memalloc.c (22611B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Takashi Iwai <tiwai@suse.de> 5 * 6 * Generic memory allocators 7 */ 8 9#include <linux/slab.h> 10#include <linux/mm.h> 11#include <linux/dma-mapping.h> 12#include <linux/genalloc.h> 13#include <linux/highmem.h> 14#include <linux/vmalloc.h> 15#ifdef CONFIG_X86 16#include <asm/set_memory.h> 17#endif 18#include <sound/memalloc.h> 19#include "memalloc_local.h" 20 21static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab); 22 23/* a cast to gfp flag from the dev pointer; for CONTINUOUS and VMALLOC types */ 24static inline gfp_t snd_mem_get_gfp_flags(const struct snd_dma_buffer *dmab, 25 gfp_t default_gfp) 26{ 27 if (!dmab->dev.dev) 28 return default_gfp; 29 else 30 return (__force gfp_t)(unsigned long)dmab->dev.dev; 31} 32 33static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size) 34{ 35 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 36 37 if (WARN_ON_ONCE(!ops || !ops->alloc)) 38 return NULL; 39 return ops->alloc(dmab, size); 40} 41 42/** 43 * snd_dma_alloc_dir_pages - allocate the buffer area according to the given 44 * type and direction 45 * @type: the DMA buffer type 46 * @device: the device pointer 47 * @dir: DMA direction 48 * @size: the buffer size to allocate 49 * @dmab: buffer allocation record to store the allocated data 50 * 51 * Calls the memory-allocator function for the corresponding 52 * buffer type. 53 * 54 * Return: Zero if the buffer with the given size is allocated successfully, 55 * otherwise a negative value on error. 56 */ 57int snd_dma_alloc_dir_pages(int type, struct device *device, 58 enum dma_data_direction dir, size_t size, 59 struct snd_dma_buffer *dmab) 60{ 61 if (WARN_ON(!size)) 62 return -ENXIO; 63 if (WARN_ON(!dmab)) 64 return -ENXIO; 65 66 size = PAGE_ALIGN(size); 67 dmab->dev.type = type; 68 dmab->dev.dev = device; 69 dmab->dev.dir = dir; 70 dmab->bytes = 0; 71 dmab->addr = 0; 72 dmab->private_data = NULL; 73 dmab->area = __snd_dma_alloc_pages(dmab, size); 74 if (!dmab->area) 75 return -ENOMEM; 76 dmab->bytes = size; 77 return 0; 78} 79EXPORT_SYMBOL(snd_dma_alloc_dir_pages); 80 81/** 82 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback 83 * @type: the DMA buffer type 84 * @device: the device pointer 85 * @size: the buffer size to allocate 86 * @dmab: buffer allocation record to store the allocated data 87 * 88 * Calls the memory-allocator function for the corresponding 89 * buffer type. When no space is left, this function reduces the size and 90 * tries to allocate again. The size actually allocated is stored in 91 * res_size argument. 92 * 93 * Return: Zero if the buffer with the given size is allocated successfully, 94 * otherwise a negative value on error. 95 */ 96int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size, 97 struct snd_dma_buffer *dmab) 98{ 99 int err; 100 101 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) { 102 if (err != -ENOMEM) 103 return err; 104 if (size <= PAGE_SIZE) 105 return -ENOMEM; 106 size >>= 1; 107 size = PAGE_SIZE << get_order(size); 108 } 109 if (! dmab->area) 110 return -ENOMEM; 111 return 0; 112} 113EXPORT_SYMBOL(snd_dma_alloc_pages_fallback); 114 115/** 116 * snd_dma_free_pages - release the allocated buffer 117 * @dmab: the buffer allocation record to release 118 * 119 * Releases the allocated buffer via snd_dma_alloc_pages(). 120 */ 121void snd_dma_free_pages(struct snd_dma_buffer *dmab) 122{ 123 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 124 125 if (ops && ops->free) 126 ops->free(dmab); 127} 128EXPORT_SYMBOL(snd_dma_free_pages); 129 130/* called by devres */ 131static void __snd_release_pages(struct device *dev, void *res) 132{ 133 snd_dma_free_pages(res); 134} 135 136/** 137 * snd_devm_alloc_dir_pages - allocate the buffer and manage with devres 138 * @dev: the device pointer 139 * @type: the DMA buffer type 140 * @dir: DMA direction 141 * @size: the buffer size to allocate 142 * 143 * Allocate buffer pages depending on the given type and manage using devres. 144 * The pages will be released automatically at the device removal. 145 * 146 * Unlike snd_dma_alloc_pages(), this function requires the real device pointer, 147 * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or 148 * SNDRV_DMA_TYPE_VMALLOC type. 149 * 150 * The function returns the snd_dma_buffer object at success, or NULL if failed. 151 */ 152struct snd_dma_buffer * 153snd_devm_alloc_dir_pages(struct device *dev, int type, 154 enum dma_data_direction dir, size_t size) 155{ 156 struct snd_dma_buffer *dmab; 157 int err; 158 159 if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS || 160 type == SNDRV_DMA_TYPE_VMALLOC)) 161 return NULL; 162 163 dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL); 164 if (!dmab) 165 return NULL; 166 167 err = snd_dma_alloc_dir_pages(type, dev, dir, size, dmab); 168 if (err < 0) { 169 devres_free(dmab); 170 return NULL; 171 } 172 173 devres_add(dev, dmab); 174 return dmab; 175} 176EXPORT_SYMBOL_GPL(snd_devm_alloc_dir_pages); 177 178/** 179 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer 180 * @dmab: buffer allocation information 181 * @area: VM area information 182 */ 183int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab, 184 struct vm_area_struct *area) 185{ 186 const struct snd_malloc_ops *ops; 187 188 if (!dmab) 189 return -ENOENT; 190 ops = snd_dma_get_ops(dmab); 191 if (ops && ops->mmap) 192 return ops->mmap(dmab, area); 193 else 194 return -ENOENT; 195} 196EXPORT_SYMBOL(snd_dma_buffer_mmap); 197 198#ifdef CONFIG_HAS_DMA 199/** 200 * snd_dma_buffer_sync - sync DMA buffer between CPU and device 201 * @dmab: buffer allocation information 202 * @mode: sync mode 203 */ 204void snd_dma_buffer_sync(struct snd_dma_buffer *dmab, 205 enum snd_dma_sync_mode mode) 206{ 207 const struct snd_malloc_ops *ops; 208 209 if (!dmab || !dmab->dev.need_sync) 210 return; 211 ops = snd_dma_get_ops(dmab); 212 if (ops && ops->sync) 213 ops->sync(dmab, mode); 214} 215EXPORT_SYMBOL_GPL(snd_dma_buffer_sync); 216#endif /* CONFIG_HAS_DMA */ 217 218/** 219 * snd_sgbuf_get_addr - return the physical address at the corresponding offset 220 * @dmab: buffer allocation information 221 * @offset: offset in the ring buffer 222 */ 223dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset) 224{ 225 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 226 227 if (ops && ops->get_addr) 228 return ops->get_addr(dmab, offset); 229 else 230 return dmab->addr + offset; 231} 232EXPORT_SYMBOL(snd_sgbuf_get_addr); 233 234/** 235 * snd_sgbuf_get_page - return the physical page at the corresponding offset 236 * @dmab: buffer allocation information 237 * @offset: offset in the ring buffer 238 */ 239struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset) 240{ 241 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 242 243 if (ops && ops->get_page) 244 return ops->get_page(dmab, offset); 245 else 246 return virt_to_page(dmab->area + offset); 247} 248EXPORT_SYMBOL(snd_sgbuf_get_page); 249 250/** 251 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages 252 * on sg-buffer 253 * @dmab: buffer allocation information 254 * @ofs: offset in the ring buffer 255 * @size: the requested size 256 */ 257unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab, 258 unsigned int ofs, unsigned int size) 259{ 260 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 261 262 if (ops && ops->get_chunk_size) 263 return ops->get_chunk_size(dmab, ofs, size); 264 else 265 return size; 266} 267EXPORT_SYMBOL(snd_sgbuf_get_chunk_size); 268 269/* 270 * Continuous pages allocator 271 */ 272static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size) 273{ 274 gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL); 275 void *p = alloc_pages_exact(size, gfp); 276 277 if (p) 278 dmab->addr = page_to_phys(virt_to_page(p)); 279 return p; 280} 281 282static void snd_dma_continuous_free(struct snd_dma_buffer *dmab) 283{ 284 free_pages_exact(dmab->area, dmab->bytes); 285} 286 287static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab, 288 struct vm_area_struct *area) 289{ 290 return remap_pfn_range(area, area->vm_start, 291 dmab->addr >> PAGE_SHIFT, 292 area->vm_end - area->vm_start, 293 area->vm_page_prot); 294} 295 296static const struct snd_malloc_ops snd_dma_continuous_ops = { 297 .alloc = snd_dma_continuous_alloc, 298 .free = snd_dma_continuous_free, 299 .mmap = snd_dma_continuous_mmap, 300}; 301 302/* 303 * VMALLOC allocator 304 */ 305static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size) 306{ 307 gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL | __GFP_HIGHMEM); 308 309 return __vmalloc(size, gfp); 310} 311 312static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab) 313{ 314 vfree(dmab->area); 315} 316 317static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab, 318 struct vm_area_struct *area) 319{ 320 return remap_vmalloc_range(area, dmab->area, 0); 321} 322 323#define get_vmalloc_page_addr(dmab, offset) \ 324 page_to_phys(vmalloc_to_page((dmab)->area + (offset))) 325 326static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab, 327 size_t offset) 328{ 329 return get_vmalloc_page_addr(dmab, offset) + offset % PAGE_SIZE; 330} 331 332static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab, 333 size_t offset) 334{ 335 return vmalloc_to_page(dmab->area + offset); 336} 337 338static unsigned int 339snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab, 340 unsigned int ofs, unsigned int size) 341{ 342 unsigned int start, end; 343 unsigned long addr; 344 345 start = ALIGN_DOWN(ofs, PAGE_SIZE); 346 end = ofs + size - 1; /* the last byte address */ 347 /* check page continuity */ 348 addr = get_vmalloc_page_addr(dmab, start); 349 for (;;) { 350 start += PAGE_SIZE; 351 if (start > end) 352 break; 353 addr += PAGE_SIZE; 354 if (get_vmalloc_page_addr(dmab, start) != addr) 355 return start - ofs; 356 } 357 /* ok, all on continuous pages */ 358 return size; 359} 360 361static const struct snd_malloc_ops snd_dma_vmalloc_ops = { 362 .alloc = snd_dma_vmalloc_alloc, 363 .free = snd_dma_vmalloc_free, 364 .mmap = snd_dma_vmalloc_mmap, 365 .get_addr = snd_dma_vmalloc_get_addr, 366 .get_page = snd_dma_vmalloc_get_page, 367 .get_chunk_size = snd_dma_vmalloc_get_chunk_size, 368}; 369 370#ifdef CONFIG_HAS_DMA 371/* 372 * IRAM allocator 373 */ 374#ifdef CONFIG_GENERIC_ALLOCATOR 375static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size) 376{ 377 struct device *dev = dmab->dev.dev; 378 struct gen_pool *pool; 379 void *p; 380 381 if (dev->of_node) { 382 pool = of_gen_pool_get(dev->of_node, "iram", 0); 383 /* Assign the pool into private_data field */ 384 dmab->private_data = pool; 385 386 p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE); 387 if (p) 388 return p; 389 } 390 391 /* Internal memory might have limited size and no enough space, 392 * so if we fail to malloc, try to fetch memory traditionally. 393 */ 394 dmab->dev.type = SNDRV_DMA_TYPE_DEV; 395 return __snd_dma_alloc_pages(dmab, size); 396} 397 398static void snd_dma_iram_free(struct snd_dma_buffer *dmab) 399{ 400 struct gen_pool *pool = dmab->private_data; 401 402 if (pool && dmab->area) 403 gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes); 404} 405 406static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab, 407 struct vm_area_struct *area) 408{ 409 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 410 return remap_pfn_range(area, area->vm_start, 411 dmab->addr >> PAGE_SHIFT, 412 area->vm_end - area->vm_start, 413 area->vm_page_prot); 414} 415 416static const struct snd_malloc_ops snd_dma_iram_ops = { 417 .alloc = snd_dma_iram_alloc, 418 .free = snd_dma_iram_free, 419 .mmap = snd_dma_iram_mmap, 420}; 421#endif /* CONFIG_GENERIC_ALLOCATOR */ 422 423#define DEFAULT_GFP \ 424 (GFP_KERNEL | \ 425 __GFP_COMP | /* compound page lets parts be mapped */ \ 426 __GFP_NORETRY | /* don't trigger OOM-killer */ \ 427 __GFP_NOWARN) /* no stack trace print - this call is non-critical */ 428 429/* 430 * Coherent device pages allocator 431 */ 432static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size) 433{ 434 return dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP); 435} 436 437static void snd_dma_dev_free(struct snd_dma_buffer *dmab) 438{ 439 dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr); 440} 441 442static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab, 443 struct vm_area_struct *area) 444{ 445 return dma_mmap_coherent(dmab->dev.dev, area, 446 dmab->area, dmab->addr, dmab->bytes); 447} 448 449static const struct snd_malloc_ops snd_dma_dev_ops = { 450 .alloc = snd_dma_dev_alloc, 451 .free = snd_dma_dev_free, 452 .mmap = snd_dma_dev_mmap, 453}; 454 455/* 456 * Write-combined pages 457 */ 458static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size) 459{ 460 return dma_alloc_wc(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP); 461} 462 463static void snd_dma_wc_free(struct snd_dma_buffer *dmab) 464{ 465 dma_free_wc(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr); 466} 467 468static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab, 469 struct vm_area_struct *area) 470{ 471 return dma_mmap_wc(dmab->dev.dev, area, 472 dmab->area, dmab->addr, dmab->bytes); 473} 474 475static const struct snd_malloc_ops snd_dma_wc_ops = { 476 .alloc = snd_dma_wc_alloc, 477 .free = snd_dma_wc_free, 478 .mmap = snd_dma_wc_mmap, 479}; 480 481#ifdef CONFIG_SND_DMA_SGBUF 482static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size); 483#endif 484 485/* 486 * Non-contiguous pages allocator 487 */ 488static void *snd_dma_noncontig_alloc(struct snd_dma_buffer *dmab, size_t size) 489{ 490 struct sg_table *sgt; 491 void *p; 492 493 sgt = dma_alloc_noncontiguous(dmab->dev.dev, size, dmab->dev.dir, 494 DEFAULT_GFP, 0); 495 if (!sgt) { 496#ifdef CONFIG_SND_DMA_SGBUF 497 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG) 498 dmab->dev.type = SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK; 499 else 500 dmab->dev.type = SNDRV_DMA_TYPE_DEV_SG_FALLBACK; 501 return snd_dma_sg_fallback_alloc(dmab, size); 502#else 503 return NULL; 504#endif 505 } 506 507 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, 508 sg_dma_address(sgt->sgl)); 509 p = dma_vmap_noncontiguous(dmab->dev.dev, size, sgt); 510 if (p) 511 dmab->private_data = sgt; 512 else 513 dma_free_noncontiguous(dmab->dev.dev, size, sgt, dmab->dev.dir); 514 return p; 515} 516 517static void snd_dma_noncontig_free(struct snd_dma_buffer *dmab) 518{ 519 dma_vunmap_noncontiguous(dmab->dev.dev, dmab->area); 520 dma_free_noncontiguous(dmab->dev.dev, dmab->bytes, dmab->private_data, 521 dmab->dev.dir); 522} 523 524static int snd_dma_noncontig_mmap(struct snd_dma_buffer *dmab, 525 struct vm_area_struct *area) 526{ 527 return dma_mmap_noncontiguous(dmab->dev.dev, area, 528 dmab->bytes, dmab->private_data); 529} 530 531static void snd_dma_noncontig_sync(struct snd_dma_buffer *dmab, 532 enum snd_dma_sync_mode mode) 533{ 534 if (mode == SNDRV_DMA_SYNC_CPU) { 535 if (dmab->dev.dir == DMA_TO_DEVICE) 536 return; 537 invalidate_kernel_vmap_range(dmab->area, dmab->bytes); 538 dma_sync_sgtable_for_cpu(dmab->dev.dev, dmab->private_data, 539 dmab->dev.dir); 540 } else { 541 if (dmab->dev.dir == DMA_FROM_DEVICE) 542 return; 543 flush_kernel_vmap_range(dmab->area, dmab->bytes); 544 dma_sync_sgtable_for_device(dmab->dev.dev, dmab->private_data, 545 dmab->dev.dir); 546 } 547} 548 549static inline void snd_dma_noncontig_iter_set(struct snd_dma_buffer *dmab, 550 struct sg_page_iter *piter, 551 size_t offset) 552{ 553 struct sg_table *sgt = dmab->private_data; 554 555 __sg_page_iter_start(piter, sgt->sgl, sgt->orig_nents, 556 offset >> PAGE_SHIFT); 557} 558 559static dma_addr_t snd_dma_noncontig_get_addr(struct snd_dma_buffer *dmab, 560 size_t offset) 561{ 562 struct sg_dma_page_iter iter; 563 564 snd_dma_noncontig_iter_set(dmab, &iter.base, offset); 565 __sg_page_iter_dma_next(&iter); 566 return sg_page_iter_dma_address(&iter) + offset % PAGE_SIZE; 567} 568 569static struct page *snd_dma_noncontig_get_page(struct snd_dma_buffer *dmab, 570 size_t offset) 571{ 572 struct sg_page_iter iter; 573 574 snd_dma_noncontig_iter_set(dmab, &iter, offset); 575 __sg_page_iter_next(&iter); 576 return sg_page_iter_page(&iter); 577} 578 579static unsigned int 580snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer *dmab, 581 unsigned int ofs, unsigned int size) 582{ 583 struct sg_dma_page_iter iter; 584 unsigned int start, end; 585 unsigned long addr; 586 587 start = ALIGN_DOWN(ofs, PAGE_SIZE); 588 end = ofs + size - 1; /* the last byte address */ 589 snd_dma_noncontig_iter_set(dmab, &iter.base, start); 590 if (!__sg_page_iter_dma_next(&iter)) 591 return 0; 592 /* check page continuity */ 593 addr = sg_page_iter_dma_address(&iter); 594 for (;;) { 595 start += PAGE_SIZE; 596 if (start > end) 597 break; 598 addr += PAGE_SIZE; 599 if (!__sg_page_iter_dma_next(&iter) || 600 sg_page_iter_dma_address(&iter) != addr) 601 return start - ofs; 602 } 603 /* ok, all on continuous pages */ 604 return size; 605} 606 607static const struct snd_malloc_ops snd_dma_noncontig_ops = { 608 .alloc = snd_dma_noncontig_alloc, 609 .free = snd_dma_noncontig_free, 610 .mmap = snd_dma_noncontig_mmap, 611 .sync = snd_dma_noncontig_sync, 612 .get_addr = snd_dma_noncontig_get_addr, 613 .get_page = snd_dma_noncontig_get_page, 614 .get_chunk_size = snd_dma_noncontig_get_chunk_size, 615}; 616 617/* x86-specific SG-buffer with WC pages */ 618#ifdef CONFIG_SND_DMA_SGBUF 619#define sg_wc_address(it) ((unsigned long)page_address(sg_page_iter_page(it))) 620 621static void *snd_dma_sg_wc_alloc(struct snd_dma_buffer *dmab, size_t size) 622{ 623 void *p = snd_dma_noncontig_alloc(dmab, size); 624 struct sg_table *sgt = dmab->private_data; 625 struct sg_page_iter iter; 626 627 if (!p) 628 return NULL; 629 if (dmab->dev.type != SNDRV_DMA_TYPE_DEV_WC_SG) 630 return p; 631 for_each_sgtable_page(sgt, &iter, 0) 632 set_memory_wc(sg_wc_address(&iter), 1); 633 return p; 634} 635 636static void snd_dma_sg_wc_free(struct snd_dma_buffer *dmab) 637{ 638 struct sg_table *sgt = dmab->private_data; 639 struct sg_page_iter iter; 640 641 for_each_sgtable_page(sgt, &iter, 0) 642 set_memory_wb(sg_wc_address(&iter), 1); 643 snd_dma_noncontig_free(dmab); 644} 645 646static int snd_dma_sg_wc_mmap(struct snd_dma_buffer *dmab, 647 struct vm_area_struct *area) 648{ 649 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 650 return dma_mmap_noncontiguous(dmab->dev.dev, area, 651 dmab->bytes, dmab->private_data); 652} 653 654static const struct snd_malloc_ops snd_dma_sg_wc_ops = { 655 .alloc = snd_dma_sg_wc_alloc, 656 .free = snd_dma_sg_wc_free, 657 .mmap = snd_dma_sg_wc_mmap, 658 .sync = snd_dma_noncontig_sync, 659 .get_addr = snd_dma_noncontig_get_addr, 660 .get_page = snd_dma_noncontig_get_page, 661 .get_chunk_size = snd_dma_noncontig_get_chunk_size, 662}; 663 664/* Fallback SG-buffer allocations for x86 */ 665struct snd_dma_sg_fallback { 666 size_t count; 667 struct page **pages; 668 dma_addr_t *addrs; 669}; 670 671static void __snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab, 672 struct snd_dma_sg_fallback *sgbuf) 673{ 674 size_t i; 675 676 if (sgbuf->count && dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK) 677 set_pages_array_wb(sgbuf->pages, sgbuf->count); 678 for (i = 0; i < sgbuf->count && sgbuf->pages[i]; i++) 679 dma_free_coherent(dmab->dev.dev, PAGE_SIZE, 680 page_address(sgbuf->pages[i]), 681 sgbuf->addrs[i]); 682 kvfree(sgbuf->pages); 683 kvfree(sgbuf->addrs); 684 kfree(sgbuf); 685} 686 687static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size) 688{ 689 struct snd_dma_sg_fallback *sgbuf; 690 struct page **pages; 691 size_t i, count; 692 void *p; 693 694 sgbuf = kzalloc(sizeof(*sgbuf), GFP_KERNEL); 695 if (!sgbuf) 696 return NULL; 697 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 698 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); 699 if (!pages) 700 goto error; 701 sgbuf->pages = pages; 702 sgbuf->addrs = kvcalloc(count, sizeof(*sgbuf->addrs), GFP_KERNEL); 703 if (!sgbuf->addrs) 704 goto error; 705 706 for (i = 0; i < count; sgbuf->count++, i++) { 707 p = dma_alloc_coherent(dmab->dev.dev, PAGE_SIZE, 708 &sgbuf->addrs[i], DEFAULT_GFP); 709 if (!p) 710 goto error; 711 sgbuf->pages[i] = virt_to_page(p); 712 } 713 714 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK) 715 set_pages_array_wc(pages, count); 716 p = vmap(pages, count, VM_MAP, PAGE_KERNEL); 717 if (!p) 718 goto error; 719 dmab->private_data = sgbuf; 720 return p; 721 722 error: 723 __snd_dma_sg_fallback_free(dmab, sgbuf); 724 return NULL; 725} 726 727static void snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab) 728{ 729 vunmap(dmab->area); 730 __snd_dma_sg_fallback_free(dmab, dmab->private_data); 731} 732 733static int snd_dma_sg_fallback_mmap(struct snd_dma_buffer *dmab, 734 struct vm_area_struct *area) 735{ 736 struct snd_dma_sg_fallback *sgbuf = dmab->private_data; 737 738 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK) 739 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 740 return vm_map_pages(area, sgbuf->pages, sgbuf->count); 741} 742 743static const struct snd_malloc_ops snd_dma_sg_fallback_ops = { 744 .alloc = snd_dma_sg_fallback_alloc, 745 .free = snd_dma_sg_fallback_free, 746 .mmap = snd_dma_sg_fallback_mmap, 747 /* reuse vmalloc helpers */ 748 .get_addr = snd_dma_vmalloc_get_addr, 749 .get_page = snd_dma_vmalloc_get_page, 750 .get_chunk_size = snd_dma_vmalloc_get_chunk_size, 751}; 752#endif /* CONFIG_SND_DMA_SGBUF */ 753 754/* 755 * Non-coherent pages allocator 756 */ 757static void *snd_dma_noncoherent_alloc(struct snd_dma_buffer *dmab, size_t size) 758{ 759 void *p; 760 761 p = dma_alloc_noncoherent(dmab->dev.dev, size, &dmab->addr, 762 dmab->dev.dir, DEFAULT_GFP); 763 if (p) 764 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->addr); 765 return p; 766} 767 768static void snd_dma_noncoherent_free(struct snd_dma_buffer *dmab) 769{ 770 dma_free_noncoherent(dmab->dev.dev, dmab->bytes, dmab->area, 771 dmab->addr, dmab->dev.dir); 772} 773 774static int snd_dma_noncoherent_mmap(struct snd_dma_buffer *dmab, 775 struct vm_area_struct *area) 776{ 777 area->vm_page_prot = vm_get_page_prot(area->vm_flags); 778 return dma_mmap_pages(dmab->dev.dev, area, 779 area->vm_end - area->vm_start, 780 virt_to_page(dmab->area)); 781} 782 783static void snd_dma_noncoherent_sync(struct snd_dma_buffer *dmab, 784 enum snd_dma_sync_mode mode) 785{ 786 if (mode == SNDRV_DMA_SYNC_CPU) { 787 if (dmab->dev.dir != DMA_TO_DEVICE) 788 dma_sync_single_for_cpu(dmab->dev.dev, dmab->addr, 789 dmab->bytes, dmab->dev.dir); 790 } else { 791 if (dmab->dev.dir != DMA_FROM_DEVICE) 792 dma_sync_single_for_device(dmab->dev.dev, dmab->addr, 793 dmab->bytes, dmab->dev.dir); 794 } 795} 796 797static const struct snd_malloc_ops snd_dma_noncoherent_ops = { 798 .alloc = snd_dma_noncoherent_alloc, 799 .free = snd_dma_noncoherent_free, 800 .mmap = snd_dma_noncoherent_mmap, 801 .sync = snd_dma_noncoherent_sync, 802}; 803 804#endif /* CONFIG_HAS_DMA */ 805 806/* 807 * Entry points 808 */ 809static const struct snd_malloc_ops *dma_ops[] = { 810 [SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops, 811 [SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops, 812#ifdef CONFIG_HAS_DMA 813 [SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops, 814 [SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_wc_ops, 815 [SNDRV_DMA_TYPE_NONCONTIG] = &snd_dma_noncontig_ops, 816 [SNDRV_DMA_TYPE_NONCOHERENT] = &snd_dma_noncoherent_ops, 817#ifdef CONFIG_SND_DMA_SGBUF 818 [SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_wc_ops, 819#endif 820#ifdef CONFIG_GENERIC_ALLOCATOR 821 [SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops, 822#endif /* CONFIG_GENERIC_ALLOCATOR */ 823#ifdef CONFIG_SND_DMA_SGBUF 824 [SNDRV_DMA_TYPE_DEV_SG_FALLBACK] = &snd_dma_sg_fallback_ops, 825 [SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK] = &snd_dma_sg_fallback_ops, 826#endif 827#endif /* CONFIG_HAS_DMA */ 828}; 829 830static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab) 831{ 832 if (WARN_ON_ONCE(!dmab)) 833 return NULL; 834 if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN || 835 dmab->dev.type >= ARRAY_SIZE(dma_ops))) 836 return NULL; 837 return dma_ops[dmab->dev.type]; 838}