nau8825.c (90640B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Nuvoton NAU8825 audio codec driver 4 * 5 * Copyright 2015 Google Chromium project. 6 * Author: Anatol Pomozov <anatol@chromium.org> 7 * Copyright 2015 Nuvoton Technology Corp. 8 * Co-author: Meng-Huang Kuo <mhkuo@nuvoton.com> 9 */ 10 11#include <linux/module.h> 12#include <linux/delay.h> 13#include <linux/init.h> 14#include <linux/i2c.h> 15#include <linux/regmap.h> 16#include <linux/slab.h> 17#include <linux/clk.h> 18#include <linux/acpi.h> 19#include <linux/math64.h> 20#include <linux/semaphore.h> 21 22#include <sound/initval.h> 23#include <sound/tlv.h> 24#include <sound/core.h> 25#include <sound/pcm.h> 26#include <sound/pcm_params.h> 27#include <sound/soc.h> 28#include <sound/jack.h> 29 30 31#include "nau8825.h" 32 33 34#define NUVOTON_CODEC_DAI "nau8825-hifi" 35 36#define NAU_FREF_MAX 13500000 37#define NAU_FVCO_MAX 124000000 38#define NAU_FVCO_MIN 90000000 39 40/* cross talk suppression detection */ 41#define LOG10_MAGIC 646456993 42#define GAIN_AUGMENT 22500 43#define SIDETONE_BASE 207000 44 45/* the maximum frequency of CLK_ADC and CLK_DAC */ 46#define CLK_DA_AD_MAX 6144000 47 48static int nau8825_configure_sysclk(struct nau8825 *nau8825, 49 int clk_id, unsigned int freq); 50static bool nau8825_is_jack_inserted(struct regmap *regmap); 51 52struct nau8825_fll { 53 int mclk_src; 54 int ratio; 55 int fll_frac; 56 int fll_int; 57 int clk_ref_div; 58}; 59 60struct nau8825_fll_attr { 61 unsigned int param; 62 unsigned int val; 63}; 64 65/* scaling for mclk from sysclk_src output */ 66static const struct nau8825_fll_attr mclk_src_scaling[] = { 67 { 1, 0x0 }, 68 { 2, 0x2 }, 69 { 4, 0x3 }, 70 { 8, 0x4 }, 71 { 16, 0x5 }, 72 { 32, 0x6 }, 73 { 3, 0x7 }, 74 { 6, 0xa }, 75 { 12, 0xb }, 76 { 24, 0xc }, 77 { 48, 0xd }, 78 { 96, 0xe }, 79 { 5, 0xf }, 80}; 81 82/* ratio for input clk freq */ 83static const struct nau8825_fll_attr fll_ratio[] = { 84 { 512000, 0x01 }, 85 { 256000, 0x02 }, 86 { 128000, 0x04 }, 87 { 64000, 0x08 }, 88 { 32000, 0x10 }, 89 { 8000, 0x20 }, 90 { 4000, 0x40 }, 91}; 92 93static const struct nau8825_fll_attr fll_pre_scalar[] = { 94 { 1, 0x0 }, 95 { 2, 0x1 }, 96 { 4, 0x2 }, 97 { 8, 0x3 }, 98}; 99 100/* over sampling rate */ 101struct nau8825_osr_attr { 102 unsigned int osr; 103 unsigned int clk_src; 104}; 105 106static const struct nau8825_osr_attr osr_dac_sel[] = { 107 { 64, 2 }, /* OSR 64, SRC 1/4 */ 108 { 256, 0 }, /* OSR 256, SRC 1 */ 109 { 128, 1 }, /* OSR 128, SRC 1/2 */ 110 { 0, 0 }, 111 { 32, 3 }, /* OSR 32, SRC 1/8 */ 112}; 113 114static const struct nau8825_osr_attr osr_adc_sel[] = { 115 { 32, 3 }, /* OSR 32, SRC 1/8 */ 116 { 64, 2 }, /* OSR 64, SRC 1/4 */ 117 { 128, 1 }, /* OSR 128, SRC 1/2 */ 118 { 256, 0 }, /* OSR 256, SRC 1 */ 119}; 120 121static const struct reg_default nau8825_reg_defaults[] = { 122 { NAU8825_REG_ENA_CTRL, 0x00ff }, 123 { NAU8825_REG_IIC_ADDR_SET, 0x0 }, 124 { NAU8825_REG_CLK_DIVIDER, 0x0050 }, 125 { NAU8825_REG_FLL1, 0x0 }, 126 { NAU8825_REG_FLL2, 0x3126 }, 127 { NAU8825_REG_FLL3, 0x0008 }, 128 { NAU8825_REG_FLL4, 0x0010 }, 129 { NAU8825_REG_FLL5, 0x0 }, 130 { NAU8825_REG_FLL6, 0x6000 }, 131 { NAU8825_REG_FLL_VCO_RSV, 0xf13c }, 132 { NAU8825_REG_HSD_CTRL, 0x000c }, 133 { NAU8825_REG_JACK_DET_CTRL, 0x0 }, 134 { NAU8825_REG_INTERRUPT_MASK, 0x0 }, 135 { NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff }, 136 { NAU8825_REG_SAR_CTRL, 0x0015 }, 137 { NAU8825_REG_KEYDET_CTRL, 0x0110 }, 138 { NAU8825_REG_VDET_THRESHOLD_1, 0x0 }, 139 { NAU8825_REG_VDET_THRESHOLD_2, 0x0 }, 140 { NAU8825_REG_VDET_THRESHOLD_3, 0x0 }, 141 { NAU8825_REG_VDET_THRESHOLD_4, 0x0 }, 142 { NAU8825_REG_GPIO34_CTRL, 0x0 }, 143 { NAU8825_REG_GPIO12_CTRL, 0x0 }, 144 { NAU8825_REG_TDM_CTRL, 0x0 }, 145 { NAU8825_REG_I2S_PCM_CTRL1, 0x000b }, 146 { NAU8825_REG_I2S_PCM_CTRL2, 0x8010 }, 147 { NAU8825_REG_LEFT_TIME_SLOT, 0x0 }, 148 { NAU8825_REG_RIGHT_TIME_SLOT, 0x0 }, 149 { NAU8825_REG_BIQ_CTRL, 0x0 }, 150 { NAU8825_REG_BIQ_COF1, 0x0 }, 151 { NAU8825_REG_BIQ_COF2, 0x0 }, 152 { NAU8825_REG_BIQ_COF3, 0x0 }, 153 { NAU8825_REG_BIQ_COF4, 0x0 }, 154 { NAU8825_REG_BIQ_COF5, 0x0 }, 155 { NAU8825_REG_BIQ_COF6, 0x0 }, 156 { NAU8825_REG_BIQ_COF7, 0x0 }, 157 { NAU8825_REG_BIQ_COF8, 0x0 }, 158 { NAU8825_REG_BIQ_COF9, 0x0 }, 159 { NAU8825_REG_BIQ_COF10, 0x0 }, 160 { NAU8825_REG_ADC_RATE, 0x0010 }, 161 { NAU8825_REG_DAC_CTRL1, 0x0001 }, 162 { NAU8825_REG_DAC_CTRL2, 0x0 }, 163 { NAU8825_REG_DAC_DGAIN_CTRL, 0x0 }, 164 { NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf }, 165 { NAU8825_REG_MUTE_CTRL, 0x0 }, 166 { NAU8825_REG_HSVOL_CTRL, 0x0 }, 167 { NAU8825_REG_DACL_CTRL, 0x02cf }, 168 { NAU8825_REG_DACR_CTRL, 0x00cf }, 169 { NAU8825_REG_ADC_DRC_KNEE_IP12, 0x1486 }, 170 { NAU8825_REG_ADC_DRC_KNEE_IP34, 0x0f12 }, 171 { NAU8825_REG_ADC_DRC_SLOPES, 0x25ff }, 172 { NAU8825_REG_ADC_DRC_ATKDCY, 0x3457 }, 173 { NAU8825_REG_DAC_DRC_KNEE_IP12, 0x1486 }, 174 { NAU8825_REG_DAC_DRC_KNEE_IP34, 0x0f12 }, 175 { NAU8825_REG_DAC_DRC_SLOPES, 0x25f9 }, 176 { NAU8825_REG_DAC_DRC_ATKDCY, 0x3457 }, 177 { NAU8825_REG_IMM_MODE_CTRL, 0x0 }, 178 { NAU8825_REG_CLASSG_CTRL, 0x0 }, 179 { NAU8825_REG_OPT_EFUSE_CTRL, 0x0 }, 180 { NAU8825_REG_MISC_CTRL, 0x0 }, 181 { NAU8825_REG_BIAS_ADJ, 0x0 }, 182 { NAU8825_REG_TRIM_SETTINGS, 0x0 }, 183 { NAU8825_REG_ANALOG_CONTROL_1, 0x0 }, 184 { NAU8825_REG_ANALOG_CONTROL_2, 0x0 }, 185 { NAU8825_REG_ANALOG_ADC_1, 0x0011 }, 186 { NAU8825_REG_ANALOG_ADC_2, 0x0020 }, 187 { NAU8825_REG_RDAC, 0x0008 }, 188 { NAU8825_REG_MIC_BIAS, 0x0006 }, 189 { NAU8825_REG_BOOST, 0x0 }, 190 { NAU8825_REG_FEPGA, 0x0 }, 191 { NAU8825_REG_POWER_UP_CONTROL, 0x0 }, 192 { NAU8825_REG_CHARGE_PUMP, 0x0 }, 193}; 194 195/* register backup table when cross talk detection */ 196static struct reg_default nau8825_xtalk_baktab[] = { 197 { NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf }, 198 { NAU8825_REG_HSVOL_CTRL, 0 }, 199 { NAU8825_REG_DACL_CTRL, 0x00cf }, 200 { NAU8825_REG_DACR_CTRL, 0x02cf }, 201}; 202 203static const unsigned short logtable[256] = { 204 0x0000, 0x0171, 0x02e0, 0x044e, 0x05ba, 0x0725, 0x088e, 0x09f7, 205 0x0b5d, 0x0cc3, 0x0e27, 0x0f8a, 0x10eb, 0x124b, 0x13aa, 0x1508, 206 0x1664, 0x17bf, 0x1919, 0x1a71, 0x1bc8, 0x1d1e, 0x1e73, 0x1fc6, 207 0x2119, 0x226a, 0x23ba, 0x2508, 0x2656, 0x27a2, 0x28ed, 0x2a37, 208 0x2b80, 0x2cc8, 0x2e0f, 0x2f54, 0x3098, 0x31dc, 0x331e, 0x345f, 209 0x359f, 0x36de, 0x381b, 0x3958, 0x3a94, 0x3bce, 0x3d08, 0x3e41, 210 0x3f78, 0x40af, 0x41e4, 0x4319, 0x444c, 0x457f, 0x46b0, 0x47e1, 211 0x4910, 0x4a3f, 0x4b6c, 0x4c99, 0x4dc5, 0x4eef, 0x5019, 0x5142, 212 0x526a, 0x5391, 0x54b7, 0x55dc, 0x5700, 0x5824, 0x5946, 0x5a68, 213 0x5b89, 0x5ca8, 0x5dc7, 0x5ee5, 0x6003, 0x611f, 0x623a, 0x6355, 214 0x646f, 0x6588, 0x66a0, 0x67b7, 0x68ce, 0x69e4, 0x6af8, 0x6c0c, 215 0x6d20, 0x6e32, 0x6f44, 0x7055, 0x7165, 0x7274, 0x7383, 0x7490, 216 0x759d, 0x76aa, 0x77b5, 0x78c0, 0x79ca, 0x7ad3, 0x7bdb, 0x7ce3, 217 0x7dea, 0x7ef0, 0x7ff6, 0x80fb, 0x81ff, 0x8302, 0x8405, 0x8507, 218 0x8608, 0x8709, 0x8809, 0x8908, 0x8a06, 0x8b04, 0x8c01, 0x8cfe, 219 0x8dfa, 0x8ef5, 0x8fef, 0x90e9, 0x91e2, 0x92db, 0x93d2, 0x94ca, 220 0x95c0, 0x96b6, 0x97ab, 0x98a0, 0x9994, 0x9a87, 0x9b7a, 0x9c6c, 221 0x9d5e, 0x9e4f, 0x9f3f, 0xa02e, 0xa11e, 0xa20c, 0xa2fa, 0xa3e7, 222 0xa4d4, 0xa5c0, 0xa6ab, 0xa796, 0xa881, 0xa96a, 0xaa53, 0xab3c, 223 0xac24, 0xad0c, 0xadf2, 0xaed9, 0xafbe, 0xb0a4, 0xb188, 0xb26c, 224 0xb350, 0xb433, 0xb515, 0xb5f7, 0xb6d9, 0xb7ba, 0xb89a, 0xb97a, 225 0xba59, 0xbb38, 0xbc16, 0xbcf4, 0xbdd1, 0xbead, 0xbf8a, 0xc065, 226 0xc140, 0xc21b, 0xc2f5, 0xc3cf, 0xc4a8, 0xc580, 0xc658, 0xc730, 227 0xc807, 0xc8de, 0xc9b4, 0xca8a, 0xcb5f, 0xcc34, 0xcd08, 0xcddc, 228 0xceaf, 0xcf82, 0xd054, 0xd126, 0xd1f7, 0xd2c8, 0xd399, 0xd469, 229 0xd538, 0xd607, 0xd6d6, 0xd7a4, 0xd872, 0xd93f, 0xda0c, 0xdad9, 230 0xdba5, 0xdc70, 0xdd3b, 0xde06, 0xded0, 0xdf9a, 0xe063, 0xe12c, 231 0xe1f5, 0xe2bd, 0xe385, 0xe44c, 0xe513, 0xe5d9, 0xe69f, 0xe765, 232 0xe82a, 0xe8ef, 0xe9b3, 0xea77, 0xeb3b, 0xebfe, 0xecc1, 0xed83, 233 0xee45, 0xef06, 0xefc8, 0xf088, 0xf149, 0xf209, 0xf2c8, 0xf387, 234 0xf446, 0xf505, 0xf5c3, 0xf680, 0xf73e, 0xf7fb, 0xf8b7, 0xf973, 235 0xfa2f, 0xfaea, 0xfba5, 0xfc60, 0xfd1a, 0xfdd4, 0xfe8e, 0xff47 236}; 237 238/** 239 * nau8825_sema_acquire - acquire the semaphore of nau88l25 240 * @nau8825: component to register the codec private data with 241 * @timeout: how long in jiffies to wait before failure or zero to wait 242 * until release 243 * 244 * Attempts to acquire the semaphore with number of jiffies. If no more 245 * tasks are allowed to acquire the semaphore, calling this function will 246 * put the task to sleep. If the semaphore is not released within the 247 * specified number of jiffies, this function returns. 248 * If the semaphore is not released within the specified number of jiffies, 249 * this function returns -ETIME. If the sleep is interrupted by a signal, 250 * this function will return -EINTR. It returns 0 if the semaphore was 251 * acquired successfully. 252 * 253 * Acquires the semaphore without jiffies. Try to acquire the semaphore 254 * atomically. Returns 0 if the semaphore has been acquired successfully 255 * or 1 if it cannot be acquired. 256 */ 257static int nau8825_sema_acquire(struct nau8825 *nau8825, long timeout) 258{ 259 int ret; 260 261 if (timeout) { 262 ret = down_timeout(&nau8825->xtalk_sem, timeout); 263 if (ret < 0) 264 dev_warn(nau8825->dev, "Acquire semaphore timeout\n"); 265 } else { 266 ret = down_trylock(&nau8825->xtalk_sem); 267 if (ret) 268 dev_warn(nau8825->dev, "Acquire semaphore fail\n"); 269 } 270 271 return ret; 272} 273 274/** 275 * nau8825_sema_release - release the semaphore of nau88l25 276 * @nau8825: component to register the codec private data with 277 * 278 * Release the semaphore which may be called from any context and 279 * even by tasks which have never called down(). 280 */ 281static inline void nau8825_sema_release(struct nau8825 *nau8825) 282{ 283 up(&nau8825->xtalk_sem); 284} 285 286/** 287 * nau8825_sema_reset - reset the semaphore for nau88l25 288 * @nau8825: component to register the codec private data with 289 * 290 * Reset the counter of the semaphore. Call this function to restart 291 * a new round task management. 292 */ 293static inline void nau8825_sema_reset(struct nau8825 *nau8825) 294{ 295 nau8825->xtalk_sem.count = 1; 296} 297 298/** 299 * nau8825_hpvol_ramp - Ramp up the headphone volume change gradually to target level. 300 * 301 * @nau8825: component to register the codec private data with 302 * @vol_from: the volume to start up 303 * @vol_to: the target volume 304 * @step: the volume span to move on 305 * 306 * The headphone volume is from 0dB to minimum -54dB and -1dB per step. 307 * If the volume changes sharp, there is a pop noise heard in headphone. We 308 * provide the function to ramp up the volume up or down by delaying 10ms 309 * per step. 310 */ 311static void nau8825_hpvol_ramp(struct nau8825 *nau8825, 312 unsigned int vol_from, unsigned int vol_to, unsigned int step) 313{ 314 unsigned int value, volume, ramp_up, from, to; 315 316 if (vol_from == vol_to || step == 0) { 317 return; 318 } else if (vol_from < vol_to) { 319 ramp_up = true; 320 from = vol_from; 321 to = vol_to; 322 } else { 323 ramp_up = false; 324 from = vol_to; 325 to = vol_from; 326 } 327 /* only handle volume from 0dB to minimum -54dB */ 328 if (to > NAU8825_HP_VOL_MIN) 329 to = NAU8825_HP_VOL_MIN; 330 331 for (volume = from; volume < to; volume += step) { 332 if (ramp_up) 333 value = volume; 334 else 335 value = to - volume + from; 336 regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL, 337 NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK, 338 (value << NAU8825_HPL_VOL_SFT) | value); 339 usleep_range(10000, 10500); 340 } 341 if (ramp_up) 342 value = to; 343 else 344 value = from; 345 regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL, 346 NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK, 347 (value << NAU8825_HPL_VOL_SFT) | value); 348} 349 350/** 351 * nau8825_intlog10_dec3 - Computes log10 of a value 352 * the result is round off to 3 decimal. This function takes reference to 353 * dvb-math. The source code locates as the following. 354 * Linux/drivers/media/dvb-core/dvb_math.c 355 * @value: input for log10 356 * 357 * return log10(value) * 1000 358 */ 359static u32 nau8825_intlog10_dec3(u32 value) 360{ 361 u32 msb, logentry, significand, interpolation, log10val; 362 u64 log2val; 363 364 /* first detect the msb (count begins at 0) */ 365 msb = fls(value) - 1; 366 /** 367 * now we use a logtable after the following method: 368 * 369 * log2(2^x * y) * 2^24 = x * 2^24 + log2(y) * 2^24 370 * where x = msb and therefore 1 <= y < 2 371 * first y is determined by shifting the value left 372 * so that msb is bit 31 373 * 0x00231f56 -> 0x8C7D5800 374 * the result is y * 2^31 -> "significand" 375 * then the highest 9 bits are used for a table lookup 376 * the highest bit is discarded because it's always set 377 * the highest nine bits in our example are 100011000 378 * so we would use the entry 0x18 379 */ 380 significand = value << (31 - msb); 381 logentry = (significand >> 23) & 0xff; 382 /** 383 * last step we do is interpolation because of the 384 * limitations of the log table the error is that part of 385 * the significand which isn't used for lookup then we 386 * compute the ratio between the error and the next table entry 387 * and interpolate it between the log table entry used and the 388 * next one the biggest error possible is 0x7fffff 389 * (in our example it's 0x7D5800) 390 * needed value for next table entry is 0x800000 391 * so the interpolation is 392 * (error / 0x800000) * (logtable_next - logtable_current) 393 * in the implementation the division is moved to the end for 394 * better accuracy there is also an overflow correction if 395 * logtable_next is 256 396 */ 397 interpolation = ((significand & 0x7fffff) * 398 ((logtable[(logentry + 1) & 0xff] - 399 logtable[logentry]) & 0xffff)) >> 15; 400 401 log2val = ((msb << 24) + (logtable[logentry] << 8) + interpolation); 402 /** 403 * log10(x) = log2(x) * log10(2) 404 */ 405 log10val = (log2val * LOG10_MAGIC) >> 31; 406 /** 407 * the result is round off to 3 decimal 408 */ 409 return log10val / ((1 << 24) / 1000); 410} 411 412/** 413 * nau8825_xtalk_sidetone - computes cross talk suppression sidetone gain. 414 * 415 * @sig_org: orignal signal level 416 * @sig_cros: cross talk signal level 417 * 418 * The orignal and cross talk signal vlues need to be characterized. 419 * Once these values have been characterized, this sidetone value 420 * can be converted to decibel with the equation below. 421 * sidetone = 20 * log (original signal level / crosstalk signal level) 422 * 423 * return cross talk sidetone gain 424 */ 425static u32 nau8825_xtalk_sidetone(u32 sig_org, u32 sig_cros) 426{ 427 u32 gain, sidetone; 428 429 if (WARN_ON(sig_org == 0 || sig_cros == 0)) 430 return 0; 431 432 sig_org = nau8825_intlog10_dec3(sig_org); 433 sig_cros = nau8825_intlog10_dec3(sig_cros); 434 if (sig_org >= sig_cros) 435 gain = (sig_org - sig_cros) * 20 + GAIN_AUGMENT; 436 else 437 gain = (sig_cros - sig_org) * 20 + GAIN_AUGMENT; 438 sidetone = SIDETONE_BASE - gain * 2; 439 sidetone /= 1000; 440 441 return sidetone; 442} 443 444static int nau8825_xtalk_baktab_index_by_reg(unsigned int reg) 445{ 446 int index; 447 448 for (index = 0; index < ARRAY_SIZE(nau8825_xtalk_baktab); index++) 449 if (nau8825_xtalk_baktab[index].reg == reg) 450 return index; 451 return -EINVAL; 452} 453 454static void nau8825_xtalk_backup(struct nau8825 *nau8825) 455{ 456 int i; 457 458 if (nau8825->xtalk_baktab_initialized) 459 return; 460 461 /* Backup some register values to backup table */ 462 for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) 463 regmap_read(nau8825->regmap, nau8825_xtalk_baktab[i].reg, 464 &nau8825_xtalk_baktab[i].def); 465 466 nau8825->xtalk_baktab_initialized = true; 467} 468 469static void nau8825_xtalk_restore(struct nau8825 *nau8825, bool cause_cancel) 470{ 471 int i, volume; 472 473 if (!nau8825->xtalk_baktab_initialized) 474 return; 475 476 /* Restore register values from backup table; When the driver restores 477 * the headphone volume in XTALK_DONE state, it needs recover to 478 * original level gradually with 3dB per step for less pop noise. 479 * Otherwise, the restore should do ASAP. 480 */ 481 for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) { 482 if (!cause_cancel && nau8825_xtalk_baktab[i].reg == 483 NAU8825_REG_HSVOL_CTRL) { 484 /* Ramping up the volume change to reduce pop noise */ 485 volume = nau8825_xtalk_baktab[i].def & 486 NAU8825_HPR_VOL_MASK; 487 nau8825_hpvol_ramp(nau8825, 0, volume, 3); 488 continue; 489 } 490 regmap_write(nau8825->regmap, nau8825_xtalk_baktab[i].reg, 491 nau8825_xtalk_baktab[i].def); 492 } 493 494 nau8825->xtalk_baktab_initialized = false; 495} 496 497static void nau8825_xtalk_prepare_dac(struct nau8825 *nau8825) 498{ 499 /* Enable power of DAC path */ 500 regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL, 501 NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL | 502 NAU8825_ENABLE_ADC | NAU8825_ENABLE_ADC_CLK | 503 NAU8825_ENABLE_DAC_CLK, NAU8825_ENABLE_DACR | 504 NAU8825_ENABLE_DACL | NAU8825_ENABLE_ADC | 505 NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK); 506 /* Prevent startup click by letting charge pump to ramp up and 507 * change bump enable 508 */ 509 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 510 NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 511 NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN); 512 /* Enable clock sync of DAC and DAC clock */ 513 regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC, 514 NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN | 515 NAU8825_RDAC_FS_BCLK_ENB, 516 NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN); 517 /* Power up output driver with 2 stage */ 518 regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL, 519 NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L | 520 NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 521 NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L | 522 NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L); 523 regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL, 524 NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 525 NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L); 526 /* HP outputs not shouted to ground */ 527 regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL, 528 NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 0); 529 /* Enable HP boost driver */ 530 regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST, 531 NAU8825_HP_BOOST_DIS, NAU8825_HP_BOOST_DIS); 532 /* Enable class G compare path to supply 1.8V or 0.9V. */ 533 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLASSG_CTRL, 534 NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN, 535 NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN); 536} 537 538static void nau8825_xtalk_prepare_adc(struct nau8825 *nau8825) 539{ 540 /* Power up left ADC and raise 5dB than Vmid for Vref */ 541 regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2, 542 NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 543 NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_VMID_PLUS_0_5DB); 544} 545 546static void nau8825_xtalk_clock(struct nau8825 *nau8825) 547{ 548 /* Recover FLL default value */ 549 regmap_write(nau8825->regmap, NAU8825_REG_FLL1, 0x0); 550 regmap_write(nau8825->regmap, NAU8825_REG_FLL2, 0x3126); 551 regmap_write(nau8825->regmap, NAU8825_REG_FLL3, 0x0008); 552 regmap_write(nau8825->regmap, NAU8825_REG_FLL4, 0x0010); 553 regmap_write(nau8825->regmap, NAU8825_REG_FLL5, 0x0); 554 regmap_write(nau8825->regmap, NAU8825_REG_FLL6, 0x6000); 555 /* Enable internal VCO clock for detection signal generated */ 556 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 557 NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO); 558 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN, 559 NAU8825_DCO_EN); 560 /* Given specific clock frequency of internal clock to 561 * generate signal. 562 */ 563 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 564 NAU8825_CLK_MCLK_SRC_MASK, 0xf); 565 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1, 566 NAU8825_FLL_RATIO_MASK, 0x10); 567} 568 569static void nau8825_xtalk_prepare(struct nau8825 *nau8825) 570{ 571 int volume, index; 572 573 /* Backup those registers changed by cross talk detection */ 574 nau8825_xtalk_backup(nau8825); 575 /* Config IIS as master to output signal by codec */ 576 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, 577 NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK | 578 NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_MASTER | 579 (0x2 << NAU8825_I2S_LRC_DIV_SFT) | 0x1); 580 /* Ramp up headphone volume to 0dB to get better performance and 581 * avoid pop noise in headphone. 582 */ 583 index = nau8825_xtalk_baktab_index_by_reg(NAU8825_REG_HSVOL_CTRL); 584 if (index != -EINVAL) { 585 volume = nau8825_xtalk_baktab[index].def & 586 NAU8825_HPR_VOL_MASK; 587 nau8825_hpvol_ramp(nau8825, volume, 0, 3); 588 } 589 nau8825_xtalk_clock(nau8825); 590 nau8825_xtalk_prepare_dac(nau8825); 591 nau8825_xtalk_prepare_adc(nau8825); 592 /* Config channel path and digital gain */ 593 regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL, 594 NAU8825_DACL_CH_SEL_MASK | NAU8825_DACL_CH_VOL_MASK, 595 NAU8825_DACL_CH_SEL_L | 0xab); 596 regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL, 597 NAU8825_DACR_CH_SEL_MASK | NAU8825_DACR_CH_VOL_MASK, 598 NAU8825_DACR_CH_SEL_R | 0xab); 599 /* Config cross talk parameters and generate the 23Hz sine wave with 600 * 1/16 full scale of signal level for impedance measurement. 601 */ 602 regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 603 NAU8825_IMM_THD_MASK | NAU8825_IMM_GEN_VOL_MASK | 604 NAU8825_IMM_CYC_MASK | NAU8825_IMM_DAC_SRC_MASK, 605 (0x9 << NAU8825_IMM_THD_SFT) | NAU8825_IMM_GEN_VOL_1_16th | 606 NAU8825_IMM_CYC_8192 | NAU8825_IMM_DAC_SRC_SIN); 607 /* RMS intrruption enable */ 608 regmap_update_bits(nau8825->regmap, 609 NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_RMS_EN, 0); 610 /* Power up left and right DAC */ 611 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 612 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 0); 613} 614 615static void nau8825_xtalk_clean_dac(struct nau8825 *nau8825) 616{ 617 /* Disable HP boost driver */ 618 regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST, 619 NAU8825_HP_BOOST_DIS, 0); 620 /* HP outputs shouted to ground */ 621 regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL, 622 NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 623 NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L); 624 /* Power down left and right DAC */ 625 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 626 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 627 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL); 628 /* Enable the TESTDAC and disable L/R HP impedance */ 629 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 630 NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP | 631 NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN); 632 /* Power down output driver with 2 stage */ 633 regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL, 634 NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 0); 635 regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL, 636 NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L | 637 NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 0); 638 /* Disable clock sync of DAC and DAC clock */ 639 regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC, 640 NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN, 0); 641 /* Disable charge pump ramp up function and change bump */ 642 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 643 NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 0); 644 /* Disable power of DAC path */ 645 regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL, 646 NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL | 647 NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK, 0); 648 if (!nau8825->irq) 649 regmap_update_bits(nau8825->regmap, 650 NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0); 651} 652 653static void nau8825_xtalk_clean_adc(struct nau8825 *nau8825) 654{ 655 /* Power down left ADC and restore voltage to Vmid */ 656 regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2, 657 NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 0); 658} 659 660static void nau8825_xtalk_clean(struct nau8825 *nau8825, bool cause_cancel) 661{ 662 /* Enable internal VCO needed for interruptions */ 663 nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0); 664 nau8825_xtalk_clean_dac(nau8825); 665 nau8825_xtalk_clean_adc(nau8825); 666 /* Clear cross talk parameters and disable */ 667 regmap_write(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 0); 668 /* RMS intrruption disable */ 669 regmap_update_bits(nau8825->regmap, NAU8825_REG_INTERRUPT_MASK, 670 NAU8825_IRQ_RMS_EN, NAU8825_IRQ_RMS_EN); 671 /* Recover default value for IIS */ 672 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, 673 NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK | 674 NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_SLAVE); 675 /* Restore value of specific register for cross talk */ 676 nau8825_xtalk_restore(nau8825, cause_cancel); 677} 678 679static void nau8825_xtalk_imm_start(struct nau8825 *nau8825, int vol) 680{ 681 /* Apply ADC volume for better cross talk performance */ 682 regmap_update_bits(nau8825->regmap, NAU8825_REG_ADC_DGAIN_CTRL, 683 NAU8825_ADC_DIG_VOL_MASK, vol); 684 /* Disables JKTIP(HPL) DAC channel for right to left measurement. 685 * Do it before sending signal in order to erase pop noise. 686 */ 687 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 688 NAU8825_BIAS_TESTDACR_EN | NAU8825_BIAS_TESTDACL_EN, 689 NAU8825_BIAS_TESTDACL_EN); 690 switch (nau8825->xtalk_state) { 691 case NAU8825_XTALK_HPR_R2L: 692 /* Enable right headphone impedance */ 693 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 694 NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP, 695 NAU8825_BIAS_HPR_IMP); 696 break; 697 case NAU8825_XTALK_HPL_R2L: 698 /* Enable left headphone impedance */ 699 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 700 NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP, 701 NAU8825_BIAS_HPL_IMP); 702 break; 703 default: 704 break; 705 } 706 msleep(100); 707 /* Impedance measurement mode enable */ 708 regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 709 NAU8825_IMM_EN, NAU8825_IMM_EN); 710} 711 712static void nau8825_xtalk_imm_stop(struct nau8825 *nau8825) 713{ 714 /* Impedance measurement mode disable */ 715 regmap_update_bits(nau8825->regmap, 716 NAU8825_REG_IMM_MODE_CTRL, NAU8825_IMM_EN, 0); 717} 718 719/* The cross talk measurement function can reduce cross talk across the 720 * JKTIP(HPL) and JKR1(HPR) outputs which measures the cross talk signal 721 * level to determine what cross talk reduction gain is. This system works by 722 * sending a 23Hz -24dBV sine wave into the headset output DAC and through 723 * the PGA. The output of the PGA is then connected to an internal current 724 * sense which measures the attenuated 23Hz signal and passing the output to 725 * an ADC which converts the measurement to a binary code. With two separated 726 * measurement, one for JKR1(HPR) and the other JKTIP(HPL), measurement data 727 * can be separated read in IMM_RMS_L for HSR and HSL after each measurement. 728 * Thus, the measurement function has four states to complete whole sequence. 729 * 1. Prepare state : Prepare the resource for detection and transfer to HPR 730 * IMM stat to make JKR1(HPR) impedance measure. 731 * 2. HPR IMM state : Read out orignal signal level of JKR1(HPR) and transfer 732 * to HPL IMM state to make JKTIP(HPL) impedance measure. 733 * 3. HPL IMM state : Read out cross talk signal level of JKTIP(HPL) and 734 * transfer to IMM state to determine suppression sidetone gain. 735 * 4. IMM state : Computes cross talk suppression sidetone gain with orignal 736 * and cross talk signal level. Apply this gain and then restore codec 737 * configuration. Then transfer to Done state for ending. 738 */ 739static void nau8825_xtalk_measure(struct nau8825 *nau8825) 740{ 741 u32 sidetone; 742 743 switch (nau8825->xtalk_state) { 744 case NAU8825_XTALK_PREPARE: 745 /* In prepare state, set up clock, intrruption, DAC path, ADC 746 * path and cross talk detection parameters for preparation. 747 */ 748 nau8825_xtalk_prepare(nau8825); 749 msleep(280); 750 /* Trigger right headphone impedance detection */ 751 nau8825->xtalk_state = NAU8825_XTALK_HPR_R2L; 752 nau8825_xtalk_imm_start(nau8825, 0x00d2); 753 break; 754 case NAU8825_XTALK_HPR_R2L: 755 /* In right headphone IMM state, read out right headphone 756 * impedance measure result, and then start up left side. 757 */ 758 regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L, 759 &nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]); 760 dev_dbg(nau8825->dev, "HPR_R2L imm: %x\n", 761 nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]); 762 /* Disable then re-enable IMM mode to update */ 763 nau8825_xtalk_imm_stop(nau8825); 764 /* Trigger left headphone impedance detection */ 765 nau8825->xtalk_state = NAU8825_XTALK_HPL_R2L; 766 nau8825_xtalk_imm_start(nau8825, 0x00ff); 767 break; 768 case NAU8825_XTALK_HPL_R2L: 769 /* In left headphone IMM state, read out left headphone 770 * impedance measure result, and delay some time to wait 771 * detection sine wave output finish. Then, we can calculate 772 * the cross talk suppresstion side tone according to the L/R 773 * headphone imedance. 774 */ 775 regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L, 776 &nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]); 777 dev_dbg(nau8825->dev, "HPL_R2L imm: %x\n", 778 nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]); 779 nau8825_xtalk_imm_stop(nau8825); 780 msleep(150); 781 nau8825->xtalk_state = NAU8825_XTALK_IMM; 782 break; 783 case NAU8825_XTALK_IMM: 784 /* In impedance measure state, the orignal and cross talk 785 * signal level vlues are ready. The side tone gain is deter- 786 * mined with these signal level. After all, restore codec 787 * configuration. 788 */ 789 sidetone = nau8825_xtalk_sidetone( 790 nau8825->imp_rms[NAU8825_XTALK_HPR_R2L], 791 nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]); 792 dev_dbg(nau8825->dev, "cross talk sidetone: %x\n", sidetone); 793 regmap_write(nau8825->regmap, NAU8825_REG_DAC_DGAIN_CTRL, 794 (sidetone << 8) | sidetone); 795 nau8825_xtalk_clean(nau8825, false); 796 nau8825->xtalk_state = NAU8825_XTALK_DONE; 797 break; 798 default: 799 break; 800 } 801} 802 803static void nau8825_xtalk_work(struct work_struct *work) 804{ 805 struct nau8825 *nau8825 = container_of( 806 work, struct nau8825, xtalk_work); 807 808 nau8825_xtalk_measure(nau8825); 809 /* To determine the cross talk side tone gain when reach 810 * the impedance measure state. 811 */ 812 if (nau8825->xtalk_state == NAU8825_XTALK_IMM) 813 nau8825_xtalk_measure(nau8825); 814 815 /* Delay jack report until cross talk detection process 816 * completed. It can avoid application to do playback 817 * preparation before cross talk detection is still working. 818 * Meanwhile, the protection of the cross talk detection 819 * is released. 820 */ 821 if (nau8825->xtalk_state == NAU8825_XTALK_DONE) { 822 snd_soc_jack_report(nau8825->jack, nau8825->xtalk_event, 823 nau8825->xtalk_event_mask); 824 nau8825_sema_release(nau8825); 825 nau8825->xtalk_protect = false; 826 } 827} 828 829static void nau8825_xtalk_cancel(struct nau8825 *nau8825) 830{ 831 /* If the crosstalk is eanbled and the process is on going, 832 * the driver forces to cancel the crosstalk task and 833 * restores the configuration to original status. 834 */ 835 if (nau8825->xtalk_enable && nau8825->xtalk_state != 836 NAU8825_XTALK_DONE) { 837 cancel_work_sync(&nau8825->xtalk_work); 838 nau8825_xtalk_clean(nau8825, true); 839 } 840 /* Reset parameters for cross talk suppression function */ 841 nau8825_sema_reset(nau8825); 842 nau8825->xtalk_state = NAU8825_XTALK_DONE; 843 nau8825->xtalk_protect = false; 844} 845 846static bool nau8825_readable_reg(struct device *dev, unsigned int reg) 847{ 848 switch (reg) { 849 case NAU8825_REG_ENA_CTRL ... NAU8825_REG_FLL_VCO_RSV: 850 case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL: 851 case NAU8825_REG_INTERRUPT_MASK ... NAU8825_REG_KEYDET_CTRL: 852 case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL: 853 case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY: 854 case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY: 855 case NAU8825_REG_IMM_MODE_CTRL ... NAU8825_REG_IMM_RMS_R: 856 case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL: 857 case NAU8825_REG_MISC_CTRL: 858 case NAU8825_REG_I2C_DEVICE_ID ... NAU8825_REG_SARDOUT_RAM_STATUS: 859 case NAU8825_REG_BIAS_ADJ: 860 case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2: 861 case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS: 862 case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA: 863 case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_GENERAL_STATUS: 864 return true; 865 default: 866 return false; 867 } 868 869} 870 871static bool nau8825_writeable_reg(struct device *dev, unsigned int reg) 872{ 873 switch (reg) { 874 case NAU8825_REG_RESET ... NAU8825_REG_FLL_VCO_RSV: 875 case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL: 876 case NAU8825_REG_INTERRUPT_MASK: 877 case NAU8825_REG_INT_CLR_KEY_STATUS ... NAU8825_REG_KEYDET_CTRL: 878 case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL: 879 case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY: 880 case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY: 881 case NAU8825_REG_IMM_MODE_CTRL: 882 case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL: 883 case NAU8825_REG_MISC_CTRL: 884 case NAU8825_REG_BIAS_ADJ: 885 case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2: 886 case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS: 887 case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA: 888 case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_CHARGE_PUMP: 889 return true; 890 default: 891 return false; 892 } 893} 894 895static bool nau8825_volatile_reg(struct device *dev, unsigned int reg) 896{ 897 switch (reg) { 898 case NAU8825_REG_RESET: 899 case NAU8825_REG_IRQ_STATUS: 900 case NAU8825_REG_INT_CLR_KEY_STATUS: 901 case NAU8825_REG_IMM_RMS_L: 902 case NAU8825_REG_IMM_RMS_R: 903 case NAU8825_REG_I2C_DEVICE_ID: 904 case NAU8825_REG_SARDOUT_RAM_STATUS: 905 case NAU8825_REG_CHARGE_PUMP_INPUT_READ: 906 case NAU8825_REG_GENERAL_STATUS: 907 case NAU8825_REG_BIQ_CTRL ... NAU8825_REG_BIQ_COF10: 908 return true; 909 default: 910 return false; 911 } 912} 913 914static int nau8825_adc_event(struct snd_soc_dapm_widget *w, 915 struct snd_kcontrol *kcontrol, int event) 916{ 917 struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); 918 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 919 920 switch (event) { 921 case SND_SOC_DAPM_POST_PMU: 922 msleep(125); 923 regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL, 924 NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC); 925 break; 926 case SND_SOC_DAPM_POST_PMD: 927 if (!nau8825->irq) 928 regmap_update_bits(nau8825->regmap, 929 NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0); 930 break; 931 default: 932 return -EINVAL; 933 } 934 935 return 0; 936} 937 938static int nau8825_pump_event(struct snd_soc_dapm_widget *w, 939 struct snd_kcontrol *kcontrol, int event) 940{ 941 struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); 942 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 943 944 switch (event) { 945 case SND_SOC_DAPM_POST_PMU: 946 /* Prevent startup click by letting charge pump to ramp up */ 947 msleep(10); 948 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 949 NAU8825_JAMNODCLOW, NAU8825_JAMNODCLOW); 950 break; 951 case SND_SOC_DAPM_PRE_PMD: 952 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 953 NAU8825_JAMNODCLOW, 0); 954 break; 955 default: 956 return -EINVAL; 957 } 958 959 return 0; 960} 961 962static int nau8825_output_dac_event(struct snd_soc_dapm_widget *w, 963 struct snd_kcontrol *kcontrol, int event) 964{ 965 struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); 966 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 967 968 switch (event) { 969 case SND_SOC_DAPM_PRE_PMU: 970 /* Disables the TESTDAC to let DAC signal pass through. */ 971 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 972 NAU8825_BIAS_TESTDAC_EN, 0); 973 break; 974 case SND_SOC_DAPM_POST_PMD: 975 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 976 NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN); 977 break; 978 default: 979 return -EINVAL; 980 } 981 982 return 0; 983} 984 985static int system_clock_control(struct snd_soc_dapm_widget *w, 986 struct snd_kcontrol *k, int event) 987{ 988 struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); 989 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 990 struct regmap *regmap = nau8825->regmap; 991 992 if (SND_SOC_DAPM_EVENT_OFF(event)) { 993 dev_dbg(nau8825->dev, "system clock control : POWER OFF\n"); 994 /* Set clock source to disable or internal clock before the 995 * playback or capture end. Codec needs clock for Jack 996 * detection and button press if jack inserted; otherwise, 997 * the clock should be closed. 998 */ 999 if (nau8825_is_jack_inserted(regmap)) { 1000 nau8825_configure_sysclk(nau8825, 1001 NAU8825_CLK_INTERNAL, 0); 1002 } else { 1003 nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0); 1004 } 1005 } 1006 1007 return 0; 1008} 1009 1010static int nau8825_biq_coeff_get(struct snd_kcontrol *kcontrol, 1011 struct snd_ctl_elem_value *ucontrol) 1012{ 1013 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 1014 struct soc_bytes_ext *params = (void *)kcontrol->private_value; 1015 1016 if (!component->regmap) 1017 return -EINVAL; 1018 1019 regmap_raw_read(component->regmap, NAU8825_REG_BIQ_COF1, 1020 ucontrol->value.bytes.data, params->max); 1021 return 0; 1022} 1023 1024static int nau8825_biq_coeff_put(struct snd_kcontrol *kcontrol, 1025 struct snd_ctl_elem_value *ucontrol) 1026{ 1027 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 1028 struct soc_bytes_ext *params = (void *)kcontrol->private_value; 1029 void *data; 1030 1031 if (!component->regmap) 1032 return -EINVAL; 1033 1034 data = kmemdup(ucontrol->value.bytes.data, 1035 params->max, GFP_KERNEL | GFP_DMA); 1036 if (!data) 1037 return -ENOMEM; 1038 1039 regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL, 1040 NAU8825_BIQ_WRT_EN, 0); 1041 regmap_raw_write(component->regmap, NAU8825_REG_BIQ_COF1, 1042 data, params->max); 1043 regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL, 1044 NAU8825_BIQ_WRT_EN, NAU8825_BIQ_WRT_EN); 1045 1046 kfree(data); 1047 return 0; 1048} 1049 1050static const char * const nau8825_biq_path[] = { 1051 "ADC", "DAC" 1052}; 1053 1054static const struct soc_enum nau8825_biq_path_enum = 1055 SOC_ENUM_SINGLE(NAU8825_REG_BIQ_CTRL, NAU8825_BIQ_PATH_SFT, 1056 ARRAY_SIZE(nau8825_biq_path), nau8825_biq_path); 1057 1058static const char * const nau8825_adc_decimation[] = { 1059 "32", "64", "128", "256" 1060}; 1061 1062static const struct soc_enum nau8825_adc_decimation_enum = 1063 SOC_ENUM_SINGLE(NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_SFT, 1064 ARRAY_SIZE(nau8825_adc_decimation), nau8825_adc_decimation); 1065 1066static const char * const nau8825_dac_oversampl[] = { 1067 "64", "256", "128", "", "32" 1068}; 1069 1070static const struct soc_enum nau8825_dac_oversampl_enum = 1071 SOC_ENUM_SINGLE(NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_SFT, 1072 ARRAY_SIZE(nau8825_dac_oversampl), nau8825_dac_oversampl); 1073 1074static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -10300, 2400); 1075static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0); 1076static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -5400, 0); 1077static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600); 1078static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -9600, 2400); 1079 1080static const struct snd_kcontrol_new nau8825_controls[] = { 1081 SOC_SINGLE_TLV("Mic Volume", NAU8825_REG_ADC_DGAIN_CTRL, 1082 0, 0xff, 0, adc_vol_tlv), 1083 SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8825_REG_ADC_DGAIN_CTRL, 1084 12, 8, 0x0f, 0, sidetone_vol_tlv), 1085 SOC_DOUBLE_TLV("Headphone Volume", NAU8825_REG_HSVOL_CTRL, 1086 6, 0, 0x3f, 1, dac_vol_tlv), 1087 SOC_SINGLE_TLV("Frontend PGA Volume", NAU8825_REG_POWER_UP_CONTROL, 1088 8, 37, 0, fepga_gain_tlv), 1089 SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8825_REG_DAC_DGAIN_CTRL, 1090 0, 8, 0xff, 0, crosstalk_vol_tlv), 1091 1092 SOC_ENUM("ADC Decimation Rate", nau8825_adc_decimation_enum), 1093 SOC_ENUM("DAC Oversampling Rate", nau8825_dac_oversampl_enum), 1094 /* programmable biquad filter */ 1095 SOC_ENUM("BIQ Path Select", nau8825_biq_path_enum), 1096 SND_SOC_BYTES_EXT("BIQ Coefficients", 20, 1097 nau8825_biq_coeff_get, nau8825_biq_coeff_put), 1098}; 1099 1100/* DAC Mux 0x33[9] and 0x34[9] */ 1101static const char * const nau8825_dac_src[] = { 1102 "DACL", "DACR", 1103}; 1104 1105static SOC_ENUM_SINGLE_DECL( 1106 nau8825_dacl_enum, NAU8825_REG_DACL_CTRL, 1107 NAU8825_DACL_CH_SEL_SFT, nau8825_dac_src); 1108 1109static SOC_ENUM_SINGLE_DECL( 1110 nau8825_dacr_enum, NAU8825_REG_DACR_CTRL, 1111 NAU8825_DACR_CH_SEL_SFT, nau8825_dac_src); 1112 1113static const struct snd_kcontrol_new nau8825_dacl_mux = 1114 SOC_DAPM_ENUM("DACL Source", nau8825_dacl_enum); 1115 1116static const struct snd_kcontrol_new nau8825_dacr_mux = 1117 SOC_DAPM_ENUM("DACR Source", nau8825_dacr_enum); 1118 1119 1120static const struct snd_soc_dapm_widget nau8825_dapm_widgets[] = { 1121 SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8825_REG_I2S_PCM_CTRL2, 1122 15, 1), 1123 SND_SOC_DAPM_AIF_IN("AIFRX", "Playback", 0, SND_SOC_NOPM, 0, 0), 1124 SND_SOC_DAPM_SUPPLY("System Clock", SND_SOC_NOPM, 0, 0, 1125 system_clock_control, SND_SOC_DAPM_POST_PMD), 1126 1127 SND_SOC_DAPM_INPUT("MIC"), 1128 SND_SOC_DAPM_MICBIAS("MICBIAS", NAU8825_REG_MIC_BIAS, 8, 0), 1129 1130 SND_SOC_DAPM_PGA("Frontend PGA", NAU8825_REG_POWER_UP_CONTROL, 14, 0, 1131 NULL, 0), 1132 1133 SND_SOC_DAPM_ADC_E("ADC", NULL, SND_SOC_NOPM, 0, 0, 1134 nau8825_adc_event, SND_SOC_DAPM_POST_PMU | 1135 SND_SOC_DAPM_POST_PMD), 1136 SND_SOC_DAPM_SUPPLY("ADC Clock", NAU8825_REG_ENA_CTRL, 7, 0, NULL, 0), 1137 SND_SOC_DAPM_SUPPLY("ADC Power", NAU8825_REG_ANALOG_ADC_2, 6, 0, NULL, 1138 0), 1139 1140 /* ADC for button press detection. A dapm supply widget is used to 1141 * prevent dapm_power_widgets keeping the codec at SND_SOC_BIAS_ON 1142 * during suspend. 1143 */ 1144 SND_SOC_DAPM_SUPPLY("SAR", NAU8825_REG_SAR_CTRL, 1145 NAU8825_SAR_ADC_EN_SFT, 0, NULL, 0), 1146 1147 SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8825_REG_RDAC, 12, 0, NULL, 0), 1148 SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8825_REG_RDAC, 13, 0, NULL, 0), 1149 SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8825_REG_RDAC, 8, 0, NULL, 0), 1150 SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8825_REG_RDAC, 9, 0, NULL, 0), 1151 1152 SND_SOC_DAPM_DAC("DDACR", NULL, NAU8825_REG_ENA_CTRL, 1153 NAU8825_ENABLE_DACR_SFT, 0), 1154 SND_SOC_DAPM_DAC("DDACL", NULL, NAU8825_REG_ENA_CTRL, 1155 NAU8825_ENABLE_DACL_SFT, 0), 1156 SND_SOC_DAPM_SUPPLY("DDAC Clock", NAU8825_REG_ENA_CTRL, 6, 0, NULL, 0), 1157 1158 SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacl_mux), 1159 SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacr_mux), 1160 1161 SND_SOC_DAPM_PGA_S("HP amp L", 0, 1162 NAU8825_REG_CLASSG_CTRL, 1, 0, NULL, 0), 1163 SND_SOC_DAPM_PGA_S("HP amp R", 0, 1164 NAU8825_REG_CLASSG_CTRL, 2, 0, NULL, 0), 1165 1166 SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8825_REG_CHARGE_PUMP, 5, 0, 1167 nau8825_pump_event, SND_SOC_DAPM_POST_PMU | 1168 SND_SOC_DAPM_PRE_PMD), 1169 1170 SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4, 1171 NAU8825_REG_POWER_UP_CONTROL, 5, 0, NULL, 0), 1172 SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4, 1173 NAU8825_REG_POWER_UP_CONTROL, 4, 0, NULL, 0), 1174 SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5, 1175 NAU8825_REG_POWER_UP_CONTROL, 3, 0, NULL, 0), 1176 SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5, 1177 NAU8825_REG_POWER_UP_CONTROL, 2, 0, NULL, 0), 1178 SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6, 1179 NAU8825_REG_POWER_UP_CONTROL, 1, 0, NULL, 0), 1180 SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6, 1181 NAU8825_REG_POWER_UP_CONTROL, 0, 0, NULL, 0), 1182 1183 SND_SOC_DAPM_PGA_S("Output DACL", 7, 1184 NAU8825_REG_CHARGE_PUMP, 8, 1, nau8825_output_dac_event, 1185 SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), 1186 SND_SOC_DAPM_PGA_S("Output DACR", 7, 1187 NAU8825_REG_CHARGE_PUMP, 9, 1, nau8825_output_dac_event, 1188 SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), 1189 1190 /* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */ 1191 SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8, 1192 NAU8825_REG_HSD_CTRL, 0, 1, NULL, 0), 1193 SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8, 1194 NAU8825_REG_HSD_CTRL, 1, 1, NULL, 0), 1195 1196 /* High current HPOL/R boost driver */ 1197 SND_SOC_DAPM_PGA_S("HP Boost Driver", 9, 1198 NAU8825_REG_BOOST, 9, 1, NULL, 0), 1199 1200 /* Class G operation control*/ 1201 SND_SOC_DAPM_PGA_S("Class G", 10, 1202 NAU8825_REG_CLASSG_CTRL, 0, 0, NULL, 0), 1203 1204 SND_SOC_DAPM_OUTPUT("HPOL"), 1205 SND_SOC_DAPM_OUTPUT("HPOR"), 1206}; 1207 1208static const struct snd_soc_dapm_route nau8825_dapm_routes[] = { 1209 {"Frontend PGA", NULL, "MIC"}, 1210 {"ADC", NULL, "Frontend PGA"}, 1211 {"ADC", NULL, "ADC Clock"}, 1212 {"ADC", NULL, "ADC Power"}, 1213 {"AIFTX", NULL, "ADC"}, 1214 {"AIFTX", NULL, "System Clock"}, 1215 1216 {"AIFRX", NULL, "System Clock"}, 1217 {"DDACL", NULL, "AIFRX"}, 1218 {"DDACR", NULL, "AIFRX"}, 1219 {"DDACL", NULL, "DDAC Clock"}, 1220 {"DDACR", NULL, "DDAC Clock"}, 1221 {"DACL Mux", "DACL", "DDACL"}, 1222 {"DACL Mux", "DACR", "DDACR"}, 1223 {"DACR Mux", "DACL", "DDACL"}, 1224 {"DACR Mux", "DACR", "DDACR"}, 1225 {"HP amp L", NULL, "DACL Mux"}, 1226 {"HP amp R", NULL, "DACR Mux"}, 1227 {"Charge Pump", NULL, "HP amp L"}, 1228 {"Charge Pump", NULL, "HP amp R"}, 1229 {"ADACL", NULL, "Charge Pump"}, 1230 {"ADACR", NULL, "Charge Pump"}, 1231 {"ADACL Clock", NULL, "ADACL"}, 1232 {"ADACR Clock", NULL, "ADACR"}, 1233 {"Output Driver L Stage 1", NULL, "ADACL Clock"}, 1234 {"Output Driver R Stage 1", NULL, "ADACR Clock"}, 1235 {"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"}, 1236 {"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"}, 1237 {"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"}, 1238 {"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"}, 1239 {"Output DACL", NULL, "Output Driver L Stage 3"}, 1240 {"Output DACR", NULL, "Output Driver R Stage 3"}, 1241 {"HPOL Pulldown", NULL, "Output DACL"}, 1242 {"HPOR Pulldown", NULL, "Output DACR"}, 1243 {"HP Boost Driver", NULL, "HPOL Pulldown"}, 1244 {"HP Boost Driver", NULL, "HPOR Pulldown"}, 1245 {"Class G", NULL, "HP Boost Driver"}, 1246 {"HPOL", NULL, "Class G"}, 1247 {"HPOR", NULL, "Class G"}, 1248}; 1249 1250static int nau8825_clock_check(struct nau8825 *nau8825, 1251 int stream, int rate, int osr) 1252{ 1253 int osrate; 1254 1255 if (stream == SNDRV_PCM_STREAM_PLAYBACK) { 1256 if (osr >= ARRAY_SIZE(osr_dac_sel)) 1257 return -EINVAL; 1258 osrate = osr_dac_sel[osr].osr; 1259 } else { 1260 if (osr >= ARRAY_SIZE(osr_adc_sel)) 1261 return -EINVAL; 1262 osrate = osr_adc_sel[osr].osr; 1263 } 1264 1265 if (!osrate || rate * osr > CLK_DA_AD_MAX) { 1266 dev_err(nau8825->dev, "exceed the maximum frequency of CLK_ADC or CLK_DAC\n"); 1267 return -EINVAL; 1268 } 1269 1270 return 0; 1271} 1272 1273static int nau8825_hw_params(struct snd_pcm_substream *substream, 1274 struct snd_pcm_hw_params *params, 1275 struct snd_soc_dai *dai) 1276{ 1277 struct snd_soc_component *component = dai->component; 1278 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 1279 unsigned int val_len = 0, osr, ctrl_val, bclk_fs, bclk_div; 1280 1281 nau8825_sema_acquire(nau8825, 3 * HZ); 1282 1283 /* CLK_DAC or CLK_ADC = OSR * FS 1284 * DAC or ADC clock frequency is defined as Over Sampling Rate (OSR) 1285 * multiplied by the audio sample rate (Fs). Note that the OSR and Fs 1286 * values must be selected such that the maximum frequency is less 1287 * than 6.144 MHz. 1288 */ 1289 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 1290 regmap_read(nau8825->regmap, NAU8825_REG_DAC_CTRL1, &osr); 1291 osr &= NAU8825_DAC_OVERSAMPLE_MASK; 1292 if (nau8825_clock_check(nau8825, substream->stream, 1293 params_rate(params), osr)) { 1294 nau8825_sema_release(nau8825); 1295 return -EINVAL; 1296 } 1297 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 1298 NAU8825_CLK_DAC_SRC_MASK, 1299 osr_dac_sel[osr].clk_src << NAU8825_CLK_DAC_SRC_SFT); 1300 } else { 1301 regmap_read(nau8825->regmap, NAU8825_REG_ADC_RATE, &osr); 1302 osr &= NAU8825_ADC_SYNC_DOWN_MASK; 1303 if (nau8825_clock_check(nau8825, substream->stream, 1304 params_rate(params), osr)) { 1305 nau8825_sema_release(nau8825); 1306 return -EINVAL; 1307 } 1308 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 1309 NAU8825_CLK_ADC_SRC_MASK, 1310 osr_adc_sel[osr].clk_src << NAU8825_CLK_ADC_SRC_SFT); 1311 } 1312 1313 /* make BCLK and LRC divde configuration if the codec as master. */ 1314 regmap_read(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, &ctrl_val); 1315 if (ctrl_val & NAU8825_I2S_MS_MASTER) { 1316 /* get the bclk and fs ratio */ 1317 bclk_fs = snd_soc_params_to_bclk(params) / params_rate(params); 1318 if (bclk_fs <= 32) 1319 bclk_div = 2; 1320 else if (bclk_fs <= 64) 1321 bclk_div = 1; 1322 else if (bclk_fs <= 128) 1323 bclk_div = 0; 1324 else { 1325 nau8825_sema_release(nau8825); 1326 return -EINVAL; 1327 } 1328 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, 1329 NAU8825_I2S_LRC_DIV_MASK | NAU8825_I2S_BLK_DIV_MASK, 1330 ((bclk_div + 1) << NAU8825_I2S_LRC_DIV_SFT) | bclk_div); 1331 } 1332 1333 switch (params_width(params)) { 1334 case 16: 1335 val_len |= NAU8825_I2S_DL_16; 1336 break; 1337 case 20: 1338 val_len |= NAU8825_I2S_DL_20; 1339 break; 1340 case 24: 1341 val_len |= NAU8825_I2S_DL_24; 1342 break; 1343 case 32: 1344 val_len |= NAU8825_I2S_DL_32; 1345 break; 1346 default: 1347 nau8825_sema_release(nau8825); 1348 return -EINVAL; 1349 } 1350 1351 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1, 1352 NAU8825_I2S_DL_MASK, val_len); 1353 1354 /* Release the semaphore. */ 1355 nau8825_sema_release(nau8825); 1356 1357 return 0; 1358} 1359 1360static int nau8825_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) 1361{ 1362 struct snd_soc_component *component = codec_dai->component; 1363 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 1364 unsigned int ctrl1_val = 0, ctrl2_val = 0; 1365 1366 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { 1367 case SND_SOC_DAIFMT_CBM_CFM: 1368 ctrl2_val |= NAU8825_I2S_MS_MASTER; 1369 break; 1370 case SND_SOC_DAIFMT_CBS_CFS: 1371 break; 1372 default: 1373 return -EINVAL; 1374 } 1375 1376 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 1377 case SND_SOC_DAIFMT_NB_NF: 1378 break; 1379 case SND_SOC_DAIFMT_IB_NF: 1380 ctrl1_val |= NAU8825_I2S_BP_INV; 1381 break; 1382 default: 1383 return -EINVAL; 1384 } 1385 1386 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 1387 case SND_SOC_DAIFMT_I2S: 1388 ctrl1_val |= NAU8825_I2S_DF_I2S; 1389 break; 1390 case SND_SOC_DAIFMT_LEFT_J: 1391 ctrl1_val |= NAU8825_I2S_DF_LEFT; 1392 break; 1393 case SND_SOC_DAIFMT_RIGHT_J: 1394 ctrl1_val |= NAU8825_I2S_DF_RIGTH; 1395 break; 1396 case SND_SOC_DAIFMT_DSP_A: 1397 ctrl1_val |= NAU8825_I2S_DF_PCM_AB; 1398 break; 1399 case SND_SOC_DAIFMT_DSP_B: 1400 ctrl1_val |= NAU8825_I2S_DF_PCM_AB; 1401 ctrl1_val |= NAU8825_I2S_PCMB_EN; 1402 break; 1403 default: 1404 return -EINVAL; 1405 } 1406 1407 nau8825_sema_acquire(nau8825, 3 * HZ); 1408 1409 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1, 1410 NAU8825_I2S_DL_MASK | NAU8825_I2S_DF_MASK | 1411 NAU8825_I2S_BP_MASK | NAU8825_I2S_PCMB_MASK, 1412 ctrl1_val); 1413 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, 1414 NAU8825_I2S_MS_MASK, ctrl2_val); 1415 1416 /* Release the semaphore. */ 1417 nau8825_sema_release(nau8825); 1418 1419 return 0; 1420} 1421 1422static const struct snd_soc_dai_ops nau8825_dai_ops = { 1423 .hw_params = nau8825_hw_params, 1424 .set_fmt = nau8825_set_dai_fmt, 1425}; 1426 1427#define NAU8825_RATES SNDRV_PCM_RATE_8000_192000 1428#define NAU8825_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \ 1429 | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE) 1430 1431static struct snd_soc_dai_driver nau8825_dai = { 1432 .name = "nau8825-hifi", 1433 .playback = { 1434 .stream_name = "Playback", 1435 .channels_min = 1, 1436 .channels_max = 2, 1437 .rates = NAU8825_RATES, 1438 .formats = NAU8825_FORMATS, 1439 }, 1440 .capture = { 1441 .stream_name = "Capture", 1442 .channels_min = 1, 1443 .channels_max = 1, 1444 .rates = NAU8825_RATES, 1445 .formats = NAU8825_FORMATS, 1446 }, 1447 .ops = &nau8825_dai_ops, 1448}; 1449 1450/** 1451 * nau8825_enable_jack_detect - Specify a jack for event reporting 1452 * 1453 * @component: component to register the jack with 1454 * @jack: jack to use to report headset and button events on 1455 * 1456 * After this function has been called the headset insert/remove and button 1457 * events will be routed to the given jack. Jack can be null to stop 1458 * reporting. 1459 */ 1460int nau8825_enable_jack_detect(struct snd_soc_component *component, 1461 struct snd_soc_jack *jack) 1462{ 1463 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 1464 struct regmap *regmap = nau8825->regmap; 1465 1466 nau8825->jack = jack; 1467 1468 if (!nau8825->jack) { 1469 regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 1470 NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | 1471 NAU8825_SPKR_DWN1L, 0); 1472 return 0; 1473 } 1474 /* Ground HP Outputs[1:0], needed for headset auto detection 1475 * Enable Automatic Mic/Gnd switching reading on insert interrupt[6] 1476 */ 1477 regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 1478 NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 1479 NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L); 1480 1481 return 0; 1482} 1483EXPORT_SYMBOL_GPL(nau8825_enable_jack_detect); 1484 1485 1486static bool nau8825_is_jack_inserted(struct regmap *regmap) 1487{ 1488 bool active_high, is_high; 1489 int status, jkdet; 1490 1491 regmap_read(regmap, NAU8825_REG_JACK_DET_CTRL, &jkdet); 1492 active_high = jkdet & NAU8825_JACK_POLARITY; 1493 regmap_read(regmap, NAU8825_REG_I2C_DEVICE_ID, &status); 1494 is_high = status & NAU8825_GPIO2JD1; 1495 /* return jack connection status according to jack insertion logic 1496 * active high or active low. 1497 */ 1498 return active_high == is_high; 1499} 1500 1501static void nau8825_restart_jack_detection(struct regmap *regmap) 1502{ 1503 /* this will restart the entire jack detection process including MIC/GND 1504 * switching and create interrupts. We have to go from 0 to 1 and back 1505 * to 0 to restart. 1506 */ 1507 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1508 NAU8825_JACK_DET_RESTART, NAU8825_JACK_DET_RESTART); 1509 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1510 NAU8825_JACK_DET_RESTART, 0); 1511} 1512 1513static void nau8825_int_status_clear_all(struct regmap *regmap) 1514{ 1515 int active_irq, clear_irq, i; 1516 1517 /* Reset the intrruption status from rightmost bit if the corres- 1518 * ponding irq event occurs. 1519 */ 1520 regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq); 1521 for (i = 0; i < NAU8825_REG_DATA_LEN; i++) { 1522 clear_irq = (0x1 << i); 1523 if (active_irq & clear_irq) 1524 regmap_write(regmap, 1525 NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq); 1526 } 1527} 1528 1529static void nau8825_eject_jack(struct nau8825 *nau8825) 1530{ 1531 struct snd_soc_dapm_context *dapm = nau8825->dapm; 1532 struct regmap *regmap = nau8825->regmap; 1533 1534 /* Force to cancel the cross talk detection process */ 1535 nau8825_xtalk_cancel(nau8825); 1536 1537 snd_soc_dapm_disable_pin(dapm, "SAR"); 1538 snd_soc_dapm_disable_pin(dapm, "MICBIAS"); 1539 /* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */ 1540 regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, 1541 NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0); 1542 /* ground HPL/HPR, MICGRND1/2 */ 1543 regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf); 1544 1545 snd_soc_dapm_sync(dapm); 1546 1547 /* Clear all interruption status */ 1548 nau8825_int_status_clear_all(regmap); 1549 1550 /* Enable the insertion interruption, disable the ejection inter- 1551 * ruption, and then bypass de-bounce circuit. 1552 */ 1553 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 1554 NAU8825_IRQ_EJECT_DIS | NAU8825_IRQ_INSERT_DIS, 1555 NAU8825_IRQ_EJECT_DIS); 1556 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 1557 NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN | 1558 NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_INSERT_EN, 1559 NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN | 1560 NAU8825_IRQ_HEADSET_COMPLETE_EN); 1561 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1562 NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS); 1563 1564 /* Disable ADC needed for interruptions at audo mode */ 1565 regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL, 1566 NAU8825_ENABLE_ADC, 0); 1567 1568 /* Close clock for jack type detection at manual mode */ 1569 nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0); 1570} 1571 1572/* Enable audo mode interruptions with internal clock. */ 1573static void nau8825_setup_auto_irq(struct nau8825 *nau8825) 1574{ 1575 struct regmap *regmap = nau8825->regmap; 1576 1577 /* Enable headset jack type detection complete interruption and 1578 * jack ejection interruption. 1579 */ 1580 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 1581 NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN, 0); 1582 1583 /* Enable internal VCO needed for interruptions */ 1584 nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0); 1585 1586 /* Enable ADC needed for interruptions */ 1587 regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL, 1588 NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC); 1589 1590 /* Chip needs one FSCLK cycle in order to generate interruptions, 1591 * as we cannot guarantee one will be provided by the system. Turning 1592 * master mode on then off enables us to generate that FSCLK cycle 1593 * with a minimum of contention on the clock bus. 1594 */ 1595 regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2, 1596 NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_MASTER); 1597 regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2, 1598 NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_SLAVE); 1599 1600 /* Not bypass de-bounce circuit */ 1601 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1602 NAU8825_JACK_DET_DB_BYPASS, 0); 1603 1604 /* Unmask all interruptions */ 1605 regmap_write(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0); 1606 1607 /* Restart the jack detection process at auto mode */ 1608 nau8825_restart_jack_detection(regmap); 1609} 1610 1611static int nau8825_button_decode(int value) 1612{ 1613 int buttons = 0; 1614 1615 /* The chip supports up to 8 buttons, but ALSA defines only 6 buttons */ 1616 if (value & BIT(0)) 1617 buttons |= SND_JACK_BTN_0; 1618 if (value & BIT(1)) 1619 buttons |= SND_JACK_BTN_1; 1620 if (value & BIT(2)) 1621 buttons |= SND_JACK_BTN_2; 1622 if (value & BIT(3)) 1623 buttons |= SND_JACK_BTN_3; 1624 if (value & BIT(4)) 1625 buttons |= SND_JACK_BTN_4; 1626 if (value & BIT(5)) 1627 buttons |= SND_JACK_BTN_5; 1628 1629 return buttons; 1630} 1631 1632static int nau8825_jack_insert(struct nau8825 *nau8825) 1633{ 1634 struct regmap *regmap = nau8825->regmap; 1635 struct snd_soc_dapm_context *dapm = nau8825->dapm; 1636 int jack_status_reg, mic_detected; 1637 int type = 0; 1638 1639 regmap_read(regmap, NAU8825_REG_GENERAL_STATUS, &jack_status_reg); 1640 mic_detected = (jack_status_reg >> 10) & 3; 1641 /* The JKSLV and JKR2 all detected in high impedance headset */ 1642 if (mic_detected == 0x3) 1643 nau8825->high_imped = true; 1644 else 1645 nau8825->high_imped = false; 1646 1647 switch (mic_detected) { 1648 case 0: 1649 /* no mic */ 1650 type = SND_JACK_HEADPHONE; 1651 break; 1652 case 1: 1653 dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n"); 1654 type = SND_JACK_HEADSET; 1655 1656 /* Unground MICGND1 */ 1657 regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2, 1658 1 << 2); 1659 /* Attach 2kOhm Resistor from MICBIAS to MICGND1 */ 1660 regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, 1661 NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 1662 NAU8825_MICBIAS_JKR2); 1663 /* Attach SARADC to MICGND1 */ 1664 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, 1665 NAU8825_SAR_INPUT_MASK, 1666 NAU8825_SAR_INPUT_JKR2); 1667 1668 snd_soc_dapm_force_enable_pin(dapm, "MICBIAS"); 1669 snd_soc_dapm_force_enable_pin(dapm, "SAR"); 1670 snd_soc_dapm_sync(dapm); 1671 break; 1672 case 2: 1673 dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n"); 1674 type = SND_JACK_HEADSET; 1675 1676 /* Unground MICGND2 */ 1677 regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2, 1678 2 << 2); 1679 /* Attach 2kOhm Resistor from MICBIAS to MICGND2 */ 1680 regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, 1681 NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 1682 NAU8825_MICBIAS_JKSLV); 1683 /* Attach SARADC to MICGND2 */ 1684 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, 1685 NAU8825_SAR_INPUT_MASK, 1686 NAU8825_SAR_INPUT_JKSLV); 1687 1688 snd_soc_dapm_force_enable_pin(dapm, "MICBIAS"); 1689 snd_soc_dapm_force_enable_pin(dapm, "SAR"); 1690 snd_soc_dapm_sync(dapm); 1691 break; 1692 case 3: 1693 /* detect error case */ 1694 dev_err(nau8825->dev, "detection error; disable mic function\n"); 1695 type = SND_JACK_HEADPHONE; 1696 break; 1697 } 1698 1699 /* Leaving HPOL/R grounded after jack insert by default. They will be 1700 * ungrounded as part of the widget power up sequence at the beginning 1701 * of playback to reduce pop. 1702 */ 1703 return type; 1704} 1705 1706#define NAU8825_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \ 1707 SND_JACK_BTN_2 | SND_JACK_BTN_3) 1708 1709static irqreturn_t nau8825_interrupt(int irq, void *data) 1710{ 1711 struct nau8825 *nau8825 = (struct nau8825 *)data; 1712 struct regmap *regmap = nau8825->regmap; 1713 int active_irq, clear_irq = 0, event = 0, event_mask = 0; 1714 1715 if (regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq)) { 1716 dev_err(nau8825->dev, "failed to read irq status\n"); 1717 return IRQ_NONE; 1718 } 1719 1720 if ((active_irq & NAU8825_JACK_EJECTION_IRQ_MASK) == 1721 NAU8825_JACK_EJECTION_DETECTED) { 1722 1723 nau8825_eject_jack(nau8825); 1724 event_mask |= SND_JACK_HEADSET; 1725 clear_irq = NAU8825_JACK_EJECTION_IRQ_MASK; 1726 } else if (active_irq & NAU8825_KEY_SHORT_PRESS_IRQ) { 1727 int key_status; 1728 1729 regmap_read(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, 1730 &key_status); 1731 1732 /* upper 8 bits of the register are for short pressed keys, 1733 * lower 8 bits - for long pressed buttons 1734 */ 1735 nau8825->button_pressed = nau8825_button_decode( 1736 key_status >> 8); 1737 1738 event |= nau8825->button_pressed; 1739 event_mask |= NAU8825_BUTTONS; 1740 clear_irq = NAU8825_KEY_SHORT_PRESS_IRQ; 1741 } else if (active_irq & NAU8825_KEY_RELEASE_IRQ) { 1742 event_mask = NAU8825_BUTTONS; 1743 clear_irq = NAU8825_KEY_RELEASE_IRQ; 1744 } else if (active_irq & NAU8825_HEADSET_COMPLETION_IRQ) { 1745 if (nau8825_is_jack_inserted(regmap)) { 1746 event |= nau8825_jack_insert(nau8825); 1747 if (nau8825->xtalk_enable && !nau8825->high_imped) { 1748 /* Apply the cross talk suppression in the 1749 * headset without high impedance. 1750 */ 1751 if (!nau8825->xtalk_protect) { 1752 /* Raise protection for cross talk de- 1753 * tection if no protection before. 1754 * The driver has to cancel the pro- 1755 * cess and restore changes if process 1756 * is ongoing when ejection. 1757 */ 1758 int ret; 1759 nau8825->xtalk_protect = true; 1760 ret = nau8825_sema_acquire(nau8825, 0); 1761 if (ret) 1762 nau8825->xtalk_protect = false; 1763 } 1764 /* Startup cross talk detection process */ 1765 if (nau8825->xtalk_protect) { 1766 nau8825->xtalk_state = 1767 NAU8825_XTALK_PREPARE; 1768 schedule_work(&nau8825->xtalk_work); 1769 } 1770 } else { 1771 /* The cross talk suppression shouldn't apply 1772 * in the headset with high impedance. Thus, 1773 * relieve the protection raised before. 1774 */ 1775 if (nau8825->xtalk_protect) { 1776 nau8825_sema_release(nau8825); 1777 nau8825->xtalk_protect = false; 1778 } 1779 } 1780 } else { 1781 dev_warn(nau8825->dev, "Headset completion IRQ fired but no headset connected\n"); 1782 nau8825_eject_jack(nau8825); 1783 } 1784 1785 event_mask |= SND_JACK_HEADSET; 1786 clear_irq = NAU8825_HEADSET_COMPLETION_IRQ; 1787 /* Record the interruption report event for driver to report 1788 * the event later. The jack report will delay until cross 1789 * talk detection process is done. 1790 */ 1791 if (nau8825->xtalk_state == NAU8825_XTALK_PREPARE) { 1792 nau8825->xtalk_event = event; 1793 nau8825->xtalk_event_mask = event_mask; 1794 } 1795 } else if (active_irq & NAU8825_IMPEDANCE_MEAS_IRQ) { 1796 /* crosstalk detection enable and process on going */ 1797 if (nau8825->xtalk_enable && nau8825->xtalk_protect) 1798 schedule_work(&nau8825->xtalk_work); 1799 clear_irq = NAU8825_IMPEDANCE_MEAS_IRQ; 1800 } else if ((active_irq & NAU8825_JACK_INSERTION_IRQ_MASK) == 1801 NAU8825_JACK_INSERTION_DETECTED) { 1802 /* One more step to check GPIO status directly. Thus, the 1803 * driver can confirm the real insertion interruption because 1804 * the intrruption at manual mode has bypassed debounce 1805 * circuit which can get rid of unstable status. 1806 */ 1807 if (nau8825_is_jack_inserted(regmap)) { 1808 /* Turn off insertion interruption at manual mode */ 1809 regmap_update_bits(regmap, 1810 NAU8825_REG_INTERRUPT_DIS_CTRL, 1811 NAU8825_IRQ_INSERT_DIS, 1812 NAU8825_IRQ_INSERT_DIS); 1813 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 1814 NAU8825_IRQ_INSERT_EN, NAU8825_IRQ_INSERT_EN); 1815 /* Enable interruption for jack type detection at audo 1816 * mode which can detect microphone and jack type. 1817 */ 1818 nau8825_setup_auto_irq(nau8825); 1819 } 1820 } 1821 1822 if (!clear_irq) 1823 clear_irq = active_irq; 1824 /* clears the rightmost interruption */ 1825 regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq); 1826 1827 /* Delay jack report until cross talk detection is done. It can avoid 1828 * application to do playback preparation when cross talk detection 1829 * process is still working. Otherwise, the resource like clock and 1830 * power will be issued by them at the same time and conflict happens. 1831 */ 1832 if (event_mask && nau8825->xtalk_state == NAU8825_XTALK_DONE) 1833 snd_soc_jack_report(nau8825->jack, event, event_mask); 1834 1835 return IRQ_HANDLED; 1836} 1837 1838static void nau8825_setup_buttons(struct nau8825 *nau8825) 1839{ 1840 struct regmap *regmap = nau8825->regmap; 1841 1842 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, 1843 NAU8825_SAR_TRACKING_GAIN_MASK, 1844 nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT); 1845 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, 1846 NAU8825_SAR_COMPARE_TIME_MASK, 1847 nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT); 1848 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, 1849 NAU8825_SAR_SAMPLING_TIME_MASK, 1850 nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT); 1851 1852 regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL, 1853 NAU8825_KEYDET_LEVELS_NR_MASK, 1854 (nau8825->sar_threshold_num - 1) << NAU8825_KEYDET_LEVELS_NR_SFT); 1855 regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL, 1856 NAU8825_KEYDET_HYSTERESIS_MASK, 1857 nau8825->sar_hysteresis << NAU8825_KEYDET_HYSTERESIS_SFT); 1858 regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL, 1859 NAU8825_KEYDET_SHORTKEY_DEBOUNCE_MASK, 1860 nau8825->key_debounce << NAU8825_KEYDET_SHORTKEY_DEBOUNCE_SFT); 1861 1862 regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_1, 1863 (nau8825->sar_threshold[0] << 8) | nau8825->sar_threshold[1]); 1864 regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_2, 1865 (nau8825->sar_threshold[2] << 8) | nau8825->sar_threshold[3]); 1866 regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_3, 1867 (nau8825->sar_threshold[4] << 8) | nau8825->sar_threshold[5]); 1868 regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_4, 1869 (nau8825->sar_threshold[6] << 8) | nau8825->sar_threshold[7]); 1870 1871 /* Enable short press and release interruptions */ 1872 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 1873 NAU8825_IRQ_KEY_SHORT_PRESS_EN | NAU8825_IRQ_KEY_RELEASE_EN, 1874 0); 1875} 1876 1877static void nau8825_init_regs(struct nau8825 *nau8825) 1878{ 1879 struct regmap *regmap = nau8825->regmap; 1880 1881 /* Latch IIC LSB value */ 1882 regmap_write(regmap, NAU8825_REG_IIC_ADDR_SET, 0x0001); 1883 /* Enable Bias/Vmid */ 1884 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 1885 NAU8825_BIAS_VMID, NAU8825_BIAS_VMID); 1886 regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST, 1887 NAU8825_GLOBAL_BIAS_EN, NAU8825_GLOBAL_BIAS_EN); 1888 1889 /* VMID Tieoff */ 1890 regmap_update_bits(regmap, NAU8825_REG_BIAS_ADJ, 1891 NAU8825_BIAS_VMID_SEL_MASK, 1892 nau8825->vref_impedance << NAU8825_BIAS_VMID_SEL_SFT); 1893 /* Disable Boost Driver, Automatic Short circuit protection enable */ 1894 regmap_update_bits(regmap, NAU8825_REG_BOOST, 1895 NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS | 1896 NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN, 1897 NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS | 1898 NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN); 1899 1900 regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL, 1901 NAU8825_JKDET_OUTPUT_EN, 1902 nau8825->jkdet_enable ? 0 : NAU8825_JKDET_OUTPUT_EN); 1903 regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL, 1904 NAU8825_JKDET_PULL_EN, 1905 nau8825->jkdet_pull_enable ? 0 : NAU8825_JKDET_PULL_EN); 1906 regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL, 1907 NAU8825_JKDET_PULL_UP, 1908 nau8825->jkdet_pull_up ? NAU8825_JKDET_PULL_UP : 0); 1909 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1910 NAU8825_JACK_POLARITY, 1911 /* jkdet_polarity - 1 is for active-low */ 1912 nau8825->jkdet_polarity ? 0 : NAU8825_JACK_POLARITY); 1913 1914 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1915 NAU8825_JACK_INSERT_DEBOUNCE_MASK, 1916 nau8825->jack_insert_debounce << NAU8825_JACK_INSERT_DEBOUNCE_SFT); 1917 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1918 NAU8825_JACK_EJECT_DEBOUNCE_MASK, 1919 nau8825->jack_eject_debounce << NAU8825_JACK_EJECT_DEBOUNCE_SFT); 1920 1921 /* Pull up IRQ pin */ 1922 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 1923 NAU8825_IRQ_PIN_PULLUP | NAU8825_IRQ_PIN_PULL_EN, 1924 NAU8825_IRQ_PIN_PULLUP | NAU8825_IRQ_PIN_PULL_EN); 1925 /* Mask unneeded IRQs: 1 - disable, 0 - enable */ 1926 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 0x7ff, 0x7ff); 1927 1928 regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, 1929 NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage); 1930 1931 if (nau8825->sar_threshold_num) 1932 nau8825_setup_buttons(nau8825); 1933 1934 /* Default oversampling/decimations settings are unusable 1935 * (audible hiss). Set it to something better. 1936 */ 1937 regmap_update_bits(regmap, NAU8825_REG_ADC_RATE, 1938 NAU8825_ADC_SYNC_DOWN_MASK | NAU8825_ADC_SINC4_EN, 1939 NAU8825_ADC_SYNC_DOWN_64); 1940 regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1, 1941 NAU8825_DAC_OVERSAMPLE_MASK, NAU8825_DAC_OVERSAMPLE_64); 1942 /* Disable DACR/L power */ 1943 regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP, 1944 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 1945 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL); 1946 /* Enable TESTDAC. This sets the analog DAC inputs to a '0' input 1947 * signal to avoid any glitches due to power up transients in both 1948 * the analog and digital DAC circuit. 1949 */ 1950 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 1951 NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN); 1952 /* CICCLP off */ 1953 regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1, 1954 NAU8825_DAC_CLIP_OFF, NAU8825_DAC_CLIP_OFF); 1955 1956 /* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */ 1957 regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_2, 1958 NAU8825_HP_NON_CLASSG_CURRENT_2xADJ | 1959 NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB, 1960 NAU8825_HP_NON_CLASSG_CURRENT_2xADJ | 1961 NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB); 1962 /* Class G timer 64ms */ 1963 regmap_update_bits(regmap, NAU8825_REG_CLASSG_CTRL, 1964 NAU8825_CLASSG_TIMER_MASK, 1965 0x20 << NAU8825_CLASSG_TIMER_SFT); 1966 /* DAC clock delay 2ns, VREF */ 1967 regmap_update_bits(regmap, NAU8825_REG_RDAC, 1968 NAU8825_RDAC_CLK_DELAY_MASK | NAU8825_RDAC_VREF_MASK, 1969 (0x2 << NAU8825_RDAC_CLK_DELAY_SFT) | 1970 (0x3 << NAU8825_RDAC_VREF_SFT)); 1971 /* Config L/R channel */ 1972 regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL, 1973 NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_L); 1974 regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL, 1975 NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_R); 1976 /* Disable short Frame Sync detection logic */ 1977 regmap_update_bits(regmap, NAU8825_REG_LEFT_TIME_SLOT, 1978 NAU8825_DIS_FS_SHORT_DET, NAU8825_DIS_FS_SHORT_DET); 1979} 1980 1981static const struct regmap_config nau8825_regmap_config = { 1982 .val_bits = NAU8825_REG_DATA_LEN, 1983 .reg_bits = NAU8825_REG_ADDR_LEN, 1984 1985 .max_register = NAU8825_REG_MAX, 1986 .readable_reg = nau8825_readable_reg, 1987 .writeable_reg = nau8825_writeable_reg, 1988 .volatile_reg = nau8825_volatile_reg, 1989 1990 .cache_type = REGCACHE_RBTREE, 1991 .reg_defaults = nau8825_reg_defaults, 1992 .num_reg_defaults = ARRAY_SIZE(nau8825_reg_defaults), 1993}; 1994 1995static int nau8825_component_probe(struct snd_soc_component *component) 1996{ 1997 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 1998 struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); 1999 2000 nau8825->dapm = dapm; 2001 2002 return 0; 2003} 2004 2005static void nau8825_component_remove(struct snd_soc_component *component) 2006{ 2007 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 2008 2009 /* Cancel and reset cross tak suppresstion detection funciton */ 2010 nau8825_xtalk_cancel(nau8825); 2011} 2012 2013/** 2014 * nau8825_calc_fll_param - Calculate FLL parameters. 2015 * @fll_in: external clock provided to codec. 2016 * @fs: sampling rate. 2017 * @fll_param: Pointer to structure of FLL parameters. 2018 * 2019 * Calculate FLL parameters to configure codec. 2020 * 2021 * Returns 0 for success or negative error code. 2022 */ 2023static int nau8825_calc_fll_param(unsigned int fll_in, unsigned int fs, 2024 struct nau8825_fll *fll_param) 2025{ 2026 u64 fvco, fvco_max; 2027 unsigned int fref, i, fvco_sel; 2028 2029 /* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing 2030 * freq_in by 1, 2, 4, or 8 using FLL pre-scalar. 2031 * FREF = freq_in / NAU8825_FLL_REF_DIV_MASK 2032 */ 2033 for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) { 2034 fref = fll_in / fll_pre_scalar[i].param; 2035 if (fref <= NAU_FREF_MAX) 2036 break; 2037 } 2038 if (i == ARRAY_SIZE(fll_pre_scalar)) 2039 return -EINVAL; 2040 fll_param->clk_ref_div = fll_pre_scalar[i].val; 2041 2042 /* Choose the FLL ratio based on FREF */ 2043 for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) { 2044 if (fref >= fll_ratio[i].param) 2045 break; 2046 } 2047 if (i == ARRAY_SIZE(fll_ratio)) 2048 return -EINVAL; 2049 fll_param->ratio = fll_ratio[i].val; 2050 2051 /* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs. 2052 * FDCO must be within the 90MHz - 124MHz or the FFL cannot be 2053 * guaranteed across the full range of operation. 2054 * FDCO = freq_out * 2 * mclk_src_scaling 2055 */ 2056 fvco_max = 0; 2057 fvco_sel = ARRAY_SIZE(mclk_src_scaling); 2058 for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) { 2059 fvco = 256ULL * fs * 2 * mclk_src_scaling[i].param; 2060 if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX && 2061 fvco_max < fvco) { 2062 fvco_max = fvco; 2063 fvco_sel = i; 2064 } 2065 } 2066 if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel) 2067 return -EINVAL; 2068 fll_param->mclk_src = mclk_src_scaling[fvco_sel].val; 2069 2070 /* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional 2071 * input based on FDCO, FREF and FLL ratio. 2072 */ 2073 fvco = div_u64(fvco_max << 16, fref * fll_param->ratio); 2074 fll_param->fll_int = (fvco >> 16) & 0x3FF; 2075 fll_param->fll_frac = fvco & 0xFFFF; 2076 return 0; 2077} 2078 2079static void nau8825_fll_apply(struct nau8825 *nau8825, 2080 struct nau8825_fll *fll_param) 2081{ 2082 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 2083 NAU8825_CLK_SRC_MASK | NAU8825_CLK_MCLK_SRC_MASK, 2084 NAU8825_CLK_SRC_MCLK | fll_param->mclk_src); 2085 /* Make DSP operate at high speed for better performance. */ 2086 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1, 2087 NAU8825_FLL_RATIO_MASK | NAU8825_ICTRL_LATCH_MASK, 2088 fll_param->ratio | (0x6 << NAU8825_ICTRL_LATCH_SFT)); 2089 /* FLL 16-bit fractional input */ 2090 regmap_write(nau8825->regmap, NAU8825_REG_FLL2, fll_param->fll_frac); 2091 /* FLL 10-bit integer input */ 2092 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL3, 2093 NAU8825_FLL_INTEGER_MASK, fll_param->fll_int); 2094 /* FLL pre-scaler */ 2095 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL4, 2096 NAU8825_FLL_REF_DIV_MASK, 2097 fll_param->clk_ref_div << NAU8825_FLL_REF_DIV_SFT); 2098 /* select divided VCO input */ 2099 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5, 2100 NAU8825_FLL_CLK_SW_MASK, NAU8825_FLL_CLK_SW_REF); 2101 /* Disable free-running mode */ 2102 regmap_update_bits(nau8825->regmap, 2103 NAU8825_REG_FLL6, NAU8825_DCO_EN, 0); 2104 if (fll_param->fll_frac) { 2105 /* set FLL loop filter enable and cutoff frequency at 500Khz */ 2106 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5, 2107 NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN | 2108 NAU8825_FLL_FTR_SW_MASK, 2109 NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN | 2110 NAU8825_FLL_FTR_SW_FILTER); 2111 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, 2112 NAU8825_SDM_EN | NAU8825_CUTOFF500, 2113 NAU8825_SDM_EN | NAU8825_CUTOFF500); 2114 } else { 2115 /* disable FLL loop filter and cutoff frequency */ 2116 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5, 2117 NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN | 2118 NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_FTR_SW_ACCU); 2119 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, 2120 NAU8825_SDM_EN | NAU8825_CUTOFF500, 0); 2121 } 2122} 2123 2124/* freq_out must be 256*Fs in order to achieve the best performance */ 2125static int nau8825_set_pll(struct snd_soc_component *component, int pll_id, int source, 2126 unsigned int freq_in, unsigned int freq_out) 2127{ 2128 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 2129 struct nau8825_fll fll_param; 2130 int ret, fs; 2131 2132 fs = freq_out / 256; 2133 ret = nau8825_calc_fll_param(freq_in, fs, &fll_param); 2134 if (ret < 0) { 2135 dev_err(component->dev, "Unsupported input clock %d\n", freq_in); 2136 return ret; 2137 } 2138 dev_dbg(component->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n", 2139 fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac, 2140 fll_param.fll_int, fll_param.clk_ref_div); 2141 2142 nau8825_fll_apply(nau8825, &fll_param); 2143 mdelay(2); 2144 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 2145 NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO); 2146 return 0; 2147} 2148 2149static int nau8825_mclk_prepare(struct nau8825 *nau8825, unsigned int freq) 2150{ 2151 int ret; 2152 2153 nau8825->mclk = devm_clk_get(nau8825->dev, "mclk"); 2154 if (IS_ERR(nau8825->mclk)) { 2155 dev_info(nau8825->dev, "No 'mclk' clock found, assume MCLK is managed externally"); 2156 return 0; 2157 } 2158 2159 if (!nau8825->mclk_freq) { 2160 ret = clk_prepare_enable(nau8825->mclk); 2161 if (ret) { 2162 dev_err(nau8825->dev, "Unable to prepare codec mclk\n"); 2163 return ret; 2164 } 2165 } 2166 2167 if (nau8825->mclk_freq != freq) { 2168 freq = clk_round_rate(nau8825->mclk, freq); 2169 ret = clk_set_rate(nau8825->mclk, freq); 2170 if (ret) { 2171 dev_err(nau8825->dev, "Unable to set mclk rate\n"); 2172 return ret; 2173 } 2174 nau8825->mclk_freq = freq; 2175 } 2176 2177 return 0; 2178} 2179 2180static void nau8825_configure_mclk_as_sysclk(struct regmap *regmap) 2181{ 2182 regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER, 2183 NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_MCLK); 2184 regmap_update_bits(regmap, NAU8825_REG_FLL6, 2185 NAU8825_DCO_EN, 0); 2186 /* Make DSP operate as default setting for power saving. */ 2187 regmap_update_bits(regmap, NAU8825_REG_FLL1, 2188 NAU8825_ICTRL_LATCH_MASK, 0); 2189} 2190 2191static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id, 2192 unsigned int freq) 2193{ 2194 struct regmap *regmap = nau8825->regmap; 2195 int ret; 2196 2197 switch (clk_id) { 2198 case NAU8825_CLK_DIS: 2199 /* Clock provided externally and disable internal VCO clock */ 2200 nau8825_configure_mclk_as_sysclk(regmap); 2201 if (nau8825->mclk_freq) { 2202 clk_disable_unprepare(nau8825->mclk); 2203 nau8825->mclk_freq = 0; 2204 } 2205 2206 break; 2207 case NAU8825_CLK_MCLK: 2208 /* Acquire the semaphore to synchronize the playback and 2209 * interrupt handler. In order to avoid the playback inter- 2210 * fered by cross talk process, the driver make the playback 2211 * preparation halted until cross talk process finish. 2212 */ 2213 nau8825_sema_acquire(nau8825, 3 * HZ); 2214 nau8825_configure_mclk_as_sysclk(regmap); 2215 /* MCLK not changed by clock tree */ 2216 regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER, 2217 NAU8825_CLK_MCLK_SRC_MASK, 0); 2218 /* Release the semaphore. */ 2219 nau8825_sema_release(nau8825); 2220 2221 ret = nau8825_mclk_prepare(nau8825, freq); 2222 if (ret) 2223 return ret; 2224 2225 break; 2226 case NAU8825_CLK_INTERNAL: 2227 if (nau8825_is_jack_inserted(nau8825->regmap)) { 2228 regmap_update_bits(regmap, NAU8825_REG_FLL6, 2229 NAU8825_DCO_EN, NAU8825_DCO_EN); 2230 regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER, 2231 NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO); 2232 /* Decrease the VCO frequency and make DSP operate 2233 * as default setting for power saving. 2234 */ 2235 regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER, 2236 NAU8825_CLK_MCLK_SRC_MASK, 0xf); 2237 regmap_update_bits(regmap, NAU8825_REG_FLL1, 2238 NAU8825_ICTRL_LATCH_MASK | 2239 NAU8825_FLL_RATIO_MASK, 0x10); 2240 regmap_update_bits(regmap, NAU8825_REG_FLL6, 2241 NAU8825_SDM_EN, NAU8825_SDM_EN); 2242 } else { 2243 /* The clock turns off intentionally for power saving 2244 * when no headset connected. 2245 */ 2246 nau8825_configure_mclk_as_sysclk(regmap); 2247 dev_warn(nau8825->dev, "Disable clock for power saving when no headset connected\n"); 2248 } 2249 if (nau8825->mclk_freq) { 2250 clk_disable_unprepare(nau8825->mclk); 2251 nau8825->mclk_freq = 0; 2252 } 2253 2254 break; 2255 case NAU8825_CLK_FLL_MCLK: 2256 /* Acquire the semaphore to synchronize the playback and 2257 * interrupt handler. In order to avoid the playback inter- 2258 * fered by cross talk process, the driver make the playback 2259 * preparation halted until cross talk process finish. 2260 */ 2261 nau8825_sema_acquire(nau8825, 3 * HZ); 2262 /* Higher FLL reference input frequency can only set lower 2263 * gain error, such as 0000 for input reference from MCLK 2264 * 12.288Mhz. 2265 */ 2266 regmap_update_bits(regmap, NAU8825_REG_FLL3, 2267 NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK, 2268 NAU8825_FLL_CLK_SRC_MCLK | 0); 2269 /* Release the semaphore. */ 2270 nau8825_sema_release(nau8825); 2271 2272 ret = nau8825_mclk_prepare(nau8825, freq); 2273 if (ret) 2274 return ret; 2275 2276 break; 2277 case NAU8825_CLK_FLL_BLK: 2278 /* Acquire the semaphore to synchronize the playback and 2279 * interrupt handler. In order to avoid the playback inter- 2280 * fered by cross talk process, the driver make the playback 2281 * preparation halted until cross talk process finish. 2282 */ 2283 nau8825_sema_acquire(nau8825, 3 * HZ); 2284 /* If FLL reference input is from low frequency source, 2285 * higher error gain can apply such as 0xf which has 2286 * the most sensitive gain error correction threshold, 2287 * Therefore, FLL has the most accurate DCO to 2288 * target frequency. 2289 */ 2290 regmap_update_bits(regmap, NAU8825_REG_FLL3, 2291 NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK, 2292 NAU8825_FLL_CLK_SRC_BLK | 2293 (0xf << NAU8825_GAIN_ERR_SFT)); 2294 /* Release the semaphore. */ 2295 nau8825_sema_release(nau8825); 2296 2297 if (nau8825->mclk_freq) { 2298 clk_disable_unprepare(nau8825->mclk); 2299 nau8825->mclk_freq = 0; 2300 } 2301 2302 break; 2303 case NAU8825_CLK_FLL_FS: 2304 /* Acquire the semaphore to synchronize the playback and 2305 * interrupt handler. In order to avoid the playback inter- 2306 * fered by cross talk process, the driver make the playback 2307 * preparation halted until cross talk process finish. 2308 */ 2309 nau8825_sema_acquire(nau8825, 3 * HZ); 2310 /* If FLL reference input is from low frequency source, 2311 * higher error gain can apply such as 0xf which has 2312 * the most sensitive gain error correction threshold, 2313 * Therefore, FLL has the most accurate DCO to 2314 * target frequency. 2315 */ 2316 regmap_update_bits(regmap, NAU8825_REG_FLL3, 2317 NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK, 2318 NAU8825_FLL_CLK_SRC_FS | 2319 (0xf << NAU8825_GAIN_ERR_SFT)); 2320 /* Release the semaphore. */ 2321 nau8825_sema_release(nau8825); 2322 2323 if (nau8825->mclk_freq) { 2324 clk_disable_unprepare(nau8825->mclk); 2325 nau8825->mclk_freq = 0; 2326 } 2327 2328 break; 2329 default: 2330 dev_err(nau8825->dev, "Invalid clock id (%d)\n", clk_id); 2331 return -EINVAL; 2332 } 2333 2334 dev_dbg(nau8825->dev, "Sysclk is %dHz and clock id is %d\n", freq, 2335 clk_id); 2336 return 0; 2337} 2338 2339static int nau8825_set_sysclk(struct snd_soc_component *component, int clk_id, 2340 int source, unsigned int freq, int dir) 2341{ 2342 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 2343 2344 return nau8825_configure_sysclk(nau8825, clk_id, freq); 2345} 2346 2347static int nau8825_resume_setup(struct nau8825 *nau8825) 2348{ 2349 struct regmap *regmap = nau8825->regmap; 2350 2351 /* Close clock when jack type detection at manual mode */ 2352 nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0); 2353 2354 /* Clear all interruption status */ 2355 nau8825_int_status_clear_all(regmap); 2356 2357 /* Enable both insertion and ejection interruptions, and then 2358 * bypass de-bounce circuit. 2359 */ 2360 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 2361 NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN | 2362 NAU8825_IRQ_EJECT_EN | NAU8825_IRQ_INSERT_EN, 2363 NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN); 2364 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 2365 NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS); 2366 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 2367 NAU8825_IRQ_INSERT_DIS | NAU8825_IRQ_EJECT_DIS, 0); 2368 2369 return 0; 2370} 2371 2372static int nau8825_set_bias_level(struct snd_soc_component *component, 2373 enum snd_soc_bias_level level) 2374{ 2375 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 2376 int ret; 2377 2378 switch (level) { 2379 case SND_SOC_BIAS_ON: 2380 break; 2381 2382 case SND_SOC_BIAS_PREPARE: 2383 break; 2384 2385 case SND_SOC_BIAS_STANDBY: 2386 if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) { 2387 if (nau8825->mclk_freq) { 2388 ret = clk_prepare_enable(nau8825->mclk); 2389 if (ret) { 2390 dev_err(nau8825->dev, "Unable to prepare component mclk\n"); 2391 return ret; 2392 } 2393 } 2394 /* Setup codec configuration after resume */ 2395 nau8825_resume_setup(nau8825); 2396 } 2397 break; 2398 2399 case SND_SOC_BIAS_OFF: 2400 /* Reset the configuration of jack type for detection */ 2401 /* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */ 2402 regmap_update_bits(nau8825->regmap, NAU8825_REG_MIC_BIAS, 2403 NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0); 2404 /* ground HPL/HPR, MICGRND1/2 */ 2405 regmap_update_bits(nau8825->regmap, 2406 NAU8825_REG_HSD_CTRL, 0xf, 0xf); 2407 /* Cancel and reset cross talk detection funciton */ 2408 nau8825_xtalk_cancel(nau8825); 2409 /* Turn off all interruptions before system shutdown. Keep the 2410 * interruption quiet before resume setup completes. 2411 */ 2412 regmap_write(nau8825->regmap, 2413 NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff); 2414 /* Disable ADC needed for interruptions at audo mode */ 2415 regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL, 2416 NAU8825_ENABLE_ADC, 0); 2417 if (nau8825->mclk_freq) 2418 clk_disable_unprepare(nau8825->mclk); 2419 break; 2420 } 2421 return 0; 2422} 2423 2424static int __maybe_unused nau8825_suspend(struct snd_soc_component *component) 2425{ 2426 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 2427 2428 disable_irq(nau8825->irq); 2429 snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF); 2430 /* Power down codec power; don't suppoet button wakeup */ 2431 snd_soc_dapm_disable_pin(nau8825->dapm, "SAR"); 2432 snd_soc_dapm_disable_pin(nau8825->dapm, "MICBIAS"); 2433 snd_soc_dapm_sync(nau8825->dapm); 2434 regcache_cache_only(nau8825->regmap, true); 2435 regcache_mark_dirty(nau8825->regmap); 2436 2437 return 0; 2438} 2439 2440static int __maybe_unused nau8825_resume(struct snd_soc_component *component) 2441{ 2442 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 2443 int ret; 2444 2445 regcache_cache_only(nau8825->regmap, false); 2446 regcache_sync(nau8825->regmap); 2447 nau8825->xtalk_protect = true; 2448 ret = nau8825_sema_acquire(nau8825, 0); 2449 if (ret) 2450 nau8825->xtalk_protect = false; 2451 enable_irq(nau8825->irq); 2452 2453 return 0; 2454} 2455 2456static int nau8825_set_jack(struct snd_soc_component *component, 2457 struct snd_soc_jack *jack, void *data) 2458{ 2459 return nau8825_enable_jack_detect(component, jack); 2460} 2461 2462static const struct snd_soc_component_driver nau8825_component_driver = { 2463 .probe = nau8825_component_probe, 2464 .remove = nau8825_component_remove, 2465 .set_sysclk = nau8825_set_sysclk, 2466 .set_pll = nau8825_set_pll, 2467 .set_bias_level = nau8825_set_bias_level, 2468 .suspend = nau8825_suspend, 2469 .resume = nau8825_resume, 2470 .controls = nau8825_controls, 2471 .num_controls = ARRAY_SIZE(nau8825_controls), 2472 .dapm_widgets = nau8825_dapm_widgets, 2473 .num_dapm_widgets = ARRAY_SIZE(nau8825_dapm_widgets), 2474 .dapm_routes = nau8825_dapm_routes, 2475 .num_dapm_routes = ARRAY_SIZE(nau8825_dapm_routes), 2476 .set_jack = nau8825_set_jack, 2477 .suspend_bias_off = 1, 2478 .idle_bias_on = 1, 2479 .use_pmdown_time = 1, 2480 .endianness = 1, 2481 .non_legacy_dai_naming = 1, 2482}; 2483 2484static void nau8825_reset_chip(struct regmap *regmap) 2485{ 2486 regmap_write(regmap, NAU8825_REG_RESET, 0x00); 2487 regmap_write(regmap, NAU8825_REG_RESET, 0x00); 2488} 2489 2490static void nau8825_print_device_properties(struct nau8825 *nau8825) 2491{ 2492 int i; 2493 struct device *dev = nau8825->dev; 2494 2495 dev_dbg(dev, "jkdet-enable: %d\n", nau8825->jkdet_enable); 2496 dev_dbg(dev, "jkdet-pull-enable: %d\n", nau8825->jkdet_pull_enable); 2497 dev_dbg(dev, "jkdet-pull-up: %d\n", nau8825->jkdet_pull_up); 2498 dev_dbg(dev, "jkdet-polarity: %d\n", nau8825->jkdet_polarity); 2499 dev_dbg(dev, "micbias-voltage: %d\n", nau8825->micbias_voltage); 2500 dev_dbg(dev, "vref-impedance: %d\n", nau8825->vref_impedance); 2501 2502 dev_dbg(dev, "sar-threshold-num: %d\n", nau8825->sar_threshold_num); 2503 for (i = 0; i < nau8825->sar_threshold_num; i++) 2504 dev_dbg(dev, "sar-threshold[%d]=%d\n", i, 2505 nau8825->sar_threshold[i]); 2506 2507 dev_dbg(dev, "sar-hysteresis: %d\n", nau8825->sar_hysteresis); 2508 dev_dbg(dev, "sar-voltage: %d\n", nau8825->sar_voltage); 2509 dev_dbg(dev, "sar-compare-time: %d\n", nau8825->sar_compare_time); 2510 dev_dbg(dev, "sar-sampling-time: %d\n", nau8825->sar_sampling_time); 2511 dev_dbg(dev, "short-key-debounce: %d\n", nau8825->key_debounce); 2512 dev_dbg(dev, "jack-insert-debounce: %d\n", 2513 nau8825->jack_insert_debounce); 2514 dev_dbg(dev, "jack-eject-debounce: %d\n", 2515 nau8825->jack_eject_debounce); 2516 dev_dbg(dev, "crosstalk-enable: %d\n", 2517 nau8825->xtalk_enable); 2518} 2519 2520static int nau8825_read_device_properties(struct device *dev, 2521 struct nau8825 *nau8825) { 2522 int ret; 2523 2524 nau8825->jkdet_enable = device_property_read_bool(dev, 2525 "nuvoton,jkdet-enable"); 2526 nau8825->jkdet_pull_enable = device_property_read_bool(dev, 2527 "nuvoton,jkdet-pull-enable"); 2528 nau8825->jkdet_pull_up = device_property_read_bool(dev, 2529 "nuvoton,jkdet-pull-up"); 2530 ret = device_property_read_u32(dev, "nuvoton,jkdet-polarity", 2531 &nau8825->jkdet_polarity); 2532 if (ret) 2533 nau8825->jkdet_polarity = 1; 2534 ret = device_property_read_u32(dev, "nuvoton,micbias-voltage", 2535 &nau8825->micbias_voltage); 2536 if (ret) 2537 nau8825->micbias_voltage = 6; 2538 ret = device_property_read_u32(dev, "nuvoton,vref-impedance", 2539 &nau8825->vref_impedance); 2540 if (ret) 2541 nau8825->vref_impedance = 2; 2542 ret = device_property_read_u32(dev, "nuvoton,sar-threshold-num", 2543 &nau8825->sar_threshold_num); 2544 if (ret) 2545 nau8825->sar_threshold_num = 4; 2546 ret = device_property_read_u32_array(dev, "nuvoton,sar-threshold", 2547 nau8825->sar_threshold, nau8825->sar_threshold_num); 2548 if (ret) { 2549 nau8825->sar_threshold[0] = 0x08; 2550 nau8825->sar_threshold[1] = 0x12; 2551 nau8825->sar_threshold[2] = 0x26; 2552 nau8825->sar_threshold[3] = 0x73; 2553 } 2554 ret = device_property_read_u32(dev, "nuvoton,sar-hysteresis", 2555 &nau8825->sar_hysteresis); 2556 if (ret) 2557 nau8825->sar_hysteresis = 0; 2558 ret = device_property_read_u32(dev, "nuvoton,sar-voltage", 2559 &nau8825->sar_voltage); 2560 if (ret) 2561 nau8825->sar_voltage = 6; 2562 ret = device_property_read_u32(dev, "nuvoton,sar-compare-time", 2563 &nau8825->sar_compare_time); 2564 if (ret) 2565 nau8825->sar_compare_time = 1; 2566 ret = device_property_read_u32(dev, "nuvoton,sar-sampling-time", 2567 &nau8825->sar_sampling_time); 2568 if (ret) 2569 nau8825->sar_sampling_time = 1; 2570 ret = device_property_read_u32(dev, "nuvoton,short-key-debounce", 2571 &nau8825->key_debounce); 2572 if (ret) 2573 nau8825->key_debounce = 3; 2574 ret = device_property_read_u32(dev, "nuvoton,jack-insert-debounce", 2575 &nau8825->jack_insert_debounce); 2576 if (ret) 2577 nau8825->jack_insert_debounce = 7; 2578 ret = device_property_read_u32(dev, "nuvoton,jack-eject-debounce", 2579 &nau8825->jack_eject_debounce); 2580 if (ret) 2581 nau8825->jack_eject_debounce = 0; 2582 nau8825->xtalk_enable = device_property_read_bool(dev, 2583 "nuvoton,crosstalk-enable"); 2584 2585 nau8825->mclk = devm_clk_get(dev, "mclk"); 2586 if (PTR_ERR(nau8825->mclk) == -EPROBE_DEFER) { 2587 return -EPROBE_DEFER; 2588 } else if (PTR_ERR(nau8825->mclk) == -ENOENT) { 2589 /* The MCLK is managed externally or not used at all */ 2590 nau8825->mclk = NULL; 2591 dev_info(dev, "No 'mclk' clock found, assume MCLK is managed externally"); 2592 } else if (IS_ERR(nau8825->mclk)) { 2593 return -EINVAL; 2594 } 2595 2596 return 0; 2597} 2598 2599static int nau8825_setup_irq(struct nau8825 *nau8825) 2600{ 2601 int ret; 2602 2603 ret = devm_request_threaded_irq(nau8825->dev, nau8825->irq, NULL, 2604 nau8825_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT, 2605 "nau8825", nau8825); 2606 2607 if (ret) { 2608 dev_err(nau8825->dev, "Cannot request irq %d (%d)\n", 2609 nau8825->irq, ret); 2610 return ret; 2611 } 2612 2613 return 0; 2614} 2615 2616static int nau8825_i2c_probe(struct i2c_client *i2c) 2617{ 2618 struct device *dev = &i2c->dev; 2619 struct nau8825 *nau8825 = dev_get_platdata(&i2c->dev); 2620 int ret, value; 2621 2622 if (!nau8825) { 2623 nau8825 = devm_kzalloc(dev, sizeof(*nau8825), GFP_KERNEL); 2624 if (!nau8825) 2625 return -ENOMEM; 2626 ret = nau8825_read_device_properties(dev, nau8825); 2627 if (ret) 2628 return ret; 2629 } 2630 2631 i2c_set_clientdata(i2c, nau8825); 2632 2633 nau8825->regmap = devm_regmap_init_i2c(i2c, &nau8825_regmap_config); 2634 if (IS_ERR(nau8825->regmap)) 2635 return PTR_ERR(nau8825->regmap); 2636 nau8825->dev = dev; 2637 nau8825->irq = i2c->irq; 2638 /* Initiate parameters, semaphore and work queue which are needed in 2639 * cross talk suppression measurment function. 2640 */ 2641 nau8825->xtalk_state = NAU8825_XTALK_DONE; 2642 nau8825->xtalk_protect = false; 2643 nau8825->xtalk_baktab_initialized = false; 2644 sema_init(&nau8825->xtalk_sem, 1); 2645 INIT_WORK(&nau8825->xtalk_work, nau8825_xtalk_work); 2646 2647 nau8825_print_device_properties(nau8825); 2648 2649 nau8825_reset_chip(nau8825->regmap); 2650 ret = regmap_read(nau8825->regmap, NAU8825_REG_I2C_DEVICE_ID, &value); 2651 if (ret < 0) { 2652 dev_err(dev, "Failed to read device id from the NAU8825: %d\n", 2653 ret); 2654 return ret; 2655 } 2656 if ((value & NAU8825_SOFTWARE_ID_MASK) != 2657 NAU8825_SOFTWARE_ID_NAU8825) { 2658 dev_err(dev, "Not a NAU8825 chip\n"); 2659 return -ENODEV; 2660 } 2661 2662 nau8825_init_regs(nau8825); 2663 2664 if (i2c->irq) 2665 nau8825_setup_irq(nau8825); 2666 2667 return devm_snd_soc_register_component(&i2c->dev, 2668 &nau8825_component_driver, 2669 &nau8825_dai, 1); 2670} 2671 2672static int nau8825_i2c_remove(struct i2c_client *client) 2673{ 2674 return 0; 2675} 2676 2677static const struct i2c_device_id nau8825_i2c_ids[] = { 2678 { "nau8825", 0 }, 2679 { } 2680}; 2681MODULE_DEVICE_TABLE(i2c, nau8825_i2c_ids); 2682 2683#ifdef CONFIG_OF 2684static const struct of_device_id nau8825_of_ids[] = { 2685 { .compatible = "nuvoton,nau8825", }, 2686 {} 2687}; 2688MODULE_DEVICE_TABLE(of, nau8825_of_ids); 2689#endif 2690 2691#ifdef CONFIG_ACPI 2692static const struct acpi_device_id nau8825_acpi_match[] = { 2693 { "10508825", 0 }, 2694 {}, 2695}; 2696MODULE_DEVICE_TABLE(acpi, nau8825_acpi_match); 2697#endif 2698 2699static struct i2c_driver nau8825_driver = { 2700 .driver = { 2701 .name = "nau8825", 2702 .of_match_table = of_match_ptr(nau8825_of_ids), 2703 .acpi_match_table = ACPI_PTR(nau8825_acpi_match), 2704 }, 2705 .probe_new = nau8825_i2c_probe, 2706 .remove = nau8825_i2c_remove, 2707 .id_table = nau8825_i2c_ids, 2708}; 2709module_i2c_driver(nau8825_driver); 2710 2711MODULE_DESCRIPTION("ASoC nau8825 driver"); 2712MODULE_AUTHOR("Anatol Pomozov <anatol@chromium.org>"); 2713MODULE_LICENSE("GPL");