}
   1976
   1977int security_shm_alloc(struct kern_ipc_perm *shp)
   1978{
   1979	int rc = lsm_ipc_alloc(shp);
   1980
   1981	if (unlikely(rc))
   1982		return rc;
   1983	rc = call_int_hook(shm_alloc_security, 0, shp);
   1984	if (unlikely(rc))
   1985		security_shm_free(shp);
   1986	return rc;
   1987}
   1988
   1989void security_shm_free(struct kern_ipc_perm *shp)
   1990{
   1991	call_void_hook(shm_free_security, shp);
   1992	kfree(shp->security);
   1993	shp->security = NULL;
   1994}
   1995
   1996int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
   1997{
   1998	return call_int_hook(shm_associate, 0, shp, shmflg);
   1999}
   2000
   2001int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
   2002{
   2003	return call_int_hook(shm_shmctl, 0, shp, cmd);
   2004}
   2005
   2006int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
   2007{
   2008	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
   2009}
   2010
   2011int security_sem_alloc(struct kern_ipc_perm *sma)
   2012{
   2013	int rc = lsm_ipc_alloc(sma);
   2014
   2015	if (unlikely(rc))
   2016		return rc;
   2017	rc = call_int_hook(sem_alloc_security, 0, sma);
   2018	if (unlikely(rc))
   2019		security_sem_free(sma);
   2020	return rc;
   2021}
   2022
   2023void security_sem_free(struct kern_ipc_perm *sma)
   2024{
   2025	call_void_hook(sem_free_security, sma);
   2026	kfree(sma->security);
   2027	sma->security = NULL;
   2028}
   2029
   2030int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
   2031{
   2032	return call_int_hook(sem_associate, 0, sma, semflg);
   2033}
   2034
   2035int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
   2036{
   2037	return call_int_hook(sem_semctl, 0, sma, cmd);
   2038}
   2039
   2040int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
   2041			unsigned nsops, int alter)
   2042{
   2043	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
   2044}
   2045
   2046void security_d_instantiate(struct dentry *dentry, struct inode *inode)
   2047{
   2048	if (unlikely(inode && IS_PRIVATE(inode)))
   2049		return;
   2050	call_void_hook(d_instantiate, dentry, inode);
   2051}
   2052EXPORT_SYMBOL(security_d_instantiate);
   2053
   2054int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
   2055				char **value)
   2056{
   2057	struct security_hook_list *hp;
   2058
   2059	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
   2060		if (lsm != NULL && strcmp(lsm, hp->lsm))
   2061			continue;
   2062		return hp->hook.getprocattr(p, name, value);
   2063	}
   2064	return LSM_RET_DEFAULT(getprocattr);
   2065}
   2066
   2067int security_setprocattr(const char *lsm, const char *name, void *value,
   2068			 size_t size)
   2069{
   2070	struct security_hook_list *hp;
   2071
   2072	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
   2073		if (lsm != NULL && strcmp(lsm, hp->lsm))
   2074			continue;
   2075		return hp->hook.setprocattr(name, value, size);
   2076	}
   2077	return LSM_RET_DEFAULT(setprocattr);
   2078}
   2079
   2080int security_netlink_send(struct sock *sk, struct sk_buff *skb)
   2081{
   2082	return call_int_hook(netlink_send, 0, sk, skb);
   2083}
   2084
   2085int security_ismaclabel(const char *name)
   2086{
   2087	return call_int_hook(ismaclabel, 0, name);
   2088}
   2089EXPORT_SYMBOL(security_ismaclabel);
   2090
   2091int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
   2092{
   2093	struct security_hook_list *hp;
   2094	int rc;
   2095
   2096	/*
   2097	 * Currently, only one LSM can implement secid_to_secctx (i.e this
   2098	 * LSM hook is not "stackable").
   2099	 */
   2100	hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
   2101		rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
   2102		if (rc != LSM_RET_DEFAULT(secid_to_secctx))
   2103			return rc;
   2104	}
   2105
   2106	return LSM_RET_DEFAULT(secid_to_secctx);
   2107}
   2108EXPORT_SYMBOL(security_secid_to_secctx);
   2109
   2110int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
   2111{
   2112	*secid = 0;
   2113	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
   2114}
   2115EXPORT_SYMBOL(security_secctx_to_secid);
   2116
   2117void security_release_secctx(char *secdata, u32 seclen)
   2118{
   2119	call_void_hook(release_secctx, secdata, seclen);
   2120}
   2121EXPORT_SYMBOL(security_release_secctx);
   2122
   2123void security_inode_invalidate_secctx(struct inode *inode)
   2124{
   2125	call_void_hook(inode_invalidate_secctx, inode);
   2126}
   2127EXPORT_SYMBOL(security_inode_invalidate_secctx);
   2128
   2129int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
   2130{
   2131	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
   2132}
   2133EXPORT_SYMBOL(security_inode_notifysecctx);
   2134
   2135int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
   2136{
   2137	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
   2138}
   2139EXPORT_SYMBOL(security_inode_setsecctx);
   2140
   2141int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
   2142{
   2143	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
   2144}
   2145EXPORT_SYMBOL(security_inode_getsecctx);
   2146
   2147#ifdef CONFIG_WATCH_QUEUE
   2148int security_post_notification(const struct cred *w_cred,
   2149			       const struct cred *cred,
   2150			       struct watch_notification *n)
   2151{
   2152	return call_int_hook(post_notification, 0, w_cred, cred, n);
   2153}
   2154#endif /* CONFIG_WATCH_QUEUE */
   2155
   2156#ifdef CONFIG_KEY_NOTIFICATIONS
   2157int security_watch_key(struct key *key)
   2158{
   2159	return call_int_hook(watch_key, 0, key);
   2160}
   2161#endif
   2162
   2163#ifdef CONFIG_SECURITY_NETWORK
   2164
   2165int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
   2166{
   2167	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
   2168}
   2169EXPORT_SYMBOL(security_unix_stream_connect);
   2170
   2171int security_unix_may_send(struct socket *sock,  struct socket *other)
   2172{
   2173	return call_int_hook(unix_may_send, 0, sock, other);
   2174}
   2175EXPORT_SYMBOL(security_unix_may_send);
   2176
   2177int security_socket_create(int family, int type, int protocol, int kern)
   2178{
   2179	return call_int_hook(socket_create, 0, family, type, protocol, kern);
   2180}
   2181
   2182int security_socket_post_create(struct socket *sock, int family,
   2183				int type, int protocol, int kern)
   2184{
   2185	return call_int_hook(socket_post_create, 0, sock, family, type,
   2186						protocol, kern);
   2187}
   2188
   2189int security_socket_socketpair(struct socket *socka, struct socket *sockb)
   2190{
   2191	return call_int_hook(socket_socketpair, 0, socka, sockb);
   2192}
   2193EXPORT_SYMBOL(security_socket_socketpair);
   2194
   2195int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
   2196{
   2197	return call_int_hook(socket_bind, 0, sock, address, addrlen);
   2198}
   2199
   2200int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
   2201{
   2202	return call_int_hook(socket_connect, 0, sock, address, addrlen);
   2203}
   2204
   2205int security_socket_listen(struct socket *sock, int backlog)
   2206{
   2207	return call_int_hook(socket_listen, 0, sock, backlog);
   2208}
   2209
   2210int security_socket_accept(struct socket *sock, struct socket *newsock)
   2211{
   2212	return call_int_hook(socket_accept, 0, sock, newsock);
   2213}
   2214
   2215int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
   2216{
   2217	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
   2218}
   2219
   2220int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
   2221			    int size, int flags)
   2222{
   2223	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
   2224}
   2225
   2226int security_socket_getsockname(struct socket *sock)
   2227{
   2228	return call_int_hook(socket_getsockname, 0, sock);
   2229}
   2230
   2231int security_socket_getpeername(struct socket *sock)
   2232{
   2233	return call_int_hook(socket_getpeername, 0, sock);
   2234}
   2235
   2236int security_socket_getsockopt(struct socket *sock, int level, int optname)
   2237{
   2238	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
   2239}
   2240
   2241int security_socket_setsockopt(struct socket *sock, int level, int optname)
   2242{
   2243	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
   2244}
   2245
   2246int security_socket_shutdown(struct socket *sock, int how)
   2247{
   2248	return call_int_hook(socket_shutdown, 0, sock, how);
   2249}
   2250
   2251int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
   2252{
   2253	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
   2254}
   2255EXPORT_SYMBOL(security_sock_rcv_skb);
   2256
   2257int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
   2258				      int __user *optlen, unsigned len)
   2259{
   2260	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
   2261				optval, optlen, len);
   2262}
   2263
   2264int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
   2265{
   2266	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
   2267			     skb, secid);
   2268}
   2269EXPORT_SYMBOL(security_socket_getpeersec_dgram);
   2270
   2271int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
   2272{
   2273	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
   2274}
   2275
   2276void security_sk_free(struct sock *sk)
   2277{
   2278	call_void_hook(sk_free_security, sk);
   2279}
   2280
   2281void security_sk_clone(const struct sock *sk, struct sock *newsk)
   2282{
   2283	call_void_hook(sk_clone_security, sk, newsk);
   2284}
   2285EXPORT_SYMBOL(security_sk_clone);
   2286
   2287void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
   2288{
   2289	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
   2290}
   2291EXPORT_SYMBOL(security_sk_classify_flow);
   2292
   2293void security_req_classify_flow(const struct request_sock *req,
   2294				struct flowi_common *flic)
   2295{
   2296	call_void_hook(req_classify_flow, req, flic);
   2297}
   2298EXPORT_SYMBOL(security_req_classify_flow);
   2299
   2300void security_sock_graft(struct sock *sk, struct socket *parent)
   2301{
   2302	call_void_hook(sock_graft, sk, parent);
   2303}
   2304EXPORT_SYMBOL(security_sock_graft);
   2305
   2306int security_inet_conn_request(const struct sock *sk,
   2307			struct sk_buff *skb, struct request_sock *req)
   2308{
   2309	return call_int_hook(inet_conn_request, 0, sk, skb, req);
   2310}
   2311EXPORT_SYMBOL(security_inet_conn_request);
   2312
   2313void security_inet_csk_clone(struct sock *newsk,
   2314			const struct request_sock *req)
   2315{
   2316	call_void_hook(inet_csk_clone, newsk, req);
   2317}
   2318
   2319void security_inet_conn_established(struct sock *sk,
   2320			struct sk_buff *skb)
   2321{
   2322	call_void_hook(inet_conn_established, sk, skb);
   2323}
   2324EXPORT_SYMBOL(security_inet_conn_established);
   2325
   2326int security_secmark_relabel_packet(u32 secid)
   2327{
   2328	return call_int_hook(secmark_relabel_packet, 0, secid);
   2329}
   2330EXPORT_SYMBOL(security_secmark_relabel_packet);
   2331
   2332void security_secmark_refcount_inc(void)
   2333{
   2334	call_void_hook(secmark_refcount_inc);
   2335}
   2336EXPORT_SYMBOL(security_secmark_refcount_inc);
   2337
   2338void security_secmark_refcount_dec(void)
   2339{
   2340	call_void_hook(secmark_refcount_dec);
   2341}
   2342EXPORT_SYMBOL(security_secmark_refcount_dec);
   2343
   2344int security_tun_dev_alloc_security(void **security)
   2345{
   2346	return call_int_hook(tun_dev_alloc_security, 0, security);
   2347}
   2348EXPORT_SYMBOL(security_tun_dev_alloc_security);
   2349
   2350void security_tun_dev_free_security(void *security)
   2351{
   2352	call_void_hook(tun_dev_free_security, security);
   2353}
   2354EXPORT_SYMBOL(security_tun_dev_free_security);
   2355
   2356int security_tun_dev_create(void)
   2357{
   2358	return call_int_hook(tun_dev_create, 0);
   2359}
   2360EXPORT_SYMBOL(security_tun_dev_create);
   2361
   2362int security_tun_dev_attach_queue(void *security)
   2363{
   2364	return call_int_hook(tun_dev_attach_queue, 0, security);
   2365}
   2366EXPORT_SYMBOL(security_tun_dev_attach_queue);
   2367
   2368int security_tun_dev_attach(struct sock *sk, void *security)
   2369{
   2370	return call_int_hook(tun_dev_attach, 0, sk, security);
   2371}
   2372EXPORT_SYMBOL(security_tun_dev_attach);
   2373
   2374int security_tun_dev_open(void *security)
   2375{
   2376	return call_int_hook(tun_dev_open, 0, security);
   2377}
   2378EXPORT_SYMBOL(security_tun_dev_open);
   2379
   2380int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb)
   2381{
   2382	return call_int_hook(sctp_assoc_request, 0, asoc, skb);
   2383}
   2384EXPORT_SYMBOL(security_sctp_assoc_request);
   2385
   2386int security_sctp_bind_connect(struct sock *sk, int optname,
   2387			       struct sockaddr *address, int addrlen)
   2388{
   2389	return call_int_hook(sctp_bind_connect, 0, sk, optname,
   2390			     address, addrlen);
   2391}
   2392EXPORT_SYMBOL(security_sctp_bind_connect);
   2393
   2394void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
   2395			    struct sock *newsk)
   2396{
   2397	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
   2398}
   2399EXPORT_SYMBOL(security_sctp_sk_clone);
   2400
   2401int security_sctp_assoc_established(struct sctp_association *asoc,
   2402				    struct sk_buff *skb)
   2403{
   2404	return call_int_hook(sctp_assoc_established, 0, asoc, skb);
   2405}
   2406EXPORT_SYMBOL(security_sctp_assoc_established);
   2407
   2408#endif	/* CONFIG_SECURITY_NETWORK */
   2409
   2410#ifdef CONFIG_SECURITY_INFINIBAND
   2411
   2412int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
   2413{
   2414	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
   2415}
   2416EXPORT_SYMBOL(security_ib_pkey_access);
   2417
   2418int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
   2419{
   2420	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
   2421}
   2422EXPORT_SYMBOL(security_ib_endport_manage_subnet);
   2423
   2424int security_ib_alloc_security(void **sec)
   2425{
   2426	return call_int_hook(ib_alloc_security, 0, sec);
   2427}
   2428EXPORT_SYMBOL(security_ib_alloc_security);
   2429
   2430void security_ib_free_security(void *sec)
   2431{
   2432	call_void_hook(ib_free_security, sec);
   2433}
   2434EXPORT_SYMBOL(security_ib_free_security);
   2435#endif	/* CONFIG_SECURITY_INFINIBAND */
   2436
   2437#ifdef CONFIG_SECURITY_NETWORK_XFRM
   2438
   2439int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
   2440			       struct xfrm_user_sec_ctx *sec_ctx,
   2441			       gfp_t gfp)
   2442{
   2443	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
   2444}
   2445EXPORT_SYMBOL(security_xfrm_policy_alloc);
   2446
   2447int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
   2448			      struct xfrm_sec_ctx **new_ctxp)
   2449{
   2450	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
   2451}
   2452
   2453void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
   2454{
   2455	call_void_hook(xfrm_policy_free_security, ctx);
   2456}
   2457EXPORT_SYMBOL(security_xfrm_policy_free);
   2458
   2459int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
   2460{
   2461	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
   2462}
   2463
   2464int security_xfrm_state_alloc(struct xfrm_state *x,
   2465			      struct xfrm_user_sec_ctx *sec_ctx)
   2466{
   2467	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
   2468}
   2469EXPORT_SYMBOL(security_xfrm_state_alloc);
   2470
   2471int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
   2472				      struct xfrm_sec_ctx *polsec, u32 secid)
   2473{
   2474	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
   2475}
   2476
   2477int security_xfrm_state_delete(struct xfrm_state *x)
   2478{
   2479	return call_int_hook(xfrm_state_delete_security, 0, x);
   2480}
   2481EXPORT_SYMBOL(security_xfrm_state_delete);
   2482
   2483void security_xfrm_state_free(struct xfrm_state *x)
   2484{
   2485	call_void_hook(xfrm_state_free_security, x);
   2486}
   2487
   2488int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
   2489{
   2490	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
   2491}
   2492
   2493int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
   2494				       struct xfrm_policy *xp,
   2495				       const struct flowi_common *flic)
   2496{
   2497	struct security_hook_list *hp;
   2498	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
   2499
   2500	/*
   2501	 * Since this function is expected to return 0 or 1, the judgment
   2502	 * becomes difficult if multiple LSMs supply this call. Fortunately,
   2503	 * we can use the first LSM's judgment because currently only SELinux
   2504	 * supplies this call.
   2505	 *
   2506	 * For speed optimization, we explicitly break the loop rather than
   2507	 * using the macro
   2508	 */
   2509	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
   2510				list) {
   2511		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
   2512		break;
   2513	}
   2514	return rc;
   2515}
   2516
   2517int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
   2518{
   2519	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
   2520}
   2521
   2522void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
   2523{
   2524	int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
   2525				0);
   2526
   2527	BUG_ON(rc);
   2528}
   2529EXPORT_SYMBOL(security_skb_classify_flow);
   2530
   2531#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
   2532
   2533#ifdef CONFIG_KEYS
   2534
   2535int security_key_alloc(struct key *key, const struct cred *cred,
   2536		       unsigned long flags)
   2537{
   2538	return call_int_hook(key_alloc, 0, key, cred, flags);
   2539}
   2540
   2541void security_key_free(struct key *key)
   2542{
   2543	call_void_hook(key_free, key);
   2544}
   2545
   2546int security_key_permission(key_ref_t key_ref, const struct cred *cred,
   2547			    enum key_need_perm need_perm)
   2548{
   2549	return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
   2550}
   2551
   2552int security_key_getsecurity(struct key *key, char **_buffer)
   2553{
   2554	*_buffer = NULL;
   2555	return call_int_hook(key_getsecurity, 0, key, _buffer);
   2556}
   2557
   2558#endif	/* CONFIG_KEYS */
   2559
   2560#ifdef CONFIG_AUDIT
   2561
   2562int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
   2563{
   2564	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
   2565}
   2566
   2567int security_audit_rule_known(struct audit_krule *krule)
   2568{
   2569	return call_int_hook(audit_rule_known, 0, krule);
   2570}
   2571
   2572void security_audit_rule_free(void *lsmrule)
   2573{
   2574	call_void_hook(audit_rule_free, lsmrule);
   2575}
   2576
   2577int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
   2578{
   2579	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
   2580}
   2581#endif /* CONFIG_AUDIT */
   2582
   2583#ifdef CONFIG_BPF_SYSCALL
   2584int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
   2585{
   2586	return call_int_hook(bpf, 0, cmd, attr, size);
   2587}
   2588int security_bpf_map(struct bpf_map *map, fmode_t fmode)
   2589{
   2590	return call_int_hook(bpf_map, 0, map, fmode);
   2591}
   2592int security_bpf_prog(struct bpf_prog *prog)
   2593{
   2594	return call_int_hook(bpf_prog, 0, prog);
   2595}
   2596int security_bpf_map_alloc(struct bpf_map *map)
   2597{
   2598	return call_int_hook(bpf_map_alloc_security, 0, map);
   2599}
   2600int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
   2601{
   2602	return call_int_hook(bpf_prog_alloc_security, 0, aux);
   2603}
   2604void security_bpf_map_free(struct bpf_map *map)
   2605{
   2606	call_void_hook(bpf_map_free_security, map);
   2607}
   2608void security_bpf_prog_free(struct bpf_prog_aux *aux)
   2609{
   2610	call_void_hook(bpf_prog_free_security, aux);
   2611}
   2612#endif /* CONFIG_BPF_SYSCALL */
   2613
   2614int security_locked_down(enum lockdown_reason what)
   2615{
   2616	return call_int_hook(locked_down, 0, what);
   2617}
   2618EXPORT_SYMBOL(security_locked_down);
   2619
   2620#ifdef CONFIG_PERF_EVENTS
   2621int security_perf_event_open(struct perf_event_attr *attr, int type)
   2622{
   2623	return call_int_hook(perf_event_open, 0, attr, type);
   2624}
   2625
   2626int security_perf_event_alloc(struct perf_event *event)
   2627{
   2628	return call_int_hook(perf_event_alloc, 0, event);
   2629}
   2630
   2631void security_perf_event_free(struct perf_event *event)
   2632{
   2633	call_void_hook(perf_event_free, event);
   2634}
   2635
   2636int security_perf_event_read(struct perf_event *event)
   2637{
   2638	return call_int_hook(perf_event_read, 0, event);
   2639}
   2640
   2641int security_perf_event_write(struct perf_event *event)
   2642{
   2643	return call_int_hook(perf_event_write, 0, event);
   2644}
   2645#endif /* CONFIG_PERF_EVENTS */
   2646
   2647#ifdef CONFIG_IO_URING
   2648int security_uring_override_creds(const struct cred *new)
   2649{
   2650	return call_int_hook(uring_override_creds, 0, new);
   2651}
   2652
   2653int security_uring_sqpoll(void)
   2654{
   2655	return call_int_hook(uring_sqpoll, 0);
   2656}
   2657#endif /* CONFIG_IO_URING */