avc.c (32742B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Implementation of the kernel access vector cache (AVC). 4 * 5 * Authors: Stephen Smalley, <sds@tycho.nsa.gov> 6 * James Morris <jmorris@redhat.com> 7 * 8 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com> 9 * Replaced the avc_lock spinlock by RCU. 10 * 11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 12 */ 13#include <linux/types.h> 14#include <linux/stddef.h> 15#include <linux/kernel.h> 16#include <linux/slab.h> 17#include <linux/fs.h> 18#include <linux/dcache.h> 19#include <linux/init.h> 20#include <linux/skbuff.h> 21#include <linux/percpu.h> 22#include <linux/list.h> 23#include <net/sock.h> 24#include <linux/un.h> 25#include <net/af_unix.h> 26#include <linux/ip.h> 27#include <linux/audit.h> 28#include <linux/ipv6.h> 29#include <net/ipv6.h> 30#include "avc.h" 31#include "avc_ss.h" 32#include "classmap.h" 33 34#define CREATE_TRACE_POINTS 35#include <trace/events/avc.h> 36 37#define AVC_CACHE_SLOTS 512 38#define AVC_DEF_CACHE_THRESHOLD 512 39#define AVC_CACHE_RECLAIM 16 40 41#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 42#define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field) 43#else 44#define avc_cache_stats_incr(field) do {} while (0) 45#endif 46 47struct avc_entry { 48 u32 ssid; 49 u32 tsid; 50 u16 tclass; 51 struct av_decision avd; 52 struct avc_xperms_node *xp_node; 53}; 54 55struct avc_node { 56 struct avc_entry ae; 57 struct hlist_node list; /* anchored in avc_cache->slots[i] */ 58 struct rcu_head rhead; 59}; 60 61struct avc_xperms_decision_node { 62 struct extended_perms_decision xpd; 63 struct list_head xpd_list; /* list of extended_perms_decision */ 64}; 65 66struct avc_xperms_node { 67 struct extended_perms xp; 68 struct list_head xpd_head; /* list head of extended_perms_decision */ 69}; 70 71struct avc_cache { 72 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */ 73 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ 74 atomic_t lru_hint; /* LRU hint for reclaim scan */ 75 atomic_t active_nodes; 76 u32 latest_notif; /* latest revocation notification */ 77}; 78 79struct avc_callback_node { 80 int (*callback) (u32 event); 81 u32 events; 82 struct avc_callback_node *next; 83}; 84 85#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 86DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; 87#endif 88 89struct selinux_avc { 90 unsigned int avc_cache_threshold; 91 struct avc_cache avc_cache; 92}; 93 94static struct selinux_avc selinux_avc; 95 96void selinux_avc_init(struct selinux_avc **avc) 97{ 98 int i; 99 100 selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; 101 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 102 INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]); 103 spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]); 104 } 105 atomic_set(&selinux_avc.avc_cache.active_nodes, 0); 106 atomic_set(&selinux_avc.avc_cache.lru_hint, 0); 107 *avc = &selinux_avc; 108} 109 110unsigned int avc_get_cache_threshold(struct selinux_avc *avc) 111{ 112 return avc->avc_cache_threshold; 113} 114 115void avc_set_cache_threshold(struct selinux_avc *avc, 116 unsigned int cache_threshold) 117{ 118 avc->avc_cache_threshold = cache_threshold; 119} 120 121static struct avc_callback_node *avc_callbacks __ro_after_init; 122static struct kmem_cache *avc_node_cachep __ro_after_init; 123static struct kmem_cache *avc_xperms_data_cachep __ro_after_init; 124static struct kmem_cache *avc_xperms_decision_cachep __ro_after_init; 125static struct kmem_cache *avc_xperms_cachep __ro_after_init; 126 127static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass) 128{ 129 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); 130} 131 132/** 133 * avc_init - Initialize the AVC. 134 * 135 * Initialize the access vector cache. 136 */ 137void __init avc_init(void) 138{ 139 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node), 140 0, SLAB_PANIC, NULL); 141 avc_xperms_cachep = kmem_cache_create("avc_xperms_node", 142 sizeof(struct avc_xperms_node), 143 0, SLAB_PANIC, NULL); 144 avc_xperms_decision_cachep = kmem_cache_create( 145 "avc_xperms_decision_node", 146 sizeof(struct avc_xperms_decision_node), 147 0, SLAB_PANIC, NULL); 148 avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data", 149 sizeof(struct extended_perms_data), 150 0, SLAB_PANIC, NULL); 151} 152 153int avc_get_hash_stats(struct selinux_avc *avc, char *page) 154{ 155 int i, chain_len, max_chain_len, slots_used; 156 struct avc_node *node; 157 struct hlist_head *head; 158 159 rcu_read_lock(); 160 161 slots_used = 0; 162 max_chain_len = 0; 163 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 164 head = &avc->avc_cache.slots[i]; 165 if (!hlist_empty(head)) { 166 slots_used++; 167 chain_len = 0; 168 hlist_for_each_entry_rcu(node, head, list) 169 chain_len++; 170 if (chain_len > max_chain_len) 171 max_chain_len = chain_len; 172 } 173 } 174 175 rcu_read_unlock(); 176 177 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" 178 "longest chain: %d\n", 179 atomic_read(&avc->avc_cache.active_nodes), 180 slots_used, AVC_CACHE_SLOTS, max_chain_len); 181} 182 183/* 184 * using a linked list for extended_perms_decision lookup because the list is 185 * always small. i.e. less than 5, typically 1 186 */ 187static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver, 188 struct avc_xperms_node *xp_node) 189{ 190 struct avc_xperms_decision_node *xpd_node; 191 192 list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) { 193 if (xpd_node->xpd.driver == driver) 194 return &xpd_node->xpd; 195 } 196 return NULL; 197} 198 199static inline unsigned int 200avc_xperms_has_perm(struct extended_perms_decision *xpd, 201 u8 perm, u8 which) 202{ 203 unsigned int rc = 0; 204 205 if ((which == XPERMS_ALLOWED) && 206 (xpd->used & XPERMS_ALLOWED)) 207 rc = security_xperm_test(xpd->allowed->p, perm); 208 else if ((which == XPERMS_AUDITALLOW) && 209 (xpd->used & XPERMS_AUDITALLOW)) 210 rc = security_xperm_test(xpd->auditallow->p, perm); 211 else if ((which == XPERMS_DONTAUDIT) && 212 (xpd->used & XPERMS_DONTAUDIT)) 213 rc = security_xperm_test(xpd->dontaudit->p, perm); 214 return rc; 215} 216 217static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node, 218 u8 driver, u8 perm) 219{ 220 struct extended_perms_decision *xpd; 221 security_xperm_set(xp_node->xp.drivers.p, driver); 222 xpd = avc_xperms_decision_lookup(driver, xp_node); 223 if (xpd && xpd->allowed) 224 security_xperm_set(xpd->allowed->p, perm); 225} 226 227static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node) 228{ 229 struct extended_perms_decision *xpd; 230 231 xpd = &xpd_node->xpd; 232 if (xpd->allowed) 233 kmem_cache_free(avc_xperms_data_cachep, xpd->allowed); 234 if (xpd->auditallow) 235 kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow); 236 if (xpd->dontaudit) 237 kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit); 238 kmem_cache_free(avc_xperms_decision_cachep, xpd_node); 239} 240 241static void avc_xperms_free(struct avc_xperms_node *xp_node) 242{ 243 struct avc_xperms_decision_node *xpd_node, *tmp; 244 245 if (!xp_node) 246 return; 247 248 list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) { 249 list_del(&xpd_node->xpd_list); 250 avc_xperms_decision_free(xpd_node); 251 } 252 kmem_cache_free(avc_xperms_cachep, xp_node); 253} 254 255static void avc_copy_xperms_decision(struct extended_perms_decision *dest, 256 struct extended_perms_decision *src) 257{ 258 dest->driver = src->driver; 259 dest->used = src->used; 260 if (dest->used & XPERMS_ALLOWED) 261 memcpy(dest->allowed->p, src->allowed->p, 262 sizeof(src->allowed->p)); 263 if (dest->used & XPERMS_AUDITALLOW) 264 memcpy(dest->auditallow->p, src->auditallow->p, 265 sizeof(src->auditallow->p)); 266 if (dest->used & XPERMS_DONTAUDIT) 267 memcpy(dest->dontaudit->p, src->dontaudit->p, 268 sizeof(src->dontaudit->p)); 269} 270 271/* 272 * similar to avc_copy_xperms_decision, but only copy decision 273 * information relevant to this perm 274 */ 275static inline void avc_quick_copy_xperms_decision(u8 perm, 276 struct extended_perms_decision *dest, 277 struct extended_perms_decision *src) 278{ 279 /* 280 * compute index of the u32 of the 256 bits (8 u32s) that contain this 281 * command permission 282 */ 283 u8 i = perm >> 5; 284 285 dest->used = src->used; 286 if (dest->used & XPERMS_ALLOWED) 287 dest->allowed->p[i] = src->allowed->p[i]; 288 if (dest->used & XPERMS_AUDITALLOW) 289 dest->auditallow->p[i] = src->auditallow->p[i]; 290 if (dest->used & XPERMS_DONTAUDIT) 291 dest->dontaudit->p[i] = src->dontaudit->p[i]; 292} 293 294static struct avc_xperms_decision_node 295 *avc_xperms_decision_alloc(u8 which) 296{ 297 struct avc_xperms_decision_node *xpd_node; 298 struct extended_perms_decision *xpd; 299 300 xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, 301 GFP_NOWAIT | __GFP_NOWARN); 302 if (!xpd_node) 303 return NULL; 304 305 xpd = &xpd_node->xpd; 306 if (which & XPERMS_ALLOWED) { 307 xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep, 308 GFP_NOWAIT | __GFP_NOWARN); 309 if (!xpd->allowed) 310 goto error; 311 } 312 if (which & XPERMS_AUDITALLOW) { 313 xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep, 314 GFP_NOWAIT | __GFP_NOWARN); 315 if (!xpd->auditallow) 316 goto error; 317 } 318 if (which & XPERMS_DONTAUDIT) { 319 xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep, 320 GFP_NOWAIT | __GFP_NOWARN); 321 if (!xpd->dontaudit) 322 goto error; 323 } 324 return xpd_node; 325error: 326 avc_xperms_decision_free(xpd_node); 327 return NULL; 328} 329 330static int avc_add_xperms_decision(struct avc_node *node, 331 struct extended_perms_decision *src) 332{ 333 struct avc_xperms_decision_node *dest_xpd; 334 335 node->ae.xp_node->xp.len++; 336 dest_xpd = avc_xperms_decision_alloc(src->used); 337 if (!dest_xpd) 338 return -ENOMEM; 339 avc_copy_xperms_decision(&dest_xpd->xpd, src); 340 list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head); 341 return 0; 342} 343 344static struct avc_xperms_node *avc_xperms_alloc(void) 345{ 346 struct avc_xperms_node *xp_node; 347 348 xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN); 349 if (!xp_node) 350 return xp_node; 351 INIT_LIST_HEAD(&xp_node->xpd_head); 352 return xp_node; 353} 354 355static int avc_xperms_populate(struct avc_node *node, 356 struct avc_xperms_node *src) 357{ 358 struct avc_xperms_node *dest; 359 struct avc_xperms_decision_node *dest_xpd; 360 struct avc_xperms_decision_node *src_xpd; 361 362 if (src->xp.len == 0) 363 return 0; 364 dest = avc_xperms_alloc(); 365 if (!dest) 366 return -ENOMEM; 367 368 memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p)); 369 dest->xp.len = src->xp.len; 370 371 /* for each source xpd allocate a destination xpd and copy */ 372 list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) { 373 dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used); 374 if (!dest_xpd) 375 goto error; 376 avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd); 377 list_add(&dest_xpd->xpd_list, &dest->xpd_head); 378 } 379 node->ae.xp_node = dest; 380 return 0; 381error: 382 avc_xperms_free(dest); 383 return -ENOMEM; 384 385} 386 387static inline u32 avc_xperms_audit_required(u32 requested, 388 struct av_decision *avd, 389 struct extended_perms_decision *xpd, 390 u8 perm, 391 int result, 392 u32 *deniedp) 393{ 394 u32 denied, audited; 395 396 denied = requested & ~avd->allowed; 397 if (unlikely(denied)) { 398 audited = denied & avd->auditdeny; 399 if (audited && xpd) { 400 if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT)) 401 audited &= ~requested; 402 } 403 } else if (result) { 404 audited = denied = requested; 405 } else { 406 audited = requested & avd->auditallow; 407 if (audited && xpd) { 408 if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW)) 409 audited &= ~requested; 410 } 411 } 412 413 *deniedp = denied; 414 return audited; 415} 416 417static inline int avc_xperms_audit(struct selinux_state *state, 418 u32 ssid, u32 tsid, u16 tclass, 419 u32 requested, struct av_decision *avd, 420 struct extended_perms_decision *xpd, 421 u8 perm, int result, 422 struct common_audit_data *ad) 423{ 424 u32 audited, denied; 425 426 audited = avc_xperms_audit_required( 427 requested, avd, xpd, perm, result, &denied); 428 if (likely(!audited)) 429 return 0; 430 return slow_avc_audit(state, ssid, tsid, tclass, requested, 431 audited, denied, result, ad); 432} 433 434static void avc_node_free(struct rcu_head *rhead) 435{ 436 struct avc_node *node = container_of(rhead, struct avc_node, rhead); 437 avc_xperms_free(node->ae.xp_node); 438 kmem_cache_free(avc_node_cachep, node); 439 avc_cache_stats_incr(frees); 440} 441 442static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node) 443{ 444 hlist_del_rcu(&node->list); 445 call_rcu(&node->rhead, avc_node_free); 446 atomic_dec(&avc->avc_cache.active_nodes); 447} 448 449static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node) 450{ 451 avc_xperms_free(node->ae.xp_node); 452 kmem_cache_free(avc_node_cachep, node); 453 avc_cache_stats_incr(frees); 454 atomic_dec(&avc->avc_cache.active_nodes); 455} 456 457static void avc_node_replace(struct selinux_avc *avc, 458 struct avc_node *new, struct avc_node *old) 459{ 460 hlist_replace_rcu(&old->list, &new->list); 461 call_rcu(&old->rhead, avc_node_free); 462 atomic_dec(&avc->avc_cache.active_nodes); 463} 464 465static inline int avc_reclaim_node(struct selinux_avc *avc) 466{ 467 struct avc_node *node; 468 int hvalue, try, ecx; 469 unsigned long flags; 470 struct hlist_head *head; 471 spinlock_t *lock; 472 473 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) { 474 hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) & 475 (AVC_CACHE_SLOTS - 1); 476 head = &avc->avc_cache.slots[hvalue]; 477 lock = &avc->avc_cache.slots_lock[hvalue]; 478 479 if (!spin_trylock_irqsave(lock, flags)) 480 continue; 481 482 rcu_read_lock(); 483 hlist_for_each_entry(node, head, list) { 484 avc_node_delete(avc, node); 485 avc_cache_stats_incr(reclaims); 486 ecx++; 487 if (ecx >= AVC_CACHE_RECLAIM) { 488 rcu_read_unlock(); 489 spin_unlock_irqrestore(lock, flags); 490 goto out; 491 } 492 } 493 rcu_read_unlock(); 494 spin_unlock_irqrestore(lock, flags); 495 } 496out: 497 return ecx; 498} 499 500static struct avc_node *avc_alloc_node(struct selinux_avc *avc) 501{ 502 struct avc_node *node; 503 504 node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN); 505 if (!node) 506 goto out; 507 508 INIT_HLIST_NODE(&node->list); 509 avc_cache_stats_incr(allocations); 510 511 if (atomic_inc_return(&avc->avc_cache.active_nodes) > 512 avc->avc_cache_threshold) 513 avc_reclaim_node(avc); 514 515out: 516 return node; 517} 518 519static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd) 520{ 521 node->ae.ssid = ssid; 522 node->ae.tsid = tsid; 523 node->ae.tclass = tclass; 524 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd)); 525} 526 527static inline struct avc_node *avc_search_node(struct selinux_avc *avc, 528 u32 ssid, u32 tsid, u16 tclass) 529{ 530 struct avc_node *node, *ret = NULL; 531 int hvalue; 532 struct hlist_head *head; 533 534 hvalue = avc_hash(ssid, tsid, tclass); 535 head = &avc->avc_cache.slots[hvalue]; 536 hlist_for_each_entry_rcu(node, head, list) { 537 if (ssid == node->ae.ssid && 538 tclass == node->ae.tclass && 539 tsid == node->ae.tsid) { 540 ret = node; 541 break; 542 } 543 } 544 545 return ret; 546} 547 548/** 549 * avc_lookup - Look up an AVC entry. 550 * @avc: the access vector cache 551 * @ssid: source security identifier 552 * @tsid: target security identifier 553 * @tclass: target security class 554 * 555 * Look up an AVC entry that is valid for the 556 * (@ssid, @tsid), interpreting the permissions 557 * based on @tclass. If a valid AVC entry exists, 558 * then this function returns the avc_node. 559 * Otherwise, this function returns NULL. 560 */ 561static struct avc_node *avc_lookup(struct selinux_avc *avc, 562 u32 ssid, u32 tsid, u16 tclass) 563{ 564 struct avc_node *node; 565 566 avc_cache_stats_incr(lookups); 567 node = avc_search_node(avc, ssid, tsid, tclass); 568 569 if (node) 570 return node; 571 572 avc_cache_stats_incr(misses); 573 return NULL; 574} 575 576static int avc_latest_notif_update(struct selinux_avc *avc, 577 int seqno, int is_insert) 578{ 579 int ret = 0; 580 static DEFINE_SPINLOCK(notif_lock); 581 unsigned long flag; 582 583 spin_lock_irqsave(¬if_lock, flag); 584 if (is_insert) { 585 if (seqno < avc->avc_cache.latest_notif) { 586 pr_warn("SELinux: avc: seqno %d < latest_notif %d\n", 587 seqno, avc->avc_cache.latest_notif); 588 ret = -EAGAIN; 589 } 590 } else { 591 if (seqno > avc->avc_cache.latest_notif) 592 avc->avc_cache.latest_notif = seqno; 593 } 594 spin_unlock_irqrestore(¬if_lock, flag); 595 596 return ret; 597} 598 599/** 600 * avc_insert - Insert an AVC entry. 601 * @avc: the access vector cache 602 * @ssid: source security identifier 603 * @tsid: target security identifier 604 * @tclass: target security class 605 * @avd: resulting av decision 606 * @xp_node: resulting extended permissions 607 * 608 * Insert an AVC entry for the SID pair 609 * (@ssid, @tsid) and class @tclass. 610 * The access vectors and the sequence number are 611 * normally provided by the security server in 612 * response to a security_compute_av() call. If the 613 * sequence number @avd->seqno is not less than the latest 614 * revocation notification, then the function copies 615 * the access vectors into a cache entry, returns 616 * avc_node inserted. Otherwise, this function returns NULL. 617 */ 618static struct avc_node *avc_insert(struct selinux_avc *avc, 619 u32 ssid, u32 tsid, u16 tclass, 620 struct av_decision *avd, 621 struct avc_xperms_node *xp_node) 622{ 623 struct avc_node *pos, *node = NULL; 624 int hvalue; 625 unsigned long flag; 626 spinlock_t *lock; 627 struct hlist_head *head; 628 629 if (avc_latest_notif_update(avc, avd->seqno, 1)) 630 return NULL; 631 632 node = avc_alloc_node(avc); 633 if (!node) 634 return NULL; 635 636 avc_node_populate(node, ssid, tsid, tclass, avd); 637 if (avc_xperms_populate(node, xp_node)) { 638 avc_node_kill(avc, node); 639 return NULL; 640 } 641 642 hvalue = avc_hash(ssid, tsid, tclass); 643 head = &avc->avc_cache.slots[hvalue]; 644 lock = &avc->avc_cache.slots_lock[hvalue]; 645 spin_lock_irqsave(lock, flag); 646 hlist_for_each_entry(pos, head, list) { 647 if (pos->ae.ssid == ssid && 648 pos->ae.tsid == tsid && 649 pos->ae.tclass == tclass) { 650 avc_node_replace(avc, node, pos); 651 goto found; 652 } 653 } 654 hlist_add_head_rcu(&node->list, head); 655found: 656 spin_unlock_irqrestore(lock, flag); 657 return node; 658} 659 660/** 661 * avc_audit_pre_callback - SELinux specific information 662 * will be called by generic audit code 663 * @ab: the audit buffer 664 * @a: audit_data 665 */ 666static void avc_audit_pre_callback(struct audit_buffer *ab, void *a) 667{ 668 struct common_audit_data *ad = a; 669 struct selinux_audit_data *sad = ad->selinux_audit_data; 670 u32 av = sad->audited; 671 const char *const *perms; 672 int i, perm; 673 674 audit_log_format(ab, "avc: %s ", sad->denied ? "denied" : "granted"); 675 676 if (av == 0) { 677 audit_log_format(ab, " null"); 678 return; 679 } 680 681 perms = secclass_map[sad->tclass-1].perms; 682 683 audit_log_format(ab, " {"); 684 i = 0; 685 perm = 1; 686 while (i < (sizeof(av) * 8)) { 687 if ((perm & av) && perms[i]) { 688 audit_log_format(ab, " %s", perms[i]); 689 av &= ~perm; 690 } 691 i++; 692 perm <<= 1; 693 } 694 695 if (av) 696 audit_log_format(ab, " 0x%x", av); 697 698 audit_log_format(ab, " } for "); 699} 700 701/** 702 * avc_audit_post_callback - SELinux specific information 703 * will be called by generic audit code 704 * @ab: the audit buffer 705 * @a: audit_data 706 */ 707static void avc_audit_post_callback(struct audit_buffer *ab, void *a) 708{ 709 struct common_audit_data *ad = a; 710 struct selinux_audit_data *sad = ad->selinux_audit_data; 711 char *scontext = NULL; 712 char *tcontext = NULL; 713 const char *tclass = NULL; 714 u32 scontext_len; 715 u32 tcontext_len; 716 int rc; 717 718 rc = security_sid_to_context(sad->state, sad->ssid, &scontext, 719 &scontext_len); 720 if (rc) 721 audit_log_format(ab, " ssid=%d", sad->ssid); 722 else 723 audit_log_format(ab, " scontext=%s", scontext); 724 725 rc = security_sid_to_context(sad->state, sad->tsid, &tcontext, 726 &tcontext_len); 727 if (rc) 728 audit_log_format(ab, " tsid=%d", sad->tsid); 729 else 730 audit_log_format(ab, " tcontext=%s", tcontext); 731 732 tclass = secclass_map[sad->tclass-1].name; 733 audit_log_format(ab, " tclass=%s", tclass); 734 735 if (sad->denied) 736 audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1); 737 738 trace_selinux_audited(sad, scontext, tcontext, tclass); 739 kfree(tcontext); 740 kfree(scontext); 741 742 /* in case of invalid context report also the actual context string */ 743 rc = security_sid_to_context_inval(sad->state, sad->ssid, &scontext, 744 &scontext_len); 745 if (!rc && scontext) { 746 if (scontext_len && scontext[scontext_len - 1] == '\0') 747 scontext_len--; 748 audit_log_format(ab, " srawcon="); 749 audit_log_n_untrustedstring(ab, scontext, scontext_len); 750 kfree(scontext); 751 } 752 753 rc = security_sid_to_context_inval(sad->state, sad->tsid, &scontext, 754 &scontext_len); 755 if (!rc && scontext) { 756 if (scontext_len && scontext[scontext_len - 1] == '\0') 757 scontext_len--; 758 audit_log_format(ab, " trawcon="); 759 audit_log_n_untrustedstring(ab, scontext, scontext_len); 760 kfree(scontext); 761 } 762} 763 764/* 765 * This is the slow part of avc audit with big stack footprint. 766 * Note that it is non-blocking and can be called from under 767 * rcu_read_lock(). 768 */ 769noinline int slow_avc_audit(struct selinux_state *state, 770 u32 ssid, u32 tsid, u16 tclass, 771 u32 requested, u32 audited, u32 denied, int result, 772 struct common_audit_data *a) 773{ 774 struct common_audit_data stack_data; 775 struct selinux_audit_data sad; 776 777 if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map))) 778 return -EINVAL; 779 780 if (!a) { 781 a = &stack_data; 782 a->type = LSM_AUDIT_DATA_NONE; 783 } 784 785 sad.tclass = tclass; 786 sad.requested = requested; 787 sad.ssid = ssid; 788 sad.tsid = tsid; 789 sad.audited = audited; 790 sad.denied = denied; 791 sad.result = result; 792 sad.state = state; 793 794 a->selinux_audit_data = &sad; 795 796 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback); 797 return 0; 798} 799 800/** 801 * avc_add_callback - Register a callback for security events. 802 * @callback: callback function 803 * @events: security events 804 * 805 * Register a callback function for events in the set @events. 806 * Returns %0 on success or -%ENOMEM if insufficient memory 807 * exists to add the callback. 808 */ 809int __init avc_add_callback(int (*callback)(u32 event), u32 events) 810{ 811 struct avc_callback_node *c; 812 int rc = 0; 813 814 c = kmalloc(sizeof(*c), GFP_KERNEL); 815 if (!c) { 816 rc = -ENOMEM; 817 goto out; 818 } 819 820 c->callback = callback; 821 c->events = events; 822 c->next = avc_callbacks; 823 avc_callbacks = c; 824out: 825 return rc; 826} 827 828/** 829 * avc_update_node - Update an AVC entry 830 * @avc: the access vector cache 831 * @event : Updating event 832 * @perms : Permission mask bits 833 * @driver: xperm driver information 834 * @xperm: xperm permissions 835 * @ssid: AVC entry source sid 836 * @tsid: AVC entry target sid 837 * @tclass : AVC entry target object class 838 * @seqno : sequence number when decision was made 839 * @xpd: extended_perms_decision to be added to the node 840 * @flags: the AVC_* flags, e.g. AVC_EXTENDED_PERMS, or 0. 841 * 842 * if a valid AVC entry doesn't exist,this function returns -ENOENT. 843 * if kmalloc() called internal returns NULL, this function returns -ENOMEM. 844 * otherwise, this function updates the AVC entry. The original AVC-entry object 845 * will release later by RCU. 846 */ 847static int avc_update_node(struct selinux_avc *avc, 848 u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid, 849 u32 tsid, u16 tclass, u32 seqno, 850 struct extended_perms_decision *xpd, 851 u32 flags) 852{ 853 int hvalue, rc = 0; 854 unsigned long flag; 855 struct avc_node *pos, *node, *orig = NULL; 856 struct hlist_head *head; 857 spinlock_t *lock; 858 859 node = avc_alloc_node(avc); 860 if (!node) { 861 rc = -ENOMEM; 862 goto out; 863 } 864 865 /* Lock the target slot */ 866 hvalue = avc_hash(ssid, tsid, tclass); 867 868 head = &avc->avc_cache.slots[hvalue]; 869 lock = &avc->avc_cache.slots_lock[hvalue]; 870 871 spin_lock_irqsave(lock, flag); 872 873 hlist_for_each_entry(pos, head, list) { 874 if (ssid == pos->ae.ssid && 875 tsid == pos->ae.tsid && 876 tclass == pos->ae.tclass && 877 seqno == pos->ae.avd.seqno){ 878 orig = pos; 879 break; 880 } 881 } 882 883 if (!orig) { 884 rc = -ENOENT; 885 avc_node_kill(avc, node); 886 goto out_unlock; 887 } 888 889 /* 890 * Copy and replace original node. 891 */ 892 893 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd); 894 895 if (orig->ae.xp_node) { 896 rc = avc_xperms_populate(node, orig->ae.xp_node); 897 if (rc) { 898 avc_node_kill(avc, node); 899 goto out_unlock; 900 } 901 } 902 903 switch (event) { 904 case AVC_CALLBACK_GRANT: 905 node->ae.avd.allowed |= perms; 906 if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS)) 907 avc_xperms_allow_perm(node->ae.xp_node, driver, xperm); 908 break; 909 case AVC_CALLBACK_TRY_REVOKE: 910 case AVC_CALLBACK_REVOKE: 911 node->ae.avd.allowed &= ~perms; 912 break; 913 case AVC_CALLBACK_AUDITALLOW_ENABLE: 914 node->ae.avd.auditallow |= perms; 915 break; 916 case AVC_CALLBACK_AUDITALLOW_DISABLE: 917 node->ae.avd.auditallow &= ~perms; 918 break; 919 case AVC_CALLBACK_AUDITDENY_ENABLE: 920 node->ae.avd.auditdeny |= perms; 921 break; 922 case AVC_CALLBACK_AUDITDENY_DISABLE: 923 node->ae.avd.auditdeny &= ~perms; 924 break; 925 case AVC_CALLBACK_ADD_XPERMS: 926 avc_add_xperms_decision(node, xpd); 927 break; 928 } 929 avc_node_replace(avc, node, orig); 930out_unlock: 931 spin_unlock_irqrestore(lock, flag); 932out: 933 return rc; 934} 935 936/** 937 * avc_flush - Flush the cache 938 * @avc: the access vector cache 939 */ 940static void avc_flush(struct selinux_avc *avc) 941{ 942 struct hlist_head *head; 943 struct avc_node *node; 944 spinlock_t *lock; 945 unsigned long flag; 946 int i; 947 948 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 949 head = &avc->avc_cache.slots[i]; 950 lock = &avc->avc_cache.slots_lock[i]; 951 952 spin_lock_irqsave(lock, flag); 953 /* 954 * With preemptable RCU, the outer spinlock does not 955 * prevent RCU grace periods from ending. 956 */ 957 rcu_read_lock(); 958 hlist_for_each_entry(node, head, list) 959 avc_node_delete(avc, node); 960 rcu_read_unlock(); 961 spin_unlock_irqrestore(lock, flag); 962 } 963} 964 965/** 966 * avc_ss_reset - Flush the cache and revalidate migrated permissions. 967 * @avc: the access vector cache 968 * @seqno: policy sequence number 969 */ 970int avc_ss_reset(struct selinux_avc *avc, u32 seqno) 971{ 972 struct avc_callback_node *c; 973 int rc = 0, tmprc; 974 975 avc_flush(avc); 976 977 for (c = avc_callbacks; c; c = c->next) { 978 if (c->events & AVC_CALLBACK_RESET) { 979 tmprc = c->callback(AVC_CALLBACK_RESET); 980 /* save the first error encountered for the return 981 value and continue processing the callbacks */ 982 if (!rc) 983 rc = tmprc; 984 } 985 } 986 987 avc_latest_notif_update(avc, seqno, 0); 988 return rc; 989} 990 991/* 992 * Slow-path helper function for avc_has_perm_noaudit, 993 * when the avc_node lookup fails. We get called with 994 * the RCU read lock held, and need to return with it 995 * still held, but drop if for the security compute. 996 * 997 * Don't inline this, since it's the slow-path and just 998 * results in a bigger stack frame. 999 */ 1000static noinline 1001struct avc_node *avc_compute_av(struct selinux_state *state, 1002 u32 ssid, u32 tsid, 1003 u16 tclass, struct av_decision *avd, 1004 struct avc_xperms_node *xp_node) 1005{ 1006 rcu_read_unlock(); 1007 INIT_LIST_HEAD(&xp_node->xpd_head); 1008 security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp); 1009 rcu_read_lock(); 1010 return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node); 1011} 1012 1013static noinline int avc_denied(struct selinux_state *state, 1014 u32 ssid, u32 tsid, 1015 u16 tclass, u32 requested, 1016 u8 driver, u8 xperm, unsigned int flags, 1017 struct av_decision *avd) 1018{ 1019 if (flags & AVC_STRICT) 1020 return -EACCES; 1021 1022 if (enforcing_enabled(state) && 1023 !(avd->flags & AVD_FLAGS_PERMISSIVE)) 1024 return -EACCES; 1025 1026 avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver, 1027 xperm, ssid, tsid, tclass, avd->seqno, NULL, flags); 1028 return 0; 1029} 1030 1031/* 1032 * The avc extended permissions logic adds an additional 256 bits of 1033 * permissions to an avc node when extended permissions for that node are 1034 * specified in the avtab. If the additional 256 permissions is not adequate, 1035 * as-is the case with ioctls, then multiple may be chained together and the 1036 * driver field is used to specify which set contains the permission. 1037 */ 1038int avc_has_extended_perms(struct selinux_state *state, 1039 u32 ssid, u32 tsid, u16 tclass, u32 requested, 1040 u8 driver, u8 xperm, struct common_audit_data *ad) 1041{ 1042 struct avc_node *node; 1043 struct av_decision avd; 1044 u32 denied; 1045 struct extended_perms_decision local_xpd; 1046 struct extended_perms_decision *xpd = NULL; 1047 struct extended_perms_data allowed; 1048 struct extended_perms_data auditallow; 1049 struct extended_perms_data dontaudit; 1050 struct avc_xperms_node local_xp_node; 1051 struct avc_xperms_node *xp_node; 1052 int rc = 0, rc2; 1053 1054 xp_node = &local_xp_node; 1055 if (WARN_ON(!requested)) 1056 return -EACCES; 1057 1058 rcu_read_lock(); 1059 1060 node = avc_lookup(state->avc, ssid, tsid, tclass); 1061 if (unlikely(!node)) { 1062 avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node); 1063 } else { 1064 memcpy(&avd, &node->ae.avd, sizeof(avd)); 1065 xp_node = node->ae.xp_node; 1066 } 1067 /* if extended permissions are not defined, only consider av_decision */ 1068 if (!xp_node || !xp_node->xp.len) 1069 goto decision; 1070 1071 local_xpd.allowed = &allowed; 1072 local_xpd.auditallow = &auditallow; 1073 local_xpd.dontaudit = &dontaudit; 1074 1075 xpd = avc_xperms_decision_lookup(driver, xp_node); 1076 if (unlikely(!xpd)) { 1077 /* 1078 * Compute the extended_perms_decision only if the driver 1079 * is flagged 1080 */ 1081 if (!security_xperm_test(xp_node->xp.drivers.p, driver)) { 1082 avd.allowed &= ~requested; 1083 goto decision; 1084 } 1085 rcu_read_unlock(); 1086 security_compute_xperms_decision(state, ssid, tsid, tclass, 1087 driver, &local_xpd); 1088 rcu_read_lock(); 1089 avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested, 1090 driver, xperm, ssid, tsid, tclass, avd.seqno, 1091 &local_xpd, 0); 1092 } else { 1093 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd); 1094 } 1095 xpd = &local_xpd; 1096 1097 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED)) 1098 avd.allowed &= ~requested; 1099 1100decision: 1101 denied = requested & ~(avd.allowed); 1102 if (unlikely(denied)) 1103 rc = avc_denied(state, ssid, tsid, tclass, requested, 1104 driver, xperm, AVC_EXTENDED_PERMS, &avd); 1105 1106 rcu_read_unlock(); 1107 1108 rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested, 1109 &avd, xpd, xperm, rc, ad); 1110 if (rc2) 1111 return rc2; 1112 return rc; 1113} 1114 1115/** 1116 * avc_has_perm_noaudit - Check permissions but perform no auditing. 1117 * @state: SELinux state 1118 * @ssid: source security identifier 1119 * @tsid: target security identifier 1120 * @tclass: target security class 1121 * @requested: requested permissions, interpreted based on @tclass 1122 * @flags: AVC_STRICT or 0 1123 * @avd: access vector decisions 1124 * 1125 * Check the AVC to determine whether the @requested permissions are granted 1126 * for the SID pair (@ssid, @tsid), interpreting the permissions 1127 * based on @tclass, and call the security server on a cache miss to obtain 1128 * a new decision and add it to the cache. Return a copy of the decisions 1129 * in @avd. Return %0 if all @requested permissions are granted, 1130 * -%EACCES if any permissions are denied, or another -errno upon 1131 * other errors. This function is typically called by avc_has_perm(), 1132 * but may also be called directly to separate permission checking from 1133 * auditing, e.g. in cases where a lock must be held for the check but 1134 * should be released for the auditing. 1135 */ 1136inline int avc_has_perm_noaudit(struct selinux_state *state, 1137 u32 ssid, u32 tsid, 1138 u16 tclass, u32 requested, 1139 unsigned int flags, 1140 struct av_decision *avd) 1141{ 1142 struct avc_node *node; 1143 struct avc_xperms_node xp_node; 1144 int rc = 0; 1145 u32 denied; 1146 1147 if (WARN_ON(!requested)) 1148 return -EACCES; 1149 1150 rcu_read_lock(); 1151 1152 node = avc_lookup(state->avc, ssid, tsid, tclass); 1153 if (unlikely(!node)) 1154 avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node); 1155 else 1156 memcpy(avd, &node->ae.avd, sizeof(*avd)); 1157 1158 denied = requested & ~(avd->allowed); 1159 if (unlikely(denied)) 1160 rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0, 1161 flags, avd); 1162 1163 rcu_read_unlock(); 1164 return rc; 1165} 1166 1167/** 1168 * avc_has_perm - Check permissions and perform any appropriate auditing. 1169 * @state: SELinux state 1170 * @ssid: source security identifier 1171 * @tsid: target security identifier 1172 * @tclass: target security class 1173 * @requested: requested permissions, interpreted based on @tclass 1174 * @auditdata: auxiliary audit data 1175 * 1176 * Check the AVC to determine whether the @requested permissions are granted 1177 * for the SID pair (@ssid, @tsid), interpreting the permissions 1178 * based on @tclass, and call the security server on a cache miss to obtain 1179 * a new decision and add it to the cache. Audit the granting or denial of 1180 * permissions in accordance with the policy. Return %0 if all @requested 1181 * permissions are granted, -%EACCES if any permissions are denied, or 1182 * another -errno upon other errors. 1183 */ 1184int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, 1185 u32 requested, struct common_audit_data *auditdata) 1186{ 1187 struct av_decision avd; 1188 int rc, rc2; 1189 1190 rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0, 1191 &avd); 1192 1193 rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc, 1194 auditdata); 1195 if (rc2) 1196 return rc2; 1197 return rc; 1198} 1199 1200u32 avc_policy_seqno(struct selinux_state *state) 1201{ 1202 return state->avc->avc_cache.latest_notif; 1203} 1204 1205void avc_disable(void) 1206{ 1207 /* 1208 * If you are looking at this because you have realized that we are 1209 * not destroying the avc_node_cachep it might be easy to fix, but 1210 * I don't know the memory barrier semantics well enough to know. It's 1211 * possible that some other task dereferenced security_ops when 1212 * it still pointed to selinux operations. If that is the case it's 1213 * possible that it is about to use the avc and is about to need the 1214 * avc_node_cachep. I know I could wrap the security.c security_ops call 1215 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush 1216 * the cache and get that memory back. 1217 */ 1218 if (avc_node_cachep) { 1219 avc_flush(selinux_state.avc); 1220 /* kmem_cache_destroy(avc_node_cachep); */ 1221 } 1222}