cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vx222_ops.c (34979B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Driver for Digigram VX222 V2/Mic soundcards
      4 *
      5 * VX222-specific low-level routines
      6 *
      7 * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
      8 */
      9
     10#include <linux/delay.h>
     11#include <linux/device.h>
     12#include <linux/firmware.h>
     13#include <linux/mutex.h>
     14#include <linux/io.h>
     15
     16#include <sound/core.h>
     17#include <sound/control.h>
     18#include <sound/tlv.h>
     19#include "vx222.h"
     20
     21
     22static const int vx2_reg_offset[VX_REG_MAX] = {
     23	[VX_ICR]    = 0x00,
     24	[VX_CVR]    = 0x04,
     25	[VX_ISR]    = 0x08,
     26	[VX_IVR]    = 0x0c,
     27	[VX_RXH]    = 0x14,
     28	[VX_RXM]    = 0x18,
     29	[VX_RXL]    = 0x1c,
     30	[VX_DMA]    = 0x10,
     31	[VX_CDSP]   = 0x20,
     32	[VX_CFG]    = 0x24,
     33	[VX_RUER]   = 0x28,
     34	[VX_DATA]   = 0x2c,
     35	[VX_STATUS] = 0x30,
     36	[VX_LOFREQ] = 0x34,
     37	[VX_HIFREQ] = 0x38,
     38	[VX_CSUER]  = 0x3c,
     39	[VX_SELMIC] = 0x40,
     40	[VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
     41	[VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
     42	[VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
     43	[VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
     44	[VX_CNTRL]  = 0x50,		// VX_CNTRL_REGISTER_OFFSET
     45	[VX_GPIOC]  = 0x54,		// VX_GPIOC (new with PLX9030)
     46};
     47
     48static const int vx2_reg_index[VX_REG_MAX] = {
     49	[VX_ICR]	= 1,
     50	[VX_CVR]	= 1,
     51	[VX_ISR]	= 1,
     52	[VX_IVR]	= 1,
     53	[VX_RXH]	= 1,
     54	[VX_RXM]	= 1,
     55	[VX_RXL]	= 1,
     56	[VX_DMA]	= 1,
     57	[VX_CDSP]	= 1,
     58	[VX_CFG]	= 1,
     59	[VX_RUER]	= 1,
     60	[VX_DATA]	= 1,
     61	[VX_STATUS]	= 1,
     62	[VX_LOFREQ]	= 1,
     63	[VX_HIFREQ]	= 1,
     64	[VX_CSUER]	= 1,
     65	[VX_SELMIC]	= 1,
     66	[VX_COMPOT]	= 1,
     67	[VX_SCOMPR]	= 1,
     68	[VX_GLIMIT]	= 1,
     69	[VX_INTCSR]	= 0,	/* on the PLX */
     70	[VX_CNTRL]	= 0,	/* on the PLX */
     71	[VX_GPIOC]	= 0,	/* on the PLX */
     72};
     73
     74static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg)
     75{
     76	struct snd_vx222 *chip = to_vx222(_chip);
     77	return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
     78}
     79
     80/**
     81 * vx2_inb - read a byte from the register
     82 * @chip: VX core instance
     83 * @offset: register enum
     84 */
     85static unsigned char vx2_inb(struct vx_core *chip, int offset)
     86{
     87	return inb(vx2_reg_addr(chip, offset));
     88}
     89
     90/**
     91 * vx2_outb - write a byte on the register
     92 * @chip: VX core instance
     93 * @offset: the register offset
     94 * @val: the value to write
     95 */
     96static void vx2_outb(struct vx_core *chip, int offset, unsigned char val)
     97{
     98	outb(val, vx2_reg_addr(chip, offset));
     99	/*
    100	dev_dbg(chip->card->dev, "outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
    101	*/
    102}
    103
    104/**
    105 * vx2_inl - read a 32bit word from the register
    106 * @chip: VX core instance
    107 * @offset: register enum
    108 */
    109static unsigned int vx2_inl(struct vx_core *chip, int offset)
    110{
    111	return inl(vx2_reg_addr(chip, offset));
    112}
    113
    114/**
    115 * vx2_outl - write a 32bit word on the register
    116 * @chip: VX core instance
    117 * @offset: the register enum
    118 * @val: the value to write
    119 */
    120static void vx2_outl(struct vx_core *chip, int offset, unsigned int val)
    121{
    122	/*
    123	dev_dbg(chip->card->dev, "outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
    124	*/
    125	outl(val, vx2_reg_addr(chip, offset));
    126}
    127
    128/*
    129 * redefine macros to call directly
    130 */
    131#undef vx_inb
    132#define vx_inb(chip,reg)	vx2_inb((struct vx_core*)(chip), VX_##reg)
    133#undef vx_outb
    134#define vx_outb(chip,reg,val)	vx2_outb((struct vx_core*)(chip), VX_##reg, val)
    135#undef vx_inl
    136#define vx_inl(chip,reg)	vx2_inl((struct vx_core*)(chip), VX_##reg)
    137#undef vx_outl
    138#define vx_outl(chip,reg,val)	vx2_outl((struct vx_core*)(chip), VX_##reg, val)
    139
    140
    141/*
    142 * vx_reset_dsp - reset the DSP
    143 */
    144
    145#define XX_DSP_RESET_WAIT_TIME		2	/* ms */
    146
    147static void vx2_reset_dsp(struct vx_core *_chip)
    148{
    149	struct snd_vx222 *chip = to_vx222(_chip);
    150
    151	/* set the reset dsp bit to 0 */
    152	vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
    153
    154	mdelay(XX_DSP_RESET_WAIT_TIME);
    155
    156	chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
    157	/* set the reset dsp bit to 1 */
    158	vx_outl(chip, CDSP, chip->regCDSP);
    159}
    160
    161
    162static int vx2_test_xilinx(struct vx_core *_chip)
    163{
    164	struct snd_vx222 *chip = to_vx222(_chip);
    165	unsigned int data;
    166
    167	dev_dbg(_chip->card->dev, "testing xilinx...\n");
    168	/* This test uses several write/read sequences on TEST0 and TEST1 bits
    169	 * to figure out whever or not the xilinx was correctly loaded
    170	 */
    171
    172	/* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
    173	vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
    174	vx_inl(chip, ISR);
    175	data = vx_inl(chip, STATUS);
    176	if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
    177		dev_dbg(_chip->card->dev, "bad!\n");
    178		return -ENODEV;
    179	}
    180
    181	/* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
    182	vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
    183	vx_inl(chip, ISR);
    184	data = vx_inl(chip, STATUS);
    185	if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
    186		dev_dbg(_chip->card->dev, "bad! #2\n");
    187		return -ENODEV;
    188	}
    189
    190	if (_chip->type == VX_TYPE_BOARD) {
    191		/* not implemented on VX_2_BOARDS */
    192		/* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
    193		vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
    194		vx_inl(chip, ISR);
    195		data = vx_inl(chip, STATUS);
    196		if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
    197			dev_dbg(_chip->card->dev, "bad! #3\n");
    198			return -ENODEV;
    199		}
    200
    201		/* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
    202		vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
    203		vx_inl(chip, ISR);
    204		data = vx_inl(chip, STATUS);
    205		if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
    206			dev_dbg(_chip->card->dev, "bad! #4\n");
    207			return -ENODEV;
    208		}
    209	}
    210	dev_dbg(_chip->card->dev, "ok, xilinx fine.\n");
    211	return 0;
    212}
    213
    214
    215/**
    216 * vx2_setup_pseudo_dma - set up the pseudo dma read/write mode.
    217 * @chip: VX core instance
    218 * @do_write: 0 = read, 1 = set up for DMA write
    219 */
    220static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write)
    221{
    222	/* Interrupt mode and HREQ pin enabled for host transmit data transfers
    223	 * (in case of the use of the pseudo-dma facility).
    224	 */
    225	vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
    226
    227	/* Reset the pseudo-dma register (in case of the use of the
    228	 * pseudo-dma facility).
    229	 */
    230	vx_outl(chip, RESET_DMA, 0);
    231}
    232
    233/*
    234 * vx_release_pseudo_dma - disable the pseudo-DMA mode
    235 */
    236static inline void vx2_release_pseudo_dma(struct vx_core *chip)
    237{
    238	/* HREQ pin disabled. */
    239	vx_outl(chip, ICR, 0);
    240}
    241
    242
    243
    244/* pseudo-dma write */
    245static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime,
    246			  struct vx_pipe *pipe, int count)
    247{
    248	unsigned long port = vx2_reg_addr(chip, VX_DMA);
    249	int offset = pipe->hw_ptr;
    250	u32 *addr = (u32 *)(runtime->dma_area + offset);
    251
    252	if (snd_BUG_ON(count % 4))
    253		return;
    254
    255	vx2_setup_pseudo_dma(chip, 1);
    256
    257	/* Transfer using pseudo-dma.
    258	 */
    259	if (offset + count >= pipe->buffer_bytes) {
    260		int length = pipe->buffer_bytes - offset;
    261		count -= length;
    262		length >>= 2; /* in 32bit words */
    263		/* Transfer using pseudo-dma. */
    264		for (; length > 0; length--) {
    265			outl(*addr, port);
    266			addr++;
    267		}
    268		addr = (u32 *)runtime->dma_area;
    269		pipe->hw_ptr = 0;
    270	}
    271	pipe->hw_ptr += count;
    272	count >>= 2; /* in 32bit words */
    273	/* Transfer using pseudo-dma. */
    274	for (; count > 0; count--) {
    275		outl(*addr, port);
    276		addr++;
    277	}
    278
    279	vx2_release_pseudo_dma(chip);
    280}
    281
    282
    283/* pseudo dma read */
    284static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime,
    285			 struct vx_pipe *pipe, int count)
    286{
    287	int offset = pipe->hw_ptr;
    288	u32 *addr = (u32 *)(runtime->dma_area + offset);
    289	unsigned long port = vx2_reg_addr(chip, VX_DMA);
    290
    291	if (snd_BUG_ON(count % 4))
    292		return;
    293
    294	vx2_setup_pseudo_dma(chip, 0);
    295	/* Transfer using pseudo-dma.
    296	 */
    297	if (offset + count >= pipe->buffer_bytes) {
    298		int length = pipe->buffer_bytes - offset;
    299		count -= length;
    300		length >>= 2; /* in 32bit words */
    301		/* Transfer using pseudo-dma. */
    302		for (; length > 0; length--)
    303			*addr++ = inl(port);
    304		addr = (u32 *)runtime->dma_area;
    305		pipe->hw_ptr = 0;
    306	}
    307	pipe->hw_ptr += count;
    308	count >>= 2; /* in 32bit words */
    309	/* Transfer using pseudo-dma. */
    310	for (; count > 0; count--)
    311		*addr++ = inl(port);
    312
    313	vx2_release_pseudo_dma(chip);
    314}
    315
    316#define VX_XILINX_RESET_MASK        0x40000000
    317#define VX_USERBIT0_MASK            0x00000004
    318#define VX_USERBIT1_MASK            0x00000020
    319#define VX_CNTRL_REGISTER_VALUE     0x00172012
    320
    321/*
    322 * transfer counts bits to PLX
    323 */
    324static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data)
    325{
    326	unsigned int i;
    327
    328	for (i = 0; i < counts; i++) {
    329		unsigned int val;
    330
    331		/* set the clock bit to 0. */
    332		val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK;
    333		vx2_outl(chip, port, val);
    334		vx2_inl(chip, port);
    335		udelay(1);
    336
    337		if (data & (1 << i))
    338			val |= VX_USERBIT1_MASK;
    339		else
    340			val &= ~VX_USERBIT1_MASK;
    341		vx2_outl(chip, port, val);
    342		vx2_inl(chip, port);
    343
    344		/* set the clock bit to 1. */
    345		val |= VX_USERBIT0_MASK;
    346		vx2_outl(chip, port, val);
    347		vx2_inl(chip, port);
    348		udelay(1);
    349	}
    350	return 0;
    351}
    352
    353/*
    354 * load the xilinx image
    355 */
    356static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx)
    357{
    358	unsigned int i;
    359	unsigned int port;
    360	const unsigned char *image;
    361
    362	/* XILINX reset (wait at least 1 millisecond between reset on and off). */
    363	vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
    364	vx_inl(chip, CNTRL);
    365	msleep(10);
    366	vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
    367	vx_inl(chip, CNTRL);
    368	msleep(10);
    369
    370	if (chip->type == VX_TYPE_BOARD)
    371		port = VX_CNTRL;
    372	else
    373		port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
    374
    375	image = xilinx->data;
    376	for (i = 0; i < xilinx->size; i++, image++) {
    377		if (put_xilinx_data(chip, port, 8, *image) < 0)
    378			return -EINVAL;
    379		/* don't take too much time in this loop... */
    380		cond_resched();
    381	}
    382	put_xilinx_data(chip, port, 4, 0xff); /* end signature */
    383
    384	msleep(200);
    385
    386	/* test after loading (is buggy with VX222) */
    387	if (chip->type != VX_TYPE_BOARD) {
    388		/* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
    389		i = vx_inl(chip, GPIOC);
    390		if (i & 0x0100)
    391			return 0;
    392		dev_err(chip->card->dev,
    393			"xilinx test failed after load, GPIOC=0x%x\n", i);
    394		return -EINVAL;
    395	}
    396
    397	return 0;
    398}
    399
    400	
    401/*
    402 * load the boot/dsp images
    403 */
    404static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp)
    405{
    406	int err;
    407
    408	switch (index) {
    409	case 1:
    410		/* xilinx image */
    411		err = vx2_load_xilinx_binary(vx, dsp);
    412		if (err < 0)
    413			return err;
    414		err = vx2_test_xilinx(vx);
    415		if (err < 0)
    416			return err;
    417		return 0;
    418	case 2:
    419		/* DSP boot */
    420		return snd_vx_dsp_boot(vx, dsp);
    421	case 3:
    422		/* DSP image */
    423		return snd_vx_dsp_load(vx, dsp);
    424	default:
    425		snd_BUG();
    426		return -EINVAL;
    427	}
    428}
    429
    430
    431/*
    432 * vx_test_and_ack - test and acknowledge interrupt
    433 *
    434 * called from irq hander, too
    435 *
    436 * spinlock held!
    437 */
    438static int vx2_test_and_ack(struct vx_core *chip)
    439{
    440	/* not booted yet? */
    441	if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
    442		return -ENXIO;
    443
    444	if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
    445		return -EIO;
    446	
    447	/* ok, interrupts generated, now ack it */
    448	/* set ACQUIT bit up and down */
    449	vx_outl(chip, STATUS, 0);
    450	/* useless read just to spend some time and maintain
    451	 * the ACQUIT signal up for a while ( a bus cycle )
    452	 */
    453	vx_inl(chip, STATUS);
    454	/* ack */
    455	vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
    456	/* useless read just to spend some time and maintain
    457	 * the ACQUIT signal up for a while ( a bus cycle ) */
    458	vx_inl(chip, STATUS);
    459	/* clear */
    460	vx_outl(chip, STATUS, 0);
    461
    462	return 0;
    463}
    464
    465
    466/*
    467 * vx_validate_irq - enable/disable IRQ
    468 */
    469static void vx2_validate_irq(struct vx_core *_chip, int enable)
    470{
    471	struct snd_vx222 *chip = to_vx222(_chip);
    472
    473	/* Set the interrupt enable bit to 1 in CDSP register */
    474	if (enable) {
    475		/* Set the PCI interrupt enable bit to 1.*/
    476		vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
    477		chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
    478	} else {
    479		/* Set the PCI interrupt enable bit to 0. */
    480		vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
    481		chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
    482	}
    483	vx_outl(chip, CDSP, chip->regCDSP);
    484}
    485
    486
    487/*
    488 * write an AKM codec data (24bit)
    489 */
    490static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data)
    491{
    492	unsigned int i;
    493
    494	vx_inl(chip, HIFREQ);
    495
    496	/* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
    497	for (i = 0; i < 24; i++, data <<= 1)
    498		vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
    499	/* Terminate access to codec registers */
    500	vx_inl(chip, RUER);
    501}
    502
    503
    504#define AKM_CODEC_POWER_CONTROL_CMD 0xA007
    505#define AKM_CODEC_RESET_ON_CMD      0xA100
    506#define AKM_CODEC_RESET_OFF_CMD     0xA103
    507#define AKM_CODEC_CLOCK_FORMAT_CMD  0xA240
    508#define AKM_CODEC_MUTE_CMD          0xA38D
    509#define AKM_CODEC_UNMUTE_CMD        0xA30D
    510#define AKM_CODEC_LEFT_LEVEL_CMD    0xA400
    511#define AKM_CODEC_RIGHT_LEVEL_CMD   0xA500
    512
    513static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
    514    0x7f,       // [000] =  +0.000 dB  ->  AKM(0x7f) =  +0.000 dB  error(+0.000 dB)
    515    0x7d,       // [001] =  -0.500 dB  ->  AKM(0x7d) =  -0.572 dB  error(-0.072 dB)
    516    0x7c,       // [002] =  -1.000 dB  ->  AKM(0x7c) =  -0.873 dB  error(+0.127 dB)
    517    0x7a,       // [003] =  -1.500 dB  ->  AKM(0x7a) =  -1.508 dB  error(-0.008 dB)
    518    0x79,       // [004] =  -2.000 dB  ->  AKM(0x79) =  -1.844 dB  error(+0.156 dB)
    519    0x77,       // [005] =  -2.500 dB  ->  AKM(0x77) =  -2.557 dB  error(-0.057 dB)
    520    0x76,       // [006] =  -3.000 dB  ->  AKM(0x76) =  -2.937 dB  error(+0.063 dB)
    521    0x75,       // [007] =  -3.500 dB  ->  AKM(0x75) =  -3.334 dB  error(+0.166 dB)
    522    0x73,       // [008] =  -4.000 dB  ->  AKM(0x73) =  -4.188 dB  error(-0.188 dB)
    523    0x72,       // [009] =  -4.500 dB  ->  AKM(0x72) =  -4.648 dB  error(-0.148 dB)
    524    0x71,       // [010] =  -5.000 dB  ->  AKM(0x71) =  -5.134 dB  error(-0.134 dB)
    525    0x70,       // [011] =  -5.500 dB  ->  AKM(0x70) =  -5.649 dB  error(-0.149 dB)
    526    0x6f,       // [012] =  -6.000 dB  ->  AKM(0x6f) =  -6.056 dB  error(-0.056 dB)
    527    0x6d,       // [013] =  -6.500 dB  ->  AKM(0x6d) =  -6.631 dB  error(-0.131 dB)
    528    0x6c,       // [014] =  -7.000 dB  ->  AKM(0x6c) =  -6.933 dB  error(+0.067 dB)
    529    0x6a,       // [015] =  -7.500 dB  ->  AKM(0x6a) =  -7.571 dB  error(-0.071 dB)
    530    0x69,       // [016] =  -8.000 dB  ->  AKM(0x69) =  -7.909 dB  error(+0.091 dB)
    531    0x67,       // [017] =  -8.500 dB  ->  AKM(0x67) =  -8.626 dB  error(-0.126 dB)
    532    0x66,       // [018] =  -9.000 dB  ->  AKM(0x66) =  -9.008 dB  error(-0.008 dB)
    533    0x65,       // [019] =  -9.500 dB  ->  AKM(0x65) =  -9.407 dB  error(+0.093 dB)
    534    0x64,       // [020] = -10.000 dB  ->  AKM(0x64) =  -9.826 dB  error(+0.174 dB)
    535    0x62,       // [021] = -10.500 dB  ->  AKM(0x62) = -10.730 dB  error(-0.230 dB)
    536    0x61,       // [022] = -11.000 dB  ->  AKM(0x61) = -11.219 dB  error(-0.219 dB)
    537    0x60,       // [023] = -11.500 dB  ->  AKM(0x60) = -11.738 dB  error(-0.238 dB)
    538    0x5f,       // [024] = -12.000 dB  ->  AKM(0x5f) = -12.149 dB  error(-0.149 dB)
    539    0x5e,       // [025] = -12.500 dB  ->  AKM(0x5e) = -12.434 dB  error(+0.066 dB)
    540    0x5c,       // [026] = -13.000 dB  ->  AKM(0x5c) = -13.033 dB  error(-0.033 dB)
    541    0x5b,       // [027] = -13.500 dB  ->  AKM(0x5b) = -13.350 dB  error(+0.150 dB)
    542    0x59,       // [028] = -14.000 dB  ->  AKM(0x59) = -14.018 dB  error(-0.018 dB)
    543    0x58,       // [029] = -14.500 dB  ->  AKM(0x58) = -14.373 dB  error(+0.127 dB)
    544    0x56,       // [030] = -15.000 dB  ->  AKM(0x56) = -15.130 dB  error(-0.130 dB)
    545    0x55,       // [031] = -15.500 dB  ->  AKM(0x55) = -15.534 dB  error(-0.034 dB)
    546    0x54,       // [032] = -16.000 dB  ->  AKM(0x54) = -15.958 dB  error(+0.042 dB)
    547    0x53,       // [033] = -16.500 dB  ->  AKM(0x53) = -16.404 dB  error(+0.096 dB)
    548    0x52,       // [034] = -17.000 dB  ->  AKM(0x52) = -16.874 dB  error(+0.126 dB)
    549    0x51,       // [035] = -17.500 dB  ->  AKM(0x51) = -17.371 dB  error(+0.129 dB)
    550    0x50,       // [036] = -18.000 dB  ->  AKM(0x50) = -17.898 dB  error(+0.102 dB)
    551    0x4e,       // [037] = -18.500 dB  ->  AKM(0x4e) = -18.605 dB  error(-0.105 dB)
    552    0x4d,       // [038] = -19.000 dB  ->  AKM(0x4d) = -18.905 dB  error(+0.095 dB)
    553    0x4b,       // [039] = -19.500 dB  ->  AKM(0x4b) = -19.538 dB  error(-0.038 dB)
    554    0x4a,       // [040] = -20.000 dB  ->  AKM(0x4a) = -19.872 dB  error(+0.128 dB)
    555    0x48,       // [041] = -20.500 dB  ->  AKM(0x48) = -20.583 dB  error(-0.083 dB)
    556    0x47,       // [042] = -21.000 dB  ->  AKM(0x47) = -20.961 dB  error(+0.039 dB)
    557    0x46,       // [043] = -21.500 dB  ->  AKM(0x46) = -21.356 dB  error(+0.144 dB)
    558    0x44,       // [044] = -22.000 dB  ->  AKM(0x44) = -22.206 dB  error(-0.206 dB)
    559    0x43,       // [045] = -22.500 dB  ->  AKM(0x43) = -22.664 dB  error(-0.164 dB)
    560    0x42,       // [046] = -23.000 dB  ->  AKM(0x42) = -23.147 dB  error(-0.147 dB)
    561    0x41,       // [047] = -23.500 dB  ->  AKM(0x41) = -23.659 dB  error(-0.159 dB)
    562    0x40,       // [048] = -24.000 dB  ->  AKM(0x40) = -24.203 dB  error(-0.203 dB)
    563    0x3f,       // [049] = -24.500 dB  ->  AKM(0x3f) = -24.635 dB  error(-0.135 dB)
    564    0x3e,       // [050] = -25.000 dB  ->  AKM(0x3e) = -24.935 dB  error(+0.065 dB)
    565    0x3c,       // [051] = -25.500 dB  ->  AKM(0x3c) = -25.569 dB  error(-0.069 dB)
    566    0x3b,       // [052] = -26.000 dB  ->  AKM(0x3b) = -25.904 dB  error(+0.096 dB)
    567    0x39,       // [053] = -26.500 dB  ->  AKM(0x39) = -26.615 dB  error(-0.115 dB)
    568    0x38,       // [054] = -27.000 dB  ->  AKM(0x38) = -26.994 dB  error(+0.006 dB)
    569    0x37,       // [055] = -27.500 dB  ->  AKM(0x37) = -27.390 dB  error(+0.110 dB)
    570    0x36,       // [056] = -28.000 dB  ->  AKM(0x36) = -27.804 dB  error(+0.196 dB)
    571    0x34,       // [057] = -28.500 dB  ->  AKM(0x34) = -28.699 dB  error(-0.199 dB)
    572    0x33,       // [058] = -29.000 dB  ->  AKM(0x33) = -29.183 dB  error(-0.183 dB)
    573    0x32,       // [059] = -29.500 dB  ->  AKM(0x32) = -29.696 dB  error(-0.196 dB)
    574    0x31,       // [060] = -30.000 dB  ->  AKM(0x31) = -30.241 dB  error(-0.241 dB)
    575    0x31,       // [061] = -30.500 dB  ->  AKM(0x31) = -30.241 dB  error(+0.259 dB)
    576    0x30,       // [062] = -31.000 dB  ->  AKM(0x30) = -30.823 dB  error(+0.177 dB)
    577    0x2e,       // [063] = -31.500 dB  ->  AKM(0x2e) = -31.610 dB  error(-0.110 dB)
    578    0x2d,       // [064] = -32.000 dB  ->  AKM(0x2d) = -31.945 dB  error(+0.055 dB)
    579    0x2b,       // [065] = -32.500 dB  ->  AKM(0x2b) = -32.659 dB  error(-0.159 dB)
    580    0x2a,       // [066] = -33.000 dB  ->  AKM(0x2a) = -33.038 dB  error(-0.038 dB)
    581    0x29,       // [067] = -33.500 dB  ->  AKM(0x29) = -33.435 dB  error(+0.065 dB)
    582    0x28,       // [068] = -34.000 dB  ->  AKM(0x28) = -33.852 dB  error(+0.148 dB)
    583    0x27,       // [069] = -34.500 dB  ->  AKM(0x27) = -34.289 dB  error(+0.211 dB)
    584    0x25,       // [070] = -35.000 dB  ->  AKM(0x25) = -35.235 dB  error(-0.235 dB)
    585    0x24,       // [071] = -35.500 dB  ->  AKM(0x24) = -35.750 dB  error(-0.250 dB)
    586    0x24,       // [072] = -36.000 dB  ->  AKM(0x24) = -35.750 dB  error(+0.250 dB)
    587    0x23,       // [073] = -36.500 dB  ->  AKM(0x23) = -36.297 dB  error(+0.203 dB)
    588    0x22,       // [074] = -37.000 dB  ->  AKM(0x22) = -36.881 dB  error(+0.119 dB)
    589    0x21,       // [075] = -37.500 dB  ->  AKM(0x21) = -37.508 dB  error(-0.008 dB)
    590    0x20,       // [076] = -38.000 dB  ->  AKM(0x20) = -38.183 dB  error(-0.183 dB)
    591    0x1f,       // [077] = -38.500 dB  ->  AKM(0x1f) = -38.726 dB  error(-0.226 dB)
    592    0x1e,       // [078] = -39.000 dB  ->  AKM(0x1e) = -39.108 dB  error(-0.108 dB)
    593    0x1d,       // [079] = -39.500 dB  ->  AKM(0x1d) = -39.507 dB  error(-0.007 dB)
    594    0x1c,       // [080] = -40.000 dB  ->  AKM(0x1c) = -39.926 dB  error(+0.074 dB)
    595    0x1b,       // [081] = -40.500 dB  ->  AKM(0x1b) = -40.366 dB  error(+0.134 dB)
    596    0x1a,       // [082] = -41.000 dB  ->  AKM(0x1a) = -40.829 dB  error(+0.171 dB)
    597    0x19,       // [083] = -41.500 dB  ->  AKM(0x19) = -41.318 dB  error(+0.182 dB)
    598    0x18,       // [084] = -42.000 dB  ->  AKM(0x18) = -41.837 dB  error(+0.163 dB)
    599    0x17,       // [085] = -42.500 dB  ->  AKM(0x17) = -42.389 dB  error(+0.111 dB)
    600    0x16,       // [086] = -43.000 dB  ->  AKM(0x16) = -42.978 dB  error(+0.022 dB)
    601    0x15,       // [087] = -43.500 dB  ->  AKM(0x15) = -43.610 dB  error(-0.110 dB)
    602    0x14,       // [088] = -44.000 dB  ->  AKM(0x14) = -44.291 dB  error(-0.291 dB)
    603    0x14,       // [089] = -44.500 dB  ->  AKM(0x14) = -44.291 dB  error(+0.209 dB)
    604    0x13,       // [090] = -45.000 dB  ->  AKM(0x13) = -45.031 dB  error(-0.031 dB)
    605    0x12,       // [091] = -45.500 dB  ->  AKM(0x12) = -45.840 dB  error(-0.340 dB)
    606    0x12,       // [092] = -46.000 dB  ->  AKM(0x12) = -45.840 dB  error(+0.160 dB)
    607    0x11,       // [093] = -46.500 dB  ->  AKM(0x11) = -46.731 dB  error(-0.231 dB)
    608    0x11,       // [094] = -47.000 dB  ->  AKM(0x11) = -46.731 dB  error(+0.269 dB)
    609    0x10,       // [095] = -47.500 dB  ->  AKM(0x10) = -47.725 dB  error(-0.225 dB)
    610    0x10,       // [096] = -48.000 dB  ->  AKM(0x10) = -47.725 dB  error(+0.275 dB)
    611    0x0f,       // [097] = -48.500 dB  ->  AKM(0x0f) = -48.553 dB  error(-0.053 dB)
    612    0x0e,       // [098] = -49.000 dB  ->  AKM(0x0e) = -49.152 dB  error(-0.152 dB)
    613    0x0d,       // [099] = -49.500 dB  ->  AKM(0x0d) = -49.796 dB  error(-0.296 dB)
    614    0x0d,       // [100] = -50.000 dB  ->  AKM(0x0d) = -49.796 dB  error(+0.204 dB)
    615    0x0c,       // [101] = -50.500 dB  ->  AKM(0x0c) = -50.491 dB  error(+0.009 dB)
    616    0x0b,       // [102] = -51.000 dB  ->  AKM(0x0b) = -51.247 dB  error(-0.247 dB)
    617    0x0b,       // [103] = -51.500 dB  ->  AKM(0x0b) = -51.247 dB  error(+0.253 dB)
    618    0x0a,       // [104] = -52.000 dB  ->  AKM(0x0a) = -52.075 dB  error(-0.075 dB)
    619    0x0a,       // [105] = -52.500 dB  ->  AKM(0x0a) = -52.075 dB  error(+0.425 dB)
    620    0x09,       // [106] = -53.000 dB  ->  AKM(0x09) = -52.990 dB  error(+0.010 dB)
    621    0x09,       // [107] = -53.500 dB  ->  AKM(0x09) = -52.990 dB  error(+0.510 dB)
    622    0x08,       // [108] = -54.000 dB  ->  AKM(0x08) = -54.013 dB  error(-0.013 dB)
    623    0x08,       // [109] = -54.500 dB  ->  AKM(0x08) = -54.013 dB  error(+0.487 dB)
    624    0x07,       // [110] = -55.000 dB  ->  AKM(0x07) = -55.173 dB  error(-0.173 dB)
    625    0x07,       // [111] = -55.500 dB  ->  AKM(0x07) = -55.173 dB  error(+0.327 dB)
    626    0x06,       // [112] = -56.000 dB  ->  AKM(0x06) = -56.512 dB  error(-0.512 dB)
    627    0x06,       // [113] = -56.500 dB  ->  AKM(0x06) = -56.512 dB  error(-0.012 dB)
    628    0x06,       // [114] = -57.000 dB  ->  AKM(0x06) = -56.512 dB  error(+0.488 dB)
    629    0x05,       // [115] = -57.500 dB  ->  AKM(0x05) = -58.095 dB  error(-0.595 dB)
    630    0x05,       // [116] = -58.000 dB  ->  AKM(0x05) = -58.095 dB  error(-0.095 dB)
    631    0x05,       // [117] = -58.500 dB  ->  AKM(0x05) = -58.095 dB  error(+0.405 dB)
    632    0x05,       // [118] = -59.000 dB  ->  AKM(0x05) = -58.095 dB  error(+0.905 dB)
    633    0x04,       // [119] = -59.500 dB  ->  AKM(0x04) = -60.034 dB  error(-0.534 dB)
    634    0x04,       // [120] = -60.000 dB  ->  AKM(0x04) = -60.034 dB  error(-0.034 dB)
    635    0x04,       // [121] = -60.500 dB  ->  AKM(0x04) = -60.034 dB  error(+0.466 dB)
    636    0x04,       // [122] = -61.000 dB  ->  AKM(0x04) = -60.034 dB  error(+0.966 dB)
    637    0x03,       // [123] = -61.500 dB  ->  AKM(0x03) = -62.532 dB  error(-1.032 dB)
    638    0x03,       // [124] = -62.000 dB  ->  AKM(0x03) = -62.532 dB  error(-0.532 dB)
    639    0x03,       // [125] = -62.500 dB  ->  AKM(0x03) = -62.532 dB  error(-0.032 dB)
    640    0x03,       // [126] = -63.000 dB  ->  AKM(0x03) = -62.532 dB  error(+0.468 dB)
    641    0x03,       // [127] = -63.500 dB  ->  AKM(0x03) = -62.532 dB  error(+0.968 dB)
    642    0x03,       // [128] = -64.000 dB  ->  AKM(0x03) = -62.532 dB  error(+1.468 dB)
    643    0x02,       // [129] = -64.500 dB  ->  AKM(0x02) = -66.054 dB  error(-1.554 dB)
    644    0x02,       // [130] = -65.000 dB  ->  AKM(0x02) = -66.054 dB  error(-1.054 dB)
    645    0x02,       // [131] = -65.500 dB  ->  AKM(0x02) = -66.054 dB  error(-0.554 dB)
    646    0x02,       // [132] = -66.000 dB  ->  AKM(0x02) = -66.054 dB  error(-0.054 dB)
    647    0x02,       // [133] = -66.500 dB  ->  AKM(0x02) = -66.054 dB  error(+0.446 dB)
    648    0x02,       // [134] = -67.000 dB  ->  AKM(0x02) = -66.054 dB  error(+0.946 dB)
    649    0x02,       // [135] = -67.500 dB  ->  AKM(0x02) = -66.054 dB  error(+1.446 dB)
    650    0x02,       // [136] = -68.000 dB  ->  AKM(0x02) = -66.054 dB  error(+1.946 dB)
    651    0x02,       // [137] = -68.500 dB  ->  AKM(0x02) = -66.054 dB  error(+2.446 dB)
    652    0x02,       // [138] = -69.000 dB  ->  AKM(0x02) = -66.054 dB  error(+2.946 dB)
    653    0x01,       // [139] = -69.500 dB  ->  AKM(0x01) = -72.075 dB  error(-2.575 dB)
    654    0x01,       // [140] = -70.000 dB  ->  AKM(0x01) = -72.075 dB  error(-2.075 dB)
    655    0x01,       // [141] = -70.500 dB  ->  AKM(0x01) = -72.075 dB  error(-1.575 dB)
    656    0x01,       // [142] = -71.000 dB  ->  AKM(0x01) = -72.075 dB  error(-1.075 dB)
    657    0x01,       // [143] = -71.500 dB  ->  AKM(0x01) = -72.075 dB  error(-0.575 dB)
    658    0x01,       // [144] = -72.000 dB  ->  AKM(0x01) = -72.075 dB  error(-0.075 dB)
    659    0x01,       // [145] = -72.500 dB  ->  AKM(0x01) = -72.075 dB  error(+0.425 dB)
    660    0x01,       // [146] = -73.000 dB  ->  AKM(0x01) = -72.075 dB  error(+0.925 dB)
    661    0x00};      // [147] = -73.500 dB  ->  AKM(0x00) =  mute       error(+infini)
    662
    663/*
    664 * pseudo-codec write entry
    665 */
    666static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data)
    667{
    668	unsigned int val;
    669
    670	if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
    671		vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
    672		return;
    673	}
    674
    675	/* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
    676	   a look up table, as there is no linear matching between the driver codec values
    677	   and the real dBu value
    678	*/
    679	if (snd_BUG_ON(data >= sizeof(vx2_akm_gains_lut)))
    680		return;
    681
    682	switch (reg) {
    683	case XX_CODEC_LEVEL_LEFT_REGISTER:
    684		val = AKM_CODEC_LEFT_LEVEL_CMD;
    685		break;
    686	case XX_CODEC_LEVEL_RIGHT_REGISTER:
    687		val = AKM_CODEC_RIGHT_LEVEL_CMD;
    688		break;
    689	default:
    690		snd_BUG();
    691		return;
    692	}
    693	val |= vx2_akm_gains_lut[data];
    694
    695	vx2_write_codec_reg(chip, val);
    696}
    697
    698
    699/*
    700 * write codec bit for old VX222 board
    701 */
    702static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data)
    703{
    704	int i;
    705
    706	/* activate access to codec registers */
    707	vx_inl(chip, HIFREQ);
    708
    709	for (i = 0; i < 24; i++, data <<= 1)
    710		vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
    711
    712	/* Terminate access to codec registers */
    713	vx_inl(chip, RUER);
    714}
    715
    716
    717/*
    718 * reset codec bit
    719 */
    720static void vx2_reset_codec(struct vx_core *_chip)
    721{
    722	struct snd_vx222 *chip = to_vx222(_chip);
    723
    724	/* Set the reset CODEC bit to 0. */
    725	vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
    726	vx_inl(chip, CDSP);
    727	msleep(10);
    728	/* Set the reset CODEC bit to 1. */
    729	chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
    730	vx_outl(chip, CDSP, chip->regCDSP);
    731	vx_inl(chip, CDSP);
    732	if (_chip->type == VX_TYPE_BOARD) {
    733		msleep(1);
    734		return;
    735	}
    736
    737	msleep(5);  /* additionnel wait time for AKM's */
    738
    739	vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
    740	
    741	vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
    742	vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
    743	vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */
    744
    745	if (_chip->type == VX_TYPE_MIC) {
    746		/* set up the micro input selector */
    747		chip->regSELMIC =  MICRO_SELECT_INPUT_NORM |
    748			MICRO_SELECT_PREAMPLI_G_0 |
    749			MICRO_SELECT_NOISE_T_52DB;
    750
    751		/* reset phantom power supply */
    752		chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;
    753
    754		vx_outl(_chip, SELMIC, chip->regSELMIC);
    755	}
    756}
    757
    758
    759/*
    760 * change the audio source
    761 */
    762static void vx2_change_audio_source(struct vx_core *_chip, int src)
    763{
    764	struct snd_vx222 *chip = to_vx222(_chip);
    765
    766	switch (src) {
    767	case VX_AUDIO_SRC_DIGITAL:
    768		chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
    769		break;
    770	default:
    771		chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
    772		break;
    773	}
    774	vx_outl(chip, CFG, chip->regCFG);
    775}
    776
    777
    778/*
    779 * set the clock source
    780 */
    781static void vx2_set_clock_source(struct vx_core *_chip, int source)
    782{
    783	struct snd_vx222 *chip = to_vx222(_chip);
    784
    785	if (source == INTERNAL_QUARTZ)
    786		chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
    787	else
    788		chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
    789	vx_outl(chip, CFG, chip->regCFG);
    790}
    791
    792/*
    793 * reset the board
    794 */
    795static void vx2_reset_board(struct vx_core *_chip, int cold_reset)
    796{
    797	struct snd_vx222 *chip = to_vx222(_chip);
    798
    799	/* initialize the register values */
    800	chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
    801	chip->regCFG = 0;
    802}
    803
    804
    805
    806/*
    807 * input level controls for VX222 Mic
    808 */
    809
    810/* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
    811 * 318 = 210 + 36 + 36 + 36   (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
    812 * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
    813 */
    814#define V2_MICRO_LEVEL_RANGE        (318 - 255)
    815
    816static void vx2_set_input_level(struct snd_vx222 *chip)
    817{
    818	int i, miclevel, preamp;
    819	unsigned int data;
    820
    821	miclevel = chip->mic_level;
    822	miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
    823	preamp = 0;
    824        while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
    825		preamp++;	/* raise pre ampli + 18dB */
    826		miclevel -= (18 * 2);   /* lower level 18 dB (*2 because of 0.5 dB steps !) */
    827        }
    828	if (snd_BUG_ON(preamp >= 4))
    829		return;
    830
    831	/* set pre-amp level */
    832	chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
    833	chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
    834	vx_outl(chip, SELMIC, chip->regSELMIC);
    835
    836	data = (unsigned int)miclevel << 16 |
    837		(unsigned int)chip->input_level[1] << 8 |
    838		(unsigned int)chip->input_level[0];
    839	vx_inl(chip, DATA); /* Activate input level programming */
    840
    841	/* We have to send 32 bits (4 x 8 bits) */
    842	for (i = 0; i < 32; i++, data <<= 1)
    843		vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
    844
    845	vx_inl(chip, RUER); /* Terminate input level programming */
    846}
    847
    848
    849#define MIC_LEVEL_MAX	0xff
    850
    851static const DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0);
    852
    853/*
    854 * controls API for input levels
    855 */
    856
    857/* input levels */
    858static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
    859{
    860	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
    861	uinfo->count = 2;
    862	uinfo->value.integer.min = 0;
    863	uinfo->value.integer.max = MIC_LEVEL_MAX;
    864	return 0;
    865}
    866
    867static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
    868{
    869	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
    870	struct snd_vx222 *chip = to_vx222(_chip);
    871	mutex_lock(&_chip->mixer_mutex);
    872	ucontrol->value.integer.value[0] = chip->input_level[0];
    873	ucontrol->value.integer.value[1] = chip->input_level[1];
    874	mutex_unlock(&_chip->mixer_mutex);
    875	return 0;
    876}
    877
    878static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
    879{
    880	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
    881	struct snd_vx222 *chip = to_vx222(_chip);
    882	if (ucontrol->value.integer.value[0] < 0 ||
    883	    ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
    884		return -EINVAL;
    885	if (ucontrol->value.integer.value[1] < 0 ||
    886	    ucontrol->value.integer.value[1] > MIC_LEVEL_MAX)
    887		return -EINVAL;
    888	mutex_lock(&_chip->mixer_mutex);
    889	if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
    890	    chip->input_level[1] != ucontrol->value.integer.value[1]) {
    891		chip->input_level[0] = ucontrol->value.integer.value[0];
    892		chip->input_level[1] = ucontrol->value.integer.value[1];
    893		vx2_set_input_level(chip);
    894		mutex_unlock(&_chip->mixer_mutex);
    895		return 1;
    896	}
    897	mutex_unlock(&_chip->mixer_mutex);
    898	return 0;
    899}
    900
    901/* mic level */
    902static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
    903{
    904	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
    905	uinfo->count = 1;
    906	uinfo->value.integer.min = 0;
    907	uinfo->value.integer.max = MIC_LEVEL_MAX;
    908	return 0;
    909}
    910
    911static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
    912{
    913	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
    914	struct snd_vx222 *chip = to_vx222(_chip);
    915	ucontrol->value.integer.value[0] = chip->mic_level;
    916	return 0;
    917}
    918
    919static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
    920{
    921	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
    922	struct snd_vx222 *chip = to_vx222(_chip);
    923	if (ucontrol->value.integer.value[0] < 0 ||
    924	    ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
    925		return -EINVAL;
    926	mutex_lock(&_chip->mixer_mutex);
    927	if (chip->mic_level != ucontrol->value.integer.value[0]) {
    928		chip->mic_level = ucontrol->value.integer.value[0];
    929		vx2_set_input_level(chip);
    930		mutex_unlock(&_chip->mixer_mutex);
    931		return 1;
    932	}
    933	mutex_unlock(&_chip->mixer_mutex);
    934	return 0;
    935}
    936
    937static const struct snd_kcontrol_new vx_control_input_level = {
    938	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
    939	.access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE |
    940			 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
    941	.name =		"Capture Volume",
    942	.info =		vx_input_level_info,
    943	.get =		vx_input_level_get,
    944	.put =		vx_input_level_put,
    945	.tlv = { .p = db_scale_mic },
    946};
    947
    948static const struct snd_kcontrol_new vx_control_mic_level = {
    949	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
    950	.access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE |
    951			 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
    952	.name =		"Mic Capture Volume",
    953	.info =		vx_mic_level_info,
    954	.get =		vx_mic_level_get,
    955	.put =		vx_mic_level_put,
    956	.tlv = { .p = db_scale_mic },
    957};
    958
    959/*
    960 * FIXME: compressor/limiter implementation is missing yet...
    961 */
    962
    963static int vx2_add_mic_controls(struct vx_core *_chip)
    964{
    965	struct snd_vx222 *chip = to_vx222(_chip);
    966	int err;
    967
    968	if (_chip->type != VX_TYPE_MIC)
    969		return 0;
    970
    971	/* mute input levels */
    972	chip->input_level[0] = chip->input_level[1] = 0;
    973	chip->mic_level = 0;
    974	vx2_set_input_level(chip);
    975
    976	/* controls */
    977	err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip));
    978	if (err < 0)
    979		return err;
    980	err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip));
    981	if (err < 0)
    982		return err;
    983
    984	return 0;
    985}
    986
    987
    988/*
    989 * callbacks
    990 */
    991const struct snd_vx_ops vx222_ops = {
    992	.in8 = vx2_inb,
    993	.in32 = vx2_inl,
    994	.out8 = vx2_outb,
    995	.out32 = vx2_outl,
    996	.test_and_ack = vx2_test_and_ack,
    997	.validate_irq = vx2_validate_irq,
    998	.akm_write = vx2_write_akm,
    999	.reset_codec = vx2_reset_codec,
   1000	.change_audio_source = vx2_change_audio_source,
   1001	.set_clock_source = vx2_set_clock_source,
   1002	.load_dsp = vx2_load_dsp,
   1003	.reset_dsp = vx2_reset_dsp,
   1004	.reset_board = vx2_reset_board,
   1005	.dma_write = vx2_dma_write,
   1006	.dma_read = vx2_dma_read,
   1007	.add_controls = vx2_add_mic_controls,
   1008};
   1009
   1010/* for old VX222 board */
   1011const struct snd_vx_ops vx222_old_ops = {
   1012	.in8 = vx2_inb,
   1013	.in32 = vx2_inl,
   1014	.out8 = vx2_outb,
   1015	.out32 = vx2_outl,
   1016	.test_and_ack = vx2_test_and_ack,
   1017	.validate_irq = vx2_validate_irq,
   1018	.write_codec = vx2_old_write_codec_bit,
   1019	.reset_codec = vx2_reset_codec,
   1020	.change_audio_source = vx2_change_audio_source,
   1021	.set_clock_source = vx2_set_clock_source,
   1022	.load_dsp = vx2_load_dsp,
   1023	.reset_dsp = vx2_reset_dsp,
   1024	.reset_board = vx2_reset_board,
   1025	.dma_write = vx2_dma_write,
   1026	.dma_read = vx2_dma_read,
   1027};
   1028