amdtp-stream.c (57604B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams 4 * with Common Isochronous Packet (IEC 61883-1) headers 5 * 6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de> 7 */ 8 9#include <linux/device.h> 10#include <linux/err.h> 11#include <linux/firewire.h> 12#include <linux/firewire-constants.h> 13#include <linux/module.h> 14#include <linux/slab.h> 15#include <sound/pcm.h> 16#include <sound/pcm_params.h> 17#include "amdtp-stream.h" 18 19#define TICKS_PER_CYCLE 3072 20#define CYCLES_PER_SECOND 8000 21#define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND) 22 23#define OHCI_SECOND_MODULUS 8 24 25/* Always support Linux tracing subsystem. */ 26#define CREATE_TRACE_POINTS 27#include "amdtp-stream-trace.h" 28 29#define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */ 30 31/* isochronous header parameters */ 32#define ISO_DATA_LENGTH_SHIFT 16 33#define TAG_NO_CIP_HEADER 0 34#define TAG_CIP 1 35 36// Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported. 37#define CIP_HEADER_QUADLETS 2 38#define CIP_EOH_SHIFT 31 39#define CIP_EOH (1u << CIP_EOH_SHIFT) 40#define CIP_EOH_MASK 0x80000000 41#define CIP_SID_SHIFT 24 42#define CIP_SID_MASK 0x3f000000 43#define CIP_DBS_MASK 0x00ff0000 44#define CIP_DBS_SHIFT 16 45#define CIP_SPH_MASK 0x00000400 46#define CIP_SPH_SHIFT 10 47#define CIP_DBC_MASK 0x000000ff 48#define CIP_FMT_SHIFT 24 49#define CIP_FMT_MASK 0x3f000000 50#define CIP_FDF_MASK 0x00ff0000 51#define CIP_FDF_SHIFT 16 52#define CIP_FDF_NO_DATA 0xff 53#define CIP_SYT_MASK 0x0000ffff 54#define CIP_SYT_NO_INFO 0xffff 55#define CIP_SYT_CYCLE_MODULUS 16 56#define CIP_NO_DATA ((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO) 57 58#define CIP_HEADER_SIZE (sizeof(__be32) * CIP_HEADER_QUADLETS) 59 60/* Audio and Music transfer protocol specific parameters */ 61#define CIP_FMT_AM 0x10 62#define AMDTP_FDF_NO_DATA 0xff 63 64// For iso header and tstamp. 65#define IR_CTX_HEADER_DEFAULT_QUADLETS 2 66// Add nothing. 67#define IR_CTX_HEADER_SIZE_NO_CIP (sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS) 68// Add two quadlets CIP header. 69#define IR_CTX_HEADER_SIZE_CIP (IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE) 70#define HEADER_TSTAMP_MASK 0x0000ffff 71 72#define IT_PKT_HEADER_SIZE_CIP CIP_HEADER_SIZE 73#define IT_PKT_HEADER_SIZE_NO_CIP 0 // Nothing. 74 75// The initial firmware of OXFW970 can postpone transmission of packet during finishing 76// asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer 77// overrun. Actual device can skip more, then this module stops the packet streaming. 78#define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES 5 79 80/** 81 * amdtp_stream_init - initialize an AMDTP stream structure 82 * @s: the AMDTP stream to initialize 83 * @unit: the target of the stream 84 * @dir: the direction of stream 85 * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants. 86 * @fmt: the value of fmt field in CIP header 87 * @process_ctx_payloads: callback handler to process payloads of isoc context 88 * @protocol_size: the size to allocate newly for protocol 89 */ 90int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit, 91 enum amdtp_stream_direction dir, unsigned int flags, 92 unsigned int fmt, 93 amdtp_stream_process_ctx_payloads_t process_ctx_payloads, 94 unsigned int protocol_size) 95{ 96 if (process_ctx_payloads == NULL) 97 return -EINVAL; 98 99 s->protocol = kzalloc(protocol_size, GFP_KERNEL); 100 if (!s->protocol) 101 return -ENOMEM; 102 103 s->unit = unit; 104 s->direction = dir; 105 s->flags = flags; 106 s->context = ERR_PTR(-1); 107 mutex_init(&s->mutex); 108 s->packet_index = 0; 109 110 init_waitqueue_head(&s->ready_wait); 111 112 s->fmt = fmt; 113 s->process_ctx_payloads = process_ctx_payloads; 114 115 return 0; 116} 117EXPORT_SYMBOL(amdtp_stream_init); 118 119/** 120 * amdtp_stream_destroy - free stream resources 121 * @s: the AMDTP stream to destroy 122 */ 123void amdtp_stream_destroy(struct amdtp_stream *s) 124{ 125 /* Not initialized. */ 126 if (s->protocol == NULL) 127 return; 128 129 WARN_ON(amdtp_stream_running(s)); 130 kfree(s->protocol); 131 mutex_destroy(&s->mutex); 132} 133EXPORT_SYMBOL(amdtp_stream_destroy); 134 135const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = { 136 [CIP_SFC_32000] = 8, 137 [CIP_SFC_44100] = 8, 138 [CIP_SFC_48000] = 8, 139 [CIP_SFC_88200] = 16, 140 [CIP_SFC_96000] = 16, 141 [CIP_SFC_176400] = 32, 142 [CIP_SFC_192000] = 32, 143}; 144EXPORT_SYMBOL(amdtp_syt_intervals); 145 146const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = { 147 [CIP_SFC_32000] = 32000, 148 [CIP_SFC_44100] = 44100, 149 [CIP_SFC_48000] = 48000, 150 [CIP_SFC_88200] = 88200, 151 [CIP_SFC_96000] = 96000, 152 [CIP_SFC_176400] = 176400, 153 [CIP_SFC_192000] = 192000, 154}; 155EXPORT_SYMBOL(amdtp_rate_table); 156 157static int apply_constraint_to_size(struct snd_pcm_hw_params *params, 158 struct snd_pcm_hw_rule *rule) 159{ 160 struct snd_interval *s = hw_param_interval(params, rule->var); 161 const struct snd_interval *r = 162 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); 163 struct snd_interval t = {0}; 164 unsigned int step = 0; 165 int i; 166 167 for (i = 0; i < CIP_SFC_COUNT; ++i) { 168 if (snd_interval_test(r, amdtp_rate_table[i])) 169 step = max(step, amdtp_syt_intervals[i]); 170 } 171 172 t.min = roundup(s->min, step); 173 t.max = rounddown(s->max, step); 174 t.integer = 1; 175 176 return snd_interval_refine(s, &t); 177} 178 179/** 180 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream 181 * @s: the AMDTP stream, which must be initialized. 182 * @runtime: the PCM substream runtime 183 */ 184int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s, 185 struct snd_pcm_runtime *runtime) 186{ 187 struct snd_pcm_hardware *hw = &runtime->hw; 188 unsigned int ctx_header_size; 189 unsigned int maximum_usec_per_period; 190 int err; 191 192 hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER | 193 SNDRV_PCM_INFO_INTERLEAVED | 194 SNDRV_PCM_INFO_JOINT_DUPLEX | 195 SNDRV_PCM_INFO_MMAP | 196 SNDRV_PCM_INFO_MMAP_VALID | 197 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP; 198 199 hw->periods_min = 2; 200 hw->periods_max = UINT_MAX; 201 202 /* bytes for a frame */ 203 hw->period_bytes_min = 4 * hw->channels_max; 204 205 /* Just to prevent from allocating much pages. */ 206 hw->period_bytes_max = hw->period_bytes_min * 2048; 207 hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min; 208 209 // Linux driver for 1394 OHCI controller voluntarily flushes isoc 210 // context when total size of accumulated context header reaches 211 // PAGE_SIZE. This kicks work for the isoc context and brings 212 // callback in the middle of scheduled interrupts. 213 // Although AMDTP streams in the same domain use the same events per 214 // IRQ, use the largest size of context header between IT/IR contexts. 215 // Here, use the value of context header in IR context is for both 216 // contexts. 217 if (!(s->flags & CIP_NO_HEADER)) 218 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 219 else 220 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 221 maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE / 222 CYCLES_PER_SECOND / ctx_header_size; 223 224 // In IEC 61883-6, one isoc packet can transfer events up to the value 225 // of syt interval. This comes from the interval of isoc cycle. As 1394 226 // OHCI controller can generate hardware IRQ per isoc packet, the 227 // interval is 125 usec. 228 // However, there are two ways of transmission in IEC 61883-6; blocking 229 // and non-blocking modes. In blocking mode, the sequence of isoc packet 230 // includes 'empty' or 'NODATA' packets which include no event. In 231 // non-blocking mode, the number of events per packet is variable up to 232 // the syt interval. 233 // Due to the above protocol design, the minimum PCM frames per 234 // interrupt should be double of the value of syt interval, thus it is 235 // 250 usec. 236 err = snd_pcm_hw_constraint_minmax(runtime, 237 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 238 250, maximum_usec_per_period); 239 if (err < 0) 240 goto end; 241 242 /* Non-Blocking stream has no more constraints */ 243 if (!(s->flags & CIP_BLOCKING)) 244 goto end; 245 246 /* 247 * One AMDTP packet can include some frames. In blocking mode, the 248 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32, 249 * depending on its sampling rate. For accurate period interrupt, it's 250 * preferrable to align period/buffer sizes to current SYT_INTERVAL. 251 */ 252 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 253 apply_constraint_to_size, NULL, 254 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 255 SNDRV_PCM_HW_PARAM_RATE, -1); 256 if (err < 0) 257 goto end; 258 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 259 apply_constraint_to_size, NULL, 260 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 261 SNDRV_PCM_HW_PARAM_RATE, -1); 262 if (err < 0) 263 goto end; 264end: 265 return err; 266} 267EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints); 268 269/** 270 * amdtp_stream_set_parameters - set stream parameters 271 * @s: the AMDTP stream to configure 272 * @rate: the sample rate 273 * @data_block_quadlets: the size of a data block in quadlet unit 274 * 275 * The parameters must be set before the stream is started, and must not be 276 * changed while the stream is running. 277 */ 278int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate, 279 unsigned int data_block_quadlets) 280{ 281 unsigned int sfc; 282 283 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) { 284 if (amdtp_rate_table[sfc] == rate) 285 break; 286 } 287 if (sfc == ARRAY_SIZE(amdtp_rate_table)) 288 return -EINVAL; 289 290 s->sfc = sfc; 291 s->data_block_quadlets = data_block_quadlets; 292 s->syt_interval = amdtp_syt_intervals[sfc]; 293 294 // default buffering in the device. 295 s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE; 296 297 // additional buffering needed to adjust for no-data packets. 298 if (s->flags & CIP_BLOCKING) 299 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate; 300 301 return 0; 302} 303EXPORT_SYMBOL(amdtp_stream_set_parameters); 304 305// The CIP header is processed in context header apart from context payload. 306static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s) 307{ 308 unsigned int multiplier; 309 310 if (s->flags & CIP_JUMBO_PAYLOAD) 311 multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES; 312 else 313 multiplier = 1; 314 315 return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier; 316} 317 318/** 319 * amdtp_stream_get_max_payload - get the stream's packet size 320 * @s: the AMDTP stream 321 * 322 * This function must not be called before the stream has been configured 323 * with amdtp_stream_set_parameters(). 324 */ 325unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s) 326{ 327 unsigned int cip_header_size; 328 329 if (!(s->flags & CIP_NO_HEADER)) 330 cip_header_size = CIP_HEADER_SIZE; 331 else 332 cip_header_size = 0; 333 334 return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s); 335} 336EXPORT_SYMBOL(amdtp_stream_get_max_payload); 337 338/** 339 * amdtp_stream_pcm_prepare - prepare PCM device for running 340 * @s: the AMDTP stream 341 * 342 * This function should be called from the PCM device's .prepare callback. 343 */ 344void amdtp_stream_pcm_prepare(struct amdtp_stream *s) 345{ 346 s->pcm_buffer_pointer = 0; 347 s->pcm_period_pointer = 0; 348} 349EXPORT_SYMBOL(amdtp_stream_pcm_prepare); 350 351static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, 352 const unsigned int seq_size, unsigned int seq_tail, 353 unsigned int count) 354{ 355 const unsigned int syt_interval = s->syt_interval; 356 int i; 357 358 for (i = 0; i < count; ++i) { 359 struct seq_desc *desc = descs + seq_tail; 360 361 if (desc->syt_offset != CIP_SYT_NO_INFO) 362 desc->data_blocks = syt_interval; 363 else 364 desc->data_blocks = 0; 365 366 seq_tail = (seq_tail + 1) % seq_size; 367 } 368} 369 370static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, 371 const unsigned int seq_size, unsigned int seq_tail, 372 unsigned int count) 373{ 374 const enum cip_sfc sfc = s->sfc; 375 unsigned int state = s->ctx_data.rx.data_block_state; 376 int i; 377 378 for (i = 0; i < count; ++i) { 379 struct seq_desc *desc = descs + seq_tail; 380 381 if (!cip_sfc_is_base_44100(sfc)) { 382 // Sample_rate / 8000 is an integer, and precomputed. 383 desc->data_blocks = state; 384 } else { 385 unsigned int phase = state; 386 387 /* 388 * This calculates the number of data blocks per packet so that 389 * 1) the overall rate is correct and exactly synchronized to 390 * the bus clock, and 391 * 2) packets with a rounded-up number of blocks occur as early 392 * as possible in the sequence (to prevent underruns of the 393 * device's buffer). 394 */ 395 if (sfc == CIP_SFC_44100) 396 /* 6 6 5 6 5 6 5 ... */ 397 desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40)); 398 else 399 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */ 400 desc->data_blocks = 11 * (sfc >> 1) + (phase == 0); 401 if (++phase >= (80 >> (sfc >> 1))) 402 phase = 0; 403 state = phase; 404 } 405 406 seq_tail = (seq_tail + 1) % seq_size; 407 } 408 409 s->ctx_data.rx.data_block_state = state; 410} 411 412static unsigned int calculate_syt_offset(unsigned int *last_syt_offset, 413 unsigned int *syt_offset_state, enum cip_sfc sfc) 414{ 415 unsigned int syt_offset; 416 417 if (*last_syt_offset < TICKS_PER_CYCLE) { 418 if (!cip_sfc_is_base_44100(sfc)) 419 syt_offset = *last_syt_offset + *syt_offset_state; 420 else { 421 /* 422 * The time, in ticks, of the n'th SYT_INTERVAL sample is: 423 * n * SYT_INTERVAL * 24576000 / sample_rate 424 * Modulo TICKS_PER_CYCLE, the difference between successive 425 * elements is about 1386.23. Rounding the results of this 426 * formula to the SYT precision results in a sequence of 427 * differences that begins with: 428 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ... 429 * This code generates _exactly_ the same sequence. 430 */ 431 unsigned int phase = *syt_offset_state; 432 unsigned int index = phase % 13; 433 434 syt_offset = *last_syt_offset; 435 syt_offset += 1386 + ((index && !(index & 3)) || 436 phase == 146); 437 if (++phase >= 147) 438 phase = 0; 439 *syt_offset_state = phase; 440 } 441 } else 442 syt_offset = *last_syt_offset - TICKS_PER_CYCLE; 443 *last_syt_offset = syt_offset; 444 445 if (syt_offset >= TICKS_PER_CYCLE) 446 syt_offset = CIP_SYT_NO_INFO; 447 448 return syt_offset; 449} 450 451static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs, 452 const unsigned int seq_size, unsigned int seq_tail, 453 unsigned int count) 454{ 455 const enum cip_sfc sfc = s->sfc; 456 unsigned int last = s->ctx_data.rx.last_syt_offset; 457 unsigned int state = s->ctx_data.rx.syt_offset_state; 458 int i; 459 460 for (i = 0; i < count; ++i) { 461 struct seq_desc *desc = descs + seq_tail; 462 463 desc->syt_offset = calculate_syt_offset(&last, &state, sfc); 464 465 seq_tail = (seq_tail + 1) % seq_size; 466 } 467 468 s->ctx_data.rx.last_syt_offset = last; 469 s->ctx_data.rx.syt_offset_state = state; 470} 471 472static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle, 473 unsigned int transfer_delay) 474{ 475 unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f; 476 unsigned int syt_cycle_lo = (syt & 0xf000) >> 12; 477 unsigned int syt_offset; 478 479 // Round up. 480 if (syt_cycle_lo < cycle_lo) 481 syt_cycle_lo += CIP_SYT_CYCLE_MODULUS; 482 syt_cycle_lo -= cycle_lo; 483 484 // Subtract transfer delay so that the synchronization offset is not so large 485 // at transmission. 486 syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff); 487 if (syt_offset < transfer_delay) 488 syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE; 489 490 return syt_offset - transfer_delay; 491} 492 493// Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus. 494// Additionally, the sequence of tx packets is severely checked against any discontinuity 495// before filling entries in the queue. The calculation is safe even if it looks fragile by 496// overrun. 497static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head) 498{ 499 const unsigned int cache_size = s->ctx_data.tx.cache.size; 500 unsigned int cycles = s->ctx_data.tx.cache.tail; 501 502 if (cycles < head) 503 cycles += cache_size; 504 cycles -= head; 505 506 return cycles; 507} 508 509static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *descs, unsigned int desc_count) 510{ 511 const unsigned int transfer_delay = s->transfer_delay; 512 const unsigned int cache_size = s->ctx_data.tx.cache.size; 513 struct seq_desc *cache = s->ctx_data.tx.cache.descs; 514 unsigned int cache_tail = s->ctx_data.tx.cache.tail; 515 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); 516 int i; 517 518 for (i = 0; i < desc_count; ++i) { 519 struct seq_desc *dst = cache + cache_tail; 520 const struct pkt_desc *src = descs + i; 521 522 if (aware_syt && src->syt != CIP_SYT_NO_INFO) 523 dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay); 524 else 525 dst->syt_offset = CIP_SYT_NO_INFO; 526 dst->data_blocks = src->data_blocks; 527 528 cache_tail = (cache_tail + 1) % cache_size; 529 } 530 531 s->ctx_data.tx.cache.tail = cache_tail; 532} 533 534static void pool_ideal_seq_descs(struct amdtp_stream *s, unsigned int count) 535{ 536 struct seq_desc *descs = s->ctx_data.rx.seq.descs; 537 unsigned int seq_tail = s->ctx_data.rx.seq.tail; 538 const unsigned int seq_size = s->ctx_data.rx.seq.size; 539 540 pool_ideal_syt_offsets(s, descs, seq_size, seq_tail, count); 541 542 if (s->flags & CIP_BLOCKING) 543 pool_blocking_data_blocks(s, descs, seq_size, seq_tail, count); 544 else 545 pool_ideal_nonblocking_data_blocks(s, descs, seq_size, seq_tail, count); 546 547 s->ctx_data.rx.seq.tail = (seq_tail + count) % seq_size; 548} 549 550static void pool_replayed_seq(struct amdtp_stream *s, unsigned int count) 551{ 552 struct amdtp_stream *target = s->ctx_data.rx.replay_target; 553 const struct seq_desc *cache = target->ctx_data.tx.cache.descs; 554 const unsigned int cache_size = target->ctx_data.tx.cache.size; 555 unsigned int cache_head = s->ctx_data.rx.cache_head; 556 struct seq_desc *descs = s->ctx_data.rx.seq.descs; 557 const unsigned int seq_size = s->ctx_data.rx.seq.size; 558 unsigned int seq_tail = s->ctx_data.rx.seq.tail; 559 int i; 560 561 for (i = 0; i < count; ++i) { 562 descs[seq_tail] = cache[cache_head]; 563 seq_tail = (seq_tail + 1) % seq_size; 564 cache_head = (cache_head + 1) % cache_size; 565 } 566 567 s->ctx_data.rx.seq.tail = seq_tail; 568 s->ctx_data.rx.cache_head = cache_head; 569} 570 571static void pool_seq_descs(struct amdtp_stream *s, unsigned int count) 572{ 573 struct amdtp_domain *d = s->domain; 574 575 if (!d->replay.enable || !s->ctx_data.rx.replay_target) { 576 pool_ideal_seq_descs(s, count); 577 } else { 578 if (!d->replay.on_the_fly) { 579 pool_replayed_seq(s, count); 580 } else { 581 struct amdtp_stream *tx = s->ctx_data.rx.replay_target; 582 const unsigned int cache_size = tx->ctx_data.tx.cache.size; 583 const unsigned int cache_head = s->ctx_data.rx.cache_head; 584 unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_head); 585 586 if (cached_cycles > count && cached_cycles > cache_size / 2) 587 pool_replayed_seq(s, count); 588 else 589 pool_ideal_seq_descs(s, count); 590 } 591 } 592} 593 594static void update_pcm_pointers(struct amdtp_stream *s, 595 struct snd_pcm_substream *pcm, 596 unsigned int frames) 597{ 598 unsigned int ptr; 599 600 ptr = s->pcm_buffer_pointer + frames; 601 if (ptr >= pcm->runtime->buffer_size) 602 ptr -= pcm->runtime->buffer_size; 603 WRITE_ONCE(s->pcm_buffer_pointer, ptr); 604 605 s->pcm_period_pointer += frames; 606 if (s->pcm_period_pointer >= pcm->runtime->period_size) { 607 s->pcm_period_pointer -= pcm->runtime->period_size; 608 609 // The program in user process should periodically check the status of intermediate 610 // buffer associated to PCM substream to process PCM frames in the buffer, instead 611 // of receiving notification of period elapsed by poll wait. 612 if (!pcm->runtime->no_period_wakeup) { 613 if (in_softirq()) { 614 // In software IRQ context for 1394 OHCI. 615 snd_pcm_period_elapsed(pcm); 616 } else { 617 // In process context of ALSA PCM application under acquired lock of 618 // PCM substream. 619 snd_pcm_period_elapsed_under_stream_lock(pcm); 620 } 621 } 622 } 623} 624 625static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params, 626 bool sched_irq) 627{ 628 int err; 629 630 params->interrupt = sched_irq; 631 params->tag = s->tag; 632 params->sy = 0; 633 634 err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer, 635 s->buffer.packets[s->packet_index].offset); 636 if (err < 0) { 637 dev_err(&s->unit->device, "queueing error: %d\n", err); 638 goto end; 639 } 640 641 if (++s->packet_index >= s->queue_size) 642 s->packet_index = 0; 643end: 644 return err; 645} 646 647static inline int queue_out_packet(struct amdtp_stream *s, 648 struct fw_iso_packet *params, bool sched_irq) 649{ 650 params->skip = 651 !!(params->header_length == 0 && params->payload_length == 0); 652 return queue_packet(s, params, sched_irq); 653} 654 655static inline int queue_in_packet(struct amdtp_stream *s, 656 struct fw_iso_packet *params) 657{ 658 // Queue one packet for IR context. 659 params->header_length = s->ctx_data.tx.ctx_header_size; 660 params->payload_length = s->ctx_data.tx.max_ctx_payload_length; 661 params->skip = false; 662 return queue_packet(s, params, false); 663} 664 665static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2], 666 unsigned int data_block_counter, unsigned int syt) 667{ 668 cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) | 669 (s->data_block_quadlets << CIP_DBS_SHIFT) | 670 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) | 671 data_block_counter); 672 cip_header[1] = cpu_to_be32(CIP_EOH | 673 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) | 674 ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) | 675 (syt & CIP_SYT_MASK)); 676} 677 678static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle, 679 struct fw_iso_packet *params, unsigned int header_length, 680 unsigned int data_blocks, 681 unsigned int data_block_counter, 682 unsigned int syt, unsigned int index) 683{ 684 unsigned int payload_length; 685 __be32 *cip_header; 686 687 payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets; 688 params->payload_length = payload_length; 689 690 if (header_length > 0) { 691 cip_header = (__be32 *)params->header; 692 generate_cip_header(s, cip_header, data_block_counter, syt); 693 params->header_length = header_length; 694 } else { 695 cip_header = NULL; 696 } 697 698 trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks, 699 data_block_counter, s->packet_index, index); 700} 701 702static int check_cip_header(struct amdtp_stream *s, const __be32 *buf, 703 unsigned int payload_length, 704 unsigned int *data_blocks, 705 unsigned int *data_block_counter, unsigned int *syt) 706{ 707 u32 cip_header[2]; 708 unsigned int sph; 709 unsigned int fmt; 710 unsigned int fdf; 711 unsigned int dbc; 712 bool lost; 713 714 cip_header[0] = be32_to_cpu(buf[0]); 715 cip_header[1] = be32_to_cpu(buf[1]); 716 717 /* 718 * This module supports 'Two-quadlet CIP header with SYT field'. 719 * For convenience, also check FMT field is AM824 or not. 720 */ 721 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) || 722 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) && 723 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) { 724 dev_info_ratelimited(&s->unit->device, 725 "Invalid CIP header for AMDTP: %08X:%08X\n", 726 cip_header[0], cip_header[1]); 727 return -EAGAIN; 728 } 729 730 /* Check valid protocol or not. */ 731 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT; 732 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT; 733 if (sph != s->sph || fmt != s->fmt) { 734 dev_info_ratelimited(&s->unit->device, 735 "Detect unexpected protocol: %08x %08x\n", 736 cip_header[0], cip_header[1]); 737 return -EAGAIN; 738 } 739 740 /* Calculate data blocks */ 741 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT; 742 if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) { 743 *data_blocks = 0; 744 } else { 745 unsigned int data_block_quadlets = 746 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT; 747 /* avoid division by zero */ 748 if (data_block_quadlets == 0) { 749 dev_err(&s->unit->device, 750 "Detect invalid value in dbs field: %08X\n", 751 cip_header[0]); 752 return -EPROTO; 753 } 754 if (s->flags & CIP_WRONG_DBS) 755 data_block_quadlets = s->data_block_quadlets; 756 757 *data_blocks = payload_length / sizeof(__be32) / data_block_quadlets; 758 } 759 760 /* Check data block counter continuity */ 761 dbc = cip_header[0] & CIP_DBC_MASK; 762 if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) && 763 *data_block_counter != UINT_MAX) 764 dbc = *data_block_counter; 765 766 if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) || 767 *data_block_counter == UINT_MAX) { 768 lost = false; 769 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) { 770 lost = dbc != *data_block_counter; 771 } else { 772 unsigned int dbc_interval; 773 774 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0) 775 dbc_interval = s->ctx_data.tx.dbc_interval; 776 else 777 dbc_interval = *data_blocks; 778 779 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff); 780 } 781 782 if (lost) { 783 dev_err(&s->unit->device, 784 "Detect discontinuity of CIP: %02X %02X\n", 785 *data_block_counter, dbc); 786 return -EIO; 787 } 788 789 *data_block_counter = dbc; 790 791 if (!(s->flags & CIP_UNAWARE_SYT)) 792 *syt = cip_header[1] & CIP_SYT_MASK; 793 794 return 0; 795} 796 797static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle, 798 const __be32 *ctx_header, 799 unsigned int *data_blocks, 800 unsigned int *data_block_counter, 801 unsigned int *syt, unsigned int packet_index, unsigned int index) 802{ 803 unsigned int payload_length; 804 const __be32 *cip_header; 805 unsigned int cip_header_size; 806 807 payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT; 808 809 if (!(s->flags & CIP_NO_HEADER)) 810 cip_header_size = CIP_HEADER_SIZE; 811 else 812 cip_header_size = 0; 813 814 if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) { 815 dev_err(&s->unit->device, 816 "Detect jumbo payload: %04x %04x\n", 817 payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length); 818 return -EIO; 819 } 820 821 if (cip_header_size > 0) { 822 if (payload_length >= cip_header_size) { 823 int err; 824 825 cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; 826 err = check_cip_header(s, cip_header, payload_length - cip_header_size, 827 data_blocks, data_block_counter, syt); 828 if (err < 0) 829 return err; 830 } else { 831 // Handle the cycle so that empty packet arrives. 832 cip_header = NULL; 833 *data_blocks = 0; 834 *syt = 0; 835 } 836 } else { 837 cip_header = NULL; 838 *data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets; 839 *syt = 0; 840 841 if (*data_block_counter == UINT_MAX) 842 *data_block_counter = 0; 843 } 844 845 trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks, 846 *data_block_counter, packet_index, index); 847 848 return 0; 849} 850 851// In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On 852// the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent 853// it. Thus, via Linux firewire subsystem, we can get the 3 bits for second. 854static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp) 855{ 856 u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK; 857 return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff); 858} 859 860static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend) 861{ 862 cycle += addend; 863 if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND) 864 cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND; 865 return cycle; 866} 867 868static int compare_ohci_cycle_count(u32 lval, u32 rval) 869{ 870 if (lval == rval) 871 return 0; 872 else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2) 873 return -1; 874 else 875 return 1; 876} 877 878// Align to actual cycle count for the packet which is going to be scheduled. 879// This module queued the same number of isochronous cycle as the size of queue 880// to kip isochronous cycle, therefore it's OK to just increment the cycle by 881// the size of queue for scheduled cycle. 882static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp, 883 unsigned int queue_size) 884{ 885 u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp); 886 return increment_ohci_cycle_count(cycle, queue_size); 887} 888 889static int generate_device_pkt_descs(struct amdtp_stream *s, 890 struct pkt_desc *descs, 891 const __be32 *ctx_header, 892 unsigned int packets, 893 unsigned int *desc_count) 894{ 895 unsigned int next_cycle = s->next_cycle; 896 unsigned int dbc = s->data_block_counter; 897 unsigned int packet_index = s->packet_index; 898 unsigned int queue_size = s->queue_size; 899 int i; 900 int err; 901 902 *desc_count = 0; 903 for (i = 0; i < packets; ++i) { 904 struct pkt_desc *desc = descs + *desc_count; 905 unsigned int cycle; 906 bool lost; 907 unsigned int data_blocks; 908 unsigned int syt; 909 910 cycle = compute_ohci_cycle_count(ctx_header[1]); 911 lost = (next_cycle != cycle); 912 if (lost) { 913 if (s->flags & CIP_NO_HEADER) { 914 // Fireface skips transmission just for an isoc cycle corresponding 915 // to empty packet. 916 unsigned int prev_cycle = next_cycle; 917 918 next_cycle = increment_ohci_cycle_count(next_cycle, 1); 919 lost = (next_cycle != cycle); 920 if (!lost) { 921 // Prepare a description for the skipped cycle for 922 // sequence replay. 923 desc->cycle = prev_cycle; 924 desc->syt = 0; 925 desc->data_blocks = 0; 926 desc->data_block_counter = dbc; 927 desc->ctx_payload = NULL; 928 ++desc; 929 ++(*desc_count); 930 } 931 } else if (s->flags & CIP_JUMBO_PAYLOAD) { 932 // OXFW970 skips transmission for several isoc cycles during 933 // asynchronous transaction. The sequence replay is impossible due 934 // to the reason. 935 unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle, 936 IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES); 937 lost = (compare_ohci_cycle_count(safe_cycle, cycle) > 0); 938 } 939 if (lost) { 940 dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n", 941 next_cycle, cycle); 942 return -EIO; 943 } 944 } 945 946 err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt, 947 packet_index, i); 948 if (err < 0) 949 return err; 950 951 desc->cycle = cycle; 952 desc->syt = syt; 953 desc->data_blocks = data_blocks; 954 desc->data_block_counter = dbc; 955 desc->ctx_payload = s->buffer.packets[packet_index].buffer; 956 957 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 958 dbc = (dbc + desc->data_blocks) & 0xff; 959 960 next_cycle = increment_ohci_cycle_count(next_cycle, 1); 961 ++(*desc_count); 962 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 963 packet_index = (packet_index + 1) % queue_size; 964 } 965 966 s->next_cycle = next_cycle; 967 s->data_block_counter = dbc; 968 969 return 0; 970} 971 972static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle, 973 unsigned int transfer_delay) 974{ 975 unsigned int syt; 976 977 syt_offset += transfer_delay; 978 syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) | 979 (syt_offset % TICKS_PER_CYCLE); 980 return syt & CIP_SYT_MASK; 981} 982 983static void generate_pkt_descs(struct amdtp_stream *s, const __be32 *ctx_header, unsigned int packets) 984{ 985 struct pkt_desc *descs = s->pkt_descs; 986 const struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs; 987 const unsigned int seq_size = s->ctx_data.rx.seq.size; 988 unsigned int dbc = s->data_block_counter; 989 unsigned int seq_head = s->ctx_data.rx.seq.head; 990 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); 991 int i; 992 993 for (i = 0; i < packets; ++i) { 994 struct pkt_desc *desc = descs + i; 995 unsigned int index = (s->packet_index + i) % s->queue_size; 996 const struct seq_desc *seq = seq_descs + seq_head; 997 998 desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size); 999 1000 if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO) 1001 desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay); 1002 else 1003 desc->syt = CIP_SYT_NO_INFO; 1004 1005 desc->data_blocks = seq->data_blocks; 1006 1007 if (s->flags & CIP_DBC_IS_END_EVENT) 1008 dbc = (dbc + desc->data_blocks) & 0xff; 1009 1010 desc->data_block_counter = dbc; 1011 1012 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 1013 dbc = (dbc + desc->data_blocks) & 0xff; 1014 1015 desc->ctx_payload = s->buffer.packets[index].buffer; 1016 1017 seq_head = (seq_head + 1) % seq_size; 1018 1019 ++ctx_header; 1020 } 1021 1022 s->data_block_counter = dbc; 1023 s->ctx_data.rx.seq.head = seq_head; 1024} 1025 1026static inline void cancel_stream(struct amdtp_stream *s) 1027{ 1028 s->packet_index = -1; 1029 if (in_softirq()) 1030 amdtp_stream_pcm_abort(s); 1031 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN); 1032} 1033 1034static void process_ctx_payloads(struct amdtp_stream *s, 1035 const struct pkt_desc *descs, 1036 unsigned int packets) 1037{ 1038 struct snd_pcm_substream *pcm; 1039 unsigned int pcm_frames; 1040 1041 pcm = READ_ONCE(s->pcm); 1042 pcm_frames = s->process_ctx_payloads(s, descs, packets, pcm); 1043 if (pcm) 1044 update_pcm_pointers(s, pcm, pcm_frames); 1045} 1046 1047static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1048 void *header, void *private_data) 1049{ 1050 struct amdtp_stream *s = private_data; 1051 const struct amdtp_domain *d = s->domain; 1052 const __be32 *ctx_header = header; 1053 const unsigned int events_per_period = d->events_per_period; 1054 unsigned int event_count = s->ctx_data.rx.event_count; 1055 unsigned int pkt_header_length; 1056 unsigned int packets; 1057 bool need_hw_irq; 1058 int i; 1059 1060 if (s->packet_index < 0) 1061 return; 1062 1063 // Calculate the number of packets in buffer and check XRUN. 1064 packets = header_length / sizeof(*ctx_header); 1065 1066 pool_seq_descs(s, packets); 1067 1068 generate_pkt_descs(s, ctx_header, packets); 1069 1070 process_ctx_payloads(s, s->pkt_descs, packets); 1071 1072 if (!(s->flags & CIP_NO_HEADER)) 1073 pkt_header_length = IT_PKT_HEADER_SIZE_CIP; 1074 else 1075 pkt_header_length = 0; 1076 1077 if (s == d->irq_target) { 1078 // At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by 1079 // the tasks of user process operating ALSA PCM character device by calling ioctl(2) 1080 // with some requests, instead of scheduled hardware IRQ of an IT context. 1081 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); 1082 need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup; 1083 } else { 1084 need_hw_irq = false; 1085 } 1086 1087 for (i = 0; i < packets; ++i) { 1088 const struct pkt_desc *desc = s->pkt_descs + i; 1089 struct { 1090 struct fw_iso_packet params; 1091 __be32 header[CIP_HEADER_QUADLETS]; 1092 } template = { {0}, {0} }; 1093 bool sched_irq = false; 1094 1095 build_it_pkt_header(s, desc->cycle, &template.params, pkt_header_length, 1096 desc->data_blocks, desc->data_block_counter, 1097 desc->syt, i); 1098 1099 if (s == s->domain->irq_target) { 1100 event_count += desc->data_blocks; 1101 if (event_count >= events_per_period) { 1102 event_count -= events_per_period; 1103 sched_irq = need_hw_irq; 1104 } 1105 } 1106 1107 if (queue_out_packet(s, &template.params, sched_irq) < 0) { 1108 cancel_stream(s); 1109 return; 1110 } 1111 } 1112 1113 s->ctx_data.rx.event_count = event_count; 1114} 1115 1116static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1117 void *header, void *private_data) 1118{ 1119 struct amdtp_stream *s = private_data; 1120 struct amdtp_domain *d = s->domain; 1121 const __be32 *ctx_header = header; 1122 unsigned int packets; 1123 unsigned int cycle; 1124 int i; 1125 1126 if (s->packet_index < 0) 1127 return; 1128 1129 packets = header_length / sizeof(*ctx_header); 1130 1131 cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size); 1132 s->next_cycle = increment_ohci_cycle_count(cycle, 1); 1133 1134 for (i = 0; i < packets; ++i) { 1135 struct fw_iso_packet params = { 1136 .header_length = 0, 1137 .payload_length = 0, 1138 }; 1139 bool sched_irq = (s == d->irq_target && i == packets - 1); 1140 1141 if (queue_out_packet(s, ¶ms, sched_irq) < 0) { 1142 cancel_stream(s); 1143 return; 1144 } 1145 } 1146} 1147 1148static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1149 void *header, void *private_data); 1150 1151static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, 1152 size_t header_length, void *header, void *private_data) 1153{ 1154 struct amdtp_stream *s = private_data; 1155 struct amdtp_domain *d = s->domain; 1156 __be32 *ctx_header = header; 1157 const unsigned int queue_size = s->queue_size; 1158 unsigned int packets; 1159 unsigned int offset; 1160 1161 if (s->packet_index < 0) 1162 return; 1163 1164 packets = header_length / sizeof(*ctx_header); 1165 1166 offset = 0; 1167 while (offset < packets) { 1168 unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size); 1169 1170 if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0) 1171 break; 1172 1173 ++offset; 1174 } 1175 1176 if (offset > 0) { 1177 unsigned int length = sizeof(*ctx_header) * offset; 1178 1179 skip_rx_packets(context, tstamp, length, ctx_header, private_data); 1180 if (amdtp_streaming_error(s)) 1181 return; 1182 1183 ctx_header += offset; 1184 header_length -= length; 1185 } 1186 1187 if (offset < packets) { 1188 s->ready_processing = true; 1189 wake_up(&s->ready_wait); 1190 1191 process_rx_packets(context, tstamp, header_length, ctx_header, private_data); 1192 if (amdtp_streaming_error(s)) 1193 return; 1194 1195 if (s == d->irq_target) 1196 s->context->callback.sc = irq_target_callback; 1197 else 1198 s->context->callback.sc = process_rx_packets; 1199 } 1200} 1201 1202static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1203 void *header, void *private_data) 1204{ 1205 struct amdtp_stream *s = private_data; 1206 __be32 *ctx_header = header; 1207 unsigned int packets; 1208 unsigned int desc_count; 1209 int i; 1210 int err; 1211 1212 if (s->packet_index < 0) 1213 return; 1214 1215 // Calculate the number of packets in buffer and check XRUN. 1216 packets = header_length / s->ctx_data.tx.ctx_header_size; 1217 1218 desc_count = 0; 1219 err = generate_device_pkt_descs(s, s->pkt_descs, ctx_header, packets, &desc_count); 1220 if (err < 0) { 1221 if (err != -EAGAIN) { 1222 cancel_stream(s); 1223 return; 1224 } 1225 } else { 1226 struct amdtp_domain *d = s->domain; 1227 1228 process_ctx_payloads(s, s->pkt_descs, desc_count); 1229 1230 if (d->replay.enable) 1231 cache_seq(s, s->pkt_descs, desc_count); 1232 } 1233 1234 for (i = 0; i < packets; ++i) { 1235 struct fw_iso_packet params = {0}; 1236 1237 if (queue_in_packet(s, ¶ms) < 0) { 1238 cancel_stream(s); 1239 return; 1240 } 1241 } 1242} 1243 1244static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1245 void *header, void *private_data) 1246{ 1247 struct amdtp_stream *s = private_data; 1248 const __be32 *ctx_header = header; 1249 unsigned int packets; 1250 unsigned int cycle; 1251 int i; 1252 1253 if (s->packet_index < 0) 1254 return; 1255 1256 packets = header_length / s->ctx_data.tx.ctx_header_size; 1257 1258 ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 1259 cycle = compute_ohci_cycle_count(ctx_header[1]); 1260 s->next_cycle = increment_ohci_cycle_count(cycle, 1); 1261 1262 for (i = 0; i < packets; ++i) { 1263 struct fw_iso_packet params = {0}; 1264 1265 if (queue_in_packet(s, ¶ms) < 0) { 1266 cancel_stream(s); 1267 return; 1268 } 1269 } 1270} 1271 1272static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, 1273 size_t header_length, void *header, void *private_data) 1274{ 1275 struct amdtp_stream *s = private_data; 1276 struct amdtp_domain *d = s->domain; 1277 __be32 *ctx_header; 1278 unsigned int packets; 1279 unsigned int offset; 1280 1281 if (s->packet_index < 0) 1282 return; 1283 1284 packets = header_length / s->ctx_data.tx.ctx_header_size; 1285 1286 offset = 0; 1287 ctx_header = header; 1288 while (offset < packets) { 1289 unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]); 1290 1291 if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0) 1292 break; 1293 1294 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); 1295 ++offset; 1296 } 1297 1298 ctx_header = header; 1299 1300 if (offset > 0) { 1301 size_t length = s->ctx_data.tx.ctx_header_size * offset; 1302 1303 drop_tx_packets(context, tstamp, length, ctx_header, s); 1304 if (amdtp_streaming_error(s)) 1305 return; 1306 1307 ctx_header += length / sizeof(*ctx_header); 1308 header_length -= length; 1309 } 1310 1311 if (offset < packets) { 1312 s->ready_processing = true; 1313 wake_up(&s->ready_wait); 1314 1315 process_tx_packets(context, tstamp, header_length, ctx_header, s); 1316 if (amdtp_streaming_error(s)) 1317 return; 1318 1319 context->callback.sc = process_tx_packets; 1320 } 1321} 1322 1323static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp, 1324 size_t header_length, void *header, void *private_data) 1325{ 1326 struct amdtp_stream *s = private_data; 1327 struct amdtp_domain *d = s->domain; 1328 __be32 *ctx_header; 1329 unsigned int count; 1330 unsigned int events; 1331 int i; 1332 1333 if (s->packet_index < 0) 1334 return; 1335 1336 count = header_length / s->ctx_data.tx.ctx_header_size; 1337 1338 // Attempt to detect any event in the batch of packets. 1339 events = 0; 1340 ctx_header = header; 1341 for (i = 0; i < count; ++i) { 1342 unsigned int payload_quads = 1343 (be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32); 1344 unsigned int data_blocks; 1345 1346 if (s->flags & CIP_NO_HEADER) { 1347 data_blocks = payload_quads / s->data_block_quadlets; 1348 } else { 1349 __be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; 1350 1351 if (payload_quads < CIP_HEADER_QUADLETS) { 1352 data_blocks = 0; 1353 } else { 1354 payload_quads -= CIP_HEADER_QUADLETS; 1355 1356 if (s->flags & CIP_UNAWARE_SYT) { 1357 data_blocks = payload_quads / s->data_block_quadlets; 1358 } else { 1359 u32 cip1 = be32_to_cpu(cip_headers[1]); 1360 1361 // NODATA packet can includes any data blocks but they are 1362 // not available as event. 1363 if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA) 1364 data_blocks = 0; 1365 else 1366 data_blocks = payload_quads / s->data_block_quadlets; 1367 } 1368 } 1369 } 1370 1371 events += data_blocks; 1372 1373 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); 1374 } 1375 1376 drop_tx_packets(context, tstamp, header_length, header, s); 1377 1378 if (events > 0) 1379 s->ctx_data.tx.event_starts = true; 1380 1381 // Decide the cycle count to begin processing content of packet in IR contexts. 1382 { 1383 unsigned int stream_count = 0; 1384 unsigned int event_starts_count = 0; 1385 unsigned int cycle = UINT_MAX; 1386 1387 list_for_each_entry(s, &d->streams, list) { 1388 if (s->direction == AMDTP_IN_STREAM) { 1389 ++stream_count; 1390 if (s->ctx_data.tx.event_starts) 1391 ++event_starts_count; 1392 } 1393 } 1394 1395 if (stream_count == event_starts_count) { 1396 unsigned int next_cycle; 1397 1398 list_for_each_entry(s, &d->streams, list) { 1399 if (s->direction != AMDTP_IN_STREAM) 1400 continue; 1401 1402 next_cycle = increment_ohci_cycle_count(s->next_cycle, 1403 d->processing_cycle.tx_init_skip); 1404 if (cycle == UINT_MAX || 1405 compare_ohci_cycle_count(next_cycle, cycle) > 0) 1406 cycle = next_cycle; 1407 1408 s->context->callback.sc = process_tx_packets_intermediately; 1409 } 1410 1411 d->processing_cycle.tx_start = cycle; 1412 } 1413 } 1414} 1415 1416static void process_ctxs_in_domain(struct amdtp_domain *d) 1417{ 1418 struct amdtp_stream *s; 1419 1420 list_for_each_entry(s, &d->streams, list) { 1421 if (s != d->irq_target && amdtp_stream_running(s)) 1422 fw_iso_context_flush_completions(s->context); 1423 1424 if (amdtp_streaming_error(s)) 1425 goto error; 1426 } 1427 1428 return; 1429error: 1430 if (amdtp_stream_running(d->irq_target)) 1431 cancel_stream(d->irq_target); 1432 1433 list_for_each_entry(s, &d->streams, list) { 1434 if (amdtp_stream_running(s)) 1435 cancel_stream(s); 1436 } 1437} 1438 1439static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1440 void *header, void *private_data) 1441{ 1442 struct amdtp_stream *s = private_data; 1443 struct amdtp_domain *d = s->domain; 1444 1445 process_rx_packets(context, tstamp, header_length, header, private_data); 1446 process_ctxs_in_domain(d); 1447} 1448 1449static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp, 1450 size_t header_length, void *header, void *private_data) 1451{ 1452 struct amdtp_stream *s = private_data; 1453 struct amdtp_domain *d = s->domain; 1454 1455 process_rx_packets_intermediately(context, tstamp, header_length, header, private_data); 1456 process_ctxs_in_domain(d); 1457} 1458 1459static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp, 1460 size_t header_length, void *header, void *private_data) 1461{ 1462 struct amdtp_stream *s = private_data; 1463 struct amdtp_domain *d = s->domain; 1464 bool ready_to_start; 1465 1466 skip_rx_packets(context, tstamp, header_length, header, private_data); 1467 process_ctxs_in_domain(d); 1468 1469 if (d->replay.enable && !d->replay.on_the_fly) { 1470 unsigned int rx_count = 0; 1471 unsigned int rx_ready_count = 0; 1472 struct amdtp_stream *rx; 1473 1474 list_for_each_entry(rx, &d->streams, list) { 1475 struct amdtp_stream *tx; 1476 unsigned int cached_cycles; 1477 1478 if (rx->direction != AMDTP_OUT_STREAM) 1479 continue; 1480 ++rx_count; 1481 1482 tx = rx->ctx_data.rx.replay_target; 1483 cached_cycles = calculate_cached_cycle_count(tx, 0); 1484 if (cached_cycles > tx->ctx_data.tx.cache.size / 2) 1485 ++rx_ready_count; 1486 } 1487 1488 ready_to_start = (rx_count == rx_ready_count); 1489 } else { 1490 ready_to_start = true; 1491 } 1492 1493 // Decide the cycle count to begin processing content of packet in IT contexts. All of IT 1494 // contexts are expected to start and get callback when reaching here. 1495 if (ready_to_start) { 1496 unsigned int cycle = s->next_cycle; 1497 list_for_each_entry(s, &d->streams, list) { 1498 if (s->direction != AMDTP_OUT_STREAM) 1499 continue; 1500 1501 if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0) 1502 cycle = s->next_cycle; 1503 1504 if (s == d->irq_target) 1505 s->context->callback.sc = irq_target_callback_intermediately; 1506 else 1507 s->context->callback.sc = process_rx_packets_intermediately; 1508 } 1509 1510 d->processing_cycle.rx_start = cycle; 1511 } 1512} 1513 1514// This is executed one time. For in-stream, first packet has come. For out-stream, prepared to 1515// transmit first packet. 1516static void amdtp_stream_first_callback(struct fw_iso_context *context, 1517 u32 tstamp, size_t header_length, 1518 void *header, void *private_data) 1519{ 1520 struct amdtp_stream *s = private_data; 1521 struct amdtp_domain *d = s->domain; 1522 1523 if (s->direction == AMDTP_IN_STREAM) { 1524 context->callback.sc = drop_tx_packets_initially; 1525 } else { 1526 if (s == d->irq_target) 1527 context->callback.sc = irq_target_callback_skip; 1528 else 1529 context->callback.sc = skip_rx_packets; 1530 } 1531 1532 context->callback.sc(context, tstamp, header_length, header, s); 1533} 1534 1535/** 1536 * amdtp_stream_start - start transferring packets 1537 * @s: the AMDTP stream to start 1538 * @channel: the isochronous channel on the bus 1539 * @speed: firewire speed code 1540 * @queue_size: The number of packets in the queue. 1541 * @idle_irq_interval: the interval to queue packet during initial state. 1542 * 1543 * The stream cannot be started until it has been configured with 1544 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI 1545 * device can be started. 1546 */ 1547static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed, 1548 unsigned int queue_size, unsigned int idle_irq_interval) 1549{ 1550 bool is_irq_target = (s == s->domain->irq_target); 1551 unsigned int ctx_header_size; 1552 unsigned int max_ctx_payload_size; 1553 enum dma_data_direction dir; 1554 int type, tag, err; 1555 1556 mutex_lock(&s->mutex); 1557 1558 if (WARN_ON(amdtp_stream_running(s) || 1559 (s->data_block_quadlets < 1))) { 1560 err = -EBADFD; 1561 goto err_unlock; 1562 } 1563 1564 if (s->direction == AMDTP_IN_STREAM) { 1565 // NOTE: IT context should be used for constant IRQ. 1566 if (is_irq_target) { 1567 err = -EINVAL; 1568 goto err_unlock; 1569 } 1570 1571 s->data_block_counter = UINT_MAX; 1572 } else { 1573 s->data_block_counter = 0; 1574 } 1575 1576 // initialize packet buffer. 1577 if (s->direction == AMDTP_IN_STREAM) { 1578 dir = DMA_FROM_DEVICE; 1579 type = FW_ISO_CONTEXT_RECEIVE; 1580 if (!(s->flags & CIP_NO_HEADER)) 1581 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 1582 else 1583 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 1584 } else { 1585 dir = DMA_TO_DEVICE; 1586 type = FW_ISO_CONTEXT_TRANSMIT; 1587 ctx_header_size = 0; // No effect for IT context. 1588 } 1589 max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s); 1590 1591 err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir); 1592 if (err < 0) 1593 goto err_unlock; 1594 s->queue_size = queue_size; 1595 1596 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card, 1597 type, channel, speed, ctx_header_size, 1598 amdtp_stream_first_callback, s); 1599 if (IS_ERR(s->context)) { 1600 err = PTR_ERR(s->context); 1601 if (err == -EBUSY) 1602 dev_err(&s->unit->device, 1603 "no free stream on this controller\n"); 1604 goto err_buffer; 1605 } 1606 1607 amdtp_stream_update(s); 1608 1609 if (s->direction == AMDTP_IN_STREAM) { 1610 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size; 1611 s->ctx_data.tx.ctx_header_size = ctx_header_size; 1612 s->ctx_data.tx.event_starts = false; 1613 1614 if (s->domain->replay.enable) { 1615 // struct fw_iso_context.drop_overflow_headers is false therefore it's 1616 // possible to cache much unexpectedly. 1617 s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2, 1618 queue_size * 3 / 2); 1619 s->ctx_data.tx.cache.tail = 0; 1620 s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size, 1621 sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL); 1622 if (!s->ctx_data.tx.cache.descs) { 1623 err = -ENOMEM; 1624 goto err_context; 1625 } 1626 } 1627 } else { 1628 static const struct { 1629 unsigned int data_block; 1630 unsigned int syt_offset; 1631 } *entry, initial_state[] = { 1632 [CIP_SFC_32000] = { 4, 3072 }, 1633 [CIP_SFC_48000] = { 6, 1024 }, 1634 [CIP_SFC_96000] = { 12, 1024 }, 1635 [CIP_SFC_192000] = { 24, 1024 }, 1636 [CIP_SFC_44100] = { 0, 67 }, 1637 [CIP_SFC_88200] = { 0, 67 }, 1638 [CIP_SFC_176400] = { 0, 67 }, 1639 }; 1640 1641 s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL); 1642 if (!s->ctx_data.rx.seq.descs) { 1643 err = -ENOMEM; 1644 goto err_context; 1645 } 1646 s->ctx_data.rx.seq.size = queue_size; 1647 s->ctx_data.rx.seq.tail = 0; 1648 s->ctx_data.rx.seq.head = 0; 1649 1650 entry = &initial_state[s->sfc]; 1651 s->ctx_data.rx.data_block_state = entry->data_block; 1652 s->ctx_data.rx.syt_offset_state = entry->syt_offset; 1653 s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE; 1654 1655 s->ctx_data.rx.event_count = 0; 1656 } 1657 1658 if (s->flags & CIP_NO_HEADER) 1659 s->tag = TAG_NO_CIP_HEADER; 1660 else 1661 s->tag = TAG_CIP; 1662 1663 s->pkt_descs = kcalloc(s->queue_size, sizeof(*s->pkt_descs), 1664 GFP_KERNEL); 1665 if (!s->pkt_descs) { 1666 err = -ENOMEM; 1667 goto err_context; 1668 } 1669 1670 s->packet_index = 0; 1671 do { 1672 struct fw_iso_packet params; 1673 1674 if (s->direction == AMDTP_IN_STREAM) { 1675 err = queue_in_packet(s, ¶ms); 1676 } else { 1677 bool sched_irq = false; 1678 1679 params.header_length = 0; 1680 params.payload_length = 0; 1681 1682 if (is_irq_target) { 1683 sched_irq = !((s->packet_index + 1) % 1684 idle_irq_interval); 1685 } 1686 1687 err = queue_out_packet(s, ¶ms, sched_irq); 1688 } 1689 if (err < 0) 1690 goto err_pkt_descs; 1691 } while (s->packet_index > 0); 1692 1693 /* NOTE: TAG1 matches CIP. This just affects in stream. */ 1694 tag = FW_ISO_CONTEXT_MATCH_TAG1; 1695 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER)) 1696 tag |= FW_ISO_CONTEXT_MATCH_TAG0; 1697 1698 s->ready_processing = false; 1699 err = fw_iso_context_start(s->context, -1, 0, tag); 1700 if (err < 0) 1701 goto err_pkt_descs; 1702 1703 mutex_unlock(&s->mutex); 1704 1705 return 0; 1706err_pkt_descs: 1707 kfree(s->pkt_descs); 1708err_context: 1709 if (s->direction == AMDTP_OUT_STREAM) { 1710 kfree(s->ctx_data.rx.seq.descs); 1711 } else { 1712 if (s->domain->replay.enable) 1713 kfree(s->ctx_data.tx.cache.descs); 1714 } 1715 fw_iso_context_destroy(s->context); 1716 s->context = ERR_PTR(-1); 1717err_buffer: 1718 iso_packets_buffer_destroy(&s->buffer, s->unit); 1719err_unlock: 1720 mutex_unlock(&s->mutex); 1721 1722 return err; 1723} 1724 1725/** 1726 * amdtp_domain_stream_pcm_pointer - get the PCM buffer position 1727 * @d: the AMDTP domain. 1728 * @s: the AMDTP stream that transports the PCM data 1729 * 1730 * Returns the current buffer position, in frames. 1731 */ 1732unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d, 1733 struct amdtp_stream *s) 1734{ 1735 struct amdtp_stream *irq_target = d->irq_target; 1736 1737 // Process isochronous packets queued till recent isochronous cycle to handle PCM frames. 1738 if (irq_target && amdtp_stream_running(irq_target)) { 1739 // In software IRQ context, the call causes dead-lock to disable the tasklet 1740 // synchronously. 1741 if (!in_softirq()) 1742 fw_iso_context_flush_completions(irq_target->context); 1743 } 1744 1745 return READ_ONCE(s->pcm_buffer_pointer); 1746} 1747EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer); 1748 1749/** 1750 * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames 1751 * @d: the AMDTP domain. 1752 * @s: the AMDTP stream that transfers the PCM frames 1753 * 1754 * Returns zero always. 1755 */ 1756int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s) 1757{ 1758 struct amdtp_stream *irq_target = d->irq_target; 1759 1760 // Process isochronous packets for recent isochronous cycle to handle 1761 // queued PCM frames. 1762 if (irq_target && amdtp_stream_running(irq_target)) 1763 fw_iso_context_flush_completions(irq_target->context); 1764 1765 return 0; 1766} 1767EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack); 1768 1769/** 1770 * amdtp_stream_update - update the stream after a bus reset 1771 * @s: the AMDTP stream 1772 */ 1773void amdtp_stream_update(struct amdtp_stream *s) 1774{ 1775 /* Precomputing. */ 1776 WRITE_ONCE(s->source_node_id_field, 1777 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK); 1778} 1779EXPORT_SYMBOL(amdtp_stream_update); 1780 1781/** 1782 * amdtp_stream_stop - stop sending packets 1783 * @s: the AMDTP stream to stop 1784 * 1785 * All PCM and MIDI devices of the stream must be stopped before the stream 1786 * itself can be stopped. 1787 */ 1788static void amdtp_stream_stop(struct amdtp_stream *s) 1789{ 1790 mutex_lock(&s->mutex); 1791 1792 if (!amdtp_stream_running(s)) { 1793 mutex_unlock(&s->mutex); 1794 return; 1795 } 1796 1797 fw_iso_context_stop(s->context); 1798 fw_iso_context_destroy(s->context); 1799 s->context = ERR_PTR(-1); 1800 iso_packets_buffer_destroy(&s->buffer, s->unit); 1801 kfree(s->pkt_descs); 1802 1803 if (s->direction == AMDTP_OUT_STREAM) { 1804 kfree(s->ctx_data.rx.seq.descs); 1805 } else { 1806 if (s->domain->replay.enable) 1807 kfree(s->ctx_data.tx.cache.descs); 1808 } 1809 1810 mutex_unlock(&s->mutex); 1811} 1812 1813/** 1814 * amdtp_stream_pcm_abort - abort the running PCM device 1815 * @s: the AMDTP stream about to be stopped 1816 * 1817 * If the isochronous stream needs to be stopped asynchronously, call this 1818 * function first to stop the PCM device. 1819 */ 1820void amdtp_stream_pcm_abort(struct amdtp_stream *s) 1821{ 1822 struct snd_pcm_substream *pcm; 1823 1824 pcm = READ_ONCE(s->pcm); 1825 if (pcm) 1826 snd_pcm_stop_xrun(pcm); 1827} 1828EXPORT_SYMBOL(amdtp_stream_pcm_abort); 1829 1830/** 1831 * amdtp_domain_init - initialize an AMDTP domain structure 1832 * @d: the AMDTP domain to initialize. 1833 */ 1834int amdtp_domain_init(struct amdtp_domain *d) 1835{ 1836 INIT_LIST_HEAD(&d->streams); 1837 1838 d->events_per_period = 0; 1839 1840 return 0; 1841} 1842EXPORT_SYMBOL_GPL(amdtp_domain_init); 1843 1844/** 1845 * amdtp_domain_destroy - destroy an AMDTP domain structure 1846 * @d: the AMDTP domain to destroy. 1847 */ 1848void amdtp_domain_destroy(struct amdtp_domain *d) 1849{ 1850 // At present nothing to do. 1851 return; 1852} 1853EXPORT_SYMBOL_GPL(amdtp_domain_destroy); 1854 1855/** 1856 * amdtp_domain_add_stream - register isoc context into the domain. 1857 * @d: the AMDTP domain. 1858 * @s: the AMDTP stream. 1859 * @channel: the isochronous channel on the bus. 1860 * @speed: firewire speed code. 1861 */ 1862int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s, 1863 int channel, int speed) 1864{ 1865 struct amdtp_stream *tmp; 1866 1867 list_for_each_entry(tmp, &d->streams, list) { 1868 if (s == tmp) 1869 return -EBUSY; 1870 } 1871 1872 list_add(&s->list, &d->streams); 1873 1874 s->channel = channel; 1875 s->speed = speed; 1876 s->domain = d; 1877 1878 return 0; 1879} 1880EXPORT_SYMBOL_GPL(amdtp_domain_add_stream); 1881 1882// Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams 1883// is less than the number of rx streams, the first tx stream is selected. 1884static int make_association(struct amdtp_domain *d) 1885{ 1886 unsigned int dst_index = 0; 1887 struct amdtp_stream *rx; 1888 1889 // Make association to replay target. 1890 list_for_each_entry(rx, &d->streams, list) { 1891 if (rx->direction == AMDTP_OUT_STREAM) { 1892 unsigned int src_index = 0; 1893 struct amdtp_stream *tx = NULL; 1894 struct amdtp_stream *s; 1895 1896 list_for_each_entry(s, &d->streams, list) { 1897 if (s->direction == AMDTP_IN_STREAM) { 1898 if (dst_index == src_index) { 1899 tx = s; 1900 break; 1901 } 1902 1903 ++src_index; 1904 } 1905 } 1906 if (!tx) { 1907 // Select the first entry. 1908 list_for_each_entry(s, &d->streams, list) { 1909 if (s->direction == AMDTP_IN_STREAM) { 1910 tx = s; 1911 break; 1912 } 1913 } 1914 // No target is available to replay sequence. 1915 if (!tx) 1916 return -EINVAL; 1917 } 1918 1919 rx->ctx_data.rx.replay_target = tx; 1920 rx->ctx_data.rx.cache_head = 0; 1921 1922 ++dst_index; 1923 } 1924 } 1925 1926 return 0; 1927} 1928 1929/** 1930 * amdtp_domain_start - start sending packets for isoc context in the domain. 1931 * @d: the AMDTP domain. 1932 * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR 1933 * contexts. 1934 * @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in 1935 * IT context. 1936 * @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay 1937 * according to arrival of events in tx packets. 1938 */ 1939int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq, 1940 bool replay_on_the_fly) 1941{ 1942 unsigned int events_per_buffer = d->events_per_buffer; 1943 unsigned int events_per_period = d->events_per_period; 1944 unsigned int queue_size; 1945 struct amdtp_stream *s; 1946 bool found = false; 1947 int err; 1948 1949 if (replay_seq) { 1950 err = make_association(d); 1951 if (err < 0) 1952 return err; 1953 } 1954 d->replay.enable = replay_seq; 1955 d->replay.on_the_fly = replay_on_the_fly; 1956 1957 // Select an IT context as IRQ target. 1958 list_for_each_entry(s, &d->streams, list) { 1959 if (s->direction == AMDTP_OUT_STREAM) { 1960 found = true; 1961 break; 1962 } 1963 } 1964 if (!found) 1965 return -ENXIO; 1966 d->irq_target = s; 1967 1968 d->processing_cycle.tx_init_skip = tx_init_skip_cycles; 1969 1970 // This is a case that AMDTP streams in domain run just for MIDI 1971 // substream. Use the number of events equivalent to 10 msec as 1972 // interval of hardware IRQ. 1973 if (events_per_period == 0) 1974 events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100; 1975 if (events_per_buffer == 0) 1976 events_per_buffer = events_per_period * 3; 1977 1978 queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer, 1979 amdtp_rate_table[d->irq_target->sfc]); 1980 1981 list_for_each_entry(s, &d->streams, list) { 1982 unsigned int idle_irq_interval = 0; 1983 1984 if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) { 1985 idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period, 1986 amdtp_rate_table[d->irq_target->sfc]); 1987 } 1988 1989 // Starts immediately but actually DMA context starts several hundred cycles later. 1990 err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval); 1991 if (err < 0) 1992 goto error; 1993 } 1994 1995 return 0; 1996error: 1997 list_for_each_entry(s, &d->streams, list) 1998 amdtp_stream_stop(s); 1999 return err; 2000} 2001EXPORT_SYMBOL_GPL(amdtp_domain_start); 2002 2003/** 2004 * amdtp_domain_stop - stop sending packets for isoc context in the same domain. 2005 * @d: the AMDTP domain to which the isoc contexts belong. 2006 */ 2007void amdtp_domain_stop(struct amdtp_domain *d) 2008{ 2009 struct amdtp_stream *s, *next; 2010 2011 if (d->irq_target) 2012 amdtp_stream_stop(d->irq_target); 2013 2014 list_for_each_entry_safe(s, next, &d->streams, list) { 2015 list_del(&s->list); 2016 2017 if (s != d->irq_target) 2018 amdtp_stream_stop(s); 2019 } 2020 2021 d->events_per_period = 0; 2022 d->irq_target = NULL; 2023} 2024EXPORT_SYMBOL_GPL(amdtp_domain_stop);