cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

netnode.c (7673B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Network node table
      4 *
      5 * SELinux must keep a mapping of network nodes to labels/SIDs.  This
      6 * mapping is maintained as part of the normal policy but a fast cache is
      7 * needed to reduce the lookup overhead since most of these queries happen on
      8 * a per-packet basis.
      9 *
     10 * Author: Paul Moore <paul@paul-moore.com>
     11 *
     12 * This code is heavily based on the "netif" concept originally developed by
     13 * James Morris <jmorris@redhat.com>
     14 *   (see security/selinux/netif.c for more information)
     15 */
     16
     17/*
     18 * (c) Copyright Hewlett-Packard Development Company, L.P., 2007
     19 */
     20
     21#include <linux/types.h>
     22#include <linux/rcupdate.h>
     23#include <linux/list.h>
     24#include <linux/slab.h>
     25#include <linux/spinlock.h>
     26#include <linux/in.h>
     27#include <linux/in6.h>
     28#include <linux/ip.h>
     29#include <linux/ipv6.h>
     30#include <net/ip.h>
     31#include <net/ipv6.h>
     32
     33#include "netnode.h"
     34#include "objsec.h"
     35
     36#define SEL_NETNODE_HASH_SIZE       256
     37#define SEL_NETNODE_HASH_BKT_LIMIT   16
     38
     39struct sel_netnode_bkt {
     40	unsigned int size;
     41	struct list_head list;
     42};
     43
     44struct sel_netnode {
     45	struct netnode_security_struct nsec;
     46
     47	struct list_head list;
     48	struct rcu_head rcu;
     49};
     50
     51/* NOTE: we are using a combined hash table for both IPv4 and IPv6, the reason
     52 * for this is that I suspect most users will not make heavy use of both
     53 * address families at the same time so one table will usually end up wasted,
     54 * if this becomes a problem we can always add a hash table for each address
     55 * family later */
     56
     57static DEFINE_SPINLOCK(sel_netnode_lock);
     58static struct sel_netnode_bkt sel_netnode_hash[SEL_NETNODE_HASH_SIZE];
     59
     60/**
     61 * sel_netnode_hashfn_ipv4 - IPv4 hashing function for the node table
     62 * @addr: IPv4 address
     63 *
     64 * Description:
     65 * This is the IPv4 hashing function for the node interface table, it returns
     66 * the bucket number for the given IP address.
     67 *
     68 */
     69static unsigned int sel_netnode_hashfn_ipv4(__be32 addr)
     70{
     71	/* at some point we should determine if the mismatch in byte order
     72	 * affects the hash function dramatically */
     73	return (addr & (SEL_NETNODE_HASH_SIZE - 1));
     74}
     75
     76/**
     77 * sel_netnode_hashfn_ipv6 - IPv6 hashing function for the node table
     78 * @addr: IPv6 address
     79 *
     80 * Description:
     81 * This is the IPv6 hashing function for the node interface table, it returns
     82 * the bucket number for the given IP address.
     83 *
     84 */
     85static unsigned int sel_netnode_hashfn_ipv6(const struct in6_addr *addr)
     86{
     87	/* just hash the least significant 32 bits to keep things fast (they
     88	 * are the most likely to be different anyway), we can revisit this
     89	 * later if needed */
     90	return (addr->s6_addr32[3] & (SEL_NETNODE_HASH_SIZE - 1));
     91}
     92
     93/**
     94 * sel_netnode_find - Search for a node record
     95 * @addr: IP address
     96 * @family: address family
     97 *
     98 * Description:
     99 * Search the network node table and return the record matching @addr.  If an
    100 * entry can not be found in the table return NULL.
    101 *
    102 */
    103static struct sel_netnode *sel_netnode_find(const void *addr, u16 family)
    104{
    105	unsigned int idx;
    106	struct sel_netnode *node;
    107
    108	switch (family) {
    109	case PF_INET:
    110		idx = sel_netnode_hashfn_ipv4(*(const __be32 *)addr);
    111		break;
    112	case PF_INET6:
    113		idx = sel_netnode_hashfn_ipv6(addr);
    114		break;
    115	default:
    116		BUG();
    117		return NULL;
    118	}
    119
    120	list_for_each_entry_rcu(node, &sel_netnode_hash[idx].list, list)
    121		if (node->nsec.family == family)
    122			switch (family) {
    123			case PF_INET:
    124				if (node->nsec.addr.ipv4 == *(const __be32 *)addr)
    125					return node;
    126				break;
    127			case PF_INET6:
    128				if (ipv6_addr_equal(&node->nsec.addr.ipv6,
    129						    addr))
    130					return node;
    131				break;
    132			}
    133
    134	return NULL;
    135}
    136
    137/**
    138 * sel_netnode_insert - Insert a new node into the table
    139 * @node: the new node record
    140 *
    141 * Description:
    142 * Add a new node record to the network address hash table.
    143 *
    144 */
    145static void sel_netnode_insert(struct sel_netnode *node)
    146{
    147	unsigned int idx;
    148
    149	switch (node->nsec.family) {
    150	case PF_INET:
    151		idx = sel_netnode_hashfn_ipv4(node->nsec.addr.ipv4);
    152		break;
    153	case PF_INET6:
    154		idx = sel_netnode_hashfn_ipv6(&node->nsec.addr.ipv6);
    155		break;
    156	default:
    157		BUG();
    158		return;
    159	}
    160
    161	/* we need to impose a limit on the growth of the hash table so check
    162	 * this bucket to make sure it is within the specified bounds */
    163	list_add_rcu(&node->list, &sel_netnode_hash[idx].list);
    164	if (sel_netnode_hash[idx].size == SEL_NETNODE_HASH_BKT_LIMIT) {
    165		struct sel_netnode *tail;
    166		tail = list_entry(
    167			rcu_dereference_protected(
    168				list_tail_rcu(&sel_netnode_hash[idx].list),
    169				lockdep_is_held(&sel_netnode_lock)),
    170			struct sel_netnode, list);
    171		list_del_rcu(&tail->list);
    172		kfree_rcu(tail, rcu);
    173	} else
    174		sel_netnode_hash[idx].size++;
    175}
    176
    177/**
    178 * sel_netnode_sid_slow - Lookup the SID of a network address using the policy
    179 * @addr: the IP address
    180 * @family: the address family
    181 * @sid: node SID
    182 *
    183 * Description:
    184 * This function determines the SID of a network address by querying the
    185 * security policy.  The result is added to the network address table to
    186 * speedup future queries.  Returns zero on success, negative values on
    187 * failure.
    188 *
    189 */
    190static int sel_netnode_sid_slow(void *addr, u16 family, u32 *sid)
    191{
    192	int ret;
    193	struct sel_netnode *node;
    194	struct sel_netnode *new;
    195
    196	spin_lock_bh(&sel_netnode_lock);
    197	node = sel_netnode_find(addr, family);
    198	if (node != NULL) {
    199		*sid = node->nsec.sid;
    200		spin_unlock_bh(&sel_netnode_lock);
    201		return 0;
    202	}
    203
    204	new = kzalloc(sizeof(*new), GFP_ATOMIC);
    205	switch (family) {
    206	case PF_INET:
    207		ret = security_node_sid(&selinux_state, PF_INET,
    208					addr, sizeof(struct in_addr), sid);
    209		if (new)
    210			new->nsec.addr.ipv4 = *(__be32 *)addr;
    211		break;
    212	case PF_INET6:
    213		ret = security_node_sid(&selinux_state, PF_INET6,
    214					addr, sizeof(struct in6_addr), sid);
    215		if (new)
    216			new->nsec.addr.ipv6 = *(struct in6_addr *)addr;
    217		break;
    218	default:
    219		BUG();
    220		ret = -EINVAL;
    221	}
    222	if (ret == 0 && new) {
    223		new->nsec.family = family;
    224		new->nsec.sid = *sid;
    225		sel_netnode_insert(new);
    226	} else
    227		kfree(new);
    228
    229	spin_unlock_bh(&sel_netnode_lock);
    230	if (unlikely(ret))
    231		pr_warn("SELinux: failure in %s(), unable to determine network node label\n",
    232			__func__);
    233	return ret;
    234}
    235
    236/**
    237 * sel_netnode_sid - Lookup the SID of a network address
    238 * @addr: the IP address
    239 * @family: the address family
    240 * @sid: node SID
    241 *
    242 * Description:
    243 * This function determines the SID of a network address using the fastest
    244 * method possible.  First the address table is queried, but if an entry
    245 * can't be found then the policy is queried and the result is added to the
    246 * table to speedup future queries.  Returns zero on success, negative values
    247 * on failure.
    248 *
    249 */
    250int sel_netnode_sid(void *addr, u16 family, u32 *sid)
    251{
    252	struct sel_netnode *node;
    253
    254	rcu_read_lock();
    255	node = sel_netnode_find(addr, family);
    256	if (node != NULL) {
    257		*sid = node->nsec.sid;
    258		rcu_read_unlock();
    259		return 0;
    260	}
    261	rcu_read_unlock();
    262
    263	return sel_netnode_sid_slow(addr, family, sid);
    264}
    265
    266/**
    267 * sel_netnode_flush - Flush the entire network address table
    268 *
    269 * Description:
    270 * Remove all entries from the network address table.
    271 *
    272 */
    273void sel_netnode_flush(void)
    274{
    275	unsigned int idx;
    276	struct sel_netnode *node, *node_tmp;
    277
    278	spin_lock_bh(&sel_netnode_lock);
    279	for (idx = 0; idx < SEL_NETNODE_HASH_SIZE; idx++) {
    280		list_for_each_entry_safe(node, node_tmp,
    281					 &sel_netnode_hash[idx].list, list) {
    282				list_del_rcu(&node->list);
    283				kfree_rcu(node, rcu);
    284		}
    285		sel_netnode_hash[idx].size = 0;
    286	}
    287	spin_unlock_bh(&sel_netnode_lock);
    288}
    289
    290static __init int sel_netnode_init(void)
    291{
    292	int iter;
    293
    294	if (!selinux_enabled_boot)
    295		return 0;
    296
    297	for (iter = 0; iter < SEL_NETNODE_HASH_SIZE; iter++) {
    298		INIT_LIST_HEAD(&sel_netnode_hash[iter].list);
    299		sel_netnode_hash[iter].size = 0;
    300	}
    301
    302	return 0;
    303}
    304
    305__initcall(sel_netnode_init);