cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

midi.c (9214B)


      1/****************************************************************************
      2
      3   Copyright Echo Digital Audio Corporation (c) 1998 - 2004
      4   All rights reserved
      5   www.echoaudio.com
      6
      7   This file is part of Echo Digital Audio's generic driver library.
      8
      9   Echo Digital Audio's generic driver library is free software;
     10   you can redistribute it and/or modify it under the terms of
     11   the GNU General Public License as published by the Free Software
     12   Foundation.
     13
     14   This program is distributed in the hope that it will be useful,
     15   but WITHOUT ANY WARRANTY; without even the implied warranty of
     16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     17   GNU General Public License for more details.
     18
     19   You should have received a copy of the GNU General Public License
     20   along with this program; if not, write to the Free Software
     21   Foundation, Inc., 59 Temple Place - Suite 330, Boston,
     22   MA  02111-1307, USA.
     23
     24   *************************************************************************
     25
     26 Translation from C++ and adaptation for use in ALSA-Driver
     27 were made by Giuliano Pochini <pochini@shiny.it>
     28
     29****************************************************************************/
     30
     31
     32/******************************************************************************
     33	MIDI lowlevel code
     34******************************************************************************/
     35
     36/* Start and stop Midi input */
     37static int enable_midi_input(struct echoaudio *chip, char enable)
     38{
     39	dev_dbg(chip->card->dev, "enable_midi_input(%d)\n", enable);
     40
     41	if (wait_handshake(chip))
     42		return -EIO;
     43
     44	if (enable) {
     45		chip->mtc_state = MIDI_IN_STATE_NORMAL;
     46		chip->comm_page->flags |=
     47			cpu_to_le32(DSP_FLAG_MIDI_INPUT);
     48	} else
     49		chip->comm_page->flags &=
     50			~cpu_to_le32(DSP_FLAG_MIDI_INPUT);
     51
     52	clear_handshake(chip);
     53	return send_vector(chip, DSP_VC_UPDATE_FLAGS);
     54}
     55
     56
     57
     58/* Send a buffer full of MIDI data to the DSP
     59Returns how many actually written or < 0 on error */
     60static int write_midi(struct echoaudio *chip, u8 *data, int bytes)
     61{
     62	if (snd_BUG_ON(bytes <= 0 || bytes >= MIDI_OUT_BUFFER_SIZE))
     63		return -EINVAL;
     64
     65	if (wait_handshake(chip))
     66		return -EIO;
     67
     68	/* HF4 indicates that it is safe to write MIDI output data */
     69	if (! (get_dsp_register(chip, CHI32_STATUS_REG) & CHI32_STATUS_REG_HF4))
     70		return 0;
     71
     72	chip->comm_page->midi_output[0] = bytes;
     73	memcpy(&chip->comm_page->midi_output[1], data, bytes);
     74	chip->comm_page->midi_out_free_count = 0;
     75	clear_handshake(chip);
     76	send_vector(chip, DSP_VC_MIDI_WRITE);
     77	dev_dbg(chip->card->dev, "write_midi: %d\n", bytes);
     78	return bytes;
     79}
     80
     81
     82
     83/* Run the state machine for MIDI input data
     84MIDI time code sync isn't supported by this code right now, but you still need
     85this state machine to parse the incoming MIDI data stream.  Every time the DSP
     86sees a 0xF1 byte come in, it adds the DSP sample position to the MIDI data
     87stream. The DSP sample position is represented as a 32 bit unsigned value,
     88with the high 16 bits first, followed by the low 16 bits. Since these aren't
     89real MIDI bytes, the following logic is needed to skip them. */
     90static inline int mtc_process_data(struct echoaudio *chip, short midi_byte)
     91{
     92	switch (chip->mtc_state) {
     93	case MIDI_IN_STATE_NORMAL:
     94		if (midi_byte == 0xF1)
     95			chip->mtc_state = MIDI_IN_STATE_TS_HIGH;
     96		break;
     97	case MIDI_IN_STATE_TS_HIGH:
     98		chip->mtc_state = MIDI_IN_STATE_TS_LOW;
     99		return MIDI_IN_SKIP_DATA;
    100		break;
    101	case MIDI_IN_STATE_TS_LOW:
    102		chip->mtc_state = MIDI_IN_STATE_F1_DATA;
    103		return MIDI_IN_SKIP_DATA;
    104		break;
    105	case MIDI_IN_STATE_F1_DATA:
    106		chip->mtc_state = MIDI_IN_STATE_NORMAL;
    107		break;
    108	}
    109	return 0;
    110}
    111
    112
    113
    114/* This function is called from the IRQ handler and it reads the midi data
    115from the DSP's buffer.  It returns the number of bytes received. */
    116static int midi_service_irq(struct echoaudio *chip)
    117{
    118	short int count, midi_byte, i, received;
    119
    120	/* The count is at index 0, followed by actual data */
    121	count = le16_to_cpu(chip->comm_page->midi_input[0]);
    122
    123	if (snd_BUG_ON(count >= MIDI_IN_BUFFER_SIZE))
    124		return 0;
    125
    126	/* Get the MIDI data from the comm page */
    127	received = 0;
    128	for (i = 1; i <= count; i++) {
    129		/* Get the MIDI byte */
    130		midi_byte = le16_to_cpu(chip->comm_page->midi_input[i]);
    131
    132		/* Parse the incoming MIDI stream. The incoming MIDI data
    133		consists of MIDI bytes and timestamps for the MIDI time code
    134		0xF1 bytes. mtc_process_data() is a little state machine that
    135		parses the stream. If you get MIDI_IN_SKIP_DATA back, then
    136		this is a timestamp byte, not a MIDI byte, so don't store it
    137		in the MIDI input buffer. */
    138		if (mtc_process_data(chip, midi_byte) == MIDI_IN_SKIP_DATA)
    139			continue;
    140
    141		chip->midi_buffer[received++] = (u8)midi_byte;
    142	}
    143
    144	return received;
    145}
    146
    147
    148
    149
    150/******************************************************************************
    151	MIDI interface
    152******************************************************************************/
    153
    154static int snd_echo_midi_input_open(struct snd_rawmidi_substream *substream)
    155{
    156	struct echoaudio *chip = substream->rmidi->private_data;
    157
    158	chip->midi_in = substream;
    159	return 0;
    160}
    161
    162
    163
    164static void snd_echo_midi_input_trigger(struct snd_rawmidi_substream *substream,
    165					int up)
    166{
    167	struct echoaudio *chip = substream->rmidi->private_data;
    168
    169	if (up != chip->midi_input_enabled) {
    170		spin_lock_irq(&chip->lock);
    171		enable_midi_input(chip, up);
    172		spin_unlock_irq(&chip->lock);
    173		chip->midi_input_enabled = up;
    174	}
    175}
    176
    177
    178
    179static int snd_echo_midi_input_close(struct snd_rawmidi_substream *substream)
    180{
    181	struct echoaudio *chip = substream->rmidi->private_data;
    182
    183	chip->midi_in = NULL;
    184	return 0;
    185}
    186
    187
    188
    189static int snd_echo_midi_output_open(struct snd_rawmidi_substream *substream)
    190{
    191	struct echoaudio *chip = substream->rmidi->private_data;
    192
    193	chip->tinuse = 0;
    194	chip->midi_full = 0;
    195	chip->midi_out = substream;
    196	return 0;
    197}
    198
    199
    200
    201static void snd_echo_midi_output_write(struct timer_list *t)
    202{
    203	struct echoaudio *chip = from_timer(chip, t, timer);
    204	unsigned long flags;
    205	int bytes, sent, time;
    206	unsigned char buf[MIDI_OUT_BUFFER_SIZE - 1];
    207
    208	/* No interrupts are involved: we have to check at regular intervals
    209	if the card's output buffer has room for new data. */
    210	sent = 0;
    211	spin_lock_irqsave(&chip->lock, flags);
    212	chip->midi_full = 0;
    213	if (!snd_rawmidi_transmit_empty(chip->midi_out)) {
    214		bytes = snd_rawmidi_transmit_peek(chip->midi_out, buf,
    215						  MIDI_OUT_BUFFER_SIZE - 1);
    216		dev_dbg(chip->card->dev, "Try to send %d bytes...\n", bytes);
    217		sent = write_midi(chip, buf, bytes);
    218		if (sent < 0) {
    219			dev_err(chip->card->dev,
    220				"write_midi() error %d\n", sent);
    221			/* retry later */
    222			sent = 9000;
    223			chip->midi_full = 1;
    224		} else if (sent > 0) {
    225			dev_dbg(chip->card->dev, "%d bytes sent\n", sent);
    226			snd_rawmidi_transmit_ack(chip->midi_out, sent);
    227		} else {
    228			/* Buffer is full. DSP's internal buffer is 64 (128 ?)
    229			bytes long. Let's wait until half of them are sent */
    230			dev_dbg(chip->card->dev, "Full\n");
    231			sent = 32;
    232			chip->midi_full = 1;
    233		}
    234	}
    235
    236	/* We restart the timer only if there is some data left to send */
    237	if (!snd_rawmidi_transmit_empty(chip->midi_out) && chip->tinuse) {
    238		/* The timer will expire slightly after the data has been
    239		   sent */
    240		time = (sent << 3) / 25 + 1;	/* 8/25=0.32ms to send a byte */
    241		mod_timer(&chip->timer, jiffies + (time * HZ + 999) / 1000);
    242		dev_dbg(chip->card->dev,
    243			"Timer armed(%d)\n", ((time * HZ + 999) / 1000));
    244	}
    245	spin_unlock_irqrestore(&chip->lock, flags);
    246}
    247
    248
    249
    250static void snd_echo_midi_output_trigger(struct snd_rawmidi_substream *substream,
    251					 int up)
    252{
    253	struct echoaudio *chip = substream->rmidi->private_data;
    254
    255	dev_dbg(chip->card->dev, "snd_echo_midi_output_trigger(%d)\n", up);
    256	spin_lock_irq(&chip->lock);
    257	if (up) {
    258		if (!chip->tinuse) {
    259			timer_setup(&chip->timer, snd_echo_midi_output_write,
    260				    0);
    261			chip->tinuse = 1;
    262		}
    263	} else {
    264		if (chip->tinuse) {
    265			chip->tinuse = 0;
    266			spin_unlock_irq(&chip->lock);
    267			del_timer_sync(&chip->timer);
    268			dev_dbg(chip->card->dev, "Timer removed\n");
    269			return;
    270		}
    271	}
    272	spin_unlock_irq(&chip->lock);
    273
    274	if (up && !chip->midi_full)
    275		snd_echo_midi_output_write(&chip->timer);
    276}
    277
    278
    279
    280static int snd_echo_midi_output_close(struct snd_rawmidi_substream *substream)
    281{
    282	struct echoaudio *chip = substream->rmidi->private_data;
    283
    284	chip->midi_out = NULL;
    285	return 0;
    286}
    287
    288
    289
    290static const struct snd_rawmidi_ops snd_echo_midi_input = {
    291	.open = snd_echo_midi_input_open,
    292	.close = snd_echo_midi_input_close,
    293	.trigger = snd_echo_midi_input_trigger,
    294};
    295
    296static const struct snd_rawmidi_ops snd_echo_midi_output = {
    297	.open = snd_echo_midi_output_open,
    298	.close = snd_echo_midi_output_close,
    299	.trigger = snd_echo_midi_output_trigger,
    300};
    301
    302
    303
    304/* <--snd_echo_probe() */
    305static int snd_echo_midi_create(struct snd_card *card,
    306				struct echoaudio *chip)
    307{
    308	int err;
    309
    310	err = snd_rawmidi_new(card, card->shortname, 0, 1, 1, &chip->rmidi);
    311	if (err < 0)
    312		return err;
    313
    314	strcpy(chip->rmidi->name, card->shortname);
    315	chip->rmidi->private_data = chip;
    316
    317	snd_rawmidi_set_ops(chip->rmidi, SNDRV_RAWMIDI_STREAM_INPUT,
    318			    &snd_echo_midi_input);
    319	snd_rawmidi_set_ops(chip->rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT,
    320			    &snd_echo_midi_output);
    321
    322	chip->rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT |
    323		SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_DUPLEX;
    324	return 0;
    325}