ff-protocol-latter.c (14655B)
1// SPDX-License-Identifier: GPL-2.0 2// ff-protocol-latter - a part of driver for RME Fireface series 3// 4// Copyright (c) 2019 Takashi Sakamoto 5// 6// Licensed under the terms of the GNU General Public License, version 2. 7 8#include <linux/delay.h> 9 10#include "ff.h" 11 12#define LATTER_STF 0xffff00000004ULL 13#define LATTER_ISOC_CHANNELS 0xffff00000008ULL 14#define LATTER_ISOC_START 0xffff0000000cULL 15#define LATTER_FETCH_MODE 0xffff00000010ULL 16#define LATTER_SYNC_STATUS 0x0000801c0000ULL 17 18// The content of sync status register differs between models. 19// 20// Fireface UCX: 21// 0xf0000000: (unidentified) 22// 0x0f000000: effective rate of sampling clock 23// 0x00f00000: detected rate of word clock on BNC interface 24// 0x000f0000: detected rate of ADAT or S/PDIF on optical interface 25// 0x0000f000: detected rate of S/PDIF on coaxial interface 26// 0x00000e00: effective source of sampling clock 27// 0x00000e00: Internal 28// 0x00000800: (unidentified) 29// 0x00000600: Word clock on BNC interface 30// 0x00000400: ADAT on optical interface 31// 0x00000200: S/PDIF on coaxial or optical interface 32// 0x00000100: Optical interface is used for ADAT signal 33// 0x00000080: (unidentified) 34// 0x00000040: Synchronized to word clock on BNC interface 35// 0x00000020: Synchronized to ADAT or S/PDIF on optical interface 36// 0x00000010: Synchronized to S/PDIF on coaxial interface 37// 0x00000008: (unidentified) 38// 0x00000004: Lock word clock on BNC interface 39// 0x00000002: Lock ADAT or S/PDIF on optical interface 40// 0x00000001: Lock S/PDIF on coaxial interface 41// 42// Fireface 802 (and perhaps UFX): 43// 0xf0000000: effective rate of sampling clock 44// 0x0f000000: detected rate of ADAT-B on 2nd optical interface 45// 0x00f00000: detected rate of ADAT-A on 1st optical interface 46// 0x000f0000: detected rate of AES/EBU on XLR or coaxial interface 47// 0x0000f000: detected rate of word clock on BNC interface 48// 0x00000e00: effective source of sampling clock 49// 0x00000e00: internal 50// 0x00000800: ADAT-B 51// 0x00000600: ADAT-A 52// 0x00000400: AES/EBU 53// 0x00000200: Word clock 54// 0x00000080: Synchronized to ADAT-B on 2nd optical interface 55// 0x00000040: Synchronized to ADAT-A on 1st optical interface 56// 0x00000020: Synchronized to AES/EBU on XLR or 2nd optical interface 57// 0x00000010: Synchronized to word clock on BNC interface 58// 0x00000008: Lock ADAT-B on 2nd optical interface 59// 0x00000004: Lock ADAT-A on 1st optical interface 60// 0x00000002: Lock AES/EBU on XLR or 2nd optical interface 61// 0x00000001: Lock word clock on BNC interface 62// 63// The pattern for rate bits: 64// 0x00: 32.0 kHz 65// 0x01: 44.1 kHz 66// 0x02: 48.0 kHz 67// 0x04: 64.0 kHz 68// 0x05: 88.2 kHz 69// 0x06: 96.0 kHz 70// 0x08: 128.0 kHz 71// 0x09: 176.4 kHz 72// 0x0a: 192.0 kHz 73static int parse_clock_bits(u32 data, unsigned int *rate, 74 enum snd_ff_clock_src *src, 75 enum snd_ff_unit_version unit_version) 76{ 77 static const struct { 78 unsigned int rate; 79 u32 flag; 80 } *rate_entry, rate_entries[] = { 81 { 32000, 0x00, }, 82 { 44100, 0x01, }, 83 { 48000, 0x02, }, 84 { 64000, 0x04, }, 85 { 88200, 0x05, }, 86 { 96000, 0x06, }, 87 { 128000, 0x08, }, 88 { 176400, 0x09, }, 89 { 192000, 0x0a, }, 90 }; 91 static const struct { 92 enum snd_ff_clock_src src; 93 u32 flag; 94 } *clk_entry, *clk_entries, ucx_clk_entries[] = { 95 { SND_FF_CLOCK_SRC_SPDIF, 0x00000200, }, 96 { SND_FF_CLOCK_SRC_ADAT1, 0x00000400, }, 97 { SND_FF_CLOCK_SRC_WORD, 0x00000600, }, 98 { SND_FF_CLOCK_SRC_INTERNAL, 0x00000e00, }, 99 }, ufx_ff802_clk_entries[] = { 100 { SND_FF_CLOCK_SRC_WORD, 0x00000200, }, 101 { SND_FF_CLOCK_SRC_SPDIF, 0x00000400, }, 102 { SND_FF_CLOCK_SRC_ADAT1, 0x00000600, }, 103 { SND_FF_CLOCK_SRC_ADAT2, 0x00000800, }, 104 { SND_FF_CLOCK_SRC_INTERNAL, 0x00000e00, }, 105 }; 106 u32 rate_bits; 107 unsigned int clk_entry_count; 108 int i; 109 110 if (unit_version == SND_FF_UNIT_VERSION_UCX) { 111 rate_bits = (data & 0x0f000000) >> 24; 112 clk_entries = ucx_clk_entries; 113 clk_entry_count = ARRAY_SIZE(ucx_clk_entries); 114 } else { 115 rate_bits = (data & 0xf0000000) >> 28; 116 clk_entries = ufx_ff802_clk_entries; 117 clk_entry_count = ARRAY_SIZE(ufx_ff802_clk_entries); 118 } 119 120 for (i = 0; i < ARRAY_SIZE(rate_entries); ++i) { 121 rate_entry = rate_entries + i; 122 if (rate_bits == rate_entry->flag) { 123 *rate = rate_entry->rate; 124 break; 125 } 126 } 127 if (i == ARRAY_SIZE(rate_entries)) 128 return -EIO; 129 130 for (i = 0; i < clk_entry_count; ++i) { 131 clk_entry = clk_entries + i; 132 if ((data & 0x000e00) == clk_entry->flag) { 133 *src = clk_entry->src; 134 break; 135 } 136 } 137 if (i == clk_entry_count) 138 return -EIO; 139 140 return 0; 141} 142 143static int latter_get_clock(struct snd_ff *ff, unsigned int *rate, 144 enum snd_ff_clock_src *src) 145{ 146 __le32 reg; 147 u32 data; 148 int err; 149 150 err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST, 151 LATTER_SYNC_STATUS, ®, sizeof(reg), 0); 152 if (err < 0) 153 return err; 154 data = le32_to_cpu(reg); 155 156 return parse_clock_bits(data, rate, src, ff->unit_version); 157} 158 159static int latter_switch_fetching_mode(struct snd_ff *ff, bool enable) 160{ 161 u32 data; 162 __le32 reg; 163 164 if (enable) 165 data = 0x00000000; 166 else 167 data = 0xffffffff; 168 reg = cpu_to_le32(data); 169 170 return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, 171 LATTER_FETCH_MODE, ®, sizeof(reg), 0); 172} 173 174static int latter_allocate_resources(struct snd_ff *ff, unsigned int rate) 175{ 176 enum snd_ff_stream_mode mode; 177 unsigned int code; 178 __le32 reg; 179 unsigned int count; 180 int i; 181 int err; 182 183 // Set the number of data blocks transferred in a second. 184 if (rate % 48000 == 0) 185 code = 0x04; 186 else if (rate % 44100 == 0) 187 code = 0x02; 188 else if (rate % 32000 == 0) 189 code = 0x00; 190 else 191 return -EINVAL; 192 193 if (rate >= 64000 && rate < 128000) 194 code |= 0x08; 195 else if (rate >= 128000) 196 code |= 0x10; 197 198 reg = cpu_to_le32(code); 199 err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, 200 LATTER_STF, ®, sizeof(reg), 0); 201 if (err < 0) 202 return err; 203 204 // Confirm to shift transmission clock. 205 count = 0; 206 while (count++ < 10) { 207 unsigned int curr_rate; 208 enum snd_ff_clock_src src; 209 210 err = latter_get_clock(ff, &curr_rate, &src); 211 if (err < 0) 212 return err; 213 214 if (curr_rate == rate) 215 break; 216 } 217 if (count > 10) 218 return -ETIMEDOUT; 219 220 for (i = 0; i < ARRAY_SIZE(amdtp_rate_table); ++i) { 221 if (rate == amdtp_rate_table[i]) 222 break; 223 } 224 if (i == ARRAY_SIZE(amdtp_rate_table)) 225 return -EINVAL; 226 227 err = snd_ff_stream_get_multiplier_mode(i, &mode); 228 if (err < 0) 229 return err; 230 231 // Keep resources for in-stream. 232 ff->tx_resources.channels_mask = 0x00000000000000ffuLL; 233 err = fw_iso_resources_allocate(&ff->tx_resources, 234 amdtp_stream_get_max_payload(&ff->tx_stream), 235 fw_parent_device(ff->unit)->max_speed); 236 if (err < 0) 237 return err; 238 239 // Keep resources for out-stream. 240 ff->rx_resources.channels_mask = 0x00000000000000ffuLL; 241 err = fw_iso_resources_allocate(&ff->rx_resources, 242 amdtp_stream_get_max_payload(&ff->rx_stream), 243 fw_parent_device(ff->unit)->max_speed); 244 if (err < 0) 245 fw_iso_resources_free(&ff->tx_resources); 246 247 return err; 248} 249 250static int latter_begin_session(struct snd_ff *ff, unsigned int rate) 251{ 252 unsigned int generation = ff->rx_resources.generation; 253 unsigned int flag; 254 u32 data; 255 __le32 reg; 256 int err; 257 258 if (ff->unit_version == SND_FF_UNIT_VERSION_UCX) { 259 // For Fireface UCX. Always use the maximum number of data 260 // channels in data block of packet. 261 if (rate >= 32000 && rate <= 48000) 262 flag = 0x92; 263 else if (rate >= 64000 && rate <= 96000) 264 flag = 0x8e; 265 else if (rate >= 128000 && rate <= 192000) 266 flag = 0x8c; 267 else 268 return -EINVAL; 269 } else { 270 // For Fireface UFX and 802. Due to bandwidth limitation on 271 // IEEE 1394a (400 Mbps), Analog 1-12 and AES are available 272 // without any ADAT at quadruple speed. 273 if (rate >= 32000 && rate <= 48000) 274 flag = 0x9e; 275 else if (rate >= 64000 && rate <= 96000) 276 flag = 0x96; 277 else if (rate >= 128000 && rate <= 192000) 278 flag = 0x8e; 279 else 280 return -EINVAL; 281 } 282 283 if (generation != fw_parent_device(ff->unit)->card->generation) { 284 err = fw_iso_resources_update(&ff->tx_resources); 285 if (err < 0) 286 return err; 287 288 err = fw_iso_resources_update(&ff->rx_resources); 289 if (err < 0) 290 return err; 291 } 292 293 data = (ff->tx_resources.channel << 8) | ff->rx_resources.channel; 294 reg = cpu_to_le32(data); 295 err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, 296 LATTER_ISOC_CHANNELS, ®, sizeof(reg), 0); 297 if (err < 0) 298 return err; 299 300 reg = cpu_to_le32(flag); 301 return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, 302 LATTER_ISOC_START, ®, sizeof(reg), 0); 303} 304 305static void latter_finish_session(struct snd_ff *ff) 306{ 307 __le32 reg; 308 309 reg = cpu_to_le32(0x00000000); 310 snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, 311 LATTER_ISOC_START, ®, sizeof(reg), 0); 312} 313 314static void latter_dump_status(struct snd_ff *ff, struct snd_info_buffer *buffer) 315{ 316 static const struct { 317 char *const label; 318 u32 locked_mask; 319 u32 synced_mask; 320 } *clk_entry, *clk_entries, ucx_clk_entries[] = { 321 { "S/PDIF", 0x00000001, 0x00000010, }, 322 { "ADAT", 0x00000002, 0x00000020, }, 323 { "WDClk", 0x00000004, 0x00000040, }, 324 }, ufx_ff802_clk_entries[] = { 325 { "WDClk", 0x00000001, 0x00000010, }, 326 { "AES/EBU", 0x00000002, 0x00000020, }, 327 { "ADAT-A", 0x00000004, 0x00000040, }, 328 { "ADAT-B", 0x00000008, 0x00000080, }, 329 }; 330 __le32 reg; 331 u32 data; 332 unsigned int rate; 333 enum snd_ff_clock_src src; 334 const char *label; 335 unsigned int clk_entry_count; 336 int i; 337 int err; 338 339 err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST, 340 LATTER_SYNC_STATUS, ®, sizeof(reg), 0); 341 if (err < 0) 342 return; 343 data = le32_to_cpu(reg); 344 345 snd_iprintf(buffer, "External source detection:\n"); 346 347 if (ff->unit_version == SND_FF_UNIT_VERSION_UCX) { 348 clk_entries = ucx_clk_entries; 349 clk_entry_count = ARRAY_SIZE(ucx_clk_entries); 350 } else { 351 clk_entries = ufx_ff802_clk_entries; 352 clk_entry_count = ARRAY_SIZE(ufx_ff802_clk_entries); 353 } 354 355 for (i = 0; i < clk_entry_count; ++i) { 356 clk_entry = clk_entries + i; 357 snd_iprintf(buffer, "%s: ", clk_entry->label); 358 if (data & clk_entry->locked_mask) { 359 if (data & clk_entry->synced_mask) 360 snd_iprintf(buffer, "sync\n"); 361 else 362 snd_iprintf(buffer, "lock\n"); 363 } else { 364 snd_iprintf(buffer, "none\n"); 365 } 366 } 367 368 err = parse_clock_bits(data, &rate, &src, ff->unit_version); 369 if (err < 0) 370 return; 371 label = snd_ff_proc_get_clk_label(src); 372 if (!label) 373 return; 374 375 snd_iprintf(buffer, "Referred clock: %s %d\n", label, rate); 376} 377 378// NOTE: transactions are transferred within 0x00-0x7f in allocated range of 379// address. This seems to be for check of discontinuity in receiver side. 380// 381// Like Fireface 400, drivers can select one of 4 options for lower 4 bytes of 382// destination address by bit flags in quadlet register (little endian) at 383// 0x'ffff'0000'0014: 384// 385// bit flags: offset of destination address 386// - 0x00002000: 0x'....'....'0000'0000 387// - 0x00004000: 0x'....'....'0000'0080 388// - 0x00008000: 0x'....'....'0000'0100 389// - 0x00010000: 0x'....'....'0000'0180 390// 391// Drivers can suppress the device to transfer asynchronous transactions by 392// clear these bit flags. 393// 394// Actually, the register is write-only and includes the other settings such as 395// input attenuation. This driver allocates for the first option 396// (0x'....'....'0000'0000) and expects userspace application to configure the 397// register for it. 398static void latter_handle_midi_msg(struct snd_ff *ff, unsigned int offset, 399 __le32 *buf, size_t length) 400{ 401 u32 data = le32_to_cpu(*buf); 402 unsigned int index = (data & 0x000000f0) >> 4; 403 u8 byte[3]; 404 struct snd_rawmidi_substream *substream; 405 unsigned int len; 406 407 if (index >= ff->spec->midi_in_ports) 408 return; 409 410 switch (data & 0x0000000f) { 411 case 0x00000008: 412 case 0x00000009: 413 case 0x0000000a: 414 case 0x0000000b: 415 case 0x0000000e: 416 len = 3; 417 break; 418 case 0x0000000c: 419 case 0x0000000d: 420 len = 2; 421 break; 422 default: 423 len = data & 0x00000003; 424 if (len == 0) 425 len = 3; 426 break; 427 } 428 429 byte[0] = (data & 0x0000ff00) >> 8; 430 byte[1] = (data & 0x00ff0000) >> 16; 431 byte[2] = (data & 0xff000000) >> 24; 432 433 substream = READ_ONCE(ff->tx_midi_substreams[index]); 434 if (substream) 435 snd_rawmidi_receive(substream, byte, len); 436} 437 438/* 439 * When return minus value, given argument is not MIDI status. 440 * When return 0, given argument is a beginning of system exclusive. 441 * When return the others, given argument is MIDI data. 442 */ 443static inline int calculate_message_bytes(u8 status) 444{ 445 switch (status) { 446 case 0xf6: /* Tune request. */ 447 case 0xf8: /* Timing clock. */ 448 case 0xfa: /* Start. */ 449 case 0xfb: /* Continue. */ 450 case 0xfc: /* Stop. */ 451 case 0xfe: /* Active sensing. */ 452 case 0xff: /* System reset. */ 453 return 1; 454 case 0xf1: /* MIDI time code quarter frame. */ 455 case 0xf3: /* Song select. */ 456 return 2; 457 case 0xf2: /* Song position pointer. */ 458 return 3; 459 case 0xf0: /* Exclusive. */ 460 return 0; 461 case 0xf7: /* End of exclusive. */ 462 break; 463 case 0xf4: /* Undefined. */ 464 case 0xf5: /* Undefined. */ 465 case 0xf9: /* Undefined. */ 466 case 0xfd: /* Undefined. */ 467 break; 468 default: 469 switch (status & 0xf0) { 470 case 0x80: /* Note on. */ 471 case 0x90: /* Note off. */ 472 case 0xa0: /* Polyphonic key pressure. */ 473 case 0xb0: /* Control change and Mode change. */ 474 case 0xe0: /* Pitch bend change. */ 475 return 3; 476 case 0xc0: /* Program change. */ 477 case 0xd0: /* Channel pressure. */ 478 return 2; 479 default: 480 break; 481 } 482 break; 483 } 484 485 return -EINVAL; 486} 487 488static int latter_fill_midi_msg(struct snd_ff *ff, 489 struct snd_rawmidi_substream *substream, 490 unsigned int port) 491{ 492 u32 data = {0}; 493 u8 *buf = (u8 *)&data; 494 int consumed; 495 496 buf[0] = port << 4; 497 consumed = snd_rawmidi_transmit_peek(substream, buf + 1, 3); 498 if (consumed <= 0) 499 return consumed; 500 501 if (!ff->on_sysex[port]) { 502 if (buf[1] != 0xf0) { 503 if (consumed < calculate_message_bytes(buf[1])) 504 return 0; 505 } else { 506 // The beginning of exclusives. 507 ff->on_sysex[port] = true; 508 } 509 510 buf[0] |= consumed; 511 } else { 512 if (buf[1] != 0xf7) { 513 if (buf[2] == 0xf7 || buf[3] == 0xf7) { 514 // Transfer end code at next time. 515 consumed -= 1; 516 } 517 518 buf[0] |= consumed; 519 } else { 520 // The end of exclusives. 521 ff->on_sysex[port] = false; 522 consumed = 1; 523 buf[0] |= 0x0f; 524 } 525 } 526 527 ff->msg_buf[port][0] = cpu_to_le32(data); 528 ff->rx_bytes[port] = consumed; 529 530 return 1; 531} 532 533const struct snd_ff_protocol snd_ff_protocol_latter = { 534 .handle_midi_msg = latter_handle_midi_msg, 535 .fill_midi_msg = latter_fill_midi_msg, 536 .get_clock = latter_get_clock, 537 .switch_fetching_mode = latter_switch_fetching_mode, 538 .allocate_resources = latter_allocate_resources, 539 .begin_session = latter_begin_session, 540 .finish_session = latter_finish_session, 541 .dump_status = latter_dump_status, 542};