cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sgtl5000.c (51749B)


      1// SPDX-License-Identifier: GPL-2.0
      2//
      3// sgtl5000.c  --  SGTL5000 ALSA SoC Audio driver
      4//
      5// Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
      6
      7#include <linux/module.h>
      8#include <linux/moduleparam.h>
      9#include <linux/init.h>
     10#include <linux/delay.h>
     11#include <linux/slab.h>
     12#include <linux/pm.h>
     13#include <linux/i2c.h>
     14#include <linux/clk.h>
     15#include <linux/log2.h>
     16#include <linux/regmap.h>
     17#include <linux/regulator/driver.h>
     18#include <linux/regulator/machine.h>
     19#include <linux/regulator/consumer.h>
     20#include <linux/of_device.h>
     21#include <sound/core.h>
     22#include <sound/tlv.h>
     23#include <sound/pcm.h>
     24#include <sound/pcm_params.h>
     25#include <sound/soc.h>
     26#include <sound/soc-dapm.h>
     27#include <sound/initval.h>
     28
     29#include "sgtl5000.h"
     30
     31#define SGTL5000_DAP_REG_OFFSET	0x0100
     32#define SGTL5000_MAX_REG_OFFSET	0x013A
     33
     34/* Delay for the VAG ramp up */
     35#define SGTL5000_VAG_POWERUP_DELAY 500 /* ms */
     36/* Delay for the VAG ramp down */
     37#define SGTL5000_VAG_POWERDOWN_DELAY 500 /* ms */
     38
     39#define SGTL5000_OUTPUTS_MUTE (SGTL5000_HP_MUTE | SGTL5000_LINE_OUT_MUTE)
     40
     41/* default value of sgtl5000 registers */
     42static const struct reg_default sgtl5000_reg_defaults[] = {
     43	{ SGTL5000_CHIP_DIG_POWER,		0x0000 },
     44	{ SGTL5000_CHIP_I2S_CTRL,		0x0010 },
     45	{ SGTL5000_CHIP_SSS_CTRL,		0x0010 },
     46	{ SGTL5000_CHIP_ADCDAC_CTRL,		0x020c },
     47	{ SGTL5000_CHIP_DAC_VOL,		0x3c3c },
     48	{ SGTL5000_CHIP_PAD_STRENGTH,		0x015f },
     49	{ SGTL5000_CHIP_ANA_ADC_CTRL,		0x0000 },
     50	{ SGTL5000_CHIP_ANA_HP_CTRL,		0x1818 },
     51	{ SGTL5000_CHIP_ANA_CTRL,		0x0111 },
     52	{ SGTL5000_CHIP_REF_CTRL,		0x0000 },
     53	{ SGTL5000_CHIP_MIC_CTRL,		0x0000 },
     54	{ SGTL5000_CHIP_LINE_OUT_CTRL,		0x0000 },
     55	{ SGTL5000_CHIP_LINE_OUT_VOL,		0x0404 },
     56	{ SGTL5000_CHIP_PLL_CTRL,		0x5000 },
     57	{ SGTL5000_CHIP_CLK_TOP_CTRL,		0x0000 },
     58	{ SGTL5000_CHIP_ANA_STATUS,		0x0000 },
     59	{ SGTL5000_CHIP_SHORT_CTRL,		0x0000 },
     60	{ SGTL5000_CHIP_ANA_TEST2,		0x0000 },
     61	{ SGTL5000_DAP_CTRL,			0x0000 },
     62	{ SGTL5000_DAP_PEQ,			0x0000 },
     63	{ SGTL5000_DAP_BASS_ENHANCE,		0x0040 },
     64	{ SGTL5000_DAP_BASS_ENHANCE_CTRL,	0x051f },
     65	{ SGTL5000_DAP_AUDIO_EQ,		0x0000 },
     66	{ SGTL5000_DAP_SURROUND,		0x0040 },
     67	{ SGTL5000_DAP_EQ_BASS_BAND0,		0x002f },
     68	{ SGTL5000_DAP_EQ_BASS_BAND1,		0x002f },
     69	{ SGTL5000_DAP_EQ_BASS_BAND2,		0x002f },
     70	{ SGTL5000_DAP_EQ_BASS_BAND3,		0x002f },
     71	{ SGTL5000_DAP_EQ_BASS_BAND4,		0x002f },
     72	{ SGTL5000_DAP_MAIN_CHAN,		0x8000 },
     73	{ SGTL5000_DAP_MIX_CHAN,		0x0000 },
     74	{ SGTL5000_DAP_AVC_CTRL,		0x5100 },
     75	{ SGTL5000_DAP_AVC_THRESHOLD,		0x1473 },
     76	{ SGTL5000_DAP_AVC_ATTACK,		0x0028 },
     77	{ SGTL5000_DAP_AVC_DECAY,		0x0050 },
     78};
     79
     80/* AVC: Threshold dB -> register: pre-calculated values */
     81static const u16 avc_thr_db2reg[97] = {
     82	0x5168, 0x488E, 0x40AA, 0x39A1, 0x335D, 0x2DC7, 0x28CC, 0x245D, 0x2068,
     83	0x1CE2, 0x19BE, 0x16F1, 0x1472, 0x1239, 0x103E, 0x0E7A, 0x0CE6, 0x0B7F,
     84	0x0A3F, 0x0922, 0x0824, 0x0741, 0x0677, 0x05C3, 0x0522, 0x0493, 0x0414,
     85	0x03A2, 0x033D, 0x02E3, 0x0293, 0x024B, 0x020B, 0x01D2, 0x019F, 0x0172,
     86	0x014A, 0x0126, 0x0106, 0x00E9, 0x00D0, 0x00B9, 0x00A5, 0x0093, 0x0083,
     87	0x0075, 0x0068, 0x005D, 0x0052, 0x0049, 0x0041, 0x003A, 0x0034, 0x002E,
     88	0x0029, 0x0025, 0x0021, 0x001D, 0x001A, 0x0017, 0x0014, 0x0012, 0x0010,
     89	0x000E, 0x000D, 0x000B, 0x000A, 0x0009, 0x0008, 0x0007, 0x0006, 0x0005,
     90	0x0005, 0x0004, 0x0004, 0x0003, 0x0003, 0x0002, 0x0002, 0x0002, 0x0002,
     91	0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0000, 0x0000, 0x0000,
     92	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000};
     93
     94/* regulator supplies for sgtl5000, VDDD is an optional external supply */
     95enum sgtl5000_regulator_supplies {
     96	VDDA,
     97	VDDIO,
     98	VDDD,
     99	SGTL5000_SUPPLY_NUM
    100};
    101
    102/* vddd is optional supply */
    103static const char *supply_names[SGTL5000_SUPPLY_NUM] = {
    104	"VDDA",
    105	"VDDIO",
    106	"VDDD"
    107};
    108
    109#define LDO_VOLTAGE		1200000
    110#define LINREG_VDDD	((1600 - LDO_VOLTAGE / 1000) / 50)
    111
    112enum sgtl5000_micbias_resistor {
    113	SGTL5000_MICBIAS_OFF = 0,
    114	SGTL5000_MICBIAS_2K = 2,
    115	SGTL5000_MICBIAS_4K = 4,
    116	SGTL5000_MICBIAS_8K = 8,
    117};
    118
    119enum  {
    120	I2S_LRCLK_STRENGTH_DISABLE,
    121	I2S_LRCLK_STRENGTH_LOW,
    122	I2S_LRCLK_STRENGTH_MEDIUM,
    123	I2S_LRCLK_STRENGTH_HIGH,
    124};
    125
    126enum  {
    127	I2S_SCLK_STRENGTH_DISABLE,
    128	I2S_SCLK_STRENGTH_LOW,
    129	I2S_SCLK_STRENGTH_MEDIUM,
    130	I2S_SCLK_STRENGTH_HIGH,
    131};
    132
    133enum {
    134	HP_POWER_EVENT,
    135	DAC_POWER_EVENT,
    136	ADC_POWER_EVENT,
    137	LAST_POWER_EVENT = ADC_POWER_EVENT
    138};
    139
    140/* sgtl5000 private structure in codec */
    141struct sgtl5000_priv {
    142	int sysclk;	/* sysclk rate */
    143	int master;	/* i2s master or not */
    144	int fmt;	/* i2s data format */
    145	struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM];
    146	int num_supplies;
    147	struct regmap *regmap;
    148	struct clk *mclk;
    149	int revision;
    150	u8 micbias_resistor;
    151	u8 micbias_voltage;
    152	u8 lrclk_strength;
    153	u8 sclk_strength;
    154	u16 mute_state[LAST_POWER_EVENT + 1];
    155};
    156
    157static inline int hp_sel_input(struct snd_soc_component *component)
    158{
    159	return (snd_soc_component_read(component, SGTL5000_CHIP_ANA_CTRL) &
    160		SGTL5000_HP_SEL_MASK) >> SGTL5000_HP_SEL_SHIFT;
    161}
    162
    163static inline u16 mute_output(struct snd_soc_component *component,
    164			      u16 mute_mask)
    165{
    166	u16 mute_reg = snd_soc_component_read(component,
    167					      SGTL5000_CHIP_ANA_CTRL);
    168
    169	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
    170			    mute_mask, mute_mask);
    171	return mute_reg;
    172}
    173
    174static inline void restore_output(struct snd_soc_component *component,
    175				  u16 mute_mask, u16 mute_reg)
    176{
    177	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
    178		mute_mask, mute_reg);
    179}
    180
    181static void vag_power_on(struct snd_soc_component *component, u32 source)
    182{
    183	if (snd_soc_component_read(component, SGTL5000_CHIP_ANA_POWER) &
    184	    SGTL5000_VAG_POWERUP)
    185		return;
    186
    187	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
    188			    SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP);
    189
    190	/* When VAG powering on to get local loop from Line-In, the sleep
    191	 * is required to avoid loud pop.
    192	 */
    193	if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN &&
    194	    source == HP_POWER_EVENT)
    195		msleep(SGTL5000_VAG_POWERUP_DELAY);
    196}
    197
    198static int vag_power_consumers(struct snd_soc_component *component,
    199			       u16 ana_pwr_reg, u32 source)
    200{
    201	int consumers = 0;
    202
    203	/* count dac/adc consumers unconditional */
    204	if (ana_pwr_reg & SGTL5000_DAC_POWERUP)
    205		consumers++;
    206	if (ana_pwr_reg & SGTL5000_ADC_POWERUP)
    207		consumers++;
    208
    209	/*
    210	 * If the event comes from HP and Line-In is selected,
    211	 * current action is 'DAC to be powered down'.
    212	 * As HP_POWERUP is not set when HP muxed to line-in,
    213	 * we need to keep VAG power ON.
    214	 */
    215	if (source == HP_POWER_EVENT) {
    216		if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN)
    217			consumers++;
    218	} else {
    219		if (ana_pwr_reg & SGTL5000_HP_POWERUP)
    220			consumers++;
    221	}
    222
    223	return consumers;
    224}
    225
    226static void vag_power_off(struct snd_soc_component *component, u32 source)
    227{
    228	u16 ana_pwr = snd_soc_component_read(component,
    229					     SGTL5000_CHIP_ANA_POWER);
    230
    231	if (!(ana_pwr & SGTL5000_VAG_POWERUP))
    232		return;
    233
    234	/*
    235	 * This function calls when any of VAG power consumers is disappearing.
    236	 * Thus, if there is more than one consumer at the moment, as minimum
    237	 * one consumer will definitely stay after the end of the current
    238	 * event.
    239	 * Don't clear VAG_POWERUP if 2 or more consumers of VAG present:
    240	 * - LINE_IN (for HP events) / HP (for DAC/ADC events)
    241	 * - DAC
    242	 * - ADC
    243	 * (the current consumer is disappearing right now)
    244	 */
    245	if (vag_power_consumers(component, ana_pwr, source) >= 2)
    246		return;
    247
    248	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
    249		SGTL5000_VAG_POWERUP, 0);
    250	/* In power down case, we need wait 400-1000 ms
    251	 * when VAG fully ramped down.
    252	 * As longer we wait, as smaller pop we've got.
    253	 */
    254	msleep(SGTL5000_VAG_POWERDOWN_DELAY);
    255}
    256
    257/*
    258 * mic_bias power on/off share the same register bits with
    259 * output impedance of mic bias, when power on mic bias, we
    260 * need reclaim it to impedance value.
    261 * 0x0 = Powered off
    262 * 0x1 = 2Kohm
    263 * 0x2 = 4Kohm
    264 * 0x3 = 8Kohm
    265 */
    266static int mic_bias_event(struct snd_soc_dapm_widget *w,
    267	struct snd_kcontrol *kcontrol, int event)
    268{
    269	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
    270	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
    271
    272	switch (event) {
    273	case SND_SOC_DAPM_POST_PMU:
    274		/* change mic bias resistor */
    275		snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
    276			SGTL5000_BIAS_R_MASK,
    277			sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
    278		break;
    279
    280	case SND_SOC_DAPM_PRE_PMD:
    281		snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
    282				SGTL5000_BIAS_R_MASK, 0);
    283		break;
    284	}
    285	return 0;
    286}
    287
    288static int vag_and_mute_control(struct snd_soc_component *component,
    289				 int event, int event_source)
    290{
    291	static const u16 mute_mask[] = {
    292		/*
    293		 * Mask for HP_POWER_EVENT.
    294		 * Muxing Headphones have to be wrapped with mute/unmute
    295		 * headphones only.
    296		 */
    297		SGTL5000_HP_MUTE,
    298		/*
    299		 * Masks for DAC_POWER_EVENT/ADC_POWER_EVENT.
    300		 * Muxing DAC or ADC block have to wrapped with mute/unmute
    301		 * both headphones and line-out.
    302		 */
    303		SGTL5000_OUTPUTS_MUTE,
    304		SGTL5000_OUTPUTS_MUTE
    305	};
    306
    307	struct sgtl5000_priv *sgtl5000 =
    308		snd_soc_component_get_drvdata(component);
    309
    310	switch (event) {
    311	case SND_SOC_DAPM_PRE_PMU:
    312		sgtl5000->mute_state[event_source] =
    313			mute_output(component, mute_mask[event_source]);
    314		break;
    315	case SND_SOC_DAPM_POST_PMU:
    316		vag_power_on(component, event_source);
    317		restore_output(component, mute_mask[event_source],
    318			       sgtl5000->mute_state[event_source]);
    319		break;
    320	case SND_SOC_DAPM_PRE_PMD:
    321		sgtl5000->mute_state[event_source] =
    322			mute_output(component, mute_mask[event_source]);
    323		vag_power_off(component, event_source);
    324		break;
    325	case SND_SOC_DAPM_POST_PMD:
    326		restore_output(component, mute_mask[event_source],
    327			       sgtl5000->mute_state[event_source]);
    328		break;
    329	default:
    330		break;
    331	}
    332
    333	return 0;
    334}
    335
    336/*
    337 * Mute Headphone when power it up/down.
    338 * Control VAG power on HP power path.
    339 */
    340static int headphone_pga_event(struct snd_soc_dapm_widget *w,
    341	struct snd_kcontrol *kcontrol, int event)
    342{
    343	struct snd_soc_component *component =
    344		snd_soc_dapm_to_component(w->dapm);
    345
    346	return vag_and_mute_control(component, event, HP_POWER_EVENT);
    347}
    348
    349/* As manual describes, ADC/DAC powering up/down requires
    350 * to mute outputs to avoid pops.
    351 * Control VAG power on ADC/DAC power path.
    352 */
    353static int adc_updown_depop(struct snd_soc_dapm_widget *w,
    354	struct snd_kcontrol *kcontrol, int event)
    355{
    356	struct snd_soc_component *component =
    357		snd_soc_dapm_to_component(w->dapm);
    358
    359	return vag_and_mute_control(component, event, ADC_POWER_EVENT);
    360}
    361
    362static int dac_updown_depop(struct snd_soc_dapm_widget *w,
    363	struct snd_kcontrol *kcontrol, int event)
    364{
    365	struct snd_soc_component *component =
    366		snd_soc_dapm_to_component(w->dapm);
    367
    368	return vag_and_mute_control(component, event, DAC_POWER_EVENT);
    369}
    370
    371/* input sources for ADC */
    372static const char *adc_mux_text[] = {
    373	"MIC_IN", "LINE_IN"
    374};
    375
    376static SOC_ENUM_SINGLE_DECL(adc_enum,
    377			    SGTL5000_CHIP_ANA_CTRL, 2,
    378			    adc_mux_text);
    379
    380static const struct snd_kcontrol_new adc_mux =
    381SOC_DAPM_ENUM("Capture Mux", adc_enum);
    382
    383/* input sources for headphone */
    384static const char *hp_mux_text[] = {
    385	"DAC", "LINE_IN"
    386};
    387
    388static SOC_ENUM_SINGLE_DECL(hp_enum,
    389			    SGTL5000_CHIP_ANA_CTRL, 6,
    390			    hp_mux_text);
    391
    392static const struct snd_kcontrol_new hp_mux =
    393SOC_DAPM_ENUM("Headphone Mux", hp_enum);
    394
    395/* input sources for DAC */
    396static const char *dac_mux_text[] = {
    397	"ADC", "I2S", "Rsvrd", "DAP"
    398};
    399
    400static SOC_ENUM_SINGLE_DECL(dac_enum,
    401			    SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAC_SEL_SHIFT,
    402			    dac_mux_text);
    403
    404static const struct snd_kcontrol_new dac_mux =
    405SOC_DAPM_ENUM("Digital Input Mux", dac_enum);
    406
    407/* input sources for DAP */
    408static const char *dap_mux_text[] = {
    409	"ADC", "I2S"
    410};
    411
    412static SOC_ENUM_SINGLE_DECL(dap_enum,
    413			    SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_SEL_SHIFT,
    414			    dap_mux_text);
    415
    416static const struct snd_kcontrol_new dap_mux =
    417SOC_DAPM_ENUM("DAP Mux", dap_enum);
    418
    419/* input sources for DAP mix */
    420static const char *dapmix_mux_text[] = {
    421	"ADC", "I2S"
    422};
    423
    424static SOC_ENUM_SINGLE_DECL(dapmix_enum,
    425			    SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_MIX_SEL_SHIFT,
    426			    dapmix_mux_text);
    427
    428static const struct snd_kcontrol_new dapmix_mux =
    429SOC_DAPM_ENUM("DAP MIX Mux", dapmix_enum);
    430
    431
    432static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = {
    433	SND_SOC_DAPM_INPUT("LINE_IN"),
    434	SND_SOC_DAPM_INPUT("MIC_IN"),
    435
    436	SND_SOC_DAPM_OUTPUT("HP_OUT"),
    437	SND_SOC_DAPM_OUTPUT("LINE_OUT"),
    438
    439	SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0,
    440			    mic_bias_event,
    441			    SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
    442
    443	SND_SOC_DAPM_PGA_E("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0,
    444			   headphone_pga_event,
    445			   SND_SOC_DAPM_PRE_POST_PMU |
    446			   SND_SOC_DAPM_PRE_POST_PMD),
    447	SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0),
    448
    449	SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux),
    450	SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &hp_mux),
    451	SND_SOC_DAPM_MUX("Digital Input Mux", SND_SOC_NOPM, 0, 0, &dac_mux),
    452	SND_SOC_DAPM_MUX("DAP Mux", SGTL5000_DAP_CTRL, 0, 0, &dap_mux),
    453	SND_SOC_DAPM_MUX("DAP MIX Mux", SGTL5000_DAP_CTRL, 4, 0, &dapmix_mux),
    454	SND_SOC_DAPM_MIXER("DAP", SGTL5000_CHIP_DIG_POWER, 4, 0, NULL, 0),
    455
    456
    457	/* aif for i2s input */
    458	SND_SOC_DAPM_AIF_IN("AIFIN", "Playback",
    459				0, SGTL5000_CHIP_DIG_POWER,
    460				0, 0),
    461
    462	/* aif for i2s output */
    463	SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture",
    464				0, SGTL5000_CHIP_DIG_POWER,
    465				1, 0),
    466
    467	SND_SOC_DAPM_ADC_E("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0,
    468			   adc_updown_depop, SND_SOC_DAPM_PRE_POST_PMU |
    469			   SND_SOC_DAPM_PRE_POST_PMD),
    470	SND_SOC_DAPM_DAC_E("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0,
    471			   dac_updown_depop, SND_SOC_DAPM_PRE_POST_PMU |
    472			   SND_SOC_DAPM_PRE_POST_PMD),
    473};
    474
    475/* routes for sgtl5000 */
    476static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = {
    477	{"Capture Mux", "LINE_IN", "LINE_IN"},	/* line_in --> adc_mux */
    478	{"Capture Mux", "MIC_IN", "MIC_IN"},	/* mic_in --> adc_mux */
    479
    480	{"ADC", NULL, "Capture Mux"},		/* adc_mux --> adc */
    481	{"AIFOUT", NULL, "ADC"},		/* adc --> i2s_out */
    482
    483	{"DAP Mux", "ADC", "ADC"},		/* adc --> DAP mux */
    484	{"DAP Mux", NULL, "AIFIN"},		/* i2s --> DAP mux */
    485	{"DAP", NULL, "DAP Mux"},		/* DAP mux --> dap */
    486
    487	{"DAP MIX Mux", "ADC", "ADC"},		/* adc --> DAP MIX mux */
    488	{"DAP MIX Mux", NULL, "AIFIN"},		/* i2s --> DAP MIX mux */
    489	{"DAP", NULL, "DAP MIX Mux"},		/* DAP MIX mux --> dap */
    490
    491	{"Digital Input Mux", "ADC", "ADC"},	/* adc --> audio mux */
    492	{"Digital Input Mux", NULL, "AIFIN"},	/* i2s --> audio mux */
    493	{"Digital Input Mux", NULL, "DAP"},	/* dap --> audio mux */
    494	{"DAC", NULL, "Digital Input Mux"},	/* audio mux --> dac */
    495
    496	{"Headphone Mux", "DAC", "DAC"},	/* dac --> hp_mux */
    497	{"LO", NULL, "DAC"},			/* dac --> line_out */
    498
    499	{"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */
    500	{"HP", NULL, "Headphone Mux"},		/* hp_mux --> hp */
    501
    502	{"LINE_OUT", NULL, "LO"},
    503	{"HP_OUT", NULL, "HP"},
    504};
    505
    506/* custom function to fetch info of PCM playback volume */
    507static int dac_info_volsw(struct snd_kcontrol *kcontrol,
    508			  struct snd_ctl_elem_info *uinfo)
    509{
    510	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
    511	uinfo->count = 2;
    512	uinfo->value.integer.min = 0;
    513	uinfo->value.integer.max = 0xfc - 0x3c;
    514	return 0;
    515}
    516
    517/*
    518 * custom function to get of PCM playback volume
    519 *
    520 * dac volume register
    521 * 15-------------8-7--------------0
    522 * | R channel vol | L channel vol |
    523 *  -------------------------------
    524 *
    525 * PCM volume with 0.5017 dB steps from 0 to -90 dB
    526 *
    527 * register values map to dB
    528 * 0x3B and less = Reserved
    529 * 0x3C = 0 dB
    530 * 0x3D = -0.5 dB
    531 * 0xF0 = -90 dB
    532 * 0xFC and greater = Muted
    533 *
    534 * register value map to userspace value
    535 *
    536 * register value	0x3c(0dB)	  0xf0(-90dB)0xfc
    537 *			------------------------------
    538 * userspace value	0xc0			     0
    539 */
    540static int dac_get_volsw(struct snd_kcontrol *kcontrol,
    541			 struct snd_ctl_elem_value *ucontrol)
    542{
    543	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
    544	int reg;
    545	int l;
    546	int r;
    547
    548	reg = snd_soc_component_read(component, SGTL5000_CHIP_DAC_VOL);
    549
    550	/* get left channel volume */
    551	l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT;
    552
    553	/* get right channel volume */
    554	r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT;
    555
    556	/* make sure value fall in (0x3c,0xfc) */
    557	l = clamp(l, 0x3c, 0xfc);
    558	r = clamp(r, 0x3c, 0xfc);
    559
    560	/* invert it and map to userspace value */
    561	l = 0xfc - l;
    562	r = 0xfc - r;
    563
    564	ucontrol->value.integer.value[0] = l;
    565	ucontrol->value.integer.value[1] = r;
    566
    567	return 0;
    568}
    569
    570/*
    571 * custom function to put of PCM playback volume
    572 *
    573 * dac volume register
    574 * 15-------------8-7--------------0
    575 * | R channel vol | L channel vol |
    576 *  -------------------------------
    577 *
    578 * PCM volume with 0.5017 dB steps from 0 to -90 dB
    579 *
    580 * register values map to dB
    581 * 0x3B and less = Reserved
    582 * 0x3C = 0 dB
    583 * 0x3D = -0.5 dB
    584 * 0xF0 = -90 dB
    585 * 0xFC and greater = Muted
    586 *
    587 * userspace value map to register value
    588 *
    589 * userspace value	0xc0			     0
    590 *			------------------------------
    591 * register value	0x3c(0dB)	0xf0(-90dB)0xfc
    592 */
    593static int dac_put_volsw(struct snd_kcontrol *kcontrol,
    594			 struct snd_ctl_elem_value *ucontrol)
    595{
    596	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
    597	int reg;
    598	int l;
    599	int r;
    600
    601	l = ucontrol->value.integer.value[0];
    602	r = ucontrol->value.integer.value[1];
    603
    604	/* make sure userspace volume fall in (0, 0xfc-0x3c) */
    605	l = clamp(l, 0, 0xfc - 0x3c);
    606	r = clamp(r, 0, 0xfc - 0x3c);
    607
    608	/* invert it, get the value can be set to register */
    609	l = 0xfc - l;
    610	r = 0xfc - r;
    611
    612	/* shift to get the register value */
    613	reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT |
    614		r << SGTL5000_DAC_VOL_RIGHT_SHIFT;
    615
    616	snd_soc_component_write(component, SGTL5000_CHIP_DAC_VOL, reg);
    617
    618	return 0;
    619}
    620
    621/*
    622 * custom function to get AVC threshold
    623 *
    624 * The threshold dB is calculated by rearranging the calculation from the
    625 * avc_put_threshold function: register_value = 10^(dB/20) * 0.636 * 2^15 ==>
    626 * dB = ( fls(register_value) - 14.347 ) * 6.02
    627 *
    628 * As this calculation is expensive and the threshold dB values may not exceed
    629 * 0 to 96 we use pre-calculated values.
    630 */
    631static int avc_get_threshold(struct snd_kcontrol *kcontrol,
    632			     struct snd_ctl_elem_value *ucontrol)
    633{
    634	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
    635	int db, i;
    636	u16 reg = snd_soc_component_read(component, SGTL5000_DAP_AVC_THRESHOLD);
    637
    638	/* register value 0 => -96dB */
    639	if (!reg) {
    640		ucontrol->value.integer.value[0] = 96;
    641		ucontrol->value.integer.value[1] = 96;
    642		return 0;
    643	}
    644
    645	/* get dB from register value (rounded down) */
    646	for (i = 0; avc_thr_db2reg[i] > reg; i++)
    647		;
    648	db = i;
    649
    650	ucontrol->value.integer.value[0] = db;
    651	ucontrol->value.integer.value[1] = db;
    652
    653	return 0;
    654}
    655
    656/*
    657 * custom function to put AVC threshold
    658 *
    659 * The register value is calculated by following formula:
    660 *                                    register_value = 10^(dB/20) * 0.636 * 2^15
    661 * As this calculation is expensive and the threshold dB values may not exceed
    662 * 0 to 96 we use pre-calculated values.
    663 */
    664static int avc_put_threshold(struct snd_kcontrol *kcontrol,
    665			     struct snd_ctl_elem_value *ucontrol)
    666{
    667	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
    668	int db;
    669	u16 reg;
    670
    671	db = (int)ucontrol->value.integer.value[0];
    672	if (db < 0 || db > 96)
    673		return -EINVAL;
    674	reg = avc_thr_db2reg[db];
    675	snd_soc_component_write(component, SGTL5000_DAP_AVC_THRESHOLD, reg);
    676
    677	return 0;
    678}
    679
    680static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0);
    681
    682/* tlv for mic gain, 0db 20db 30db 40db */
    683static const DECLARE_TLV_DB_RANGE(mic_gain_tlv,
    684	0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
    685	1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0)
    686);
    687
    688/* tlv for DAP channels, 0% - 100% - 200% */
    689static const DECLARE_TLV_DB_SCALE(dap_volume, 0, 1, 0);
    690
    691/* tlv for bass bands, -11.75db to 12.0db, step .25db */
    692static const DECLARE_TLV_DB_SCALE(bass_band, -1175, 25, 0);
    693
    694/* tlv for hp volume, -51.5db to 12.0db, step .5db */
    695static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0);
    696
    697/* tlv for lineout volume, 31 steps of .5db each */
    698static const DECLARE_TLV_DB_SCALE(lineout_volume, -1550, 50, 0);
    699
    700/* tlv for dap avc max gain, 0db, 6db, 12db */
    701static const DECLARE_TLV_DB_SCALE(avc_max_gain, 0, 600, 0);
    702
    703/* tlv for dap avc threshold, */
    704static const DECLARE_TLV_DB_MINMAX(avc_threshold, 0, 9600);
    705
    706static const struct snd_kcontrol_new sgtl5000_snd_controls[] = {
    707	/* SOC_DOUBLE_S8_TLV with invert */
    708	{
    709		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
    710		.name = "PCM Playback Volume",
    711		.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
    712			SNDRV_CTL_ELEM_ACCESS_READWRITE,
    713		.info = dac_info_volsw,
    714		.get = dac_get_volsw,
    715		.put = dac_put_volsw,
    716	},
    717
    718	SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0),
    719	SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)",
    720			SGTL5000_CHIP_ANA_ADC_CTRL,
    721			8, 1, 0, capture_6db_attenuate),
    722	SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0),
    723	SOC_SINGLE("Capture Switch", SGTL5000_CHIP_ANA_CTRL, 0, 1, 1),
    724
    725	SOC_DOUBLE_TLV("Headphone Playback Volume",
    726			SGTL5000_CHIP_ANA_HP_CTRL,
    727			0, 8,
    728			0x7f, 1,
    729			headphone_volume),
    730	SOC_SINGLE("Headphone Playback Switch", SGTL5000_CHIP_ANA_CTRL,
    731			4, 1, 1),
    732	SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL,
    733			5, 1, 0),
    734
    735	SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL,
    736			0, 3, 0, mic_gain_tlv),
    737
    738	SOC_DOUBLE_TLV("Lineout Playback Volume",
    739			SGTL5000_CHIP_LINE_OUT_VOL,
    740			SGTL5000_LINE_OUT_VOL_LEFT_SHIFT,
    741			SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT,
    742			0x1f, 1,
    743			lineout_volume),
    744	SOC_SINGLE("Lineout Playback Switch", SGTL5000_CHIP_ANA_CTRL, 8, 1, 1),
    745
    746	SOC_SINGLE_TLV("DAP Main channel", SGTL5000_DAP_MAIN_CHAN,
    747	0, 0xffff, 0, dap_volume),
    748
    749	SOC_SINGLE_TLV("DAP Mix channel", SGTL5000_DAP_MIX_CHAN,
    750	0, 0xffff, 0, dap_volume),
    751	/* Automatic Volume Control (DAP AVC) */
    752	SOC_SINGLE("AVC Switch", SGTL5000_DAP_AVC_CTRL, 0, 1, 0),
    753	SOC_SINGLE("AVC Hard Limiter Switch", SGTL5000_DAP_AVC_CTRL, 5, 1, 0),
    754	SOC_SINGLE_TLV("AVC Max Gain Volume", SGTL5000_DAP_AVC_CTRL, 12, 2, 0,
    755			avc_max_gain),
    756	SOC_SINGLE("AVC Integrator Response", SGTL5000_DAP_AVC_CTRL, 8, 3, 0),
    757	SOC_SINGLE_EXT_TLV("AVC Threshold Volume", SGTL5000_DAP_AVC_THRESHOLD,
    758			0, 96, 0, avc_get_threshold, avc_put_threshold,
    759			avc_threshold),
    760
    761	SOC_SINGLE_TLV("BASS 0", SGTL5000_DAP_EQ_BASS_BAND0,
    762	0, 0x5F, 0, bass_band),
    763
    764	SOC_SINGLE_TLV("BASS 1", SGTL5000_DAP_EQ_BASS_BAND1,
    765	0, 0x5F, 0, bass_band),
    766
    767	SOC_SINGLE_TLV("BASS 2", SGTL5000_DAP_EQ_BASS_BAND2,
    768	0, 0x5F, 0, bass_band),
    769
    770	SOC_SINGLE_TLV("BASS 3", SGTL5000_DAP_EQ_BASS_BAND3,
    771	0, 0x5F, 0, bass_band),
    772
    773	SOC_SINGLE_TLV("BASS 4", SGTL5000_DAP_EQ_BASS_BAND4,
    774	0, 0x5F, 0, bass_band),
    775};
    776
    777/* mute the codec used by alsa core */
    778static int sgtl5000_mute_stream(struct snd_soc_dai *codec_dai, int mute, int direction)
    779{
    780	struct snd_soc_component *component = codec_dai->component;
    781	u16 i2s_pwr = SGTL5000_I2S_IN_POWERUP;
    782
    783	/*
    784	 * During 'digital mute' do not mute DAC
    785	 * because LINE_IN would be muted aswell. We want to mute
    786	 * only I2S block - this can be done by powering it off
    787	 */
    788	snd_soc_component_update_bits(component, SGTL5000_CHIP_DIG_POWER,
    789			i2s_pwr, mute ? 0 : i2s_pwr);
    790
    791	return 0;
    792}
    793
    794/* set codec format */
    795static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
    796{
    797	struct snd_soc_component *component = codec_dai->component;
    798	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
    799	u16 i2sctl = 0;
    800
    801	sgtl5000->master = 0;
    802	/*
    803	 * i2s clock and frame master setting.
    804	 * ONLY support:
    805	 *  - clock and frame slave,
    806	 *  - clock and frame master
    807	 */
    808	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
    809	case SND_SOC_DAIFMT_CBS_CFS:
    810		break;
    811	case SND_SOC_DAIFMT_CBM_CFM:
    812		i2sctl |= SGTL5000_I2S_MASTER;
    813		sgtl5000->master = 1;
    814		break;
    815	default:
    816		return -EINVAL;
    817	}
    818
    819	/* setting i2s data format */
    820	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
    821	case SND_SOC_DAIFMT_DSP_A:
    822		i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
    823		break;
    824	case SND_SOC_DAIFMT_DSP_B:
    825		i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
    826		i2sctl |= SGTL5000_I2S_LRALIGN;
    827		break;
    828	case SND_SOC_DAIFMT_I2S:
    829		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
    830		break;
    831	case SND_SOC_DAIFMT_RIGHT_J:
    832		i2sctl |= SGTL5000_I2S_MODE_RJ << SGTL5000_I2S_MODE_SHIFT;
    833		i2sctl |= SGTL5000_I2S_LRPOL;
    834		break;
    835	case SND_SOC_DAIFMT_LEFT_J:
    836		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
    837		i2sctl |= SGTL5000_I2S_LRALIGN;
    838		break;
    839	default:
    840		return -EINVAL;
    841	}
    842
    843	sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
    844
    845	/* Clock inversion */
    846	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
    847	case SND_SOC_DAIFMT_NB_NF:
    848		break;
    849	case SND_SOC_DAIFMT_IB_NF:
    850		i2sctl |= SGTL5000_I2S_SCLK_INV;
    851		break;
    852	default:
    853		return -EINVAL;
    854	}
    855
    856	snd_soc_component_write(component, SGTL5000_CHIP_I2S_CTRL, i2sctl);
    857
    858	return 0;
    859}
    860
    861/* set codec sysclk */
    862static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai,
    863				   int clk_id, unsigned int freq, int dir)
    864{
    865	struct snd_soc_component *component = codec_dai->component;
    866	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
    867
    868	switch (clk_id) {
    869	case SGTL5000_SYSCLK:
    870		sgtl5000->sysclk = freq;
    871		break;
    872	default:
    873		return -EINVAL;
    874	}
    875
    876	return 0;
    877}
    878
    879/*
    880 * set clock according to i2s frame clock,
    881 * sgtl5000 provides 2 clock sources:
    882 * 1. sys_mclk: sample freq can only be configured to
    883 *	1/256, 1/384, 1/512 of sys_mclk.
    884 * 2. pll: can derive any audio clocks.
    885 *
    886 * clock setting rules:
    887 * 1. in slave mode, only sys_mclk can be used
    888 * 2. as constraint by sys_mclk, sample freq should be set to 32 kHz, 44.1 kHz
    889 * and above.
    890 * 3. usage of sys_mclk is preferred over pll to save power.
    891 */
    892static int sgtl5000_set_clock(struct snd_soc_component *component, int frame_rate)
    893{
    894	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
    895	int clk_ctl = 0;
    896	int sys_fs;	/* sample freq */
    897
    898	/*
    899	 * sample freq should be divided by frame clock,
    900	 * if frame clock is lower than 44.1 kHz, sample freq should be set to
    901	 * 32 kHz or 44.1 kHz.
    902	 */
    903	switch (frame_rate) {
    904	case 8000:
    905	case 16000:
    906		sys_fs = 32000;
    907		break;
    908	case 11025:
    909	case 22050:
    910		sys_fs = 44100;
    911		break;
    912	default:
    913		sys_fs = frame_rate;
    914		break;
    915	}
    916
    917	/* set divided factor of frame clock */
    918	switch (sys_fs / frame_rate) {
    919	case 4:
    920		clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT;
    921		break;
    922	case 2:
    923		clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT;
    924		break;
    925	case 1:
    926		clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT;
    927		break;
    928	default:
    929		return -EINVAL;
    930	}
    931
    932	/* set the sys_fs according to frame rate */
    933	switch (sys_fs) {
    934	case 32000:
    935		clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT;
    936		break;
    937	case 44100:
    938		clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT;
    939		break;
    940	case 48000:
    941		clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT;
    942		break;
    943	case 96000:
    944		clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT;
    945		break;
    946	default:
    947		dev_err(component->dev, "frame rate %d not supported\n",
    948			frame_rate);
    949		return -EINVAL;
    950	}
    951
    952	/*
    953	 * calculate the divider of mclk/sample_freq,
    954	 * factor of freq = 96 kHz can only be 256, since mclk is in the range
    955	 * of 8 MHz - 27 MHz
    956	 */
    957	switch (sgtl5000->sysclk / frame_rate) {
    958	case 256:
    959		clk_ctl |= SGTL5000_MCLK_FREQ_256FS <<
    960			SGTL5000_MCLK_FREQ_SHIFT;
    961		break;
    962	case 384:
    963		clk_ctl |= SGTL5000_MCLK_FREQ_384FS <<
    964			SGTL5000_MCLK_FREQ_SHIFT;
    965		break;
    966	case 512:
    967		clk_ctl |= SGTL5000_MCLK_FREQ_512FS <<
    968			SGTL5000_MCLK_FREQ_SHIFT;
    969		break;
    970	default:
    971		/* if mclk does not satisfy the divider, use pll */
    972		if (sgtl5000->master) {
    973			clk_ctl |= SGTL5000_MCLK_FREQ_PLL <<
    974				SGTL5000_MCLK_FREQ_SHIFT;
    975		} else {
    976			dev_err(component->dev,
    977				"PLL not supported in slave mode\n");
    978			dev_err(component->dev, "%d ratio is not supported. "
    979				"SYS_MCLK needs to be 256, 384 or 512 * fs\n",
    980				sgtl5000->sysclk / frame_rate);
    981			return -EINVAL;
    982		}
    983	}
    984
    985	/* if using pll, please check manual 6.4.2 for detail */
    986	if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) {
    987		u64 out, t;
    988		int div2;
    989		int pll_ctl;
    990		unsigned int in, int_div, frac_div;
    991
    992		if (sgtl5000->sysclk > 17000000) {
    993			div2 = 1;
    994			in = sgtl5000->sysclk / 2;
    995		} else {
    996			div2 = 0;
    997			in = sgtl5000->sysclk;
    998		}
    999		if (sys_fs == 44100)
   1000			out = 180633600;
   1001		else
   1002			out = 196608000;
   1003		t = do_div(out, in);
   1004		int_div = out;
   1005		t *= 2048;
   1006		do_div(t, in);
   1007		frac_div = t;
   1008		pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT |
   1009		    frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT;
   1010
   1011		snd_soc_component_write(component, SGTL5000_CHIP_PLL_CTRL, pll_ctl);
   1012		if (div2)
   1013			snd_soc_component_update_bits(component,
   1014				SGTL5000_CHIP_CLK_TOP_CTRL,
   1015				SGTL5000_INPUT_FREQ_DIV2,
   1016				SGTL5000_INPUT_FREQ_DIV2);
   1017		else
   1018			snd_soc_component_update_bits(component,
   1019				SGTL5000_CHIP_CLK_TOP_CTRL,
   1020				SGTL5000_INPUT_FREQ_DIV2,
   1021				0);
   1022
   1023		/* power up pll */
   1024		snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
   1025			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
   1026			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP);
   1027
   1028		/* if using pll, clk_ctrl must be set after pll power up */
   1029		snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
   1030	} else {
   1031		/* otherwise, clk_ctrl must be set before pll power down */
   1032		snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
   1033
   1034		/* power down pll */
   1035		snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
   1036			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
   1037			0);
   1038	}
   1039
   1040	return 0;
   1041}
   1042
   1043/*
   1044 * Set PCM DAI bit size and sample rate.
   1045 * input: params_rate, params_fmt
   1046 */
   1047static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream,
   1048				  struct snd_pcm_hw_params *params,
   1049				  struct snd_soc_dai *dai)
   1050{
   1051	struct snd_soc_component *component = dai->component;
   1052	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
   1053	int channels = params_channels(params);
   1054	int i2s_ctl = 0;
   1055	int stereo;
   1056	int ret;
   1057
   1058	/* sysclk should already set */
   1059	if (!sgtl5000->sysclk) {
   1060		dev_err(component->dev, "%s: set sysclk first!\n", __func__);
   1061		return -EFAULT;
   1062	}
   1063
   1064	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
   1065		stereo = SGTL5000_DAC_STEREO;
   1066	else
   1067		stereo = SGTL5000_ADC_STEREO;
   1068
   1069	/* set mono to save power */
   1070	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, stereo,
   1071			channels == 1 ? 0 : stereo);
   1072
   1073	/* set codec clock base on lrclk */
   1074	ret = sgtl5000_set_clock(component, params_rate(params));
   1075	if (ret)
   1076		return ret;
   1077
   1078	/* set i2s data format */
   1079	switch (params_width(params)) {
   1080	case 16:
   1081		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
   1082			return -EINVAL;
   1083		i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT;
   1084		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS <<
   1085		    SGTL5000_I2S_SCLKFREQ_SHIFT;
   1086		break;
   1087	case 20:
   1088		i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT;
   1089		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
   1090		    SGTL5000_I2S_SCLKFREQ_SHIFT;
   1091		break;
   1092	case 24:
   1093		i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT;
   1094		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
   1095		    SGTL5000_I2S_SCLKFREQ_SHIFT;
   1096		break;
   1097	case 32:
   1098		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
   1099			return -EINVAL;
   1100		i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT;
   1101		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
   1102		    SGTL5000_I2S_SCLKFREQ_SHIFT;
   1103		break;
   1104	default:
   1105		return -EINVAL;
   1106	}
   1107
   1108	snd_soc_component_update_bits(component, SGTL5000_CHIP_I2S_CTRL,
   1109			    SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK,
   1110			    i2s_ctl);
   1111
   1112	return 0;
   1113}
   1114
   1115/*
   1116 * set dac bias
   1117 * common state changes:
   1118 * startup:
   1119 * off --> standby --> prepare --> on
   1120 * standby --> prepare --> on
   1121 *
   1122 * stop:
   1123 * on --> prepare --> standby
   1124 */
   1125static int sgtl5000_set_bias_level(struct snd_soc_component *component,
   1126				   enum snd_soc_bias_level level)
   1127{
   1128	struct sgtl5000_priv *sgtl = snd_soc_component_get_drvdata(component);
   1129	int ret;
   1130
   1131	switch (level) {
   1132	case SND_SOC_BIAS_ON:
   1133	case SND_SOC_BIAS_PREPARE:
   1134	case SND_SOC_BIAS_STANDBY:
   1135		regcache_cache_only(sgtl->regmap, false);
   1136		ret = regcache_sync(sgtl->regmap);
   1137		if (ret) {
   1138			regcache_cache_only(sgtl->regmap, true);
   1139			return ret;
   1140		}
   1141
   1142		snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
   1143				    SGTL5000_REFTOP_POWERUP,
   1144				    SGTL5000_REFTOP_POWERUP);
   1145		break;
   1146	case SND_SOC_BIAS_OFF:
   1147		regcache_cache_only(sgtl->regmap, true);
   1148		snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
   1149				    SGTL5000_REFTOP_POWERUP, 0);
   1150		break;
   1151	}
   1152
   1153	return 0;
   1154}
   1155
   1156#define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
   1157			SNDRV_PCM_FMTBIT_S20_3LE |\
   1158			SNDRV_PCM_FMTBIT_S24_LE |\
   1159			SNDRV_PCM_FMTBIT_S32_LE)
   1160
   1161static const struct snd_soc_dai_ops sgtl5000_ops = {
   1162	.hw_params = sgtl5000_pcm_hw_params,
   1163	.mute_stream = sgtl5000_mute_stream,
   1164	.set_fmt = sgtl5000_set_dai_fmt,
   1165	.set_sysclk = sgtl5000_set_dai_sysclk,
   1166	.no_capture_mute = 1,
   1167};
   1168
   1169static struct snd_soc_dai_driver sgtl5000_dai = {
   1170	.name = "sgtl5000",
   1171	.playback = {
   1172		.stream_name = "Playback",
   1173		.channels_min = 1,
   1174		.channels_max = 2,
   1175		/*
   1176		 * only support 8~48K + 96K,
   1177		 * TODO modify hw_param to support more
   1178		 */
   1179		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
   1180		.formats = SGTL5000_FORMATS,
   1181	},
   1182	.capture = {
   1183		.stream_name = "Capture",
   1184		.channels_min = 1,
   1185		.channels_max = 2,
   1186		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
   1187		.formats = SGTL5000_FORMATS,
   1188	},
   1189	.ops = &sgtl5000_ops,
   1190	.symmetric_rate = 1,
   1191};
   1192
   1193static bool sgtl5000_volatile(struct device *dev, unsigned int reg)
   1194{
   1195	switch (reg) {
   1196	case SGTL5000_CHIP_ID:
   1197	case SGTL5000_CHIP_ADCDAC_CTRL:
   1198	case SGTL5000_CHIP_ANA_STATUS:
   1199		return true;
   1200	}
   1201
   1202	return false;
   1203}
   1204
   1205static bool sgtl5000_readable(struct device *dev, unsigned int reg)
   1206{
   1207	switch (reg) {
   1208	case SGTL5000_CHIP_ID:
   1209	case SGTL5000_CHIP_DIG_POWER:
   1210	case SGTL5000_CHIP_CLK_CTRL:
   1211	case SGTL5000_CHIP_I2S_CTRL:
   1212	case SGTL5000_CHIP_SSS_CTRL:
   1213	case SGTL5000_CHIP_ADCDAC_CTRL:
   1214	case SGTL5000_CHIP_DAC_VOL:
   1215	case SGTL5000_CHIP_PAD_STRENGTH:
   1216	case SGTL5000_CHIP_ANA_ADC_CTRL:
   1217	case SGTL5000_CHIP_ANA_HP_CTRL:
   1218	case SGTL5000_CHIP_ANA_CTRL:
   1219	case SGTL5000_CHIP_LINREG_CTRL:
   1220	case SGTL5000_CHIP_REF_CTRL:
   1221	case SGTL5000_CHIP_MIC_CTRL:
   1222	case SGTL5000_CHIP_LINE_OUT_CTRL:
   1223	case SGTL5000_CHIP_LINE_OUT_VOL:
   1224	case SGTL5000_CHIP_ANA_POWER:
   1225	case SGTL5000_CHIP_PLL_CTRL:
   1226	case SGTL5000_CHIP_CLK_TOP_CTRL:
   1227	case SGTL5000_CHIP_ANA_STATUS:
   1228	case SGTL5000_CHIP_SHORT_CTRL:
   1229	case SGTL5000_CHIP_ANA_TEST2:
   1230	case SGTL5000_DAP_CTRL:
   1231	case SGTL5000_DAP_PEQ:
   1232	case SGTL5000_DAP_BASS_ENHANCE:
   1233	case SGTL5000_DAP_BASS_ENHANCE_CTRL:
   1234	case SGTL5000_DAP_AUDIO_EQ:
   1235	case SGTL5000_DAP_SURROUND:
   1236	case SGTL5000_DAP_FLT_COEF_ACCESS:
   1237	case SGTL5000_DAP_COEF_WR_B0_MSB:
   1238	case SGTL5000_DAP_COEF_WR_B0_LSB:
   1239	case SGTL5000_DAP_EQ_BASS_BAND0:
   1240	case SGTL5000_DAP_EQ_BASS_BAND1:
   1241	case SGTL5000_DAP_EQ_BASS_BAND2:
   1242	case SGTL5000_DAP_EQ_BASS_BAND3:
   1243	case SGTL5000_DAP_EQ_BASS_BAND4:
   1244	case SGTL5000_DAP_MAIN_CHAN:
   1245	case SGTL5000_DAP_MIX_CHAN:
   1246	case SGTL5000_DAP_AVC_CTRL:
   1247	case SGTL5000_DAP_AVC_THRESHOLD:
   1248	case SGTL5000_DAP_AVC_ATTACK:
   1249	case SGTL5000_DAP_AVC_DECAY:
   1250	case SGTL5000_DAP_COEF_WR_B1_MSB:
   1251	case SGTL5000_DAP_COEF_WR_B1_LSB:
   1252	case SGTL5000_DAP_COEF_WR_B2_MSB:
   1253	case SGTL5000_DAP_COEF_WR_B2_LSB:
   1254	case SGTL5000_DAP_COEF_WR_A1_MSB:
   1255	case SGTL5000_DAP_COEF_WR_A1_LSB:
   1256	case SGTL5000_DAP_COEF_WR_A2_MSB:
   1257	case SGTL5000_DAP_COEF_WR_A2_LSB:
   1258		return true;
   1259
   1260	default:
   1261		return false;
   1262	}
   1263}
   1264
   1265/*
   1266 * This precalculated table contains all (vag_val * 100 / lo_calcntrl) results
   1267 * to select an appropriate lo_vol_* in SGTL5000_CHIP_LINE_OUT_VOL
   1268 * The calculatation was done for all possible register values which
   1269 * is the array index and the following formula: 10^((idx−15)/40) * 100
   1270 */
   1271static const u8 vol_quot_table[] = {
   1272	42, 45, 47, 50, 53, 56, 60, 63,
   1273	67, 71, 75, 79, 84, 89, 94, 100,
   1274	106, 112, 119, 126, 133, 141, 150, 158,
   1275	168, 178, 188, 200, 211, 224, 237, 251
   1276};
   1277
   1278/*
   1279 * sgtl5000 has 3 internal power supplies:
   1280 * 1. VAG, normally set to vdda/2
   1281 * 2. charge pump, set to different value
   1282 *	according to voltage of vdda and vddio
   1283 * 3. line out VAG, normally set to vddio/2
   1284 *
   1285 * and should be set according to:
   1286 * 1. vddd provided by external or not
   1287 * 2. vdda and vddio voltage value. > 3.1v or not
   1288 */
   1289static int sgtl5000_set_power_regs(struct snd_soc_component *component)
   1290{
   1291	int vddd;
   1292	int vdda;
   1293	int vddio;
   1294	u16 ana_pwr;
   1295	u16 lreg_ctrl;
   1296	int vag;
   1297	int lo_vag;
   1298	int vol_quot;
   1299	int lo_vol;
   1300	size_t i;
   1301	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
   1302
   1303	vdda  = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer);
   1304	vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer);
   1305	vddd  = (sgtl5000->num_supplies > VDDD)
   1306		? regulator_get_voltage(sgtl5000->supplies[VDDD].consumer)
   1307		: LDO_VOLTAGE;
   1308
   1309	vdda  = vdda / 1000;
   1310	vddio = vddio / 1000;
   1311	vddd  = vddd / 1000;
   1312
   1313	if (vdda <= 0 || vddio <= 0 || vddd < 0) {
   1314		dev_err(component->dev, "regulator voltage not set correctly\n");
   1315
   1316		return -EINVAL;
   1317	}
   1318
   1319	/* according to datasheet, maximum voltage of supplies */
   1320	if (vdda > 3600 || vddio > 3600 || vddd > 1980) {
   1321		dev_err(component->dev,
   1322			"exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n",
   1323			vdda, vddio, vddd);
   1324
   1325		return -EINVAL;
   1326	}
   1327
   1328	/* reset value */
   1329	ana_pwr = snd_soc_component_read(component, SGTL5000_CHIP_ANA_POWER);
   1330	ana_pwr |= SGTL5000_DAC_STEREO |
   1331			SGTL5000_ADC_STEREO |
   1332			SGTL5000_REFTOP_POWERUP;
   1333	lreg_ctrl = snd_soc_component_read(component, SGTL5000_CHIP_LINREG_CTRL);
   1334
   1335	if (vddio < 3100 && vdda < 3100) {
   1336		/* enable internal oscillator used for charge pump */
   1337		snd_soc_component_update_bits(component, SGTL5000_CHIP_CLK_TOP_CTRL,
   1338					SGTL5000_INT_OSC_EN,
   1339					SGTL5000_INT_OSC_EN);
   1340		/* Enable VDDC charge pump */
   1341		ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP;
   1342	} else {
   1343		ana_pwr &= ~SGTL5000_VDDC_CHRGPMP_POWERUP;
   1344		/*
   1345		 * if vddio == vdda the source of charge pump should be
   1346		 * assigned manually to VDDIO
   1347		 */
   1348		if (regulator_is_equal(sgtl5000->supplies[VDDA].consumer,
   1349				       sgtl5000->supplies[VDDIO].consumer)) {
   1350			lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD;
   1351			lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO <<
   1352				    SGTL5000_VDDC_MAN_ASSN_SHIFT;
   1353		}
   1354	}
   1355
   1356	snd_soc_component_write(component, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl);
   1357
   1358	snd_soc_component_write(component, SGTL5000_CHIP_ANA_POWER, ana_pwr);
   1359
   1360	/*
   1361	 * set ADC/DAC VAG to vdda / 2,
   1362	 * should stay in range (0.8v, 1.575v)
   1363	 */
   1364	vag = vdda / 2;
   1365	if (vag <= SGTL5000_ANA_GND_BASE)
   1366		vag = 0;
   1367	else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP *
   1368		 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT))
   1369		vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT;
   1370	else
   1371		vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP;
   1372
   1373	snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL,
   1374			SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT);
   1375
   1376	/* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */
   1377	lo_vag = vddio / 2;
   1378	if (lo_vag <= SGTL5000_LINE_OUT_GND_BASE)
   1379		lo_vag = 0;
   1380	else if (lo_vag >= SGTL5000_LINE_OUT_GND_BASE +
   1381		SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX)
   1382		lo_vag = SGTL5000_LINE_OUT_GND_MAX;
   1383	else
   1384		lo_vag = (lo_vag - SGTL5000_LINE_OUT_GND_BASE) /
   1385		    SGTL5000_LINE_OUT_GND_STP;
   1386
   1387	snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_CTRL,
   1388			SGTL5000_LINE_OUT_CURRENT_MASK |
   1389			SGTL5000_LINE_OUT_GND_MASK,
   1390			lo_vag << SGTL5000_LINE_OUT_GND_SHIFT |
   1391			SGTL5000_LINE_OUT_CURRENT_360u <<
   1392				SGTL5000_LINE_OUT_CURRENT_SHIFT);
   1393
   1394	/*
   1395	 * Set lineout output level in range (0..31)
   1396	 * the same value is used for right and left channel
   1397	 *
   1398	 * Searching for a suitable index solving this formula:
   1399	 * idx = 40 * log10(vag_val / lo_cagcntrl) + 15
   1400	 */
   1401	vol_quot = lo_vag ? (vag * 100) / lo_vag : 0;
   1402	lo_vol = 0;
   1403	for (i = 0; i < ARRAY_SIZE(vol_quot_table); i++) {
   1404		if (vol_quot >= vol_quot_table[i])
   1405			lo_vol = i;
   1406		else
   1407			break;
   1408	}
   1409
   1410	snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_VOL,
   1411		SGTL5000_LINE_OUT_VOL_RIGHT_MASK |
   1412		SGTL5000_LINE_OUT_VOL_LEFT_MASK,
   1413		lo_vol << SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT |
   1414		lo_vol << SGTL5000_LINE_OUT_VOL_LEFT_SHIFT);
   1415
   1416	return 0;
   1417}
   1418
   1419static int sgtl5000_enable_regulators(struct i2c_client *client)
   1420{
   1421	int ret;
   1422	int i;
   1423	int external_vddd = 0;
   1424	struct regulator *vddd;
   1425	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
   1426
   1427	for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++)
   1428		sgtl5000->supplies[i].supply = supply_names[i];
   1429
   1430	vddd = regulator_get_optional(&client->dev, "VDDD");
   1431	if (IS_ERR(vddd)) {
   1432		/* See if it's just not registered yet */
   1433		if (PTR_ERR(vddd) == -EPROBE_DEFER)
   1434			return -EPROBE_DEFER;
   1435	} else {
   1436		external_vddd = 1;
   1437		regulator_put(vddd);
   1438	}
   1439
   1440	sgtl5000->num_supplies = ARRAY_SIZE(sgtl5000->supplies)
   1441				 - 1 + external_vddd;
   1442	ret = regulator_bulk_get(&client->dev, sgtl5000->num_supplies,
   1443				 sgtl5000->supplies);
   1444	if (ret)
   1445		return ret;
   1446
   1447	ret = regulator_bulk_enable(sgtl5000->num_supplies,
   1448				    sgtl5000->supplies);
   1449	if (!ret)
   1450		usleep_range(10, 20);
   1451	else
   1452		regulator_bulk_free(sgtl5000->num_supplies,
   1453				    sgtl5000->supplies);
   1454
   1455	return ret;
   1456}
   1457
   1458static int sgtl5000_probe(struct snd_soc_component *component)
   1459{
   1460	int ret;
   1461	u16 reg;
   1462	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
   1463	unsigned int zcd_mask = SGTL5000_HP_ZCD_EN | SGTL5000_ADC_ZCD_EN;
   1464
   1465	/* power up sgtl5000 */
   1466	ret = sgtl5000_set_power_regs(component);
   1467	if (ret)
   1468		goto err;
   1469
   1470	/* enable small pop, introduce 400ms delay in turning off */
   1471	snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL,
   1472				SGTL5000_SMALL_POP, SGTL5000_SMALL_POP);
   1473
   1474	/* disable short cut detector */
   1475	snd_soc_component_write(component, SGTL5000_CHIP_SHORT_CTRL, 0);
   1476
   1477	snd_soc_component_write(component, SGTL5000_CHIP_DIG_POWER,
   1478			SGTL5000_ADC_EN | SGTL5000_DAC_EN);
   1479
   1480	/* enable dac volume ramp by default */
   1481	snd_soc_component_write(component, SGTL5000_CHIP_ADCDAC_CTRL,
   1482			SGTL5000_DAC_VOL_RAMP_EN |
   1483			SGTL5000_DAC_MUTE_RIGHT |
   1484			SGTL5000_DAC_MUTE_LEFT);
   1485
   1486	reg = ((sgtl5000->lrclk_strength) << SGTL5000_PAD_I2S_LRCLK_SHIFT |
   1487	       (sgtl5000->sclk_strength) << SGTL5000_PAD_I2S_SCLK_SHIFT |
   1488	       0x1f);
   1489	snd_soc_component_write(component, SGTL5000_CHIP_PAD_STRENGTH, reg);
   1490
   1491	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
   1492		zcd_mask, zcd_mask);
   1493
   1494	snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
   1495			SGTL5000_BIAS_R_MASK,
   1496			sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
   1497
   1498	snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
   1499			SGTL5000_BIAS_VOLT_MASK,
   1500			sgtl5000->micbias_voltage << SGTL5000_BIAS_VOLT_SHIFT);
   1501	/*
   1502	 * enable DAP Graphic EQ
   1503	 * TODO:
   1504	 * Add control for changing between PEQ/Tone Control/GEQ
   1505	 */
   1506	snd_soc_component_write(component, SGTL5000_DAP_AUDIO_EQ, SGTL5000_DAP_SEL_GEQ);
   1507
   1508	/* Unmute DAC after start */
   1509	snd_soc_component_update_bits(component, SGTL5000_CHIP_ADCDAC_CTRL,
   1510		SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT, 0);
   1511
   1512	return 0;
   1513
   1514err:
   1515	return ret;
   1516}
   1517
   1518static int sgtl5000_of_xlate_dai_id(struct snd_soc_component *component,
   1519				    struct device_node *endpoint)
   1520{
   1521	/* return dai id 0, whatever the endpoint index */
   1522	return 0;
   1523}
   1524
   1525static const struct snd_soc_component_driver sgtl5000_driver = {
   1526	.probe			= sgtl5000_probe,
   1527	.set_bias_level		= sgtl5000_set_bias_level,
   1528	.controls		= sgtl5000_snd_controls,
   1529	.num_controls		= ARRAY_SIZE(sgtl5000_snd_controls),
   1530	.dapm_widgets		= sgtl5000_dapm_widgets,
   1531	.num_dapm_widgets	= ARRAY_SIZE(sgtl5000_dapm_widgets),
   1532	.dapm_routes		= sgtl5000_dapm_routes,
   1533	.num_dapm_routes	= ARRAY_SIZE(sgtl5000_dapm_routes),
   1534	.of_xlate_dai_id	= sgtl5000_of_xlate_dai_id,
   1535	.suspend_bias_off	= 1,
   1536	.idle_bias_on		= 1,
   1537	.use_pmdown_time	= 1,
   1538	.endianness		= 1,
   1539	.non_legacy_dai_naming	= 1,
   1540};
   1541
   1542static const struct regmap_config sgtl5000_regmap = {
   1543	.reg_bits = 16,
   1544	.val_bits = 16,
   1545	.reg_stride = 2,
   1546
   1547	.max_register = SGTL5000_MAX_REG_OFFSET,
   1548	.volatile_reg = sgtl5000_volatile,
   1549	.readable_reg = sgtl5000_readable,
   1550
   1551	.cache_type = REGCACHE_RBTREE,
   1552	.reg_defaults = sgtl5000_reg_defaults,
   1553	.num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults),
   1554};
   1555
   1556/*
   1557 * Write all the default values from sgtl5000_reg_defaults[] array into the
   1558 * sgtl5000 registers, to make sure we always start with the sane registers
   1559 * values as stated in the datasheet.
   1560 *
   1561 * Since sgtl5000 does not have a reset line, nor a reset command in software,
   1562 * we follow this approach to guarantee we always start from the default values
   1563 * and avoid problems like, not being able to probe after an audio playback
   1564 * followed by a system reset or a 'reboot' command in Linux
   1565 */
   1566static void sgtl5000_fill_defaults(struct i2c_client *client)
   1567{
   1568	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
   1569	int i, ret, val, index;
   1570
   1571	for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) {
   1572		val = sgtl5000_reg_defaults[i].def;
   1573		index = sgtl5000_reg_defaults[i].reg;
   1574		ret = regmap_write(sgtl5000->regmap, index, val);
   1575		if (ret)
   1576			dev_err(&client->dev,
   1577				"%s: error %d setting reg 0x%02x to 0x%04x\n",
   1578				__func__, ret, index, val);
   1579	}
   1580}
   1581
   1582static int sgtl5000_i2c_probe(struct i2c_client *client)
   1583{
   1584	struct sgtl5000_priv *sgtl5000;
   1585	int ret, reg, rev;
   1586	struct device_node *np = client->dev.of_node;
   1587	u32 value;
   1588	u16 ana_pwr;
   1589
   1590	sgtl5000 = devm_kzalloc(&client->dev, sizeof(*sgtl5000), GFP_KERNEL);
   1591	if (!sgtl5000)
   1592		return -ENOMEM;
   1593
   1594	i2c_set_clientdata(client, sgtl5000);
   1595
   1596	ret = sgtl5000_enable_regulators(client);
   1597	if (ret)
   1598		return ret;
   1599
   1600	sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap);
   1601	if (IS_ERR(sgtl5000->regmap)) {
   1602		ret = PTR_ERR(sgtl5000->regmap);
   1603		dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
   1604		goto disable_regs;
   1605	}
   1606
   1607	sgtl5000->mclk = devm_clk_get(&client->dev, NULL);
   1608	if (IS_ERR(sgtl5000->mclk)) {
   1609		ret = PTR_ERR(sgtl5000->mclk);
   1610		/* Defer the probe to see if the clk will be provided later */
   1611		if (ret == -ENOENT)
   1612			ret = -EPROBE_DEFER;
   1613
   1614		dev_err_probe(&client->dev, ret, "Failed to get mclock\n");
   1615
   1616		goto disable_regs;
   1617	}
   1618
   1619	ret = clk_prepare_enable(sgtl5000->mclk);
   1620	if (ret) {
   1621		dev_err(&client->dev, "Error enabling clock %d\n", ret);
   1622		goto disable_regs;
   1623	}
   1624
   1625	/* Need 8 clocks before I2C accesses */
   1626	udelay(1);
   1627
   1628	/* read chip information */
   1629	ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, &reg);
   1630	if (ret) {
   1631		dev_err(&client->dev, "Error reading chip id %d\n", ret);
   1632		goto disable_clk;
   1633	}
   1634
   1635	if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) !=
   1636	    SGTL5000_PARTID_PART_ID) {
   1637		dev_err(&client->dev,
   1638			"Device with ID register %x is not a sgtl5000\n", reg);
   1639		ret = -ENODEV;
   1640		goto disable_clk;
   1641	}
   1642
   1643	rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
   1644	dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev);
   1645	sgtl5000->revision = rev;
   1646
   1647	/* reconfigure the clocks in case we're using the PLL */
   1648	ret = regmap_write(sgtl5000->regmap,
   1649			   SGTL5000_CHIP_CLK_CTRL,
   1650			   SGTL5000_CHIP_CLK_CTRL_DEFAULT);
   1651	if (ret)
   1652		dev_err(&client->dev,
   1653			"Error %d initializing CHIP_CLK_CTRL\n", ret);
   1654
   1655	/* Mute everything to avoid pop from the following power-up */
   1656	ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_CTRL,
   1657			   SGTL5000_CHIP_ANA_CTRL_DEFAULT);
   1658	if (ret) {
   1659		dev_err(&client->dev,
   1660			"Error %d muting outputs via CHIP_ANA_CTRL\n", ret);
   1661		goto disable_clk;
   1662	}
   1663
   1664	/*
   1665	 * If VAG is powered-on (e.g. from previous boot), it would be disabled
   1666	 * by the write to ANA_POWER in later steps of the probe code. This
   1667	 * may create a loud pop even with all outputs muted. The proper way
   1668	 * to circumvent this is disabling the bit first and waiting the proper
   1669	 * cool-down time.
   1670	 */
   1671	ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, &value);
   1672	if (ret) {
   1673		dev_err(&client->dev, "Failed to read ANA_POWER: %d\n", ret);
   1674		goto disable_clk;
   1675	}
   1676	if (value & SGTL5000_VAG_POWERUP) {
   1677		ret = regmap_update_bits(sgtl5000->regmap,
   1678					 SGTL5000_CHIP_ANA_POWER,
   1679					 SGTL5000_VAG_POWERUP,
   1680					 0);
   1681		if (ret) {
   1682			dev_err(&client->dev, "Error %d disabling VAG\n", ret);
   1683			goto disable_clk;
   1684		}
   1685
   1686		msleep(SGTL5000_VAG_POWERDOWN_DELAY);
   1687	}
   1688
   1689	/* Follow section 2.2.1.1 of AN3663 */
   1690	ana_pwr = SGTL5000_ANA_POWER_DEFAULT;
   1691	if (sgtl5000->num_supplies <= VDDD) {
   1692		/* internal VDDD at 1.2V */
   1693		ret = regmap_update_bits(sgtl5000->regmap,
   1694					 SGTL5000_CHIP_LINREG_CTRL,
   1695					 SGTL5000_LINREG_VDDD_MASK,
   1696					 LINREG_VDDD);
   1697		if (ret)
   1698			dev_err(&client->dev,
   1699				"Error %d setting LINREG_VDDD\n", ret);
   1700
   1701		ana_pwr |= SGTL5000_LINEREG_D_POWERUP;
   1702		dev_info(&client->dev,
   1703			 "Using internal LDO instead of VDDD: check ER1 erratum\n");
   1704	} else {
   1705		/* using external LDO for VDDD
   1706		 * Clear startup powerup and simple powerup
   1707		 * bits to save power
   1708		 */
   1709		ana_pwr &= ~(SGTL5000_STARTUP_POWERUP
   1710			     | SGTL5000_LINREG_SIMPLE_POWERUP);
   1711		dev_dbg(&client->dev, "Using external VDDD\n");
   1712	}
   1713	ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, ana_pwr);
   1714	if (ret)
   1715		dev_err(&client->dev,
   1716			"Error %d setting CHIP_ANA_POWER to %04x\n",
   1717			ret, ana_pwr);
   1718
   1719	if (np) {
   1720		if (!of_property_read_u32(np,
   1721			"micbias-resistor-k-ohms", &value)) {
   1722			switch (value) {
   1723			case SGTL5000_MICBIAS_OFF:
   1724				sgtl5000->micbias_resistor = 0;
   1725				break;
   1726			case SGTL5000_MICBIAS_2K:
   1727				sgtl5000->micbias_resistor = 1;
   1728				break;
   1729			case SGTL5000_MICBIAS_4K:
   1730				sgtl5000->micbias_resistor = 2;
   1731				break;
   1732			case SGTL5000_MICBIAS_8K:
   1733				sgtl5000->micbias_resistor = 3;
   1734				break;
   1735			default:
   1736				sgtl5000->micbias_resistor = 2;
   1737				dev_err(&client->dev,
   1738					"Unsuitable MicBias resistor\n");
   1739			}
   1740		} else {
   1741			/* default is 4Kohms */
   1742			sgtl5000->micbias_resistor = 2;
   1743		}
   1744		if (!of_property_read_u32(np,
   1745			"micbias-voltage-m-volts", &value)) {
   1746			/* 1250mV => 0 */
   1747			/* steps of 250mV */
   1748			if ((value >= 1250) && (value <= 3000))
   1749				sgtl5000->micbias_voltage = (value / 250) - 5;
   1750			else {
   1751				sgtl5000->micbias_voltage = 0;
   1752				dev_err(&client->dev,
   1753					"Unsuitable MicBias voltage\n");
   1754			}
   1755		} else {
   1756			sgtl5000->micbias_voltage = 0;
   1757		}
   1758	}
   1759
   1760	sgtl5000->lrclk_strength = I2S_LRCLK_STRENGTH_LOW;
   1761	if (!of_property_read_u32(np, "lrclk-strength", &value)) {
   1762		if (value > I2S_LRCLK_STRENGTH_HIGH)
   1763			value = I2S_LRCLK_STRENGTH_LOW;
   1764		sgtl5000->lrclk_strength = value;
   1765	}
   1766
   1767	sgtl5000->sclk_strength = I2S_SCLK_STRENGTH_LOW;
   1768	if (!of_property_read_u32(np, "sclk-strength", &value)) {
   1769		if (value > I2S_SCLK_STRENGTH_HIGH)
   1770			value = I2S_SCLK_STRENGTH_LOW;
   1771		sgtl5000->sclk_strength = value;
   1772	}
   1773
   1774	/* Ensure sgtl5000 will start with sane register values */
   1775	sgtl5000_fill_defaults(client);
   1776
   1777	ret = devm_snd_soc_register_component(&client->dev,
   1778			&sgtl5000_driver, &sgtl5000_dai, 1);
   1779	if (ret)
   1780		goto disable_clk;
   1781
   1782	return 0;
   1783
   1784disable_clk:
   1785	clk_disable_unprepare(sgtl5000->mclk);
   1786
   1787disable_regs:
   1788	regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
   1789	regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
   1790
   1791	return ret;
   1792}
   1793
   1794static int sgtl5000_i2c_remove(struct i2c_client *client)
   1795{
   1796	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
   1797
   1798	clk_disable_unprepare(sgtl5000->mclk);
   1799	regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
   1800	regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
   1801
   1802	return 0;
   1803}
   1804
   1805static const struct i2c_device_id sgtl5000_id[] = {
   1806	{"sgtl5000", 0},
   1807	{},
   1808};
   1809
   1810MODULE_DEVICE_TABLE(i2c, sgtl5000_id);
   1811
   1812static const struct of_device_id sgtl5000_dt_ids[] = {
   1813	{ .compatible = "fsl,sgtl5000", },
   1814	{ /* sentinel */ }
   1815};
   1816MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids);
   1817
   1818static struct i2c_driver sgtl5000_i2c_driver = {
   1819	.driver = {
   1820		.name = "sgtl5000",
   1821		.of_match_table = sgtl5000_dt_ids,
   1822	},
   1823	.probe_new = sgtl5000_i2c_probe,
   1824	.remove = sgtl5000_i2c_remove,
   1825	.id_table = sgtl5000_id,
   1826};
   1827
   1828module_i2c_driver(sgtl5000_i2c_driver);
   1829
   1830MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver");
   1831MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>");
   1832MODULE_LICENSE("GPL");