vx_mixer.c (28224B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Driver for Digigram VX soundcards 4 * 5 * Common mixer part 6 * 7 * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de> 8 */ 9 10#include <sound/core.h> 11#include <sound/control.h> 12#include <sound/tlv.h> 13#include <sound/vx_core.h> 14#include "vx_cmd.h" 15 16 17/* 18 * write a codec data (24bit) 19 */ 20static void vx_write_codec_reg(struct vx_core *chip, int codec, unsigned int data) 21{ 22 if (snd_BUG_ON(!chip->ops->write_codec)) 23 return; 24 25 if (chip->chip_status & VX_STAT_IS_STALE) 26 return; 27 28 mutex_lock(&chip->lock); 29 chip->ops->write_codec(chip, codec, data); 30 mutex_unlock(&chip->lock); 31} 32 33/* 34 * Data type used to access the Codec 35 */ 36union vx_codec_data { 37 u32 l; 38#ifdef SNDRV_BIG_ENDIAN 39 struct w { 40 u16 h; 41 u16 l; 42 } w; 43 struct b { 44 u8 hh; 45 u8 mh; 46 u8 ml; 47 u8 ll; 48 } b; 49#else /* LITTLE_ENDIAN */ 50 struct w { 51 u16 l; 52 u16 h; 53 } w; 54 struct b { 55 u8 ll; 56 u8 ml; 57 u8 mh; 58 u8 hh; 59 } b; 60#endif 61}; 62 63#define SET_CDC_DATA_SEL(di,s) ((di).b.mh = (u8) (s)) 64#define SET_CDC_DATA_REG(di,r) ((di).b.ml = (u8) (r)) 65#define SET_CDC_DATA_VAL(di,d) ((di).b.ll = (u8) (d)) 66#define SET_CDC_DATA_INIT(di) ((di).l = 0L, SET_CDC_DATA_SEL(di,XX_CODEC_SELECTOR)) 67 68/* 69 * set up codec register and write the value 70 * @codec: the codec id, 0 or 1 71 * @reg: register index 72 * @val: data value 73 */ 74static void vx_set_codec_reg(struct vx_core *chip, int codec, int reg, int val) 75{ 76 union vx_codec_data data; 77 /* DAC control register */ 78 SET_CDC_DATA_INIT(data); 79 SET_CDC_DATA_REG(data, reg); 80 SET_CDC_DATA_VAL(data, val); 81 vx_write_codec_reg(chip, codec, data.l); 82} 83 84 85/* 86 * vx_set_analog_output_level - set the output attenuation level 87 * @codec: the output codec, 0 or 1. (1 for VXP440 only) 88 * @left: left output level, 0 = mute 89 * @right: right output level 90 */ 91static void vx_set_analog_output_level(struct vx_core *chip, int codec, int left, int right) 92{ 93 left = chip->hw->output_level_max - left; 94 right = chip->hw->output_level_max - right; 95 96 if (chip->ops->akm_write) { 97 chip->ops->akm_write(chip, XX_CODEC_LEVEL_LEFT_REGISTER, left); 98 chip->ops->akm_write(chip, XX_CODEC_LEVEL_RIGHT_REGISTER, right); 99 } else { 100 /* convert to attenuation level: 0 = 0dB (max), 0xe3 = -113.5 dB (min) */ 101 vx_set_codec_reg(chip, codec, XX_CODEC_LEVEL_LEFT_REGISTER, left); 102 vx_set_codec_reg(chip, codec, XX_CODEC_LEVEL_RIGHT_REGISTER, right); 103 } 104} 105 106 107/* 108 * vx_toggle_dac_mute - mute/unmute DAC 109 * @mute: 0 = unmute, 1 = mute 110 */ 111 112#define DAC_ATTEN_MIN 0x08 113#define DAC_ATTEN_MAX 0x38 114 115void vx_toggle_dac_mute(struct vx_core *chip, int mute) 116{ 117 unsigned int i; 118 for (i = 0; i < chip->hw->num_codecs; i++) { 119 if (chip->ops->akm_write) 120 chip->ops->akm_write(chip, XX_CODEC_DAC_CONTROL_REGISTER, mute); /* XXX */ 121 else 122 vx_set_codec_reg(chip, i, XX_CODEC_DAC_CONTROL_REGISTER, 123 mute ? DAC_ATTEN_MAX : DAC_ATTEN_MIN); 124 } 125} 126 127/* 128 * vx_reset_codec - reset and initialize the codecs 129 */ 130void vx_reset_codec(struct vx_core *chip, int cold_reset) 131{ 132 unsigned int i; 133 int port = chip->type >= VX_TYPE_VXPOCKET ? 0x75 : 0x65; 134 135 chip->ops->reset_codec(chip); 136 137 /* AKM codecs should be initialized in reset_codec callback */ 138 if (! chip->ops->akm_write) { 139 /* initialize old codecs */ 140 for (i = 0; i < chip->hw->num_codecs; i++) { 141 /* DAC control register (change level when zero crossing + mute) */ 142 vx_set_codec_reg(chip, i, XX_CODEC_DAC_CONTROL_REGISTER, DAC_ATTEN_MAX); 143 /* ADC control register */ 144 vx_set_codec_reg(chip, i, XX_CODEC_ADC_CONTROL_REGISTER, 0x00); 145 /* Port mode register */ 146 vx_set_codec_reg(chip, i, XX_CODEC_PORT_MODE_REGISTER, port); 147 /* Clock control register */ 148 vx_set_codec_reg(chip, i, XX_CODEC_CLOCK_CONTROL_REGISTER, 0x00); 149 } 150 } 151 152 /* mute analog output */ 153 for (i = 0; i < chip->hw->num_codecs; i++) { 154 chip->output_level[i][0] = 0; 155 chip->output_level[i][1] = 0; 156 vx_set_analog_output_level(chip, i, 0, 0); 157 } 158} 159 160/* 161 * change the audio input source 162 * @src: the target source (VX_AUDIO_SRC_XXX) 163 */ 164static void vx_change_audio_source(struct vx_core *chip, int src) 165{ 166 if (chip->chip_status & VX_STAT_IS_STALE) 167 return; 168 169 mutex_lock(&chip->lock); 170 chip->ops->change_audio_source(chip, src); 171 mutex_unlock(&chip->lock); 172} 173 174 175/* 176 * change the audio source if necessary and possible 177 * returns 1 if the source is actually changed. 178 */ 179int vx_sync_audio_source(struct vx_core *chip) 180{ 181 if (chip->audio_source_target == chip->audio_source || 182 chip->pcm_running) 183 return 0; 184 vx_change_audio_source(chip, chip->audio_source_target); 185 chip->audio_source = chip->audio_source_target; 186 return 1; 187} 188 189 190/* 191 * audio level, mute, monitoring 192 */ 193struct vx_audio_level { 194 unsigned int has_level: 1; 195 unsigned int has_monitor_level: 1; 196 unsigned int has_mute: 1; 197 unsigned int has_monitor_mute: 1; 198 unsigned int mute; 199 unsigned int monitor_mute; 200 short level; 201 short monitor_level; 202}; 203 204static int vx_adjust_audio_level(struct vx_core *chip, int audio, int capture, 205 struct vx_audio_level *info) 206{ 207 struct vx_rmh rmh; 208 209 if (chip->chip_status & VX_STAT_IS_STALE) 210 return -EBUSY; 211 212 vx_init_rmh(&rmh, CMD_AUDIO_LEVEL_ADJUST); 213 if (capture) 214 rmh.Cmd[0] |= COMMAND_RECORD_MASK; 215 /* Add Audio IO mask */ 216 rmh.Cmd[1] = 1 << audio; 217 rmh.Cmd[2] = 0; 218 if (info->has_level) { 219 rmh.Cmd[0] |= VALID_AUDIO_IO_DIGITAL_LEVEL; 220 rmh.Cmd[2] |= info->level; 221 } 222 if (info->has_monitor_level) { 223 rmh.Cmd[0] |= VALID_AUDIO_IO_MONITORING_LEVEL; 224 rmh.Cmd[2] |= ((unsigned int)info->monitor_level << 10); 225 } 226 if (info->has_mute) { 227 rmh.Cmd[0] |= VALID_AUDIO_IO_MUTE_LEVEL; 228 if (info->mute) 229 rmh.Cmd[2] |= AUDIO_IO_HAS_MUTE_LEVEL; 230 } 231 if (info->has_monitor_mute) { 232 /* validate flag for M2 at least to unmute it */ 233 rmh.Cmd[0] |= VALID_AUDIO_IO_MUTE_MONITORING_1 | VALID_AUDIO_IO_MUTE_MONITORING_2; 234 if (info->monitor_mute) 235 rmh.Cmd[2] |= AUDIO_IO_HAS_MUTE_MONITORING_1; 236 } 237 238 return vx_send_msg(chip, &rmh); 239} 240 241 242#if 0 // not used 243static int vx_read_audio_level(struct vx_core *chip, int audio, int capture, 244 struct vx_audio_level *info) 245{ 246 int err; 247 struct vx_rmh rmh; 248 249 memset(info, 0, sizeof(*info)); 250 vx_init_rmh(&rmh, CMD_GET_AUDIO_LEVELS); 251 if (capture) 252 rmh.Cmd[0] |= COMMAND_RECORD_MASK; 253 /* Add Audio IO mask */ 254 rmh.Cmd[1] = 1 << audio; 255 err = vx_send_msg(chip, &rmh); 256 if (err < 0) 257 return err; 258 info.level = rmh.Stat[0] & MASK_DSP_WORD_LEVEL; 259 info.monitor_level = (rmh.Stat[0] >> 10) & MASK_DSP_WORD_LEVEL; 260 info.mute = (rmh.Stat[i] & AUDIO_IO_HAS_MUTE_LEVEL) ? 1 : 0; 261 info.monitor_mute = (rmh.Stat[i] & AUDIO_IO_HAS_MUTE_MONITORING_1) ? 1 : 0; 262 return 0; 263} 264#endif // not used 265 266/* 267 * set the monitoring level and mute state of the given audio 268 * no more static, because must be called from vx_pcm to demute monitoring 269 */ 270int vx_set_monitor_level(struct vx_core *chip, int audio, int level, int active) 271{ 272 struct vx_audio_level info; 273 274 memset(&info, 0, sizeof(info)); 275 info.has_monitor_level = 1; 276 info.monitor_level = level; 277 info.has_monitor_mute = 1; 278 info.monitor_mute = !active; 279 chip->audio_monitor[audio] = level; 280 chip->audio_monitor_active[audio] = active; 281 return vx_adjust_audio_level(chip, audio, 0, &info); /* playback only */ 282} 283 284 285/* 286 * set the mute status of the given audio 287 */ 288static int vx_set_audio_switch(struct vx_core *chip, int audio, int active) 289{ 290 struct vx_audio_level info; 291 292 memset(&info, 0, sizeof(info)); 293 info.has_mute = 1; 294 info.mute = !active; 295 chip->audio_active[audio] = active; 296 return vx_adjust_audio_level(chip, audio, 0, &info); /* playback only */ 297} 298 299/* 300 * set the mute status of the given audio 301 */ 302static int vx_set_audio_gain(struct vx_core *chip, int audio, int capture, int level) 303{ 304 struct vx_audio_level info; 305 306 memset(&info, 0, sizeof(info)); 307 info.has_level = 1; 308 info.level = level; 309 chip->audio_gain[capture][audio] = level; 310 return vx_adjust_audio_level(chip, audio, capture, &info); 311} 312 313/* 314 * reset all audio levels 315 */ 316static void vx_reset_audio_levels(struct vx_core *chip) 317{ 318 unsigned int i, c; 319 struct vx_audio_level info; 320 321 memset(chip->audio_gain, 0, sizeof(chip->audio_gain)); 322 memset(chip->audio_active, 0, sizeof(chip->audio_active)); 323 memset(chip->audio_monitor, 0, sizeof(chip->audio_monitor)); 324 memset(chip->audio_monitor_active, 0, sizeof(chip->audio_monitor_active)); 325 326 for (c = 0; c < 2; c++) { 327 for (i = 0; i < chip->hw->num_ins * 2; i++) { 328 memset(&info, 0, sizeof(info)); 329 if (c == 0) { 330 info.has_monitor_level = 1; 331 info.has_mute = 1; 332 info.has_monitor_mute = 1; 333 } 334 info.has_level = 1; 335 info.level = CVAL_0DB; /* default: 0dB */ 336 vx_adjust_audio_level(chip, i, c, &info); 337 chip->audio_gain[c][i] = CVAL_0DB; 338 chip->audio_monitor[i] = CVAL_0DB; 339 } 340 } 341} 342 343 344/* 345 * VU, peak meter record 346 */ 347 348#define VU_METER_CHANNELS 2 349 350struct vx_vu_meter { 351 int saturated; 352 int vu_level; 353 int peak_level; 354}; 355 356/* 357 * get the VU and peak meter values 358 * @audio: the audio index 359 * @capture: 0 = playback, 1 = capture operation 360 * @info: the array of vx_vu_meter records (size = 2). 361 */ 362static int vx_get_audio_vu_meter(struct vx_core *chip, int audio, int capture, struct vx_vu_meter *info) 363{ 364 struct vx_rmh rmh; 365 int i, err; 366 367 if (chip->chip_status & VX_STAT_IS_STALE) 368 return -EBUSY; 369 370 vx_init_rmh(&rmh, CMD_AUDIO_VU_PIC_METER); 371 rmh.LgStat += 2 * VU_METER_CHANNELS; 372 if (capture) 373 rmh.Cmd[0] |= COMMAND_RECORD_MASK; 374 375 /* Add Audio IO mask */ 376 rmh.Cmd[1] = 0; 377 for (i = 0; i < VU_METER_CHANNELS; i++) 378 rmh.Cmd[1] |= 1 << (audio + i); 379 err = vx_send_msg(chip, &rmh); 380 if (err < 0) 381 return err; 382 /* Read response */ 383 for (i = 0; i < 2 * VU_METER_CHANNELS; i +=2) { 384 info->saturated = (rmh.Stat[0] & (1 << (audio + i))) ? 1 : 0; 385 info->vu_level = rmh.Stat[i + 1]; 386 info->peak_level = rmh.Stat[i + 2]; 387 info++; 388 } 389 return 0; 390} 391 392 393/* 394 * control API entries 395 */ 396 397/* 398 * output level control 399 */ 400static int vx_output_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 401{ 402 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 403 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 404 uinfo->count = 2; 405 uinfo->value.integer.min = 0; 406 uinfo->value.integer.max = chip->hw->output_level_max; 407 return 0; 408} 409 410static int vx_output_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 411{ 412 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 413 int codec = kcontrol->id.index; 414 mutex_lock(&chip->mixer_mutex); 415 ucontrol->value.integer.value[0] = chip->output_level[codec][0]; 416 ucontrol->value.integer.value[1] = chip->output_level[codec][1]; 417 mutex_unlock(&chip->mixer_mutex); 418 return 0; 419} 420 421static int vx_output_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 422{ 423 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 424 int codec = kcontrol->id.index; 425 unsigned int val[2], vmax; 426 427 vmax = chip->hw->output_level_max; 428 val[0] = ucontrol->value.integer.value[0]; 429 val[1] = ucontrol->value.integer.value[1]; 430 if (val[0] > vmax || val[1] > vmax) 431 return -EINVAL; 432 mutex_lock(&chip->mixer_mutex); 433 if (val[0] != chip->output_level[codec][0] || 434 val[1] != chip->output_level[codec][1]) { 435 vx_set_analog_output_level(chip, codec, val[0], val[1]); 436 chip->output_level[codec][0] = val[0]; 437 chip->output_level[codec][1] = val[1]; 438 mutex_unlock(&chip->mixer_mutex); 439 return 1; 440 } 441 mutex_unlock(&chip->mixer_mutex); 442 return 0; 443} 444 445static const struct snd_kcontrol_new vx_control_output_level = { 446 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 447 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | 448 SNDRV_CTL_ELEM_ACCESS_TLV_READ), 449 .name = "Master Playback Volume", 450 .info = vx_output_level_info, 451 .get = vx_output_level_get, 452 .put = vx_output_level_put, 453 /* tlv will be filled later */ 454}; 455 456/* 457 * audio source select 458 */ 459static int vx_audio_src_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 460{ 461 static const char * const texts_mic[3] = { 462 "Digital", "Line", "Mic" 463 }; 464 static const char * const texts_vx2[2] = { 465 "Digital", "Analog" 466 }; 467 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 468 469 if (chip->type >= VX_TYPE_VXPOCKET) 470 return snd_ctl_enum_info(uinfo, 1, 3, texts_mic); 471 else 472 return snd_ctl_enum_info(uinfo, 1, 2, texts_vx2); 473} 474 475static int vx_audio_src_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 476{ 477 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 478 ucontrol->value.enumerated.item[0] = chip->audio_source_target; 479 return 0; 480} 481 482static int vx_audio_src_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 483{ 484 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 485 486 if (chip->type >= VX_TYPE_VXPOCKET) { 487 if (ucontrol->value.enumerated.item[0] > 2) 488 return -EINVAL; 489 } else { 490 if (ucontrol->value.enumerated.item[0] > 1) 491 return -EINVAL; 492 } 493 mutex_lock(&chip->mixer_mutex); 494 if (chip->audio_source_target != ucontrol->value.enumerated.item[0]) { 495 chip->audio_source_target = ucontrol->value.enumerated.item[0]; 496 vx_sync_audio_source(chip); 497 mutex_unlock(&chip->mixer_mutex); 498 return 1; 499 } 500 mutex_unlock(&chip->mixer_mutex); 501 return 0; 502} 503 504static const struct snd_kcontrol_new vx_control_audio_src = { 505 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 506 .name = "Capture Source", 507 .info = vx_audio_src_info, 508 .get = vx_audio_src_get, 509 .put = vx_audio_src_put, 510}; 511 512/* 513 * clock mode selection 514 */ 515static int vx_clock_mode_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 516{ 517 static const char * const texts[3] = { 518 "Auto", "Internal", "External" 519 }; 520 521 return snd_ctl_enum_info(uinfo, 1, 3, texts); 522} 523 524static int vx_clock_mode_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 525{ 526 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 527 ucontrol->value.enumerated.item[0] = chip->clock_mode; 528 return 0; 529} 530 531static int vx_clock_mode_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 532{ 533 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 534 535 if (ucontrol->value.enumerated.item[0] > 2) 536 return -EINVAL; 537 mutex_lock(&chip->mixer_mutex); 538 if (chip->clock_mode != ucontrol->value.enumerated.item[0]) { 539 chip->clock_mode = ucontrol->value.enumerated.item[0]; 540 vx_set_clock(chip, chip->freq); 541 mutex_unlock(&chip->mixer_mutex); 542 return 1; 543 } 544 mutex_unlock(&chip->mixer_mutex); 545 return 0; 546} 547 548static const struct snd_kcontrol_new vx_control_clock_mode = { 549 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 550 .name = "Clock Mode", 551 .info = vx_clock_mode_info, 552 .get = vx_clock_mode_get, 553 .put = vx_clock_mode_put, 554}; 555 556/* 557 * Audio Gain 558 */ 559static int vx_audio_gain_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 560{ 561 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 562 uinfo->count = 2; 563 uinfo->value.integer.min = 0; 564 uinfo->value.integer.max = CVAL_MAX; 565 return 0; 566} 567 568static int vx_audio_gain_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 569{ 570 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 571 int audio = kcontrol->private_value & 0xff; 572 int capture = (kcontrol->private_value >> 8) & 1; 573 574 mutex_lock(&chip->mixer_mutex); 575 ucontrol->value.integer.value[0] = chip->audio_gain[capture][audio]; 576 ucontrol->value.integer.value[1] = chip->audio_gain[capture][audio+1]; 577 mutex_unlock(&chip->mixer_mutex); 578 return 0; 579} 580 581static int vx_audio_gain_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 582{ 583 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 584 int audio = kcontrol->private_value & 0xff; 585 int capture = (kcontrol->private_value >> 8) & 1; 586 unsigned int val[2]; 587 588 val[0] = ucontrol->value.integer.value[0]; 589 val[1] = ucontrol->value.integer.value[1]; 590 if (val[0] > CVAL_MAX || val[1] > CVAL_MAX) 591 return -EINVAL; 592 mutex_lock(&chip->mixer_mutex); 593 if (val[0] != chip->audio_gain[capture][audio] || 594 val[1] != chip->audio_gain[capture][audio+1]) { 595 vx_set_audio_gain(chip, audio, capture, val[0]); 596 vx_set_audio_gain(chip, audio+1, capture, val[1]); 597 mutex_unlock(&chip->mixer_mutex); 598 return 1; 599 } 600 mutex_unlock(&chip->mixer_mutex); 601 return 0; 602} 603 604static int vx_audio_monitor_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 605{ 606 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 607 int audio = kcontrol->private_value & 0xff; 608 609 mutex_lock(&chip->mixer_mutex); 610 ucontrol->value.integer.value[0] = chip->audio_monitor[audio]; 611 ucontrol->value.integer.value[1] = chip->audio_monitor[audio+1]; 612 mutex_unlock(&chip->mixer_mutex); 613 return 0; 614} 615 616static int vx_audio_monitor_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 617{ 618 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 619 int audio = kcontrol->private_value & 0xff; 620 unsigned int val[2]; 621 622 val[0] = ucontrol->value.integer.value[0]; 623 val[1] = ucontrol->value.integer.value[1]; 624 if (val[0] > CVAL_MAX || val[1] > CVAL_MAX) 625 return -EINVAL; 626 627 mutex_lock(&chip->mixer_mutex); 628 if (val[0] != chip->audio_monitor[audio] || 629 val[1] != chip->audio_monitor[audio+1]) { 630 vx_set_monitor_level(chip, audio, val[0], 631 chip->audio_monitor_active[audio]); 632 vx_set_monitor_level(chip, audio+1, val[1], 633 chip->audio_monitor_active[audio+1]); 634 mutex_unlock(&chip->mixer_mutex); 635 return 1; 636 } 637 mutex_unlock(&chip->mixer_mutex); 638 return 0; 639} 640 641#define vx_audio_sw_info snd_ctl_boolean_stereo_info 642 643static int vx_audio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 644{ 645 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 646 int audio = kcontrol->private_value & 0xff; 647 648 mutex_lock(&chip->mixer_mutex); 649 ucontrol->value.integer.value[0] = chip->audio_active[audio]; 650 ucontrol->value.integer.value[1] = chip->audio_active[audio+1]; 651 mutex_unlock(&chip->mixer_mutex); 652 return 0; 653} 654 655static int vx_audio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 656{ 657 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 658 int audio = kcontrol->private_value & 0xff; 659 660 mutex_lock(&chip->mixer_mutex); 661 if (ucontrol->value.integer.value[0] != chip->audio_active[audio] || 662 ucontrol->value.integer.value[1] != chip->audio_active[audio+1]) { 663 vx_set_audio_switch(chip, audio, 664 !!ucontrol->value.integer.value[0]); 665 vx_set_audio_switch(chip, audio+1, 666 !!ucontrol->value.integer.value[1]); 667 mutex_unlock(&chip->mixer_mutex); 668 return 1; 669 } 670 mutex_unlock(&chip->mixer_mutex); 671 return 0; 672} 673 674static int vx_monitor_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 675{ 676 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 677 int audio = kcontrol->private_value & 0xff; 678 679 mutex_lock(&chip->mixer_mutex); 680 ucontrol->value.integer.value[0] = chip->audio_monitor_active[audio]; 681 ucontrol->value.integer.value[1] = chip->audio_monitor_active[audio+1]; 682 mutex_unlock(&chip->mixer_mutex); 683 return 0; 684} 685 686static int vx_monitor_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 687{ 688 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 689 int audio = kcontrol->private_value & 0xff; 690 691 mutex_lock(&chip->mixer_mutex); 692 if (ucontrol->value.integer.value[0] != chip->audio_monitor_active[audio] || 693 ucontrol->value.integer.value[1] != chip->audio_monitor_active[audio+1]) { 694 vx_set_monitor_level(chip, audio, chip->audio_monitor[audio], 695 !!ucontrol->value.integer.value[0]); 696 vx_set_monitor_level(chip, audio+1, chip->audio_monitor[audio+1], 697 !!ucontrol->value.integer.value[1]); 698 mutex_unlock(&chip->mixer_mutex); 699 return 1; 700 } 701 mutex_unlock(&chip->mixer_mutex); 702 return 0; 703} 704 705static const DECLARE_TLV_DB_SCALE(db_scale_audio_gain, -10975, 25, 0); 706 707static const struct snd_kcontrol_new vx_control_audio_gain = { 708 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 709 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | 710 SNDRV_CTL_ELEM_ACCESS_TLV_READ), 711 /* name will be filled later */ 712 .info = vx_audio_gain_info, 713 .get = vx_audio_gain_get, 714 .put = vx_audio_gain_put, 715 .tlv = { .p = db_scale_audio_gain }, 716}; 717static const struct snd_kcontrol_new vx_control_output_switch = { 718 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 719 .name = "PCM Playback Switch", 720 .info = vx_audio_sw_info, 721 .get = vx_audio_sw_get, 722 .put = vx_audio_sw_put 723}; 724static const struct snd_kcontrol_new vx_control_monitor_gain = { 725 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 726 .name = "Monitoring Volume", 727 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | 728 SNDRV_CTL_ELEM_ACCESS_TLV_READ), 729 .info = vx_audio_gain_info, /* shared */ 730 .get = vx_audio_monitor_get, 731 .put = vx_audio_monitor_put, 732 .tlv = { .p = db_scale_audio_gain }, 733}; 734static const struct snd_kcontrol_new vx_control_monitor_switch = { 735 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 736 .name = "Monitoring Switch", 737 .info = vx_audio_sw_info, /* shared */ 738 .get = vx_monitor_sw_get, 739 .put = vx_monitor_sw_put 740}; 741 742 743/* 744 * IEC958 status bits 745 */ 746static int vx_iec958_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 747{ 748 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 749 uinfo->count = 1; 750 return 0; 751} 752 753static int vx_iec958_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 754{ 755 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 756 757 mutex_lock(&chip->mixer_mutex); 758 ucontrol->value.iec958.status[0] = (chip->uer_bits >> 0) & 0xff; 759 ucontrol->value.iec958.status[1] = (chip->uer_bits >> 8) & 0xff; 760 ucontrol->value.iec958.status[2] = (chip->uer_bits >> 16) & 0xff; 761 ucontrol->value.iec958.status[3] = (chip->uer_bits >> 24) & 0xff; 762 mutex_unlock(&chip->mixer_mutex); 763 return 0; 764} 765 766static int vx_iec958_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 767{ 768 ucontrol->value.iec958.status[0] = 0xff; 769 ucontrol->value.iec958.status[1] = 0xff; 770 ucontrol->value.iec958.status[2] = 0xff; 771 ucontrol->value.iec958.status[3] = 0xff; 772 return 0; 773} 774 775static int vx_iec958_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 776{ 777 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 778 unsigned int val; 779 780 val = (ucontrol->value.iec958.status[0] << 0) | 781 (ucontrol->value.iec958.status[1] << 8) | 782 (ucontrol->value.iec958.status[2] << 16) | 783 (ucontrol->value.iec958.status[3] << 24); 784 mutex_lock(&chip->mixer_mutex); 785 if (chip->uer_bits != val) { 786 chip->uer_bits = val; 787 vx_set_iec958_status(chip, val); 788 mutex_unlock(&chip->mixer_mutex); 789 return 1; 790 } 791 mutex_unlock(&chip->mixer_mutex); 792 return 0; 793} 794 795static const struct snd_kcontrol_new vx_control_iec958_mask = { 796 .access = SNDRV_CTL_ELEM_ACCESS_READ, 797 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 798 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK), 799 .info = vx_iec958_info, /* shared */ 800 .get = vx_iec958_mask_get, 801}; 802 803static const struct snd_kcontrol_new vx_control_iec958 = { 804 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 805 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 806 .info = vx_iec958_info, 807 .get = vx_iec958_get, 808 .put = vx_iec958_put 809}; 810 811 812/* 813 * VU meter 814 */ 815 816#define METER_MAX 0xff 817#define METER_SHIFT 16 818 819static int vx_vu_meter_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 820{ 821 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 822 uinfo->count = 2; 823 uinfo->value.integer.min = 0; 824 uinfo->value.integer.max = METER_MAX; 825 return 0; 826} 827 828static int vx_vu_meter_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 829{ 830 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 831 struct vx_vu_meter meter[2]; 832 int audio = kcontrol->private_value & 0xff; 833 int capture = (kcontrol->private_value >> 8) & 1; 834 835 vx_get_audio_vu_meter(chip, audio, capture, meter); 836 ucontrol->value.integer.value[0] = meter[0].vu_level >> METER_SHIFT; 837 ucontrol->value.integer.value[1] = meter[1].vu_level >> METER_SHIFT; 838 return 0; 839} 840 841static int vx_peak_meter_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 842{ 843 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 844 struct vx_vu_meter meter[2]; 845 int audio = kcontrol->private_value & 0xff; 846 int capture = (kcontrol->private_value >> 8) & 1; 847 848 vx_get_audio_vu_meter(chip, audio, capture, meter); 849 ucontrol->value.integer.value[0] = meter[0].peak_level >> METER_SHIFT; 850 ucontrol->value.integer.value[1] = meter[1].peak_level >> METER_SHIFT; 851 return 0; 852} 853 854#define vx_saturation_info snd_ctl_boolean_stereo_info 855 856static int vx_saturation_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 857{ 858 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 859 struct vx_vu_meter meter[2]; 860 int audio = kcontrol->private_value & 0xff; 861 862 vx_get_audio_vu_meter(chip, audio, 1, meter); /* capture only */ 863 ucontrol->value.integer.value[0] = meter[0].saturated; 864 ucontrol->value.integer.value[1] = meter[1].saturated; 865 return 0; 866} 867 868static const struct snd_kcontrol_new vx_control_vu_meter = { 869 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 870 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 871 /* name will be filled later */ 872 .info = vx_vu_meter_info, 873 .get = vx_vu_meter_get, 874}; 875 876static const struct snd_kcontrol_new vx_control_peak_meter = { 877 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 878 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 879 /* name will be filled later */ 880 .info = vx_vu_meter_info, /* shared */ 881 .get = vx_peak_meter_get, 882}; 883 884static const struct snd_kcontrol_new vx_control_saturation = { 885 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 886 .name = "Input Saturation", 887 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 888 .info = vx_saturation_info, 889 .get = vx_saturation_get, 890}; 891 892 893 894/* 895 * 896 */ 897 898int snd_vx_mixer_new(struct vx_core *chip) 899{ 900 unsigned int i, c; 901 int err; 902 struct snd_kcontrol_new temp; 903 struct snd_card *card = chip->card; 904 char name[32]; 905 906 strcpy(card->mixername, card->driver); 907 908 /* output level controls */ 909 for (i = 0; i < chip->hw->num_outs; i++) { 910 temp = vx_control_output_level; 911 temp.index = i; 912 temp.tlv.p = chip->hw->output_level_db_scale; 913 err = snd_ctl_add(card, snd_ctl_new1(&temp, chip)); 914 if (err < 0) 915 return err; 916 } 917 918 /* PCM volumes, switches, monitoring */ 919 for (i = 0; i < chip->hw->num_outs; i++) { 920 int val = i * 2; 921 temp = vx_control_audio_gain; 922 temp.index = i; 923 temp.name = "PCM Playback Volume"; 924 temp.private_value = val; 925 err = snd_ctl_add(card, snd_ctl_new1(&temp, chip)); 926 if (err < 0) 927 return err; 928 temp = vx_control_output_switch; 929 temp.index = i; 930 temp.private_value = val; 931 err = snd_ctl_add(card, snd_ctl_new1(&temp, chip)); 932 if (err < 0) 933 return err; 934 temp = vx_control_monitor_gain; 935 temp.index = i; 936 temp.private_value = val; 937 err = snd_ctl_add(card, snd_ctl_new1(&temp, chip)); 938 if (err < 0) 939 return err; 940 temp = vx_control_monitor_switch; 941 temp.index = i; 942 temp.private_value = val; 943 err = snd_ctl_add(card, snd_ctl_new1(&temp, chip)); 944 if (err < 0) 945 return err; 946 } 947 for (i = 0; i < chip->hw->num_outs; i++) { 948 temp = vx_control_audio_gain; 949 temp.index = i; 950 temp.name = "PCM Capture Volume"; 951 temp.private_value = (i * 2) | (1 << 8); 952 err = snd_ctl_add(card, snd_ctl_new1(&temp, chip)); 953 if (err < 0) 954 return err; 955 } 956 957 /* Audio source */ 958 err = snd_ctl_add(card, snd_ctl_new1(&vx_control_audio_src, chip)); 959 if (err < 0) 960 return err; 961 /* clock mode */ 962 err = snd_ctl_add(card, snd_ctl_new1(&vx_control_clock_mode, chip)); 963 if (err < 0) 964 return err; 965 /* IEC958 controls */ 966 err = snd_ctl_add(card, snd_ctl_new1(&vx_control_iec958_mask, chip)); 967 if (err < 0) 968 return err; 969 err = snd_ctl_add(card, snd_ctl_new1(&vx_control_iec958, chip)); 970 if (err < 0) 971 return err; 972 /* VU, peak, saturation meters */ 973 for (c = 0; c < 2; c++) { 974 static const char * const dir[2] = { "Output", "Input" }; 975 for (i = 0; i < chip->hw->num_ins; i++) { 976 int val = (i * 2) | (c << 8); 977 if (c == 1) { 978 temp = vx_control_saturation; 979 temp.index = i; 980 temp.private_value = val; 981 err = snd_ctl_add(card, snd_ctl_new1(&temp, chip)); 982 if (err < 0) 983 return err; 984 } 985 sprintf(name, "%s VU Meter", dir[c]); 986 temp = vx_control_vu_meter; 987 temp.index = i; 988 temp.name = name; 989 temp.private_value = val; 990 err = snd_ctl_add(card, snd_ctl_new1(&temp, chip)); 991 if (err < 0) 992 return err; 993 sprintf(name, "%s Peak Meter", dir[c]); 994 temp = vx_control_peak_meter; 995 temp.index = i; 996 temp.name = name; 997 temp.private_value = val; 998 err = snd_ctl_add(card, snd_ctl_new1(&temp, chip)); 999 if (err < 0) 1000 return err; 1001 } 1002 } 1003 vx_reset_audio_levels(chip); 1004 return 0; 1005}