cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pcm_lib.c (71512B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 *  Digital Audio (PCM) abstract layer
      4 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
      5 *                   Abramo Bagnara <abramo@alsa-project.org>
      6 */
      7
      8#include <linux/slab.h>
      9#include <linux/sched/signal.h>
     10#include <linux/time.h>
     11#include <linux/math64.h>
     12#include <linux/export.h>
     13#include <sound/core.h>
     14#include <sound/control.h>
     15#include <sound/tlv.h>
     16#include <sound/info.h>
     17#include <sound/pcm.h>
     18#include <sound/pcm_params.h>
     19#include <sound/timer.h>
     20
     21#include "pcm_local.h"
     22
     23#ifdef CONFIG_SND_PCM_XRUN_DEBUG
     24#define CREATE_TRACE_POINTS
     25#include "pcm_trace.h"
     26#else
     27#define trace_hwptr(substream, pos, in_interrupt)
     28#define trace_xrun(substream)
     29#define trace_hw_ptr_error(substream, reason)
     30#define trace_applptr(substream, prev, curr)
     31#endif
     32
     33static int fill_silence_frames(struct snd_pcm_substream *substream,
     34			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
     35
     36/*
     37 * fill ring buffer with silence
     38 * runtime->silence_start: starting pointer to silence area
     39 * runtime->silence_filled: size filled with silence
     40 * runtime->silence_threshold: threshold from application
     41 * runtime->silence_size: maximal size from application
     42 *
     43 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
     44 */
     45void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
     46{
     47	struct snd_pcm_runtime *runtime = substream->runtime;
     48	snd_pcm_uframes_t frames, ofs, transfer;
     49	int err;
     50
     51	if (runtime->silence_size < runtime->boundary) {
     52		snd_pcm_sframes_t noise_dist, n;
     53		snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
     54		if (runtime->silence_start != appl_ptr) {
     55			n = appl_ptr - runtime->silence_start;
     56			if (n < 0)
     57				n += runtime->boundary;
     58			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
     59				runtime->silence_filled -= n;
     60			else
     61				runtime->silence_filled = 0;
     62			runtime->silence_start = appl_ptr;
     63		}
     64		if (runtime->silence_filled >= runtime->buffer_size)
     65			return;
     66		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
     67		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
     68			return;
     69		frames = runtime->silence_threshold - noise_dist;
     70		if (frames > runtime->silence_size)
     71			frames = runtime->silence_size;
     72	} else {
     73		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
     74			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
     75			if (avail > runtime->buffer_size)
     76				avail = runtime->buffer_size;
     77			runtime->silence_filled = avail > 0 ? avail : 0;
     78			runtime->silence_start = (runtime->status->hw_ptr +
     79						  runtime->silence_filled) %
     80						 runtime->boundary;
     81		} else {
     82			ofs = runtime->status->hw_ptr;
     83			frames = new_hw_ptr - ofs;
     84			if ((snd_pcm_sframes_t)frames < 0)
     85				frames += runtime->boundary;
     86			runtime->silence_filled -= frames;
     87			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
     88				runtime->silence_filled = 0;
     89				runtime->silence_start = new_hw_ptr;
     90			} else {
     91				runtime->silence_start = ofs;
     92			}
     93		}
     94		frames = runtime->buffer_size - runtime->silence_filled;
     95	}
     96	if (snd_BUG_ON(frames > runtime->buffer_size))
     97		return;
     98	if (frames == 0)
     99		return;
    100	ofs = runtime->silence_start % runtime->buffer_size;
    101	while (frames > 0) {
    102		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
    103		err = fill_silence_frames(substream, ofs, transfer);
    104		snd_BUG_ON(err < 0);
    105		runtime->silence_filled += transfer;
    106		frames -= transfer;
    107		ofs = 0;
    108	}
    109	snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
    110}
    111
    112#ifdef CONFIG_SND_DEBUG
    113void snd_pcm_debug_name(struct snd_pcm_substream *substream,
    114			   char *name, size_t len)
    115{
    116	snprintf(name, len, "pcmC%dD%d%c:%d",
    117		 substream->pcm->card->number,
    118		 substream->pcm->device,
    119		 substream->stream ? 'c' : 'p',
    120		 substream->number);
    121}
    122EXPORT_SYMBOL(snd_pcm_debug_name);
    123#endif
    124
    125#define XRUN_DEBUG_BASIC	(1<<0)
    126#define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
    127#define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
    128
    129#ifdef CONFIG_SND_PCM_XRUN_DEBUG
    130
    131#define xrun_debug(substream, mask) \
    132			((substream)->pstr->xrun_debug & (mask))
    133#else
    134#define xrun_debug(substream, mask)	0
    135#endif
    136
    137#define dump_stack_on_xrun(substream) do {			\
    138		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
    139			dump_stack();				\
    140	} while (0)
    141
    142/* call with stream lock held */
    143void __snd_pcm_xrun(struct snd_pcm_substream *substream)
    144{
    145	struct snd_pcm_runtime *runtime = substream->runtime;
    146
    147	trace_xrun(substream);
    148	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
    149		struct timespec64 tstamp;
    150
    151		snd_pcm_gettime(runtime, &tstamp);
    152		runtime->status->tstamp.tv_sec = tstamp.tv_sec;
    153		runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
    154	}
    155	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
    156	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
    157		char name[16];
    158		snd_pcm_debug_name(substream, name, sizeof(name));
    159		pcm_warn(substream->pcm, "XRUN: %s\n", name);
    160		dump_stack_on_xrun(substream);
    161	}
    162}
    163
    164#ifdef CONFIG_SND_PCM_XRUN_DEBUG
    165#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)	\
    166	do {								\
    167		trace_hw_ptr_error(substream, reason);	\
    168		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
    169			pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
    170					   (in_interrupt) ? 'Q' : 'P', ##args);	\
    171			dump_stack_on_xrun(substream);			\
    172		}							\
    173	} while (0)
    174
    175#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
    176
    177#define hw_ptr_error(substream, fmt, args...) do { } while (0)
    178
    179#endif
    180
    181int snd_pcm_update_state(struct snd_pcm_substream *substream,
    182			 struct snd_pcm_runtime *runtime)
    183{
    184	snd_pcm_uframes_t avail;
    185
    186	avail = snd_pcm_avail(substream);
    187	if (avail > runtime->avail_max)
    188		runtime->avail_max = avail;
    189	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
    190		if (avail >= runtime->buffer_size) {
    191			snd_pcm_drain_done(substream);
    192			return -EPIPE;
    193		}
    194	} else {
    195		if (avail >= runtime->stop_threshold) {
    196			__snd_pcm_xrun(substream);
    197			return -EPIPE;
    198		}
    199	}
    200	if (runtime->twake) {
    201		if (avail >= runtime->twake)
    202			wake_up(&runtime->tsleep);
    203	} else if (avail >= runtime->control->avail_min)
    204		wake_up(&runtime->sleep);
    205	return 0;
    206}
    207
    208static void update_audio_tstamp(struct snd_pcm_substream *substream,
    209				struct timespec64 *curr_tstamp,
    210				struct timespec64 *audio_tstamp)
    211{
    212	struct snd_pcm_runtime *runtime = substream->runtime;
    213	u64 audio_frames, audio_nsecs;
    214	struct timespec64 driver_tstamp;
    215
    216	if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
    217		return;
    218
    219	if (!(substream->ops->get_time_info) ||
    220		(runtime->audio_tstamp_report.actual_type ==
    221			SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
    222
    223		/*
    224		 * provide audio timestamp derived from pointer position
    225		 * add delay only if requested
    226		 */
    227
    228		audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
    229
    230		if (runtime->audio_tstamp_config.report_delay) {
    231			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
    232				audio_frames -=  runtime->delay;
    233			else
    234				audio_frames +=  runtime->delay;
    235		}
    236		audio_nsecs = div_u64(audio_frames * 1000000000LL,
    237				runtime->rate);
    238		*audio_tstamp = ns_to_timespec64(audio_nsecs);
    239	}
    240
    241	if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
    242	    runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
    243		runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
    244		runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
    245		runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
    246		runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
    247	}
    248
    249
    250	/*
    251	 * re-take a driver timestamp to let apps detect if the reference tstamp
    252	 * read by low-level hardware was provided with a delay
    253	 */
    254	snd_pcm_gettime(substream->runtime, &driver_tstamp);
    255	runtime->driver_tstamp = driver_tstamp;
    256}
    257
    258static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
    259				  unsigned int in_interrupt)
    260{
    261	struct snd_pcm_runtime *runtime = substream->runtime;
    262	snd_pcm_uframes_t pos;
    263	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
    264	snd_pcm_sframes_t hdelta, delta;
    265	unsigned long jdelta;
    266	unsigned long curr_jiffies;
    267	struct timespec64 curr_tstamp;
    268	struct timespec64 audio_tstamp;
    269	int crossed_boundary = 0;
    270
    271	old_hw_ptr = runtime->status->hw_ptr;
    272
    273	/*
    274	 * group pointer, time and jiffies reads to allow for more
    275	 * accurate correlations/corrections.
    276	 * The values are stored at the end of this routine after
    277	 * corrections for hw_ptr position
    278	 */
    279	pos = substream->ops->pointer(substream);
    280	curr_jiffies = jiffies;
    281	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
    282		if ((substream->ops->get_time_info) &&
    283			(runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
    284			substream->ops->get_time_info(substream, &curr_tstamp,
    285						&audio_tstamp,
    286						&runtime->audio_tstamp_config,
    287						&runtime->audio_tstamp_report);
    288
    289			/* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
    290			if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
    291				snd_pcm_gettime(runtime, &curr_tstamp);
    292		} else
    293			snd_pcm_gettime(runtime, &curr_tstamp);
    294	}
    295
    296	if (pos == SNDRV_PCM_POS_XRUN) {
    297		__snd_pcm_xrun(substream);
    298		return -EPIPE;
    299	}
    300	if (pos >= runtime->buffer_size) {
    301		if (printk_ratelimit()) {
    302			char name[16];
    303			snd_pcm_debug_name(substream, name, sizeof(name));
    304			pcm_err(substream->pcm,
    305				"invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
    306				name, pos, runtime->buffer_size,
    307				runtime->period_size);
    308		}
    309		pos = 0;
    310	}
    311	pos -= pos % runtime->min_align;
    312	trace_hwptr(substream, pos, in_interrupt);
    313	hw_base = runtime->hw_ptr_base;
    314	new_hw_ptr = hw_base + pos;
    315	if (in_interrupt) {
    316		/* we know that one period was processed */
    317		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
    318		delta = runtime->hw_ptr_interrupt + runtime->period_size;
    319		if (delta > new_hw_ptr) {
    320			/* check for double acknowledged interrupts */
    321			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
    322			if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
    323				hw_base += runtime->buffer_size;
    324				if (hw_base >= runtime->boundary) {
    325					hw_base = 0;
    326					crossed_boundary++;
    327				}
    328				new_hw_ptr = hw_base + pos;
    329				goto __delta;
    330			}
    331		}
    332	}
    333	/* new_hw_ptr might be lower than old_hw_ptr in case when */
    334	/* pointer crosses the end of the ring buffer */
    335	if (new_hw_ptr < old_hw_ptr) {
    336		hw_base += runtime->buffer_size;
    337		if (hw_base >= runtime->boundary) {
    338			hw_base = 0;
    339			crossed_boundary++;
    340		}
    341		new_hw_ptr = hw_base + pos;
    342	}
    343      __delta:
    344	delta = new_hw_ptr - old_hw_ptr;
    345	if (delta < 0)
    346		delta += runtime->boundary;
    347
    348	if (runtime->no_period_wakeup) {
    349		snd_pcm_sframes_t xrun_threshold;
    350		/*
    351		 * Without regular period interrupts, we have to check
    352		 * the elapsed time to detect xruns.
    353		 */
    354		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
    355		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
    356			goto no_delta_check;
    357		hdelta = jdelta - delta * HZ / runtime->rate;
    358		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
    359		while (hdelta > xrun_threshold) {
    360			delta += runtime->buffer_size;
    361			hw_base += runtime->buffer_size;
    362			if (hw_base >= runtime->boundary) {
    363				hw_base = 0;
    364				crossed_boundary++;
    365			}
    366			new_hw_ptr = hw_base + pos;
    367			hdelta -= runtime->hw_ptr_buffer_jiffies;
    368		}
    369		goto no_delta_check;
    370	}
    371
    372	/* something must be really wrong */
    373	if (delta >= runtime->buffer_size + runtime->period_size) {
    374		hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
    375			     "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
    376			     substream->stream, (long)pos,
    377			     (long)new_hw_ptr, (long)old_hw_ptr);
    378		return 0;
    379	}
    380
    381	/* Do jiffies check only in xrun_debug mode */
    382	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
    383		goto no_jiffies_check;
    384
    385	/* Skip the jiffies check for hardwares with BATCH flag.
    386	 * Such hardware usually just increases the position at each IRQ,
    387	 * thus it can't give any strange position.
    388	 */
    389	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
    390		goto no_jiffies_check;
    391	hdelta = delta;
    392	if (hdelta < runtime->delay)
    393		goto no_jiffies_check;
    394	hdelta -= runtime->delay;
    395	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
    396	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
    397		delta = jdelta /
    398			(((runtime->period_size * HZ) / runtime->rate)
    399								+ HZ/100);
    400		/* move new_hw_ptr according jiffies not pos variable */
    401		new_hw_ptr = old_hw_ptr;
    402		hw_base = delta;
    403		/* use loop to avoid checks for delta overflows */
    404		/* the delta value is small or zero in most cases */
    405		while (delta > 0) {
    406			new_hw_ptr += runtime->period_size;
    407			if (new_hw_ptr >= runtime->boundary) {
    408				new_hw_ptr -= runtime->boundary;
    409				crossed_boundary--;
    410			}
    411			delta--;
    412		}
    413		/* align hw_base to buffer_size */
    414		hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
    415			     "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
    416			     (long)pos, (long)hdelta,
    417			     (long)runtime->period_size, jdelta,
    418			     ((hdelta * HZ) / runtime->rate), hw_base,
    419			     (unsigned long)old_hw_ptr,
    420			     (unsigned long)new_hw_ptr);
    421		/* reset values to proper state */
    422		delta = 0;
    423		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
    424	}
    425 no_jiffies_check:
    426	if (delta > runtime->period_size + runtime->period_size / 2) {
    427		hw_ptr_error(substream, in_interrupt,
    428			     "Lost interrupts?",
    429			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
    430			     substream->stream, (long)delta,
    431			     (long)new_hw_ptr,
    432			     (long)old_hw_ptr);
    433	}
    434
    435 no_delta_check:
    436	if (runtime->status->hw_ptr == new_hw_ptr) {
    437		runtime->hw_ptr_jiffies = curr_jiffies;
    438		update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
    439		return 0;
    440	}
    441
    442	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
    443	    runtime->silence_size > 0)
    444		snd_pcm_playback_silence(substream, new_hw_ptr);
    445
    446	if (in_interrupt) {
    447		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
    448		if (delta < 0)
    449			delta += runtime->boundary;
    450		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
    451		runtime->hw_ptr_interrupt += delta;
    452		if (runtime->hw_ptr_interrupt >= runtime->boundary)
    453			runtime->hw_ptr_interrupt -= runtime->boundary;
    454	}
    455	runtime->hw_ptr_base = hw_base;
    456	runtime->status->hw_ptr = new_hw_ptr;
    457	runtime->hw_ptr_jiffies = curr_jiffies;
    458	if (crossed_boundary) {
    459		snd_BUG_ON(crossed_boundary != 1);
    460		runtime->hw_ptr_wrap += runtime->boundary;
    461	}
    462
    463	update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
    464
    465	return snd_pcm_update_state(substream, runtime);
    466}
    467
    468/* CAUTION: call it with irq disabled */
    469int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
    470{
    471	return snd_pcm_update_hw_ptr0(substream, 0);
    472}
    473
    474/**
    475 * snd_pcm_set_ops - set the PCM operators
    476 * @pcm: the pcm instance
    477 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
    478 * @ops: the operator table
    479 *
    480 * Sets the given PCM operators to the pcm instance.
    481 */
    482void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
    483		     const struct snd_pcm_ops *ops)
    484{
    485	struct snd_pcm_str *stream = &pcm->streams[direction];
    486	struct snd_pcm_substream *substream;
    487	
    488	for (substream = stream->substream; substream != NULL; substream = substream->next)
    489		substream->ops = ops;
    490}
    491EXPORT_SYMBOL(snd_pcm_set_ops);
    492
    493/**
    494 * snd_pcm_set_sync - set the PCM sync id
    495 * @substream: the pcm substream
    496 *
    497 * Sets the PCM sync identifier for the card.
    498 */
    499void snd_pcm_set_sync(struct snd_pcm_substream *substream)
    500{
    501	struct snd_pcm_runtime *runtime = substream->runtime;
    502	
    503	runtime->sync.id32[0] = substream->pcm->card->number;
    504	runtime->sync.id32[1] = -1;
    505	runtime->sync.id32[2] = -1;
    506	runtime->sync.id32[3] = -1;
    507}
    508EXPORT_SYMBOL(snd_pcm_set_sync);
    509
    510/*
    511 *  Standard ioctl routine
    512 */
    513
    514static inline unsigned int div32(unsigned int a, unsigned int b, 
    515				 unsigned int *r)
    516{
    517	if (b == 0) {
    518		*r = 0;
    519		return UINT_MAX;
    520	}
    521	*r = a % b;
    522	return a / b;
    523}
    524
    525static inline unsigned int div_down(unsigned int a, unsigned int b)
    526{
    527	if (b == 0)
    528		return UINT_MAX;
    529	return a / b;
    530}
    531
    532static inline unsigned int div_up(unsigned int a, unsigned int b)
    533{
    534	unsigned int r;
    535	unsigned int q;
    536	if (b == 0)
    537		return UINT_MAX;
    538	q = div32(a, b, &r);
    539	if (r)
    540		++q;
    541	return q;
    542}
    543
    544static inline unsigned int mul(unsigned int a, unsigned int b)
    545{
    546	if (a == 0)
    547		return 0;
    548	if (div_down(UINT_MAX, a) < b)
    549		return UINT_MAX;
    550	return a * b;
    551}
    552
    553static inline unsigned int muldiv32(unsigned int a, unsigned int b,
    554				    unsigned int c, unsigned int *r)
    555{
    556	u_int64_t n = (u_int64_t) a * b;
    557	if (c == 0) {
    558		*r = 0;
    559		return UINT_MAX;
    560	}
    561	n = div_u64_rem(n, c, r);
    562	if (n >= UINT_MAX) {
    563		*r = 0;
    564		return UINT_MAX;
    565	}
    566	return n;
    567}
    568
    569/**
    570 * snd_interval_refine - refine the interval value of configurator
    571 * @i: the interval value to refine
    572 * @v: the interval value to refer to
    573 *
    574 * Refines the interval value with the reference value.
    575 * The interval is changed to the range satisfying both intervals.
    576 * The interval status (min, max, integer, etc.) are evaluated.
    577 *
    578 * Return: Positive if the value is changed, zero if it's not changed, or a
    579 * negative error code.
    580 */
    581int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
    582{
    583	int changed = 0;
    584	if (snd_BUG_ON(snd_interval_empty(i)))
    585		return -EINVAL;
    586	if (i->min < v->min) {
    587		i->min = v->min;
    588		i->openmin = v->openmin;
    589		changed = 1;
    590	} else if (i->min == v->min && !i->openmin && v->openmin) {
    591		i->openmin = 1;
    592		changed = 1;
    593	}
    594	if (i->max > v->max) {
    595		i->max = v->max;
    596		i->openmax = v->openmax;
    597		changed = 1;
    598	} else if (i->max == v->max && !i->openmax && v->openmax) {
    599		i->openmax = 1;
    600		changed = 1;
    601	}
    602	if (!i->integer && v->integer) {
    603		i->integer = 1;
    604		changed = 1;
    605	}
    606	if (i->integer) {
    607		if (i->openmin) {
    608			i->min++;
    609			i->openmin = 0;
    610		}
    611		if (i->openmax) {
    612			i->max--;
    613			i->openmax = 0;
    614		}
    615	} else if (!i->openmin && !i->openmax && i->min == i->max)
    616		i->integer = 1;
    617	if (snd_interval_checkempty(i)) {
    618		snd_interval_none(i);
    619		return -EINVAL;
    620	}
    621	return changed;
    622}
    623EXPORT_SYMBOL(snd_interval_refine);
    624
    625static int snd_interval_refine_first(struct snd_interval *i)
    626{
    627	const unsigned int last_max = i->max;
    628
    629	if (snd_BUG_ON(snd_interval_empty(i)))
    630		return -EINVAL;
    631	if (snd_interval_single(i))
    632		return 0;
    633	i->max = i->min;
    634	if (i->openmin)
    635		i->max++;
    636	/* only exclude max value if also excluded before refine */
    637	i->openmax = (i->openmax && i->max >= last_max);
    638	return 1;
    639}
    640
    641static int snd_interval_refine_last(struct snd_interval *i)
    642{
    643	const unsigned int last_min = i->min;
    644
    645	if (snd_BUG_ON(snd_interval_empty(i)))
    646		return -EINVAL;
    647	if (snd_interval_single(i))
    648		return 0;
    649	i->min = i->max;
    650	if (i->openmax)
    651		i->min--;
    652	/* only exclude min value if also excluded before refine */
    653	i->openmin = (i->openmin && i->min <= last_min);
    654	return 1;
    655}
    656
    657void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
    658{
    659	if (a->empty || b->empty) {
    660		snd_interval_none(c);
    661		return;
    662	}
    663	c->empty = 0;
    664	c->min = mul(a->min, b->min);
    665	c->openmin = (a->openmin || b->openmin);
    666	c->max = mul(a->max,  b->max);
    667	c->openmax = (a->openmax || b->openmax);
    668	c->integer = (a->integer && b->integer);
    669}
    670
    671/**
    672 * snd_interval_div - refine the interval value with division
    673 * @a: dividend
    674 * @b: divisor
    675 * @c: quotient
    676 *
    677 * c = a / b
    678 *
    679 * Returns non-zero if the value is changed, zero if not changed.
    680 */
    681void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
    682{
    683	unsigned int r;
    684	if (a->empty || b->empty) {
    685		snd_interval_none(c);
    686		return;
    687	}
    688	c->empty = 0;
    689	c->min = div32(a->min, b->max, &r);
    690	c->openmin = (r || a->openmin || b->openmax);
    691	if (b->min > 0) {
    692		c->max = div32(a->max, b->min, &r);
    693		if (r) {
    694			c->max++;
    695			c->openmax = 1;
    696		} else
    697			c->openmax = (a->openmax || b->openmin);
    698	} else {
    699		c->max = UINT_MAX;
    700		c->openmax = 0;
    701	}
    702	c->integer = 0;
    703}
    704
    705/**
    706 * snd_interval_muldivk - refine the interval value
    707 * @a: dividend 1
    708 * @b: dividend 2
    709 * @k: divisor (as integer)
    710 * @c: result
    711  *
    712 * c = a * b / k
    713 *
    714 * Returns non-zero if the value is changed, zero if not changed.
    715 */
    716void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
    717		      unsigned int k, struct snd_interval *c)
    718{
    719	unsigned int r;
    720	if (a->empty || b->empty) {
    721		snd_interval_none(c);
    722		return;
    723	}
    724	c->empty = 0;
    725	c->min = muldiv32(a->min, b->min, k, &r);
    726	c->openmin = (r || a->openmin || b->openmin);
    727	c->max = muldiv32(a->max, b->max, k, &r);
    728	if (r) {
    729		c->max++;
    730		c->openmax = 1;
    731	} else
    732		c->openmax = (a->openmax || b->openmax);
    733	c->integer = 0;
    734}
    735
    736/**
    737 * snd_interval_mulkdiv - refine the interval value
    738 * @a: dividend 1
    739 * @k: dividend 2 (as integer)
    740 * @b: divisor
    741 * @c: result
    742 *
    743 * c = a * k / b
    744 *
    745 * Returns non-zero if the value is changed, zero if not changed.
    746 */
    747void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
    748		      const struct snd_interval *b, struct snd_interval *c)
    749{
    750	unsigned int r;
    751	if (a->empty || b->empty) {
    752		snd_interval_none(c);
    753		return;
    754	}
    755	c->empty = 0;
    756	c->min = muldiv32(a->min, k, b->max, &r);
    757	c->openmin = (r || a->openmin || b->openmax);
    758	if (b->min > 0) {
    759		c->max = muldiv32(a->max, k, b->min, &r);
    760		if (r) {
    761			c->max++;
    762			c->openmax = 1;
    763		} else
    764			c->openmax = (a->openmax || b->openmin);
    765	} else {
    766		c->max = UINT_MAX;
    767		c->openmax = 0;
    768	}
    769	c->integer = 0;
    770}
    771
    772/* ---- */
    773
    774
    775/**
    776 * snd_interval_ratnum - refine the interval value
    777 * @i: interval to refine
    778 * @rats_count: number of ratnum_t 
    779 * @rats: ratnum_t array
    780 * @nump: pointer to store the resultant numerator
    781 * @denp: pointer to store the resultant denominator
    782 *
    783 * Return: Positive if the value is changed, zero if it's not changed, or a
    784 * negative error code.
    785 */
    786int snd_interval_ratnum(struct snd_interval *i,
    787			unsigned int rats_count, const struct snd_ratnum *rats,
    788			unsigned int *nump, unsigned int *denp)
    789{
    790	unsigned int best_num, best_den;
    791	int best_diff;
    792	unsigned int k;
    793	struct snd_interval t;
    794	int err;
    795	unsigned int result_num, result_den;
    796	int result_diff;
    797
    798	best_num = best_den = best_diff = 0;
    799	for (k = 0; k < rats_count; ++k) {
    800		unsigned int num = rats[k].num;
    801		unsigned int den;
    802		unsigned int q = i->min;
    803		int diff;
    804		if (q == 0)
    805			q = 1;
    806		den = div_up(num, q);
    807		if (den < rats[k].den_min)
    808			continue;
    809		if (den > rats[k].den_max)
    810			den = rats[k].den_max;
    811		else {
    812			unsigned int r;
    813			r = (den - rats[k].den_min) % rats[k].den_step;
    814			if (r != 0)
    815				den -= r;
    816		}
    817		diff = num - q * den;
    818		if (diff < 0)
    819			diff = -diff;
    820		if (best_num == 0 ||
    821		    diff * best_den < best_diff * den) {
    822			best_diff = diff;
    823			best_den = den;
    824			best_num = num;
    825		}
    826	}
    827	if (best_den == 0) {
    828		i->empty = 1;
    829		return -EINVAL;
    830	}
    831	t.min = div_down(best_num, best_den);
    832	t.openmin = !!(best_num % best_den);
    833	
    834	result_num = best_num;
    835	result_diff = best_diff;
    836	result_den = best_den;
    837	best_num = best_den = best_diff = 0;
    838	for (k = 0; k < rats_count; ++k) {
    839		unsigned int num = rats[k].num;
    840		unsigned int den;
    841		unsigned int q = i->max;
    842		int diff;
    843		if (q == 0) {
    844			i->empty = 1;
    845			return -EINVAL;
    846		}
    847		den = div_down(num, q);
    848		if (den > rats[k].den_max)
    849			continue;
    850		if (den < rats[k].den_min)
    851			den = rats[k].den_min;
    852		else {
    853			unsigned int r;
    854			r = (den - rats[k].den_min) % rats[k].den_step;
    855			if (r != 0)
    856				den += rats[k].den_step - r;
    857		}
    858		diff = q * den - num;
    859		if (diff < 0)
    860			diff = -diff;
    861		if (best_num == 0 ||
    862		    diff * best_den < best_diff * den) {
    863			best_diff = diff;
    864			best_den = den;
    865			best_num = num;
    866		}
    867	}
    868	if (best_den == 0) {
    869		i->empty = 1;
    870		return -EINVAL;
    871	}
    872	t.max = div_up(best_num, best_den);
    873	t.openmax = !!(best_num % best_den);
    874	t.integer = 0;
    875	err = snd_interval_refine(i, &t);
    876	if (err < 0)
    877		return err;
    878
    879	if (snd_interval_single(i)) {
    880		if (best_diff * result_den < result_diff * best_den) {
    881			result_num = best_num;
    882			result_den = best_den;
    883		}
    884		if (nump)
    885			*nump = result_num;
    886		if (denp)
    887			*denp = result_den;
    888	}
    889	return err;
    890}
    891EXPORT_SYMBOL(snd_interval_ratnum);
    892
    893/**
    894 * snd_interval_ratden - refine the interval value
    895 * @i: interval to refine
    896 * @rats_count: number of struct ratden
    897 * @rats: struct ratden array
    898 * @nump: pointer to store the resultant numerator
    899 * @denp: pointer to store the resultant denominator
    900 *
    901 * Return: Positive if the value is changed, zero if it's not changed, or a
    902 * negative error code.
    903 */
    904static int snd_interval_ratden(struct snd_interval *i,
    905			       unsigned int rats_count,
    906			       const struct snd_ratden *rats,
    907			       unsigned int *nump, unsigned int *denp)
    908{
    909	unsigned int best_num, best_diff, best_den;
    910	unsigned int k;
    911	struct snd_interval t;
    912	int err;
    913
    914	best_num = best_den = best_diff = 0;
    915	for (k = 0; k < rats_count; ++k) {
    916		unsigned int num;
    917		unsigned int den = rats[k].den;
    918		unsigned int q = i->min;
    919		int diff;
    920		num = mul(q, den);
    921		if (num > rats[k].num_max)
    922			continue;
    923		if (num < rats[k].num_min)
    924			num = rats[k].num_max;
    925		else {
    926			unsigned int r;
    927			r = (num - rats[k].num_min) % rats[k].num_step;
    928			if (r != 0)
    929				num += rats[k].num_step - r;
    930		}
    931		diff = num - q * den;
    932		if (best_num == 0 ||
    933		    diff * best_den < best_diff * den) {
    934			best_diff = diff;
    935			best_den = den;
    936			best_num = num;
    937		}
    938	}
    939	if (best_den == 0) {
    940		i->empty = 1;
    941		return -EINVAL;
    942	}
    943	t.min = div_down(best_num, best_den);
    944	t.openmin = !!(best_num % best_den);
    945	
    946	best_num = best_den = best_diff = 0;
    947	for (k = 0; k < rats_count; ++k) {
    948		unsigned int num;
    949		unsigned int den = rats[k].den;
    950		unsigned int q = i->max;
    951		int diff;
    952		num = mul(q, den);
    953		if (num < rats[k].num_min)
    954			continue;
    955		if (num > rats[k].num_max)
    956			num = rats[k].num_max;
    957		else {
    958			unsigned int r;
    959			r = (num - rats[k].num_min) % rats[k].num_step;
    960			if (r != 0)
    961				num -= r;
    962		}
    963		diff = q * den - num;
    964		if (best_num == 0 ||
    965		    diff * best_den < best_diff * den) {
    966			best_diff = diff;
    967			best_den = den;
    968			best_num = num;
    969		}
    970	}
    971	if (best_den == 0) {
    972		i->empty = 1;
    973		return -EINVAL;
    974	}
    975	t.max = div_up(best_num, best_den);
    976	t.openmax = !!(best_num % best_den);
    977	t.integer = 0;
    978	err = snd_interval_refine(i, &t);
    979	if (err < 0)
    980		return err;
    981
    982	if (snd_interval_single(i)) {
    983		if (nump)
    984			*nump = best_num;
    985		if (denp)
    986			*denp = best_den;
    987	}
    988	return err;
    989}
    990
    991/**
    992 * snd_interval_list - refine the interval value from the list
    993 * @i: the interval value to refine
    994 * @count: the number of elements in the list
    995 * @list: the value list
    996 * @mask: the bit-mask to evaluate
    997 *
    998 * Refines the interval value from the list.
    999 * When mask is non-zero, only the elements corresponding to bit 1 are
   1000 * evaluated.
   1001 *
   1002 * Return: Positive if the value is changed, zero if it's not changed, or a
   1003 * negative error code.
   1004 */
   1005int snd_interval_list(struct snd_interval *i, unsigned int count,
   1006		      const unsigned int *list, unsigned int mask)
   1007{
   1008        unsigned int k;
   1009	struct snd_interval list_range;
   1010
   1011	if (!count) {
   1012		i->empty = 1;
   1013		return -EINVAL;
   1014	}
   1015	snd_interval_any(&list_range);
   1016	list_range.min = UINT_MAX;
   1017	list_range.max = 0;
   1018        for (k = 0; k < count; k++) {
   1019		if (mask && !(mask & (1 << k)))
   1020			continue;
   1021		if (!snd_interval_test(i, list[k]))
   1022			continue;
   1023		list_range.min = min(list_range.min, list[k]);
   1024		list_range.max = max(list_range.max, list[k]);
   1025        }
   1026	return snd_interval_refine(i, &list_range);
   1027}
   1028EXPORT_SYMBOL(snd_interval_list);
   1029
   1030/**
   1031 * snd_interval_ranges - refine the interval value from the list of ranges
   1032 * @i: the interval value to refine
   1033 * @count: the number of elements in the list of ranges
   1034 * @ranges: the ranges list
   1035 * @mask: the bit-mask to evaluate
   1036 *
   1037 * Refines the interval value from the list of ranges.
   1038 * When mask is non-zero, only the elements corresponding to bit 1 are
   1039 * evaluated.
   1040 *
   1041 * Return: Positive if the value is changed, zero if it's not changed, or a
   1042 * negative error code.
   1043 */
   1044int snd_interval_ranges(struct snd_interval *i, unsigned int count,
   1045			const struct snd_interval *ranges, unsigned int mask)
   1046{
   1047	unsigned int k;
   1048	struct snd_interval range_union;
   1049	struct snd_interval range;
   1050
   1051	if (!count) {
   1052		snd_interval_none(i);
   1053		return -EINVAL;
   1054	}
   1055	snd_interval_any(&range_union);
   1056	range_union.min = UINT_MAX;
   1057	range_union.max = 0;
   1058	for (k = 0; k < count; k++) {
   1059		if (mask && !(mask & (1 << k)))
   1060			continue;
   1061		snd_interval_copy(&range, &ranges[k]);
   1062		if (snd_interval_refine(&range, i) < 0)
   1063			continue;
   1064		if (snd_interval_empty(&range))
   1065			continue;
   1066
   1067		if (range.min < range_union.min) {
   1068			range_union.min = range.min;
   1069			range_union.openmin = 1;
   1070		}
   1071		if (range.min == range_union.min && !range.openmin)
   1072			range_union.openmin = 0;
   1073		if (range.max > range_union.max) {
   1074			range_union.max = range.max;
   1075			range_union.openmax = 1;
   1076		}
   1077		if (range.max == range_union.max && !range.openmax)
   1078			range_union.openmax = 0;
   1079	}
   1080	return snd_interval_refine(i, &range_union);
   1081}
   1082EXPORT_SYMBOL(snd_interval_ranges);
   1083
   1084static int snd_interval_step(struct snd_interval *i, unsigned int step)
   1085{
   1086	unsigned int n;
   1087	int changed = 0;
   1088	n = i->min % step;
   1089	if (n != 0 || i->openmin) {
   1090		i->min += step - n;
   1091		i->openmin = 0;
   1092		changed = 1;
   1093	}
   1094	n = i->max % step;
   1095	if (n != 0 || i->openmax) {
   1096		i->max -= n;
   1097		i->openmax = 0;
   1098		changed = 1;
   1099	}
   1100	if (snd_interval_checkempty(i)) {
   1101		i->empty = 1;
   1102		return -EINVAL;
   1103	}
   1104	return changed;
   1105}
   1106
   1107/* Info constraints helpers */
   1108
   1109/**
   1110 * snd_pcm_hw_rule_add - add the hw-constraint rule
   1111 * @runtime: the pcm runtime instance
   1112 * @cond: condition bits
   1113 * @var: the variable to evaluate
   1114 * @func: the evaluation function
   1115 * @private: the private data pointer passed to function
   1116 * @dep: the dependent variables
   1117 *
   1118 * Return: Zero if successful, or a negative error code on failure.
   1119 */
   1120int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
   1121			int var,
   1122			snd_pcm_hw_rule_func_t func, void *private,
   1123			int dep, ...)
   1124{
   1125	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
   1126	struct snd_pcm_hw_rule *c;
   1127	unsigned int k;
   1128	va_list args;
   1129	va_start(args, dep);
   1130	if (constrs->rules_num >= constrs->rules_all) {
   1131		struct snd_pcm_hw_rule *new;
   1132		unsigned int new_rules = constrs->rules_all + 16;
   1133		new = krealloc_array(constrs->rules, new_rules,
   1134				     sizeof(*c), GFP_KERNEL);
   1135		if (!new) {
   1136			va_end(args);
   1137			return -ENOMEM;
   1138		}
   1139		constrs->rules = new;
   1140		constrs->rules_all = new_rules;
   1141	}
   1142	c = &constrs->rules[constrs->rules_num];
   1143	c->cond = cond;
   1144	c->func = func;
   1145	c->var = var;
   1146	c->private = private;
   1147	k = 0;
   1148	while (1) {
   1149		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
   1150			va_end(args);
   1151			return -EINVAL;
   1152		}
   1153		c->deps[k++] = dep;
   1154		if (dep < 0)
   1155			break;
   1156		dep = va_arg(args, int);
   1157	}
   1158	constrs->rules_num++;
   1159	va_end(args);
   1160	return 0;
   1161}
   1162EXPORT_SYMBOL(snd_pcm_hw_rule_add);
   1163
   1164/**
   1165 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
   1166 * @runtime: PCM runtime instance
   1167 * @var: hw_params variable to apply the mask
   1168 * @mask: the bitmap mask
   1169 *
   1170 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
   1171 *
   1172 * Return: Zero if successful, or a negative error code on failure.
   1173 */
   1174int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
   1175			       u_int32_t mask)
   1176{
   1177	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
   1178	struct snd_mask *maskp = constrs_mask(constrs, var);
   1179	*maskp->bits &= mask;
   1180	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
   1181	if (*maskp->bits == 0)
   1182		return -EINVAL;
   1183	return 0;
   1184}
   1185
   1186/**
   1187 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
   1188 * @runtime: PCM runtime instance
   1189 * @var: hw_params variable to apply the mask
   1190 * @mask: the 64bit bitmap mask
   1191 *
   1192 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
   1193 *
   1194 * Return: Zero if successful, or a negative error code on failure.
   1195 */
   1196int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
   1197				 u_int64_t mask)
   1198{
   1199	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
   1200	struct snd_mask *maskp = constrs_mask(constrs, var);
   1201	maskp->bits[0] &= (u_int32_t)mask;
   1202	maskp->bits[1] &= (u_int32_t)(mask >> 32);
   1203	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
   1204	if (! maskp->bits[0] && ! maskp->bits[1])
   1205		return -EINVAL;
   1206	return 0;
   1207}
   1208EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
   1209
   1210/**
   1211 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
   1212 * @runtime: PCM runtime instance
   1213 * @var: hw_params variable to apply the integer constraint
   1214 *
   1215 * Apply the constraint of integer to an interval parameter.
   1216 *
   1217 * Return: Positive if the value is changed, zero if it's not changed, or a
   1218 * negative error code.
   1219 */
   1220int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
   1221{
   1222	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
   1223	return snd_interval_setinteger(constrs_interval(constrs, var));
   1224}
   1225EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
   1226
   1227/**
   1228 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
   1229 * @runtime: PCM runtime instance
   1230 * @var: hw_params variable to apply the range
   1231 * @min: the minimal value
   1232 * @max: the maximal value
   1233 * 
   1234 * Apply the min/max range constraint to an interval parameter.
   1235 *
   1236 * Return: Positive if the value is changed, zero if it's not changed, or a
   1237 * negative error code.
   1238 */
   1239int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
   1240				 unsigned int min, unsigned int max)
   1241{
   1242	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
   1243	struct snd_interval t;
   1244	t.min = min;
   1245	t.max = max;
   1246	t.openmin = t.openmax = 0;
   1247	t.integer = 0;
   1248	return snd_interval_refine(constrs_interval(constrs, var), &t);
   1249}
   1250EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
   1251
   1252static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
   1253				struct snd_pcm_hw_rule *rule)
   1254{
   1255	struct snd_pcm_hw_constraint_list *list = rule->private;
   1256	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
   1257}		
   1258
   1259
   1260/**
   1261 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
   1262 * @runtime: PCM runtime instance
   1263 * @cond: condition bits
   1264 * @var: hw_params variable to apply the list constraint
   1265 * @l: list
   1266 * 
   1267 * Apply the list of constraints to an interval parameter.
   1268 *
   1269 * Return: Zero if successful, or a negative error code on failure.
   1270 */
   1271int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
   1272			       unsigned int cond,
   1273			       snd_pcm_hw_param_t var,
   1274			       const struct snd_pcm_hw_constraint_list *l)
   1275{
   1276	return snd_pcm_hw_rule_add(runtime, cond, var,
   1277				   snd_pcm_hw_rule_list, (void *)l,
   1278				   var, -1);
   1279}
   1280EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
   1281
   1282static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
   1283				  struct snd_pcm_hw_rule *rule)
   1284{
   1285	struct snd_pcm_hw_constraint_ranges *r = rule->private;
   1286	return snd_interval_ranges(hw_param_interval(params, rule->var),
   1287				   r->count, r->ranges, r->mask);
   1288}
   1289
   1290
   1291/**
   1292 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
   1293 * @runtime: PCM runtime instance
   1294 * @cond: condition bits
   1295 * @var: hw_params variable to apply the list of range constraints
   1296 * @r: ranges
   1297 *
   1298 * Apply the list of range constraints to an interval parameter.
   1299 *
   1300 * Return: Zero if successful, or a negative error code on failure.
   1301 */
   1302int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
   1303				 unsigned int cond,
   1304				 snd_pcm_hw_param_t var,
   1305				 const struct snd_pcm_hw_constraint_ranges *r)
   1306{
   1307	return snd_pcm_hw_rule_add(runtime, cond, var,
   1308				   snd_pcm_hw_rule_ranges, (void *)r,
   1309				   var, -1);
   1310}
   1311EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
   1312
   1313static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
   1314				   struct snd_pcm_hw_rule *rule)
   1315{
   1316	const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
   1317	unsigned int num = 0, den = 0;
   1318	int err;
   1319	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
   1320				  r->nrats, r->rats, &num, &den);
   1321	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
   1322		params->rate_num = num;
   1323		params->rate_den = den;
   1324	}
   1325	return err;
   1326}
   1327
   1328/**
   1329 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
   1330 * @runtime: PCM runtime instance
   1331 * @cond: condition bits
   1332 * @var: hw_params variable to apply the ratnums constraint
   1333 * @r: struct snd_ratnums constriants
   1334 *
   1335 * Return: Zero if successful, or a negative error code on failure.
   1336 */
   1337int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
   1338				  unsigned int cond,
   1339				  snd_pcm_hw_param_t var,
   1340				  const struct snd_pcm_hw_constraint_ratnums *r)
   1341{
   1342	return snd_pcm_hw_rule_add(runtime, cond, var,
   1343				   snd_pcm_hw_rule_ratnums, (void *)r,
   1344				   var, -1);
   1345}
   1346EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
   1347
   1348static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
   1349				   struct snd_pcm_hw_rule *rule)
   1350{
   1351	const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
   1352	unsigned int num = 0, den = 0;
   1353	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
   1354				  r->nrats, r->rats, &num, &den);
   1355	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
   1356		params->rate_num = num;
   1357		params->rate_den = den;
   1358	}
   1359	return err;
   1360}
   1361
   1362/**
   1363 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
   1364 * @runtime: PCM runtime instance
   1365 * @cond: condition bits
   1366 * @var: hw_params variable to apply the ratdens constraint
   1367 * @r: struct snd_ratdens constriants
   1368 *
   1369 * Return: Zero if successful, or a negative error code on failure.
   1370 */
   1371int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
   1372				  unsigned int cond,
   1373				  snd_pcm_hw_param_t var,
   1374				  const struct snd_pcm_hw_constraint_ratdens *r)
   1375{
   1376	return snd_pcm_hw_rule_add(runtime, cond, var,
   1377				   snd_pcm_hw_rule_ratdens, (void *)r,
   1378				   var, -1);
   1379}
   1380EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
   1381
   1382static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
   1383				  struct snd_pcm_hw_rule *rule)
   1384{
   1385	unsigned int l = (unsigned long) rule->private;
   1386	int width = l & 0xffff;
   1387	unsigned int msbits = l >> 16;
   1388	const struct snd_interval *i =
   1389		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
   1390
   1391	if (!snd_interval_single(i))
   1392		return 0;
   1393
   1394	if ((snd_interval_value(i) == width) ||
   1395	    (width == 0 && snd_interval_value(i) > msbits))
   1396		params->msbits = min_not_zero(params->msbits, msbits);
   1397
   1398	return 0;
   1399}
   1400
   1401/**
   1402 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
   1403 * @runtime: PCM runtime instance
   1404 * @cond: condition bits
   1405 * @width: sample bits width
   1406 * @msbits: msbits width
   1407 *
   1408 * This constraint will set the number of most significant bits (msbits) if a
   1409 * sample format with the specified width has been select. If width is set to 0
   1410 * the msbits will be set for any sample format with a width larger than the
   1411 * specified msbits.
   1412 *
   1413 * Return: Zero if successful, or a negative error code on failure.
   1414 */
   1415int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
   1416				 unsigned int cond,
   1417				 unsigned int width,
   1418				 unsigned int msbits)
   1419{
   1420	unsigned long l = (msbits << 16) | width;
   1421	return snd_pcm_hw_rule_add(runtime, cond, -1,
   1422				    snd_pcm_hw_rule_msbits,
   1423				    (void*) l,
   1424				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
   1425}
   1426EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
   1427
   1428static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
   1429				struct snd_pcm_hw_rule *rule)
   1430{
   1431	unsigned long step = (unsigned long) rule->private;
   1432	return snd_interval_step(hw_param_interval(params, rule->var), step);
   1433}
   1434
   1435/**
   1436 * snd_pcm_hw_constraint_step - add a hw constraint step rule
   1437 * @runtime: PCM runtime instance
   1438 * @cond: condition bits
   1439 * @var: hw_params variable to apply the step constraint
   1440 * @step: step size
   1441 *
   1442 * Return: Zero if successful, or a negative error code on failure.
   1443 */
   1444int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
   1445			       unsigned int cond,
   1446			       snd_pcm_hw_param_t var,
   1447			       unsigned long step)
   1448{
   1449	return snd_pcm_hw_rule_add(runtime, cond, var, 
   1450				   snd_pcm_hw_rule_step, (void *) step,
   1451				   var, -1);
   1452}
   1453EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
   1454
   1455static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
   1456{
   1457	static const unsigned int pow2_sizes[] = {
   1458		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
   1459		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
   1460		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
   1461		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
   1462	};
   1463	return snd_interval_list(hw_param_interval(params, rule->var),
   1464				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
   1465}		
   1466
   1467/**
   1468 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
   1469 * @runtime: PCM runtime instance
   1470 * @cond: condition bits
   1471 * @var: hw_params variable to apply the power-of-2 constraint
   1472 *
   1473 * Return: Zero if successful, or a negative error code on failure.
   1474 */
   1475int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
   1476			       unsigned int cond,
   1477			       snd_pcm_hw_param_t var)
   1478{
   1479	return snd_pcm_hw_rule_add(runtime, cond, var, 
   1480				   snd_pcm_hw_rule_pow2, NULL,
   1481				   var, -1);
   1482}
   1483EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
   1484
   1485static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
   1486					   struct snd_pcm_hw_rule *rule)
   1487{
   1488	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
   1489	struct snd_interval *rate;
   1490
   1491	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
   1492	return snd_interval_list(rate, 1, &base_rate, 0);
   1493}
   1494
   1495/**
   1496 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
   1497 * @runtime: PCM runtime instance
   1498 * @base_rate: the rate at which the hardware does not resample
   1499 *
   1500 * Return: Zero if successful, or a negative error code on failure.
   1501 */
   1502int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
   1503			       unsigned int base_rate)
   1504{
   1505	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
   1506				   SNDRV_PCM_HW_PARAM_RATE,
   1507				   snd_pcm_hw_rule_noresample_func,
   1508				   (void *)(uintptr_t)base_rate,
   1509				   SNDRV_PCM_HW_PARAM_RATE, -1);
   1510}
   1511EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
   1512
   1513static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
   1514				  snd_pcm_hw_param_t var)
   1515{
   1516	if (hw_is_mask(var)) {
   1517		snd_mask_any(hw_param_mask(params, var));
   1518		params->cmask |= 1 << var;
   1519		params->rmask |= 1 << var;
   1520		return;
   1521	}
   1522	if (hw_is_interval(var)) {
   1523		snd_interval_any(hw_param_interval(params, var));
   1524		params->cmask |= 1 << var;
   1525		params->rmask |= 1 << var;
   1526		return;
   1527	}
   1528	snd_BUG();
   1529}
   1530
   1531void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
   1532{
   1533	unsigned int k;
   1534	memset(params, 0, sizeof(*params));
   1535	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
   1536		_snd_pcm_hw_param_any(params, k);
   1537	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
   1538		_snd_pcm_hw_param_any(params, k);
   1539	params->info = ~0U;
   1540}
   1541EXPORT_SYMBOL(_snd_pcm_hw_params_any);
   1542
   1543/**
   1544 * snd_pcm_hw_param_value - return @params field @var value
   1545 * @params: the hw_params instance
   1546 * @var: parameter to retrieve
   1547 * @dir: pointer to the direction (-1,0,1) or %NULL
   1548 *
   1549 * Return: The value for field @var if it's fixed in configuration space
   1550 * defined by @params. -%EINVAL otherwise.
   1551 */
   1552int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
   1553			   snd_pcm_hw_param_t var, int *dir)
   1554{
   1555	if (hw_is_mask(var)) {
   1556		const struct snd_mask *mask = hw_param_mask_c(params, var);
   1557		if (!snd_mask_single(mask))
   1558			return -EINVAL;
   1559		if (dir)
   1560			*dir = 0;
   1561		return snd_mask_value(mask);
   1562	}
   1563	if (hw_is_interval(var)) {
   1564		const struct snd_interval *i = hw_param_interval_c(params, var);
   1565		if (!snd_interval_single(i))
   1566			return -EINVAL;
   1567		if (dir)
   1568			*dir = i->openmin;
   1569		return snd_interval_value(i);
   1570	}
   1571	return -EINVAL;
   1572}
   1573EXPORT_SYMBOL(snd_pcm_hw_param_value);
   1574
   1575void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
   1576				snd_pcm_hw_param_t var)
   1577{
   1578	if (hw_is_mask(var)) {
   1579		snd_mask_none(hw_param_mask(params, var));
   1580		params->cmask |= 1 << var;
   1581		params->rmask |= 1 << var;
   1582	} else if (hw_is_interval(var)) {
   1583		snd_interval_none(hw_param_interval(params, var));
   1584		params->cmask |= 1 << var;
   1585		params->rmask |= 1 << var;
   1586	} else {
   1587		snd_BUG();
   1588	}
   1589}
   1590EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
   1591
   1592static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
   1593				   snd_pcm_hw_param_t var)
   1594{
   1595	int changed;
   1596	if (hw_is_mask(var))
   1597		changed = snd_mask_refine_first(hw_param_mask(params, var));
   1598	else if (hw_is_interval(var))
   1599		changed = snd_interval_refine_first(hw_param_interval(params, var));
   1600	else
   1601		return -EINVAL;
   1602	if (changed > 0) {
   1603		params->cmask |= 1 << var;
   1604		params->rmask |= 1 << var;
   1605	}
   1606	return changed;
   1607}
   1608
   1609
   1610/**
   1611 * snd_pcm_hw_param_first - refine config space and return minimum value
   1612 * @pcm: PCM instance
   1613 * @params: the hw_params instance
   1614 * @var: parameter to retrieve
   1615 * @dir: pointer to the direction (-1,0,1) or %NULL
   1616 *
   1617 * Inside configuration space defined by @params remove from @var all
   1618 * values > minimum. Reduce configuration space accordingly.
   1619 *
   1620 * Return: The minimum, or a negative error code on failure.
   1621 */
   1622int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
   1623			   struct snd_pcm_hw_params *params, 
   1624			   snd_pcm_hw_param_t var, int *dir)
   1625{
   1626	int changed = _snd_pcm_hw_param_first(params, var);
   1627	if (changed < 0)
   1628		return changed;
   1629	if (params->rmask) {
   1630		int err = snd_pcm_hw_refine(pcm, params);
   1631		if (err < 0)
   1632			return err;
   1633	}
   1634	return snd_pcm_hw_param_value(params, var, dir);
   1635}
   1636EXPORT_SYMBOL(snd_pcm_hw_param_first);
   1637
   1638static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
   1639				  snd_pcm_hw_param_t var)
   1640{
   1641	int changed;
   1642	if (hw_is_mask(var))
   1643		changed = snd_mask_refine_last(hw_param_mask(params, var));
   1644	else if (hw_is_interval(var))
   1645		changed = snd_interval_refine_last(hw_param_interval(params, var));
   1646	else
   1647		return -EINVAL;
   1648	if (changed > 0) {
   1649		params->cmask |= 1 << var;
   1650		params->rmask |= 1 << var;
   1651	}
   1652	return changed;
   1653}
   1654
   1655
   1656/**
   1657 * snd_pcm_hw_param_last - refine config space and return maximum value
   1658 * @pcm: PCM instance
   1659 * @params: the hw_params instance
   1660 * @var: parameter to retrieve
   1661 * @dir: pointer to the direction (-1,0,1) or %NULL
   1662 *
   1663 * Inside configuration space defined by @params remove from @var all
   1664 * values < maximum. Reduce configuration space accordingly.
   1665 *
   1666 * Return: The maximum, or a negative error code on failure.
   1667 */
   1668int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
   1669			  struct snd_pcm_hw_params *params,
   1670			  snd_pcm_hw_param_t var, int *dir)
   1671{
   1672	int changed = _snd_pcm_hw_param_last(params, var);
   1673	if (changed < 0)
   1674		return changed;
   1675	if (params->rmask) {
   1676		int err = snd_pcm_hw_refine(pcm, params);
   1677		if (err < 0)
   1678			return err;
   1679	}
   1680	return snd_pcm_hw_param_value(params, var, dir);
   1681}
   1682EXPORT_SYMBOL(snd_pcm_hw_param_last);
   1683
   1684static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
   1685				   void *arg)
   1686{
   1687	struct snd_pcm_runtime *runtime = substream->runtime;
   1688	unsigned long flags;
   1689	snd_pcm_stream_lock_irqsave(substream, flags);
   1690	if (snd_pcm_running(substream) &&
   1691	    snd_pcm_update_hw_ptr(substream) >= 0)
   1692		runtime->status->hw_ptr %= runtime->buffer_size;
   1693	else {
   1694		runtime->status->hw_ptr = 0;
   1695		runtime->hw_ptr_wrap = 0;
   1696	}
   1697	snd_pcm_stream_unlock_irqrestore(substream, flags);
   1698	return 0;
   1699}
   1700
   1701static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
   1702					  void *arg)
   1703{
   1704	struct snd_pcm_channel_info *info = arg;
   1705	struct snd_pcm_runtime *runtime = substream->runtime;
   1706	int width;
   1707	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
   1708		info->offset = -1;
   1709		return 0;
   1710	}
   1711	width = snd_pcm_format_physical_width(runtime->format);
   1712	if (width < 0)
   1713		return width;
   1714	info->offset = 0;
   1715	switch (runtime->access) {
   1716	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
   1717	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
   1718		info->first = info->channel * width;
   1719		info->step = runtime->channels * width;
   1720		break;
   1721	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
   1722	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
   1723	{
   1724		size_t size = runtime->dma_bytes / runtime->channels;
   1725		info->first = info->channel * size * 8;
   1726		info->step = width;
   1727		break;
   1728	}
   1729	default:
   1730		snd_BUG();
   1731		break;
   1732	}
   1733	return 0;
   1734}
   1735
   1736static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
   1737				       void *arg)
   1738{
   1739	struct snd_pcm_hw_params *params = arg;
   1740	snd_pcm_format_t format;
   1741	int channels;
   1742	ssize_t frame_size;
   1743
   1744	params->fifo_size = substream->runtime->hw.fifo_size;
   1745	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
   1746		format = params_format(params);
   1747		channels = params_channels(params);
   1748		frame_size = snd_pcm_format_size(format, channels);
   1749		if (frame_size > 0)
   1750			params->fifo_size /= frame_size;
   1751	}
   1752	return 0;
   1753}
   1754
   1755/**
   1756 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
   1757 * @substream: the pcm substream instance
   1758 * @cmd: ioctl command
   1759 * @arg: ioctl argument
   1760 *
   1761 * Processes the generic ioctl commands for PCM.
   1762 * Can be passed as the ioctl callback for PCM ops.
   1763 *
   1764 * Return: Zero if successful, or a negative error code on failure.
   1765 */
   1766int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
   1767		      unsigned int cmd, void *arg)
   1768{
   1769	switch (cmd) {
   1770	case SNDRV_PCM_IOCTL1_RESET:
   1771		return snd_pcm_lib_ioctl_reset(substream, arg);
   1772	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
   1773		return snd_pcm_lib_ioctl_channel_info(substream, arg);
   1774	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
   1775		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
   1776	}
   1777	return -ENXIO;
   1778}
   1779EXPORT_SYMBOL(snd_pcm_lib_ioctl);
   1780
   1781/**
   1782 * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
   1783 *						under acquired lock of PCM substream.
   1784 * @substream: the instance of pcm substream.
   1785 *
   1786 * This function is called when the batch of audio data frames as the same size as the period of
   1787 * buffer is already processed in audio data transmission.
   1788 *
   1789 * The call of function updates the status of runtime with the latest position of audio data
   1790 * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
   1791 * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
   1792 * substream according to configured threshold.
   1793 *
   1794 * The function is intended to use for the case that PCM driver operates audio data frames under
   1795 * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
   1796 * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
   1797 * since lock of PCM substream should be acquired in advance.
   1798 *
   1799 * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
   1800 * function:
   1801 *
   1802 * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
   1803 * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
   1804 * - .get_time_info - to retrieve audio time stamp if needed.
   1805 *
   1806 * Even if more than one periods have elapsed since the last call, you have to call this only once.
   1807 */
   1808void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
   1809{
   1810	struct snd_pcm_runtime *runtime;
   1811
   1812	if (PCM_RUNTIME_CHECK(substream))
   1813		return;
   1814	runtime = substream->runtime;
   1815
   1816	if (!snd_pcm_running(substream) ||
   1817	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
   1818		goto _end;
   1819
   1820#ifdef CONFIG_SND_PCM_TIMER
   1821	if (substream->timer_running)
   1822		snd_timer_interrupt(substream->timer, 1);
   1823#endif
   1824 _end:
   1825	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
   1826}
   1827EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
   1828
   1829/**
   1830 * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
   1831 *			      PCM substream.
   1832 * @substream: the instance of PCM substream.
   1833 *
   1834 * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
   1835 * acquiring lock of PCM substream voluntarily.
   1836 *
   1837 * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
   1838 * the batch of audio data frames as the same size as the period of buffer is already processed in
   1839 * audio data transmission.
   1840 */
   1841void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
   1842{
   1843	unsigned long flags;
   1844
   1845	if (snd_BUG_ON(!substream))
   1846		return;
   1847
   1848	snd_pcm_stream_lock_irqsave(substream, flags);
   1849	snd_pcm_period_elapsed_under_stream_lock(substream);
   1850	snd_pcm_stream_unlock_irqrestore(substream, flags);
   1851}
   1852EXPORT_SYMBOL(snd_pcm_period_elapsed);
   1853
   1854/*
   1855 * Wait until avail_min data becomes available
   1856 * Returns a negative error code if any error occurs during operation.
   1857 * The available space is stored on availp.  When err = 0 and avail = 0
   1858 * on the capture stream, it indicates the stream is in DRAINING state.
   1859 */
   1860static int wait_for_avail(struct snd_pcm_substream *substream,
   1861			      snd_pcm_uframes_t *availp)
   1862{
   1863	struct snd_pcm_runtime *runtime = substream->runtime;
   1864	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
   1865	wait_queue_entry_t wait;
   1866	int err = 0;
   1867	snd_pcm_uframes_t avail = 0;
   1868	long wait_time, tout;
   1869
   1870	init_waitqueue_entry(&wait, current);
   1871	set_current_state(TASK_INTERRUPTIBLE);
   1872	add_wait_queue(&runtime->tsleep, &wait);
   1873
   1874	if (runtime->no_period_wakeup)
   1875		wait_time = MAX_SCHEDULE_TIMEOUT;
   1876	else {
   1877		/* use wait time from substream if available */
   1878		if (substream->wait_time) {
   1879			wait_time = substream->wait_time;
   1880		} else {
   1881			wait_time = 10;
   1882
   1883			if (runtime->rate) {
   1884				long t = runtime->period_size * 2 /
   1885					 runtime->rate;
   1886				wait_time = max(t, wait_time);
   1887			}
   1888			wait_time = msecs_to_jiffies(wait_time * 1000);
   1889		}
   1890	}
   1891
   1892	for (;;) {
   1893		if (signal_pending(current)) {
   1894			err = -ERESTARTSYS;
   1895			break;
   1896		}
   1897
   1898		/*
   1899		 * We need to check if space became available already
   1900		 * (and thus the wakeup happened already) first to close
   1901		 * the race of space already having become available.
   1902		 * This check must happen after been added to the waitqueue
   1903		 * and having current state be INTERRUPTIBLE.
   1904		 */
   1905		avail = snd_pcm_avail(substream);
   1906		if (avail >= runtime->twake)
   1907			break;
   1908		snd_pcm_stream_unlock_irq(substream);
   1909
   1910		tout = schedule_timeout(wait_time);
   1911
   1912		snd_pcm_stream_lock_irq(substream);
   1913		set_current_state(TASK_INTERRUPTIBLE);
   1914		switch (runtime->status->state) {
   1915		case SNDRV_PCM_STATE_SUSPENDED:
   1916			err = -ESTRPIPE;
   1917			goto _endloop;
   1918		case SNDRV_PCM_STATE_XRUN:
   1919			err = -EPIPE;
   1920			goto _endloop;
   1921		case SNDRV_PCM_STATE_DRAINING:
   1922			if (is_playback)
   1923				err = -EPIPE;
   1924			else 
   1925				avail = 0; /* indicate draining */
   1926			goto _endloop;
   1927		case SNDRV_PCM_STATE_OPEN:
   1928		case SNDRV_PCM_STATE_SETUP:
   1929		case SNDRV_PCM_STATE_DISCONNECTED:
   1930			err = -EBADFD;
   1931			goto _endloop;
   1932		case SNDRV_PCM_STATE_PAUSED:
   1933			continue;
   1934		}
   1935		if (!tout) {
   1936			pcm_dbg(substream->pcm,
   1937				"%s write error (DMA or IRQ trouble?)\n",
   1938				is_playback ? "playback" : "capture");
   1939			err = -EIO;
   1940			break;
   1941		}
   1942	}
   1943 _endloop:
   1944	set_current_state(TASK_RUNNING);
   1945	remove_wait_queue(&runtime->tsleep, &wait);
   1946	*availp = avail;
   1947	return err;
   1948}
   1949	
   1950typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
   1951			      int channel, unsigned long hwoff,
   1952			      void *buf, unsigned long bytes);
   1953
   1954typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
   1955			  snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
   1956
   1957/* calculate the target DMA-buffer position to be written/read */
   1958static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
   1959			   int channel, unsigned long hwoff)
   1960{
   1961	return runtime->dma_area + hwoff +
   1962		channel * (runtime->dma_bytes / runtime->channels);
   1963}
   1964
   1965/* default copy_user ops for write; used for both interleaved and non- modes */
   1966static int default_write_copy(struct snd_pcm_substream *substream,
   1967			      int channel, unsigned long hwoff,
   1968			      void *buf, unsigned long bytes)
   1969{
   1970	if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
   1971			   (void __user *)buf, bytes))
   1972		return -EFAULT;
   1973	return 0;
   1974}
   1975
   1976/* default copy_kernel ops for write */
   1977static int default_write_copy_kernel(struct snd_pcm_substream *substream,
   1978				     int channel, unsigned long hwoff,
   1979				     void *buf, unsigned long bytes)
   1980{
   1981	memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
   1982	return 0;
   1983}
   1984
   1985/* fill silence instead of copy data; called as a transfer helper
   1986 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
   1987 * a NULL buffer is passed
   1988 */
   1989static int fill_silence(struct snd_pcm_substream *substream, int channel,
   1990			unsigned long hwoff, void *buf, unsigned long bytes)
   1991{
   1992	struct snd_pcm_runtime *runtime = substream->runtime;
   1993
   1994	if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
   1995		return 0;
   1996	if (substream->ops->fill_silence)
   1997		return substream->ops->fill_silence(substream, channel,
   1998						    hwoff, bytes);
   1999
   2000	snd_pcm_format_set_silence(runtime->format,
   2001				   get_dma_ptr(runtime, channel, hwoff),
   2002				   bytes_to_samples(runtime, bytes));
   2003	return 0;
   2004}
   2005
   2006/* default copy_user ops for read; used for both interleaved and non- modes */
   2007static int default_read_copy(struct snd_pcm_substream *substream,
   2008			     int channel, unsigned long hwoff,
   2009			     void *buf, unsigned long bytes)
   2010{
   2011	if (copy_to_user((void __user *)buf,
   2012			 get_dma_ptr(substream->runtime, channel, hwoff),
   2013			 bytes))
   2014		return -EFAULT;
   2015	return 0;
   2016}
   2017
   2018/* default copy_kernel ops for read */
   2019static int default_read_copy_kernel(struct snd_pcm_substream *substream,
   2020				    int channel, unsigned long hwoff,
   2021				    void *buf, unsigned long bytes)
   2022{
   2023	memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
   2024	return 0;
   2025}
   2026
   2027/* call transfer function with the converted pointers and sizes;
   2028 * for interleaved mode, it's one shot for all samples
   2029 */
   2030static int interleaved_copy(struct snd_pcm_substream *substream,
   2031			    snd_pcm_uframes_t hwoff, void *data,
   2032			    snd_pcm_uframes_t off,
   2033			    snd_pcm_uframes_t frames,
   2034			    pcm_transfer_f transfer)
   2035{
   2036	struct snd_pcm_runtime *runtime = substream->runtime;
   2037
   2038	/* convert to bytes */
   2039	hwoff = frames_to_bytes(runtime, hwoff);
   2040	off = frames_to_bytes(runtime, off);
   2041	frames = frames_to_bytes(runtime, frames);
   2042	return transfer(substream, 0, hwoff, data + off, frames);
   2043}
   2044
   2045/* call transfer function with the converted pointers and sizes for each
   2046 * non-interleaved channel; when buffer is NULL, silencing instead of copying
   2047 */
   2048static int noninterleaved_copy(struct snd_pcm_substream *substream,
   2049			       snd_pcm_uframes_t hwoff, void *data,
   2050			       snd_pcm_uframes_t off,
   2051			       snd_pcm_uframes_t frames,
   2052			       pcm_transfer_f transfer)
   2053{
   2054	struct snd_pcm_runtime *runtime = substream->runtime;
   2055	int channels = runtime->channels;
   2056	void **bufs = data;
   2057	int c, err;
   2058
   2059	/* convert to bytes; note that it's not frames_to_bytes() here.
   2060	 * in non-interleaved mode, we copy for each channel, thus
   2061	 * each copy is n_samples bytes x channels = whole frames.
   2062	 */
   2063	off = samples_to_bytes(runtime, off);
   2064	frames = samples_to_bytes(runtime, frames);
   2065	hwoff = samples_to_bytes(runtime, hwoff);
   2066	for (c = 0; c < channels; ++c, ++bufs) {
   2067		if (!data || !*bufs)
   2068			err = fill_silence(substream, c, hwoff, NULL, frames);
   2069		else
   2070			err = transfer(substream, c, hwoff, *bufs + off,
   2071				       frames);
   2072		if (err < 0)
   2073			return err;
   2074	}
   2075	return 0;
   2076}
   2077
   2078/* fill silence on the given buffer position;
   2079 * called from snd_pcm_playback_silence()
   2080 */
   2081static int fill_silence_frames(struct snd_pcm_substream *substream,
   2082			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
   2083{
   2084	if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
   2085	    substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
   2086		return interleaved_copy(substream, off, NULL, 0, frames,
   2087					fill_silence);
   2088	else
   2089		return noninterleaved_copy(substream, off, NULL, 0, frames,
   2090					   fill_silence);
   2091}
   2092
   2093/* sanity-check for read/write methods */
   2094static int pcm_sanity_check(struct snd_pcm_substream *substream)
   2095{
   2096	struct snd_pcm_runtime *runtime;
   2097	if (PCM_RUNTIME_CHECK(substream))
   2098		return -ENXIO;
   2099	runtime = substream->runtime;
   2100	if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
   2101		return -EINVAL;
   2102	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
   2103		return -EBADFD;
   2104	return 0;
   2105}
   2106
   2107static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
   2108{
   2109	switch (runtime->status->state) {
   2110	case SNDRV_PCM_STATE_PREPARED:
   2111	case SNDRV_PCM_STATE_RUNNING:
   2112	case SNDRV_PCM_STATE_PAUSED:
   2113		return 0;
   2114	case SNDRV_PCM_STATE_XRUN:
   2115		return -EPIPE;
   2116	case SNDRV_PCM_STATE_SUSPENDED:
   2117		return -ESTRPIPE;
   2118	default:
   2119		return -EBADFD;
   2120	}
   2121}
   2122
   2123/* update to the given appl_ptr and call ack callback if needed;
   2124 * when an error is returned, take back to the original value
   2125 */
   2126int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
   2127			   snd_pcm_uframes_t appl_ptr)
   2128{
   2129	struct snd_pcm_runtime *runtime = substream->runtime;
   2130	snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
   2131	snd_pcm_sframes_t diff;
   2132	int ret;
   2133
   2134	if (old_appl_ptr == appl_ptr)
   2135		return 0;
   2136
   2137	if (appl_ptr >= runtime->boundary)
   2138		return -EINVAL;
   2139	/*
   2140	 * check if a rewind is requested by the application
   2141	 */
   2142	if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) {
   2143		diff = appl_ptr - old_appl_ptr;
   2144		if (diff >= 0) {
   2145			if (diff > runtime->buffer_size)
   2146				return -EINVAL;
   2147		} else {
   2148			if (runtime->boundary + diff > runtime->buffer_size)
   2149				return -EINVAL;
   2150		}
   2151	}
   2152
   2153	runtime->control->appl_ptr = appl_ptr;
   2154	if (substream->ops->ack) {
   2155		ret = substream->ops->ack(substream);
   2156		if (ret < 0) {
   2157			runtime->control->appl_ptr = old_appl_ptr;
   2158			return ret;
   2159		}
   2160	}
   2161
   2162	trace_applptr(substream, old_appl_ptr, appl_ptr);
   2163
   2164	return 0;
   2165}
   2166
   2167/* the common loop for read/write data */
   2168snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
   2169				     void *data, bool interleaved,
   2170				     snd_pcm_uframes_t size, bool in_kernel)
   2171{
   2172	struct snd_pcm_runtime *runtime = substream->runtime;
   2173	snd_pcm_uframes_t xfer = 0;
   2174	snd_pcm_uframes_t offset = 0;
   2175	snd_pcm_uframes_t avail;
   2176	pcm_copy_f writer;
   2177	pcm_transfer_f transfer;
   2178	bool nonblock;
   2179	bool is_playback;
   2180	int err;
   2181
   2182	err = pcm_sanity_check(substream);
   2183	if (err < 0)
   2184		return err;
   2185
   2186	is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
   2187	if (interleaved) {
   2188		if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
   2189		    runtime->channels > 1)
   2190			return -EINVAL;
   2191		writer = interleaved_copy;
   2192	} else {
   2193		if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
   2194			return -EINVAL;
   2195		writer = noninterleaved_copy;
   2196	}
   2197
   2198	if (!data) {
   2199		if (is_playback)
   2200			transfer = fill_silence;
   2201		else
   2202			return -EINVAL;
   2203	} else if (in_kernel) {
   2204		if (substream->ops->copy_kernel)
   2205			transfer = substream->ops->copy_kernel;
   2206		else
   2207			transfer = is_playback ?
   2208				default_write_copy_kernel : default_read_copy_kernel;
   2209	} else {
   2210		if (substream->ops->copy_user)
   2211			transfer = (pcm_transfer_f)substream->ops->copy_user;
   2212		else
   2213			transfer = is_playback ?
   2214				default_write_copy : default_read_copy;
   2215	}
   2216
   2217	if (size == 0)
   2218		return 0;
   2219
   2220	nonblock = !!(substream->f_flags & O_NONBLOCK);
   2221
   2222	snd_pcm_stream_lock_irq(substream);
   2223	err = pcm_accessible_state(runtime);
   2224	if (err < 0)
   2225		goto _end_unlock;
   2226
   2227	runtime->twake = runtime->control->avail_min ? : 1;
   2228	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
   2229		snd_pcm_update_hw_ptr(substream);
   2230
   2231	/*
   2232	 * If size < start_threshold, wait indefinitely. Another
   2233	 * thread may start capture
   2234	 */
   2235	if (!is_playback &&
   2236	    runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
   2237	    size >= runtime->start_threshold) {
   2238		err = snd_pcm_start(substream);
   2239		if (err < 0)
   2240			goto _end_unlock;
   2241	}
   2242
   2243	avail = snd_pcm_avail(substream);
   2244
   2245	while (size > 0) {
   2246		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
   2247		snd_pcm_uframes_t cont;
   2248		if (!avail) {
   2249			if (!is_playback &&
   2250			    runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
   2251				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
   2252				goto _end_unlock;
   2253			}
   2254			if (nonblock) {
   2255				err = -EAGAIN;
   2256				goto _end_unlock;
   2257			}
   2258			runtime->twake = min_t(snd_pcm_uframes_t, size,
   2259					runtime->control->avail_min ? : 1);
   2260			err = wait_for_avail(substream, &avail);
   2261			if (err < 0)
   2262				goto _end_unlock;
   2263			if (!avail)
   2264				continue; /* draining */
   2265		}
   2266		frames = size > avail ? avail : size;
   2267		appl_ptr = READ_ONCE(runtime->control->appl_ptr);
   2268		appl_ofs = appl_ptr % runtime->buffer_size;
   2269		cont = runtime->buffer_size - appl_ofs;
   2270		if (frames > cont)
   2271			frames = cont;
   2272		if (snd_BUG_ON(!frames)) {
   2273			err = -EINVAL;
   2274			goto _end_unlock;
   2275		}
   2276		if (!atomic_inc_unless_negative(&runtime->buffer_accessing)) {
   2277			err = -EBUSY;
   2278			goto _end_unlock;
   2279		}
   2280		snd_pcm_stream_unlock_irq(substream);
   2281		if (!is_playback)
   2282			snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_CPU);
   2283		err = writer(substream, appl_ofs, data, offset, frames,
   2284			     transfer);
   2285		if (is_playback)
   2286			snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
   2287		snd_pcm_stream_lock_irq(substream);
   2288		atomic_dec(&runtime->buffer_accessing);
   2289		if (err < 0)
   2290			goto _end_unlock;
   2291		err = pcm_accessible_state(runtime);
   2292		if (err < 0)
   2293			goto _end_unlock;
   2294		appl_ptr += frames;
   2295		if (appl_ptr >= runtime->boundary)
   2296			appl_ptr -= runtime->boundary;
   2297		err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
   2298		if (err < 0)
   2299			goto _end_unlock;
   2300
   2301		offset += frames;
   2302		size -= frames;
   2303		xfer += frames;
   2304		avail -= frames;
   2305		if (is_playback &&
   2306		    runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
   2307		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
   2308			err = snd_pcm_start(substream);
   2309			if (err < 0)
   2310				goto _end_unlock;
   2311		}
   2312	}
   2313 _end_unlock:
   2314	runtime->twake = 0;
   2315	if (xfer > 0 && err >= 0)
   2316		snd_pcm_update_state(substream, runtime);
   2317	snd_pcm_stream_unlock_irq(substream);
   2318	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
   2319}
   2320EXPORT_SYMBOL(__snd_pcm_lib_xfer);
   2321
   2322/*
   2323 * standard channel mapping helpers
   2324 */
   2325
   2326/* default channel maps for multi-channel playbacks, up to 8 channels */
   2327const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
   2328	{ .channels = 1,
   2329	  .map = { SNDRV_CHMAP_MONO } },
   2330	{ .channels = 2,
   2331	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
   2332	{ .channels = 4,
   2333	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
   2334		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
   2335	{ .channels = 6,
   2336	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
   2337		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
   2338		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
   2339	{ .channels = 8,
   2340	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
   2341		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
   2342		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
   2343		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
   2344	{ }
   2345};
   2346EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
   2347
   2348/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
   2349const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
   2350	{ .channels = 1,
   2351	  .map = { SNDRV_CHMAP_MONO } },
   2352	{ .channels = 2,
   2353	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
   2354	{ .channels = 4,
   2355	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
   2356		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
   2357	{ .channels = 6,
   2358	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
   2359		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
   2360		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
   2361	{ .channels = 8,
   2362	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
   2363		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
   2364		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
   2365		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
   2366	{ }
   2367};
   2368EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
   2369
   2370static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
   2371{
   2372	if (ch > info->max_channels)
   2373		return false;
   2374	return !info->channel_mask || (info->channel_mask & (1U << ch));
   2375}
   2376
   2377static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
   2378			      struct snd_ctl_elem_info *uinfo)
   2379{
   2380	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
   2381
   2382	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
   2383	uinfo->count = info->max_channels;
   2384	uinfo->value.integer.min = 0;
   2385	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
   2386	return 0;
   2387}
   2388
   2389/* get callback for channel map ctl element
   2390 * stores the channel position firstly matching with the current channels
   2391 */
   2392static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
   2393			     struct snd_ctl_elem_value *ucontrol)
   2394{
   2395	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
   2396	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
   2397	struct snd_pcm_substream *substream;
   2398	const struct snd_pcm_chmap_elem *map;
   2399
   2400	if (!info->chmap)
   2401		return -EINVAL;
   2402	substream = snd_pcm_chmap_substream(info, idx);
   2403	if (!substream)
   2404		return -ENODEV;
   2405	memset(ucontrol->value.integer.value, 0,
   2406	       sizeof(long) * info->max_channels);
   2407	if (!substream->runtime)
   2408		return 0; /* no channels set */
   2409	for (map = info->chmap; map->channels; map++) {
   2410		int i;
   2411		if (map->channels == substream->runtime->channels &&
   2412		    valid_chmap_channels(info, map->channels)) {
   2413			for (i = 0; i < map->channels; i++)
   2414				ucontrol->value.integer.value[i] = map->map[i];
   2415			return 0;
   2416		}
   2417	}
   2418	return -EINVAL;
   2419}
   2420
   2421/* tlv callback for channel map ctl element
   2422 * expands the pre-defined channel maps in a form of TLV
   2423 */
   2424static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
   2425			     unsigned int size, unsigned int __user *tlv)
   2426{
   2427	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
   2428	const struct snd_pcm_chmap_elem *map;
   2429	unsigned int __user *dst;
   2430	int c, count = 0;
   2431
   2432	if (!info->chmap)
   2433		return -EINVAL;
   2434	if (size < 8)
   2435		return -ENOMEM;
   2436	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
   2437		return -EFAULT;
   2438	size -= 8;
   2439	dst = tlv + 2;
   2440	for (map = info->chmap; map->channels; map++) {
   2441		int chs_bytes = map->channels * 4;
   2442		if (!valid_chmap_channels(info, map->channels))
   2443			continue;
   2444		if (size < 8)
   2445			return -ENOMEM;
   2446		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
   2447		    put_user(chs_bytes, dst + 1))
   2448			return -EFAULT;
   2449		dst += 2;
   2450		size -= 8;
   2451		count += 8;
   2452		if (size < chs_bytes)
   2453			return -ENOMEM;
   2454		size -= chs_bytes;
   2455		count += chs_bytes;
   2456		for (c = 0; c < map->channels; c++) {
   2457			if (put_user(map->map[c], dst))
   2458				return -EFAULT;
   2459			dst++;
   2460		}
   2461	}
   2462	if (put_user(count, tlv + 1))
   2463		return -EFAULT;
   2464	return 0;
   2465}
   2466
   2467static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
   2468{
   2469	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
   2470	info->pcm->streams[info->stream].chmap_kctl = NULL;
   2471	kfree(info);
   2472}
   2473
   2474/**
   2475 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
   2476 * @pcm: the assigned PCM instance
   2477 * @stream: stream direction
   2478 * @chmap: channel map elements (for query)
   2479 * @max_channels: the max number of channels for the stream
   2480 * @private_value: the value passed to each kcontrol's private_value field
   2481 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
   2482 *
   2483 * Create channel-mapping control elements assigned to the given PCM stream(s).
   2484 * Return: Zero if successful, or a negative error value.
   2485 */
   2486int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
   2487			   const struct snd_pcm_chmap_elem *chmap,
   2488			   int max_channels,
   2489			   unsigned long private_value,
   2490			   struct snd_pcm_chmap **info_ret)
   2491{
   2492	struct snd_pcm_chmap *info;
   2493	struct snd_kcontrol_new knew = {
   2494		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
   2495		.access = SNDRV_CTL_ELEM_ACCESS_READ |
   2496			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
   2497			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
   2498		.info = pcm_chmap_ctl_info,
   2499		.get = pcm_chmap_ctl_get,
   2500		.tlv.c = pcm_chmap_ctl_tlv,
   2501	};
   2502	int err;
   2503
   2504	if (WARN_ON(pcm->streams[stream].chmap_kctl))
   2505		return -EBUSY;
   2506	info = kzalloc(sizeof(*info), GFP_KERNEL);
   2507	if (!info)
   2508		return -ENOMEM;
   2509	info->pcm = pcm;
   2510	info->stream = stream;
   2511	info->chmap = chmap;
   2512	info->max_channels = max_channels;
   2513	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
   2514		knew.name = "Playback Channel Map";
   2515	else
   2516		knew.name = "Capture Channel Map";
   2517	knew.device = pcm->device;
   2518	knew.count = pcm->streams[stream].substream_count;
   2519	knew.private_value = private_value;
   2520	info->kctl = snd_ctl_new1(&knew, info);
   2521	if (!info->kctl) {
   2522		kfree(info);
   2523		return -ENOMEM;
   2524	}
   2525	info->kctl->private_free = pcm_chmap_ctl_private_free;
   2526	err = snd_ctl_add(pcm->card, info->kctl);
   2527	if (err < 0)
   2528		return err;
   2529	pcm->streams[stream].chmap_kctl = info->kctl;
   2530	if (info_ret)
   2531		*info_ret = info;
   2532	return 0;
   2533}
   2534EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);